JP2009078264A - Visible light-responsive photocatalyst and its manufacturing method - Google Patents

Visible light-responsive photocatalyst and its manufacturing method Download PDF

Info

Publication number
JP2009078264A
JP2009078264A JP2008225776A JP2008225776A JP2009078264A JP 2009078264 A JP2009078264 A JP 2009078264A JP 2008225776 A JP2008225776 A JP 2008225776A JP 2008225776 A JP2008225776 A JP 2008225776A JP 2009078264 A JP2009078264 A JP 2009078264A
Authority
JP
Japan
Prior art keywords
titanium
sample
visible light
powder
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008225776A
Other languages
Japanese (ja)
Inventor
Tetsuto Nakajima
哲人 中島
Shozo Takase
昭三 高瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2008225776A priority Critical patent/JP2009078264A/en
Publication of JP2009078264A publication Critical patent/JP2009078264A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a titanium oxide photocatalyst having high activity in a visible light range its manufacturing method. <P>SOLUTION: The visible light-responsive photocatalyst is prepared by dispersing at least one element selected from the group consisting of platinum, silver, copper, nickel, cobalt, iron, manganese, chrome, vanadium, palladium, molybdenum and zinc on the inside and surface of a titanium oxide particle. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、可視光が照射されることで光触媒作用を示す、可視光応答型光触媒およびその製造方法に関する。   The present invention relates to a visible light responsive photocatalyst that exhibits a photocatalytic action when irradiated with visible light, and a method for producing the same.

従来の酸化チタン光触媒は、応答する光の波長が紫外線領域であるため、可視光を利用できないという欠点があった。そのため、戸外であれば太陽光に含まれる紫外線を利用できるが、室内では蛍光灯等の紫外線が非常に弱い。そのため、室内で酸化チタン光触媒を働かせる為には、紫外線の強度が強いブラックライトなどを使う必要があった。   Conventional titanium oxide photocatalysts have the disadvantage that visible light cannot be used because the wavelength of light to be responsive is in the ultraviolet region. Therefore, ultraviolet rays contained in sunlight can be used outside, but ultraviolet rays such as fluorescent lamps are very weak indoors. Therefore, in order to make the titanium oxide photocatalyst work in the room, it is necessary to use black light or the like with strong ultraviolet light.

近年、可視光領域の光でも応答する酸化チタン光触媒の開発がなされている。例えば、マグネトロンスパッタ蒸着法により、酸化チタン光触媒にCr、Vなどの遷移金属イオンを極微量注入する方法(特許文献1参照)、酸化チタン光触媒表面にCr、V、Fe、Mn等の陽イオンを含む媒体を接触させて、陽イオンを含有させる方法(特許文献2参照)がある。   In recent years, titanium oxide photocatalysts that respond even to light in the visible light region have been developed. For example, a method of injecting a very small amount of transition metal ions such as Cr and V into a titanium oxide photocatalyst by a magnetron sputter deposition method (see Patent Document 1), and a cation such as Cr, V, Fe, and Mn on the surface of the titanium oxide photocatalyst. There is a method of bringing a cation into contact with a medium to be contained (see Patent Document 2).

また、酸化チタンに窒素をドープする方法(特許文献3、4参照)、酸化チタンに硫黄をドープする方法(特許文献5参照)により、可視光領域でも応答する酸化チタン光触媒が開発されている。   Further, a titanium oxide photocatalyst that responds even in the visible light region has been developed by a method of doping titanium oxide with nitrogen (see Patent Documents 3 and 4) and a method of doping titanium oxide with sulfur (see Patent Document 5).

さらに、酸化チタン微粒子に金属化合物の共存下で金属微粒子を担持させる方法(特許文献6参照)、酸化チタン微粒子を、白金化合物共存下で熱処理して白金化合物を担持する方法(特許文献7参照)により、可視光領域でも応答する酸化チタン光触媒が提案されている。   Furthermore, a method of supporting metal fine particles on titanium oxide fine particles in the presence of a metal compound (see Patent Document 6), and a method of supporting titanium compounds by heat-treating titanium oxide fine particles in the presence of a platinum compound (see Patent Document 7). Thus, a titanium oxide photocatalyst that responds even in the visible light region has been proposed.

さらに、酸化チタン化合物に金属化合物を混合して、酸化チタン粒子を製造することにより、酸化チタン粒子の内部に鉄イオン、クロムイオンやコバルトイオンを含有させる方法により、可視光領域でも応答する酸化チタン光触媒が提案されている(特許文献8、9、10参照)。   Furthermore, titanium oxide responds even in the visible light region by mixing titanium oxide compounds with metal compounds to produce titanium oxide particles, and by incorporating iron ions, chromium ions and cobalt ions inside the titanium oxide particles. Photocatalysts have been proposed (see Patent Documents 8, 9, and 10).

特開平9−262482号公報JP-A-9-262482 特開2000−237598号公報JP 2000-237598 A 特開2001−205094号公報JP 2001-205094 A 特開2002−255554号公報JP 2002-255554 A 特開2004−143032号公報JP 2004-143032 A 特開2000−262906号公報JP 2000-262906 A 特開2004−143032号公報JP 2004-143032 A 特開2002−60221号公報JP 2002-60221 A 特開平11−255514号公報JP-A-11-255514 特開2000−70727号公報JP 2000-70727 A

しかし、本発明者らの検討によると、これまで開発された従来の技術に係る酸化チタン光触媒は、可視光領域の光の下で応答するとはいっても、その活性が低いのが現状である。   However, according to the study by the present inventors, the titanium oxide photocatalyst according to the conventional technology developed so far is low in activity even though it responds under light in the visible light region.

本発明の課題は、かかる現状に鑑み、可視光領域で高い活性を有する酸化チタン光触媒およびその製造方法を提供することにある。   In view of the present situation, an object of the present invention is to provide a titanium oxide photocatalyst having high activity in the visible light region and a method for producing the same.

上述の課題を解決するために、本発明者らが研究をおこなった結果、酸化チタン光触媒に可視光領域の光で高い活性を発揮させるためには、酸化チタン粒子に含有させる物質の種類を選び、含有させる量を制御する必要があること、さらに酸化チタン光触媒の粒径を小さくして、表面積を大きくすることが肝要であることに想到し、本発明を完成した。   As a result of studies conducted by the present inventors to solve the above-mentioned problems, in order for the titanium oxide photocatalyst to exhibit high activity with light in the visible light region, the type of substance to be contained in the titanium oxide particles is selected. The present invention has been completed by thinking that it is necessary to control the amount to be contained and that it is important to increase the surface area by reducing the particle size of the titanium oxide photocatalyst.

即ち、上述の課題を解決するための第1の発明は、
酸化チタン粒子の内部および表面に、白金、銀、銅、ニッケル、コバルト、鉄、マンガン、クロム、バナジウム、パラジウム、モリブデン、亜鉛からなる群より選ばれる少なくとも1種類の元素が分散していることを特徴とする可視光応答型光触媒である。
That is, the first invention for solving the above-described problem is
At least one element selected from the group consisting of platinum, silver, copper, nickel, cobalt, iron, manganese, chromium, vanadium, palladium, molybdenum, and zinc is dispersed inside and on the surface of the titanium oxide particles. This is a visible light responsive photocatalyst.

第2の発明は、
前記元素が、当該元素の金属微粒子として分散していることを特徴とする第1の発明に記載の可視光応答型光触媒である。
The second invention is
The visible light responsive photocatalyst according to the first invention, wherein the element is dispersed as metal fine particles of the element.

第3の発明は、
前記元素が、当該元素を含む化合物として分散していることを特徴とする第1の発明に記載の可視光応答型光触媒である。
The third invention is
The visible light responsive photocatalyst according to the first invention, wherein the element is dispersed as a compound containing the element.

第4の発明は、
前記元素が、酸化チタン粒子の内部では当該元素の金属微粒子として分散しており、酸化チタン粒子の表面では当該元素を含む化合物として分散していることを特徴とする第1の発明に記載の可視光応答型光触媒である。
The fourth invention is:
The visible light according to the first invention, wherein the element is dispersed as metal fine particles of the element inside the titanium oxide particles, and is dispersed as a compound containing the element on the surface of the titanium oxide particles. Photoresponsive photocatalyst.

第5の発明は、
チタン化合物の溶液を加水分解、または、チタン化合物の溶液へアルカリを加えて水酸化チタンを沈殿させる第1の工程と、当該水酸化チタンを焼結して酸化チタン粒子を得る第2の工程とを有し、
前記第1の工程、または、第1と第2の工程の間において、銅、白金、銀、ニッケル、コバルト、鉄、マンガン、クロム、バナジウム、パラジウム、モリブデン、亜鉛からなる群より選ばれる少なくとも1種類の元素を含む物質を加え、
前記第2の工程において、水酸化チタンと前記化合物との混合物を焼結し、酸化チタン粒子の内部および表面に、白金、銀、銅、ニッケル、コバルト、鉄、マンガン、クロム、バナジウム、パラジウム、モリブデン、亜鉛からなる群より選ばれる少なくとも1種類の元素を分散させたことを特徴とする可視光応答型光触媒の製造方法である。
The fifth invention is:
A first step of hydrolyzing a solution of the titanium compound or adding an alkali to the solution of the titanium compound to precipitate titanium hydroxide; a second step of sintering the titanium hydroxide to obtain titanium oxide particles; Have
At least one selected from the group consisting of copper, platinum, silver, nickel, cobalt, iron, manganese, chromium, vanadium, palladium, molybdenum, and zinc in the first step or between the first and second steps. Add substances containing various elements,
In the second step, a mixture of titanium hydroxide and the compound is sintered, and platinum, silver, copper, nickel, cobalt, iron, manganese, chromium, vanadium, palladium, A method for producing a visible light responsive photocatalyst, wherein at least one element selected from the group consisting of molybdenum and zinc is dispersed.

第6の発明は、
前記酸化チタン化合物として、塩化チタン、硫酸チタン、硫酸チタニル、チタニウムテトライソプロポキシドを用いたことを特徴とする、第5の発明に記載の可視光応答型光触媒の製造方法である。
The sixth invention is:
The method for producing a visible light responsive photocatalyst according to the fifth aspect, wherein titanium chloride, titanium sulfate, titanyl sulfate, and titanium tetraisopropoxide are used as the titanium oxide compound.

第7の発明は、
前記物質を、前記元素の金属微粒子として分散させたことを特徴とする、第5の発明に記載の可視光応答型光触媒の製造方法である。
The seventh invention
6. The method for producing a visible light responsive photocatalyst according to the fifth invention, wherein the substance is dispersed as metal fine particles of the element.

第8の発明は、
前記物質を、前記元素を含む化合物として分散させたことを特徴とする、第5の発明に
記載の可視光応答型光触媒の製造方法である。
The eighth invention
The method for producing a visible light responsive photocatalyst according to the fifth invention, wherein the substance is dispersed as a compound containing the element.

本発明に係る酸化チタンの可視光応答型光触媒(以下、本発明において、「光触媒」と略記する場合がある。)は、従来の可視光領域で活性を有する光触媒と比較して、小さい粒径の粒子が得られた。その結果、従来の可視光領域で活性を有する光触媒比較して、活性が高い。   The visible light responsive photocatalyst of titanium oxide according to the present invention (hereinafter sometimes abbreviated as “photocatalyst” in the present invention) has a smaller particle size than a conventional photocatalyst having activity in the visible light region. Particles were obtained. As a result, the activity is higher than the conventional photocatalyst having activity in the visible light region.

また、本発明に係る酸化チタンの可視光応答型光触媒の製造には、スパッタリング装置などの高価な装置は不要であり、可視光領域の光の照射によって高い活性を示す光触媒を安価に製造できる。   Moreover, an expensive apparatus such as a sputtering apparatus is not necessary for the production of the visible light responsive photocatalyst of titanium oxide according to the present invention, and a photocatalyst exhibiting high activity by irradiation with light in the visible light region can be produced at a low cost.

本発明者らは、従来の技術に係る可視光応答型光触媒が、可視光領域の光の下で応答するとはいっても、その活性が低い理由を研究、考察した。
その結果、酸化チタン粒子に含有させる物質により、可視光応答型光触媒が可視光を吸収できても、光触媒活性が向上しないことを見出した。その原因は、可視光を吸収した物質の電子伝達速度が遅い為、電子伝達の途中で再結合が起こり、光触媒作用を示さなくなるためであると考えた。
The present inventors have studied and examined the reason why the visible light responsive photocatalyst according to the prior art has low activity even though it responds under light in the visible light region.
As a result, it has been found that the photocatalytic activity is not improved even if the visible light responsive photocatalyst can absorb visible light by the substance contained in the titanium oxide particles. The reason for this was thought to be that the substance that absorbed visible light had a low electron transfer rate, so that recombination occurred in the middle of the electron transfer and no photocatalytic action was exhibited.

一方、白金や銀などの金属は金属光沢があるが、これらを微粒子にすると着色することが知られている。微粒子になった白金や銀は黒色や茶色に着色し、可視光を吸収するようになる。しかし、金属微粒子を酸化チタン粒子表面にだけ担持させる方法では、金属微粒子の量が少ないため、可視光を十分吸収できず、可視光下での光触媒活性が低いという問題点があった。   On the other hand, metals such as platinum and silver have a metallic luster, but are known to be colored when they are made into fine particles. The platinum and silver particles become colored black or brown and absorb visible light. However, the method in which the metal fine particles are supported only on the surface of the titanium oxide particles has a problem that the amount of the metal fine particles is small, so that the visible light cannot be sufficiently absorbed and the photocatalytic activity under visible light is low.

ここで本発明者らは、電子伝達速度が速い、所定の金属微粒子に着目し、当該金属微粒子を用いて酸化チタン粒子の高い光触媒活性を向上する方法を考案した。さらに、当該金属微粒子を酸化チタン粒子表面だけでなく、粒子内部にも含有させることにより、可視光を十分に吸収させることに想到した。
さらに本発明者らは、着色した所定の金属化合物にも着目した。当該金属化合物を用いて酸化チタン粒子の高い光触媒活性を向上する方法を考案した。さらに、当該金属化合物を酸化チタン粒子表面だけでなく、粒子内部にも含有させることにより、可視光を十分に吸収させることに想到した。
Here, the present inventors have devised a method for improving the high photocatalytic activity of titanium oxide particles using the metal fine particles, paying attention to predetermined metal fine particles having a high electron transfer speed. Furthermore, it has been conceived that the metal fine particles are contained not only on the surface of the titanium oxide particles but also inside the particles, thereby sufficiently absorbing visible light.
Furthermore, the present inventors also paid attention to a predetermined colored metal compound. A method for improving the high photocatalytic activity of titanium oxide particles using the metal compound has been devised. Further, the inventors have conceived that the visible light can be sufficiently absorbed by including the metal compound not only on the surface of the titanium oxide particles but also inside the particles.

以下、本発明に係る酸化チタン粒子の可視光応答型光触媒について、酸化チタン粒子、添加する金属元素の順で説明する。   Hereinafter, the visible light responsive photocatalyst of titanium oxide particles according to the present invention will be described in the order of titanium oxide particles and added metal elements.

(酸化チタン粒子)
本発明に係る酸化チタン粒子の製造過程は、いくつかある。
例えば、塩化チタン、硫酸チタン、硫酸チタニルを水に溶解して溶液とし、当該溶液へ炭酸ナトリウム水溶液または水酸化ナトリウム水溶液を添加すると、水酸化チタンが沈殿として得られる。塩化チタンを使う場合は、溶液のpHが10以上になるまで炭酸ナトリウム水溶液または水酸化ナトリウム水溶液を加える。但し、塩化チタンを水に溶解するときに白煙をあげ、発熱するので注意して行う。さらに、塩化チタン等を溶解した水溶液へ、炭酸ナトリウム水溶液または水酸化ナトリウム水溶液を加えると発熱するので、冷却しながら行う。
得られた沈殿を濾過し、当該沈殿に含まれる塩化ナトリウムや硫酸ナトリウムを取り除くため純水で5〜6回洗浄した後、乾燥させ水酸化チタンを得る。得られた水酸化チタンを380℃程度で焼結し、粒塊を粉砕して粉末にすると光触媒作用を示す酸化チタン粒子
が得られる。
(Titanium oxide particles)
There are several processes for producing titanium oxide particles according to the present invention.
For example, when titanium chloride, titanium sulfate, and titanyl sulfate are dissolved in water to form a solution, and an aqueous sodium carbonate solution or an aqueous sodium hydroxide solution is added to the solution, titanium hydroxide is obtained as a precipitate. When using titanium chloride, an aqueous sodium carbonate solution or an aqueous sodium hydroxide solution is added until the pH of the solution reaches 10 or higher. However, when titanium chloride is dissolved in water, white smoke is generated and heat is generated. Further, when a sodium carbonate aqueous solution or a sodium hydroxide aqueous solution is added to an aqueous solution in which titanium chloride or the like is dissolved, heat is generated.
The obtained precipitate is filtered, washed 5-6 times with pure water to remove sodium chloride and sodium sulfate contained in the precipitate, and then dried to obtain titanium hydroxide. When the obtained titanium hydroxide is sintered at about 380 ° C. and the agglomerates are pulverized into powder, titanium oxide particles exhibiting photocatalytic action are obtained.

チタン原料として、塩化チタンを使う場合は、塩化チタン(III)、塩化チタン(IV)
のいずれを使うこともできる。尤も、取り扱いやすい四塩化チタン水溶液を使うと便利である。塩化チタンを使う場合に、溶液のpHが10以上になるまで炭酸ナトリウム水溶液または水酸化ナトリウム水溶液を加える理由は、酸化チタンの当電点がpH6付近にあることに関係している。塩化チタンを使う場合、pHが10以上の条件では、酸化チタンを負に帯電させた粒子を作ることができ、色素を吸着させやすくなるためである。
When using titanium chloride as the titanium raw material, titanium (III) chloride and titanium (IV) chloride
Either of these can be used. However, it is convenient to use an aqueous titanium tetrachloride solution that is easy to handle. When titanium chloride is used, the reason why the aqueous sodium carbonate solution or the aqueous sodium hydroxide solution is added until the pH of the solution becomes 10 or more is related to the fact that the current point of titanium oxide is around pH 6. This is because when titanium chloride is used, particles in which titanium oxide is negatively charged can be produced under conditions where the pH is 10 or more, and the dye is easily adsorbed.

チタン原料として、チタニウムテトライソプロポキシドを用いる場合は、当該チタニウムテトライソプロポキシドへ水を加えて加水分解し、水酸化チタンを沈殿させる。当該水酸化チタンを乾燥させた後、例えば380℃で焼結し、粒塊を粉砕して粉末にすると光触媒作用を示す酸化チタン粒子が得られる。   When titanium tetraisopropoxide is used as the titanium raw material, water is added to the titanium tetraisopropoxide for hydrolysis to precipitate titanium hydroxide. After the titanium hydroxide is dried, it is sintered at, for example, 380 ° C., and the agglomerates are pulverized into powder to obtain titanium oxide particles exhibiting photocatalytic action.

例えば、塩化チタン水溶液に、塩化銅、塩化ニッケル、塩化コバルト、塩化鉄、塩化マンガン、塩化クロム、塩化パラジウムから選択される1種以上の塩を混合して溶液とする。当該水溶液へ、アルカリを加えて、水酸化チタンと、水酸化銅、水酸化ニッケル、水酸化コバルト、水酸化鉄、水酸化マンガン、水酸化クロム、水酸化パラジウムから選択される1種以上を沈殿させた。溶液のpHが10以上になるまでアルカリを加えた。当該沈殿物を、乾燥後、例えば380℃で焼結して、内部および表面に銅、ニッケル、コバルト、鉄、マンガン、クロム、パラジウムから選択される1種以上の成分を均一に含む酸化チタン粉末を作ることができた。アルカリとしては、炭酸ナトリウム水溶液や水酸化ナトリウム水溶液が使用できる。   For example, a titanium chloride aqueous solution is mixed with one or more salts selected from copper chloride, nickel chloride, cobalt chloride, iron chloride, manganese chloride, chromium chloride, and palladium chloride to form a solution. An alkali is added to the aqueous solution to precipitate one or more selected from titanium hydroxide, copper hydroxide, nickel hydroxide, cobalt hydroxide, iron hydroxide, manganese hydroxide, chromium hydroxide, and palladium hydroxide. I let you. Alkali was added until the pH of the solution reached 10 or higher. The precipitate is dried and then sintered, for example, at 380 ° C., and the titanium oxide powder uniformly contains at least one component selected from copper, nickel, cobalt, iron, manganese, chromium and palladium inside and on the surface. I was able to make. As the alkali, an aqueous sodium carbonate solution or an aqueous sodium hydroxide solution can be used.

また例えば、硫酸チタンやチタニウムテトライソプロポキシドに硝酸銀を加える場合は、焼結温度を380℃程度にすると、灰紫色の粉末が得られた。可視光の領域で光触媒活性を調べた結果、従来知られている触媒と比べ、高い活性を示した。さらに、硝酸銀の分解温度より低い380℃で焼結しても灰色の粉末が得られた。   For example, when adding silver nitrate to titanium sulfate or titanium tetraisopropoxide, a grayish purple powder was obtained when the sintering temperature was about 380 ° C. As a result of examining the photocatalytic activity in the visible light region, it showed a higher activity than the conventionally known catalysts. Furthermore, even when sintered at 380 ° C., which is lower than the decomposition temperature of silver nitrate, a gray powder was obtained.

さらに例えば、チタン原料としてチタニウムテトライソプロポキシドを用い、さらに、銅、白金、銀、ニッケル、コバルト、鉄、マンガン、クロム、バナジウム、パラジウム、モリブデン、亜鉛から選択される1種以上の化合物を混合する場合、これらの化合物を予めエタノールに溶解させても良いし、水酸化チタンが沈殿した後に、これらの化合物をエタノールに溶かして水酸化チタンと混合してもよい。
チタン原料とこれらの化合物との混合物からエタノールを蒸発させ、残差物を350〜800℃で焼結し、粉末にする方法でも、酸化チタン粒子の内部および表面に銅、白金、銀、ニッケル、コバルト、鉄、マンガン、クロム、バナジウム、パラジウム、モリブデン、亜鉛の成分が均一に含まれた物質が得られる。当該酸化チタン粒子の内部および表面に銅、白金、銀、ニッケル、コバルト、鉄、マンガン、クロム、バナジウム、パラジウム、モリブデン、亜鉛の成分が均一に含まれた物質は、可視光領域で光触媒活性を示す。
Further, for example, titanium tetraisopropoxide is used as a titanium raw material, and one or more compounds selected from copper, platinum, silver, nickel, cobalt, iron, manganese, chromium, vanadium, palladium, molybdenum, and zinc are mixed. In this case, these compounds may be dissolved in ethanol in advance, or after precipitation of titanium hydroxide, these compounds may be dissolved in ethanol and mixed with titanium hydroxide.
Even in the method of evaporating ethanol from a mixture of titanium raw material and these compounds and sintering the residual material at 350 to 800 ° C. to form a powder, copper, platinum, silver, nickel, A substance in which the components of cobalt, iron, manganese, chromium, vanadium, palladium, molybdenum, and zinc are uniformly contained can be obtained. Substances in which the components of copper, platinum, silver, nickel, cobalt, iron, manganese, chromium, vanadium, palladium, molybdenum, and zinc are uniformly contained inside and on the surface of the titanium oxide particles have photocatalytic activity in the visible light region. Show.

(添加する金属元素)
〈白金〉
白金は、遷移金属でイオン化傾向が低い金属であり、着色した金属微粒子が得られる。
チタン原料と白金の化合物とを混合する場合、当該白金の化合物と、塩化チタン、硫酸チタン、硫酸チタニルとを混合しておくことで、白金の化合物と水酸化チタンとを共沈させることができる。塩化チタンを使う場合は、溶液のpHが10以上になるまでアルカリを加える。得られた沈殿を濾過し、含まれる硫酸ナトリウムや塩化ナトリウムを取り除くため、純水で5〜6回洗浄したのち、乾燥させる。乾燥後の沈殿を350〜800℃で焼結し粉末にすることで、当該粉末の内部および表面に、銀や白金の金属超微粒子が均一に
含まれた物質ができる。当該粉末の内部および表面に、銀や白金の金属超微粒子が均一に含まれた物質は、可視光領域で光触媒活性を示す。
(Metal elements to be added)
<platinum>
Platinum is a transition metal with a low ionization tendency, and colored metal fine particles are obtained.
When mixing a titanium raw material and a platinum compound, the platinum compound and titanium hydroxide can be coprecipitated by mixing the platinum compound with titanium chloride, titanium sulfate, and titanyl sulfate. . When using titanium chloride, alkali is added until the pH of the solution reaches 10 or higher. The obtained precipitate is filtered and washed with pure water 5 to 6 times to remove sodium sulfate and sodium chloride, and then dried. By sintering the precipitate after drying at 350 to 800 ° C. into a powder, a substance in which ultrafine metal particles of silver or platinum are uniformly contained inside and on the surface of the powder is formed. A substance in which ultrafine metal particles of silver or platinum are uniformly contained in and on the surface of the powder exhibits photocatalytic activity in the visible light region.

また、一旦、水酸化チタンを生成させた後に、当該水酸化チタンへ白金の化合物の水溶液を加え、よく混合して乾燥させ、300〜800℃、より好ましくは300〜400℃で焼結し、粉末にする方法も好ましい。当該方法によっても、粉末の内部および表面に銀や白金の金属超微粒子が均一に含まれ、可視光領域で光触媒活性を示す物質が得られる。   Moreover, once titanium hydroxide is generated, an aqueous solution of a platinum compound is added to the titanium hydroxide, mixed well and dried, and sintered at 300 to 800 ° C., more preferably 300 to 400 ° C., A method of forming a powder is also preferable. Also by this method, a substance which contains silver and platinum ultrafine particles of silver and platinum uniformly in the inside and surface of the powder and exhibits photocatalytic activity in the visible light region can be obtained.

白金の化合物としては、塩化白金酸を水に溶かして用いればよい。この他、塩化白金酸アンモニウム、塩化白金酸カリウム、塩化白金酸ナトリウム、水酸化白金、白金酸ナトリウム、塩化白金(II)、塩化白金(IV)、臭化白金、硫酸白金、酸化白金(IV)、酸化白金(II)、白金粉末を使うこともできる。   As the platinum compound, chloroplatinic acid may be dissolved in water. In addition, ammonium chloroplatinate, potassium chloroplatinate, sodium chloroplatinate, platinum hydroxide, sodium platinumate, platinum chloride (II), platinum chloride (IV), platinum bromide, platinum sulfate, platinum oxide (IV) Platinum oxide (II) or platinum powder can also be used.

例えば、塩化白金酸は370℃で分解する。酸化チタン粒子製造過程で、塩化白金酸を混合して、380℃で焼結して、内部および表面に、金属の白金を均一に含む茶色に着色した酸化チタン粉末を作ることができた。可視光の領域で光触媒活性を調べた結果、従来知られている触媒と比べ、高い活性を示した。さらに焼結温度を600℃にすると、灰色の粉末が得られた。当該灰色の粉末は、可視光の領域で光触媒活性を調べた結果、従来知られている触媒と比べ、同程度の活性であった。   For example, chloroplatinic acid decomposes at 370 ° C. In the course of producing titanium oxide particles, chloroplatinic acid was mixed and sintered at 380 ° C., and a brown-colored titanium oxide powder uniformly containing metal platinum inside and on the surface could be produced. As a result of examining the photocatalytic activity in the visible light region, it showed higher activity than the conventionally known catalysts. Further, when the sintering temperature was 600 ° C., a gray powder was obtained. As a result of examining the photocatalytic activity in the visible light region, the gray powder was almost as active as a conventionally known catalyst.

〈銀〉
銀は、遷移金属でイオン化傾向が低い金属であり、着色した金属微粒子が得られる。
チタン原料と、銀の化合物とを混合する場合、酸化チタン粒子の製造過程において、当該銀の化合物と、塩化チタン、硫酸チタン、硫酸チタニルとを混合しておくことで、銀の化合物と水酸化チタンとを共沈させることができる。塩化チタンを使う場合は、溶液のpHが10以上になるまでアルカリを加える。得られた沈殿を濾過し、含まれる硫酸ナトリウムや塩化ナトリウムを取り除くため、純水で5〜6回洗浄したのち、乾燥させる。乾燥後の沈殿を300〜800℃、より好ましくは300〜400℃で焼結し粉末にすることで、当該粉末の内部および表面に、銀の金属超微粒子が均一に含まれた物質ができる。当該粉末の内部および表面に、銀の金属超微粒子が均一に含まれた物質は、可視光領域で光触媒活性を示す。
<Silver>
Silver is a metal that is a transition metal and has a low ionization tendency, and colored metal fine particles can be obtained.
When mixing a titanium raw material and a silver compound, the silver compound and hydroxide are mixed by mixing the silver compound with titanium chloride, titanium sulfate, and titanyl sulfate in the production process of the titanium oxide particles. Titanium can be co-precipitated. When using titanium chloride, alkali is added until the pH of the solution reaches 10 or higher. The obtained precipitate is filtered and washed with pure water 5 to 6 times to remove sodium sulfate and sodium chloride, and then dried. By sintering the precipitate after drying at 300 to 800 ° C., more preferably 300 to 400 ° C., to obtain a powder, a substance in which silver metal ultrafine particles are uniformly contained inside and on the surface is formed. A substance in which silver metal ultrafine particles are uniformly contained inside and on the surface of the powder exhibits photocatalytic activity in the visible light region.

また、一旦、水酸化チタンを生成させた後に、当該水酸化チタンへ銀の化合物の水溶液を加え、よく混合して乾燥させ、300〜800℃、より好ましくは300〜400℃で焼結し、粉末にする方法も好ましい。当該方法によっても、粉末の内部および表面に銀の金属超微粒子が均一に含まれ、可視光領域で光触媒活性を示す物質が得られる。   In addition, once titanium hydroxide is generated, an aqueous solution of a silver compound is added to the titanium hydroxide, mixed and dried, and sintered at 300 to 800 ° C, more preferably 300 to 400 ° C. A method of forming a powder is also preferable. Also by this method, a silver metal ultrafine particle is uniformly contained inside and on the surface of the powder, and a substance exhibiting photocatalytic activity in the visible light region can be obtained.

銀の化合物としては、硝酸銀を水に溶かして用いればよい。この他、銀原料として、フッ化銀、塩化銀、臭化銀、ヨウ化銀、硫酸銀、メタリン酸銀、酢酸銀、亜硝酸銀、亜硫酸銀、塩素酸銀、シアン化銀、炭酸銀、チオ硫酸銀、硫化銀、リン酸銀、リン酸二水素銀、リン酸水素二銀、酸化銀、銀粉末を使うこともできる。   As the silver compound, silver nitrate may be dissolved in water. Other silver raw materials include silver fluoride, silver chloride, silver bromide, silver iodide, silver sulfate, silver metaphosphate, silver acetate, silver nitrite, silver sulfite, silver chlorate, silver cyanide, silver carbonate, thio Silver sulfate, silver sulfide, silver phosphate, silver dihydrogen phosphate, disilver hydrogen phosphate, silver oxide, and silver powder can also be used.

例えば、硝酸銀は分解温度が444℃、酸化銀の分解温度は300℃である。酸化チタン粒子製造過程で、塩化チタンを原料にして、アルカリを加えると、水酸化チタンが沈殿する。硝酸銀を水に溶かし、水酸化チタンの沈殿を混合後、乾燥させ、380℃で焼結すると、内部および表面に、金属の銀を均一に含む酸化チタン粉末を作ることができた。および表面に含まれる金属の銀が超微粒子の状態で含まれるため、作成した粉末は灰紫色で可視光を吸収できる。   For example, silver nitrate has a decomposition temperature of 444 ° C., and silver oxide has a decomposition temperature of 300 ° C. In the titanium oxide particle manufacturing process, titanium hydroxide is precipitated by adding alkali using titanium chloride as a raw material. When silver nitrate was dissolved in water and the titanium hydroxide precipitate was mixed, dried and sintered at 380 ° C., titanium oxide powder containing metal silver uniformly inside and on the surface could be produced. Since the metallic silver contained on the surface is contained in the form of ultrafine particles, the prepared powder is gray purple and can absorb visible light.

〈銅〉
銅は、遷移金属でイオン化傾向が低い金属であり、着色した金属微粒子が得られる。
チタン原料と、銅の化合物とを混合する場合、酸化チタン粒子の製造過程において、当該銅の化合物と、塩化チタン、硫酸チタン、硫酸チタニルとを混合しておくことで、銅の化合物と水酸化チタンとを共沈させることができる。塩化チタンを使う場合は、溶液のpHが10以上になるまでアルカリを加える。得られた沈殿を濾過し、含まれる硫酸ナトリウムや塩化ナトリウムを取り除くため、純水で5〜6回洗浄したのち、乾燥させる。乾燥後の沈殿を300〜800℃、より好ましくは300〜400℃で焼結し粉末にすることで、当該粉末の内部および表面に、銅の酸化物が均一に含まれた物質ができる。当該粉末の内部および表面に、銅の酸化物が均一に含まれた物質は、可視光領域で光触媒活性を示す。
<copper>
Copper is a metal which is a transition metal and has a low ionization tendency, and colored metal fine particles can be obtained.
When mixing the titanium raw material and the copper compound, the copper compound and the hydroxide are mixed by mixing the copper compound with titanium chloride, titanium sulfate, and titanyl sulfate in the production process of the titanium oxide particles. Titanium can be co-precipitated. When using titanium chloride, alkali is added until the pH of the solution reaches 10 or higher. The obtained precipitate is filtered and washed with pure water 5 to 6 times to remove sodium sulfate and sodium chloride, and then dried. By sintering the precipitate after drying at 300 to 800 ° C., more preferably at 300 to 400 ° C., to obtain a powder, a substance in which copper oxide is uniformly contained inside and on the surface of the powder is formed. A substance in which copper oxide is uniformly contained inside and on the surface of the powder exhibits photocatalytic activity in the visible light region.

また、一旦、水酸化チタンを生成させた後に、当該水酸化チタンへ銅の化合物の水溶液を加え、よく混合して乾燥させ、300〜800℃、より好ましくは300〜400℃で焼結し、粉末にする方法も好ましい。当該方法によっても、粉末の内部および表面に銅の酸化物が均一に含まれ、可視光領域で光触媒活性を示す物質が得られる。   In addition, once titanium hydroxide is generated, an aqueous solution of a copper compound is added to the titanium hydroxide, thoroughly mixed and dried, and sintered at 300 to 800 ° C., more preferably 300 to 400 ° C., A method of forming a powder is also preferable. Also by this method, a substance that contains a copper oxide uniformly in and on the surface of the powder and exhibits photocatalytic activity in the visible light region can be obtained.

銅の化合物としては、塩化銅(II)を水に溶かして用いればよい。この他、硫酸銅(II)、酢酸銅(II)、硝酸銅(II)、水酸化銅(II)、フッ化銅(II)、硫化銅(II)、酸化銅(II)を使うこともできる。さらに、1価の塩化銅(I)、水酸化銅(I)、フッ化銅(I)、硫化銅(I)、酸化銅(I)、銅粉末を使うこともできる。   As the copper compound, copper (II) chloride may be dissolved in water. In addition, copper sulfate (II), copper acetate (II), copper nitrate (II), copper hydroxide (II), copper fluoride (II), copper sulfide (II), copper oxide (II) can also be used. it can. Furthermore, monovalent copper chloride (I), copper hydroxide (I), copper fluoride (I), copper sulfide (I), copper oxide (I), and copper powder can also be used.

例えば、塩化銅(II)は498℃で分解する。水酸化銅(II)は360℃で酸化銅に分解する。塩化チタンに、塩化銅(II)を混合して、アルカリを加えると、水酸化チタンと水酸化銅の混合物が共殿する。この沈殿物を380℃で焼結して、内部および表面に酸化銅を均一に含む酸化チタン粉末を作ることができた。   For example, copper (II) chloride decomposes at 498 ° C. Copper (II) hydroxide decomposes into copper oxide at 360 ° C. When copper chloride (II) is mixed with titanium chloride and an alkali is added, a mixture of titanium hydroxide and copper hydroxide coexists. This precipitate was sintered at 380 ° C., and a titanium oxide powder containing copper oxide uniformly inside and on the surface could be produced.

可視光の領域で光触媒活性を調べた結果、塩化チタンに塩化銅(II)を混合し、水酸化チタンと水酸化銅の混合物を350〜800℃で焼結した場合に、可視光領域で活性を示した。   As a result of examining the photocatalytic activity in the visible light region, it was active in the visible light region when copper chloride (II) was mixed with titanium chloride and the mixture of titanium hydroxide and copper hydroxide was sintered at 350 to 800 ° C. showed that.

また例えば、チタニウムテトライソプロポキシドに、塩化銅(II)を混合して、550℃で焼結して、内部および表面に銅の化合物を均一に含む酸化チタン粉末を作ることができた。可視光の領域で光触媒活性を調べた結果、700℃で焼結した場合に、酸化チタン粉末の内部および表面に銅の化合物が均一に分散した薄緑色の粉末が得られ、可視光領域で、高い活性を示した。   Further, for example, titanium tetraisopropoxide was mixed with copper (II) chloride and sintered at 550 ° C., and titanium oxide powder containing a copper compound uniformly inside and on the surface could be produced. As a result of examining the photocatalytic activity in the visible light region, when sintered at 700 ° C., a light green powder in which the copper compound is uniformly dispersed inside and on the surface of the titanium oxide powder is obtained, and in the visible light region, High activity was shown.

〈ニッケル〉
チタン原料と、ニッケルの化合物とを混合する場合、酸化チタン粒子の製造過程において、当該ニッケルの化合物と、塩化チタン、硫酸チタン、硫酸チタニルとを混合しておくことで、ニッケルの化合物と水酸化チタンとを共沈させることができる。塩化チタンを使う場合は、溶液のpHが10以上になるまでアルカリを加える。得られた沈殿を濾過し、含まれる硫酸ナトリウムや塩化ナトリウムを取り除くため、純水で5〜6回洗浄したのち、乾燥させる。乾燥後の沈殿を300〜800℃、より好ましくは300〜400℃で焼結し粉末にすることで、当該粉末の内部および表面に、ニッケルの化合物が均一に含まれた物質ができる。当該粉末の内部および表面に、ニッケルの化合物が均一に含まれた物質は、可視光領域で光触媒活性を示す。
<nickel>
When mixing a titanium raw material and a nickel compound, the nickel compound and the hydroxide are mixed by mixing the nickel compound with titanium chloride, titanium sulfate, and titanyl sulfate in the production process of the titanium oxide particles. Titanium can be co-precipitated. When using titanium chloride, alkali is added until the pH of the solution reaches 10 or higher. The obtained precipitate is filtered and washed with pure water 5 to 6 times to remove sodium sulfate and sodium chloride, and then dried. By sintering the dried precipitate at 300 to 800 ° C., more preferably at 300 to 400 ° C., to obtain a powder, a substance in which a nickel compound is uniformly contained inside and on the surface of the powder is formed. A substance in which a nickel compound is uniformly contained inside and on the surface of the powder exhibits photocatalytic activity in the visible light region.

また、一旦、水酸化チタンを生成させた後に、当該水酸化チタンへニッケルの化合物の水溶液を加え、よく混合して乾燥させ、300〜800℃、より好ましくは300〜400℃で焼結し、粉末にする方法も好ましい。当該方法によっても、粉末の内部および表面
にニッケルの化合物が均一に含まれ、可視光領域で光触媒活性を示す物質が得られる。
In addition, once titanium hydroxide is generated, an aqueous solution of a nickel compound is added to the titanium hydroxide, mixed and dried, and sintered at 300 to 800 ° C, more preferably 300 to 400 ° C. A method of forming a powder is also preferable. Also by this method, a nickel compound is uniformly contained inside and on the surface of the powder, and a substance exhibiting photocatalytic activity in the visible light region can be obtained.

ニッケルの化合物としては、塩化ニッケル(II)、硫酸ニッケル(II)、硝酸ニッケル(II)、水酸化ニッケル(II)、酸化ニッケル(II)、ニッケル粉末を使うことができる。   As the nickel compound, nickel chloride (II), nickel sulfate (II), nickel nitrate (II), nickel hydroxide (II), nickel oxide (II), or nickel powder can be used.

例えば、水酸化ニッケルは230℃で分解して酸化ニッケルになる。塩化チタンに塩化ニッケルを混合して、アルカリを加えて水酸化チタンと水酸化ニッケルを沈殿させ、塩化チタンを使う場合は、溶液のpHが10以上になるまでアルカリを加える。380℃で焼結して、内部および表面に酸化ニッケルを均一に含む酸化チタン粉末を作ることができた。当該酸化ニッケルを均一に含む酸化チタン粉末は、可視光領域で高い活性を示した。   For example, nickel hydroxide decomposes at 230 ° C. to nickel oxide. Nickel chloride is mixed with titanium chloride, and alkali is added to precipitate titanium hydroxide and nickel hydroxide. When titanium chloride is used, alkali is added until the pH of the solution becomes 10 or more. Sintered at 380 ° C., titanium oxide powder containing nickel oxide uniformly inside and on the surface could be made. The titanium oxide powder containing nickel oxide uniformly showed high activity in the visible light region.

〈コバルト〉
チタン原料と、コバルトの化合物とを混合する場合、酸化チタン粒子の製造過程において、当該コバルトの化合物と、塩化チタン、硫酸チタン、硫酸チタニルとを混合しておくことで、コバルトの化合物と水酸化チタンとを共沈させることができる。塩化チタンを使う場合は、溶液のpHが10以上になるまでアルカリを加える。得られた沈殿を濾過し、含まれる硫酸ナトリウムや塩化ナトリウムを取り除くため、純水で5〜6回洗浄したのち、乾燥させる。乾燥後の沈殿を300〜800℃、より好ましくは300〜400℃で焼結し粉末にすることで、当該粉末の内部および表面に、コバルトの金属超微粒子が均一に含まれた物質ができる。当該粉末の内部および表面に、コバルトの金属超微粒子が均一に含まれた物質は、可視光領域で光触媒活性を示す。
<cobalt>
When mixing a titanium raw material and a cobalt compound, the cobalt compound and hydroxylated by mixing the cobalt compound with titanium chloride, titanium sulfate, and titanyl sulfate in the production process of the titanium oxide particles. Titanium can be co-precipitated. When using titanium chloride, alkali is added until the pH of the solution reaches 10 or higher. The obtained precipitate is filtered and washed with pure water 5 to 6 times to remove sodium sulfate and sodium chloride, and then dried. By sintering the precipitate after drying at 300 to 800 ° C., more preferably at 300 to 400 ° C., to obtain a powder, a substance in which ultrafine metal particles of cobalt are uniformly contained inside and on the surface of the powder is formed. A substance in which cobalt metal ultrafine particles are uniformly contained inside and on the surface of the powder exhibits photocatalytic activity in the visible light region.

また、一旦、水酸化チタンを生成させた後に、当該水酸化チタンへコバルトの化合物の水溶液を加え、よく混合して乾燥させ、300〜800℃、より好ましくは300〜400℃で焼結し、粉末にする方法も好ましい。当該方法によっても、粉末の内部および表面にコバルトの化合物が均一に含まれ、可視光領域で光触媒活性を示す物質が得られる。   In addition, once titanium hydroxide is generated, an aqueous solution of a cobalt compound is added to the titanium hydroxide, mixed well, dried, and sintered at 300 to 800 ° C, more preferably 300 to 400 ° C. A method of forming a powder is also preferable. Also by this method, a substance which contains a cobalt compound uniformly in and on the surface of the powder and exhibits photocatalytic activity in the visible light region can be obtained.

コバルトの化合物としては、塩化コバルト(II)、硫酸コバルト(II)、硫酸コバルト(III)、硝酸コバルト(II)、水酸化コバルト(II)、酸化コバルト(II)、酸化コバ
ルト(III)、コバルト粉末を使うことができる。
Cobalt compounds include cobalt chloride (II), cobalt sulfate (II), cobalt sulfate (III), cobalt nitrate (II), cobalt hydroxide (II), cobalt oxide (II), cobalt oxide (III), cobalt Powder can be used.

〈鉄〉
チタン原料と、鉄の化合物とを混合する場合、酸化チタン粒子の製造過程において、当該鉄の化合物と、塩化チタン、硫酸チタン、硫酸チタニルとを混合しておくことで、鉄の化合物と水酸化チタンとを共沈させることができる。塩化チタンを使う場合は、溶液のpHが10以上になるまでアルカリを加える。得られた沈殿を濾過し、含まれる硫酸ナトリウムや塩化ナトリウムを取り除くため、純水で5〜6回洗浄したのち、乾燥させる。乾燥後の沈殿を300〜800℃、より好ましくは300〜400℃で焼結し粉末にすることで、当該粉末の内部および表面に、鉄の化合物が均一に含まれた物質ができる。当該粉末の内部および表面に、鉄の化合物が均一に含まれた物質は、可視光領域で光触媒活性を示す。
<iron>
When mixing the titanium raw material and the iron compound, the iron compound and the hydroxide are mixed by mixing the iron compound with titanium chloride, titanium sulfate, and titanyl sulfate in the production process of the titanium oxide particles. Titanium can be co-precipitated. When using titanium chloride, alkali is added until the pH of the solution reaches 10 or higher. The obtained precipitate is filtered and washed with pure water 5 to 6 times to remove sodium sulfate and sodium chloride, and then dried. By sintering the precipitate after drying at 300 to 800 ° C., more preferably at 300 to 400 ° C., to form a powder, a substance in which an iron compound is uniformly contained can be formed inside and on the surface of the powder. A substance in which an iron compound is uniformly contained inside and on the surface of the powder exhibits photocatalytic activity in the visible light region.

また、一旦、水酸化チタンを生成させた後に、当該水酸化チタンへ鉄の化合物の水溶液を加え、よく混合して乾燥させ、300〜800℃、より好ましくは300〜400℃℃で焼結し、粉末にする方法も好ましい。当該方法によっても、粉末の内部および表面に鉄の化合物が均一に含まれ、可視光領域で光触媒活性を示す物質が得られる。   Further, once titanium hydroxide is generated, an aqueous solution of an iron compound is added to the titanium hydroxide, mixed well, dried, and sintered at 300 to 800 ° C, more preferably 300 to 400 ° C. A method of forming a powder is also preferable. Also by this method, a substance that contains iron compounds uniformly in and on the surface of the powder and exhibits photocatalytic activity in the visible light region can be obtained.

鉄の化合物としては、塩化鉄(II)、塩化鉄(III)、硫酸鉄(II)、硫酸鉄(III)、硝酸鉄(II)、硝酸鉄(III)、水酸化鉄(II)、水酸化鉄(III)、酸化鉄(II)、酸化
鉄(III)、鉄粉末を使うことができる。
Iron compounds include iron chloride (II), iron chloride (III), iron sulfate (II), iron sulfate (III), iron nitrate (II), iron nitrate (III), iron hydroxide (II), water Iron (III) oxide, iron (II) oxide, iron (III) oxide, and iron powder can be used.

例えば、塩化鉄(III)は、300℃が融点であり、水酸化鉄(III)は350℃〜400℃で酸化鉄(III)に分解する。塩化チタンに塩化鉄(III)を混合して、アルカリを加えて水酸化チタンと水酸化鉄(III)を沈殿させ、380℃で焼結して、内部および表面
に酸化鉄(III)を均一に含む酸化チタン粉末を作ることができた。当該酸化チタン粉末
は、可視光領域で高い触媒活性を示す。
For example, iron (III) chloride has a melting point of 300 ° C., and iron (III) hydroxide decomposes into iron (III) oxide at 350 to 400 ° C. Mix iron chloride (III) with titanium chloride, add alkali to precipitate titanium hydroxide and iron (III) hydroxide, and sinter at 380 ° C to uniformly distribute iron (III) oxide inside and on the surface The titanium oxide powder contained in The titanium oxide powder exhibits high catalytic activity in the visible light region.

〈マンガン〉
チタン原料と、マンガンの化合物とを混合する場合、酸化チタン粒子の製造過程において、当該マンガンの化合物と、塩化チタン、硫酸チタン、硫酸チタニルとを混合しておくことで、マンガンの化合物と水酸化チタンとを共沈させることができる。塩化チタンを使う場合は、溶液のpHが10以上になるまでアルカリを加える。得られた沈殿を濾過し、含まれる硫酸ナトリウムや塩化ナトリウムを取り除くため、純水で5〜6回洗浄したのち、乾燥させる。乾燥後の沈殿を300〜800℃、より好ましくは300〜400℃で焼結し粉末にすることで、当該粉末の内部および表面に、マンガンの化合物が均一に含まれた物質ができる。当該粉末の内部および表面に、マンガンの化合物が均一に含まれた物質は、可視光領域で光触媒活性を示す。
<manganese>
When mixing a titanium raw material and a manganese compound, in the process of producing titanium oxide particles, the manganese compound is mixed with titanium chloride, titanium sulfate, and titanyl sulfate, so that the manganese compound and the hydroxide are mixed. Titanium can be co-precipitated. When using titanium chloride, alkali is added until the pH of the solution reaches 10 or higher. The obtained precipitate is filtered and washed with pure water 5 to 6 times to remove sodium sulfate and sodium chloride, and then dried. By sintering the precipitate after drying at 300 to 800 ° C., more preferably at 300 to 400 ° C., to obtain a powder, a substance in which a manganese compound is uniformly contained inside and on the surface of the powder is formed. A substance in which a manganese compound is uniformly contained inside and on the surface of the powder exhibits photocatalytic activity in the visible light region.

また、一旦、水酸化チタンを生成させた後に、当該水酸化チタンへマンガンの化合物の水溶液を加え、よく混合して乾燥させ、300〜800℃、より好ましくは300〜400℃で焼結し、粉末にする方法も好ましい。当該方法によっても、粉末の内部および表面にマンガンの化合物が均一に含まれ、可視光領域で光触媒活性を示す物質が得られる。   In addition, once titanium hydroxide is generated, an aqueous solution of a manganese compound is added to the titanium hydroxide, mixed well and dried, and sintered at 300 to 800 ° C, more preferably 300 to 400 ° C. A method of forming a powder is also preferable. Also according to this method, a substance that contains a manganese compound uniformly in and on the surface of the powder and exhibits photocatalytic activity in the visible light region can be obtained.

マンガンの化合物としては、マンガン原料は塩化マンガン(II)、硫酸マンガン(II)、硫酸マンガン(III)硝酸マンガン(II)、水酸化マンガン(II)、酸化マンガン(II
)、酸化マンガン(III)、酸化マンガン(IV)、マンガン粉末を使うことができる。
As manganese compounds, manganese raw materials are manganese chloride (II), manganese sulfate (II), manganese sulfate (III) manganese nitrate (II), manganese hydroxide (II), manganese oxide (II
), Manganese (III) oxide, manganese (IV) oxide, and manganese powder.

〈クロム〉
チタン原料と、クロムの化合物とを混合する場合、酸化チタン粒子の製造過程において、当該クロムの化合物と、塩化チタン、硫酸チタン、硫酸チタニルとを混合しておくことで、クロムの化合物と水酸化チタンとを共沈させることができる。塩化チタンを使う場合は、溶液のpHが10以上になるまでアルカリを加える。得られた沈殿を濾過し、含まれる硫酸ナトリウムや塩化ナトリウムを取り除くため、純水で2〜3回洗浄したのち、乾燥させる。乾燥後の沈殿を300〜800℃、より好ましくは300〜400℃で焼結し粉末にすることで、当該粉末の内部および表面に、クロムの化合物が均一に含まれた物質ができる。当該粉末の内部および表面に、クロムの化合物が均一に含まれた物質は、可視光領域で光触媒活性を示す。
<chromium>
When mixing the titanium raw material and the chromium compound, the chromium compound and the hydroxide are mixed by mixing the chromium compound with titanium chloride, titanium sulfate and titanyl sulfate in the production process of the titanium oxide particles. Titanium can be co-precipitated. When using titanium chloride, alkali is added until the pH of the solution reaches 10 or higher. The obtained precipitate is filtered and washed with pure water 2-3 times to remove sodium sulfate and sodium chloride contained therein, and then dried. By sintering the precipitate after drying at 300 to 800 ° C., more preferably at 300 to 400 ° C., to form a powder, a substance in which a chromium compound is uniformly contained inside and on the surface of the powder is formed. A substance in which a chromium compound is uniformly contained inside and on the surface of the powder exhibits photocatalytic activity in the visible light region.

また、一旦、水酸化チタンを生成させた後に、当該水酸化チタンへクロムの化合物の水溶液を加え、よく混合して乾燥させ、300〜800℃、より好ましくは300〜400℃で焼結し、粉末にする方法も好ましい。当該方法によっても、粉末の内部および表面にクロムの化合物が均一に含まれ、可視光領域で光触媒活性を示す物質が得られる。   In addition, once titanium hydroxide is generated, an aqueous solution of a chromium compound is added to the titanium hydroxide, mixed well and dried, and sintered at 300 to 800 ° C., more preferably 300 to 400 ° C., A method of forming a powder is also preferable. Also by this method, a substance which contains a chromium compound uniformly in the powder and on the surface and exhibits photocatalytic activity in the visible light region can be obtained.

クロムの化合物としては、塩化クロム(II)、塩化クロム(III)、硫酸クロム(II)
、硫酸クロム(III)、硝酸クロム(III)、水酸化クロム(II)、水酸化クロム(III)
、酸化クロム(II)、酸化クロム(III)、クロム粉末を使うことができる。
Chromium compounds include chromium (II) chloride, chromium (III) chloride, and chromium (II) sulfate.
, Chromium (III) sulfate, chromium (III) nitrate, chromium hydroxide (II), chromium hydroxide (III)
Chromium (II) oxide, chromium (III) oxide and chromium powder can be used.

〈バナジウム〉
チタン原料と、バナジウムの化合物とを混合する場合、酸化チタン粒子の製造過程にお
いて、当該バナジウムの化合物と、塩化チタン、硫酸チタン、硫酸チタニルとを混合しておくことで、バナジウムの化合物と水酸化チタンとを共沈させることができる。塩化チタンを使う場合は、溶液のpHが10以上になるまでアルカリを加える。得られた沈殿を濾過し、含まれる硫酸ナトリウムや塩化ナトリウムを取り除くため、純水で5〜6回洗浄したのち、乾燥させる。乾燥後の沈殿を300〜800℃、より好ましくは300〜400℃で焼結し粉末にすることで、当該粉末の内部および表面に、バナジウムの化合物が均一に含まれた物質ができる。当該粉末の内部および表面に、バナジウムの化合物が均一に含まれた物質は、可視光領域で光触媒活性を示す。
<vanadium>
When mixing a titanium raw material and a vanadium compound, the vanadium compound is mixed with the titanium oxide, titanium sulfate, and titanyl sulfate in the production process of the titanium oxide particles. Titanium can be co-precipitated. When using titanium chloride, alkali is added until the pH of the solution reaches 10 or higher. The obtained precipitate is filtered and washed with pure water 5 to 6 times to remove sodium sulfate and sodium chloride, and then dried. By sintering the precipitate after drying at 300 to 800 ° C., more preferably at 300 to 400 ° C., to obtain a powder, a substance in which the vanadium compound is uniformly contained inside and on the surface of the powder is formed. A substance in which a vanadium compound is uniformly contained inside and on the surface of the powder exhibits photocatalytic activity in the visible light region.

また、一旦、水酸化チタンを生成させた後に、当該水酸化チタンへバナジウムの化合物の水溶液を加え、よく混合して乾燥させ、300〜800℃、より好ましくは300〜400℃で焼結し、粉末にする方法も好ましい。当該方法によっても、粉末の内部および表面にバナジウムの化合物が均一に含まれ、可視光領域で光触媒活性を示す物質が得られる。   In addition, once titanium hydroxide is generated, an aqueous solution of a vanadium compound is added to the titanium hydroxide, mixed well, dried, and sintered at 300 to 800 ° C, more preferably 300 to 400 ° C. A method of forming a powder is also preferable. Also by this method, a substance which contains a vanadium compound uniformly inside and on the surface of the powder and exhibits photocatalytic activity in the visible light region can be obtained.

バナジウムの化合物としては、塩化バナジウム(III)、メタバナジン酸ナトリウム、
五酸化バナジウム、バナジウム粉末を使うことができる。
Examples of vanadium compounds include vanadium (III) chloride, sodium metavanadate,
Vanadium pentoxide and vanadium powder can be used.

〈パラジウム〉
チタン原料と、パラジウムの化合物とを混合する場合、酸化チタン粒子の製造過程において、当該パラジウムの化合物と、塩化チタン、硫酸チタンとを混合しておくことで、パラジウムの化合物と水酸化チタンとを共沈させることができる。塩化チタンを使う場合は、溶液のpHが10以上になるまでアルカリを加える。得られた沈殿を濾過し、含まれる硫酸ナトリウムや塩化ナトリウムを取り除くため、純水で5〜6回洗浄したのち、乾燥させる。乾燥後の沈殿を300〜800℃、より好ましくは300〜400℃で焼結し粉末にすることで、当該粉末の内部および表面に、パラジウムの化合物が均一に含まれた物質ができる。当該粉末の内部および表面に、パラジウムの化合物が均一に含まれた物質は、可視光領域で光触媒活性を示す。
<palladium>
When mixing a titanium raw material and a palladium compound, the palladium compound and titanium hydroxide are mixed with the palladium compound, titanium chloride, and titanium sulfate in the production process of the titanium oxide particles. Can be co-precipitated. When using titanium chloride, alkali is added until the pH of the solution reaches 10 or higher. The obtained precipitate is filtered and washed with pure water 5 to 6 times to remove sodium sulfate and sodium chloride, and then dried. Sintering the precipitate after drying at 300 to 800 ° C., more preferably 300 to 400 ° C., to obtain a powder in which a palladium compound is uniformly contained inside and on the surface of the powder. A substance in which a palladium compound is uniformly contained inside and on the surface of the powder exhibits photocatalytic activity in the visible light region.

また、一旦、水酸化チタンを生成させた後に、当該水酸化チタンへパラジウムの化合物の水溶液を加え、よく混合して乾燥させ、300〜800℃、より好ましくは300〜400℃で焼結し、粉末にする方法も好ましい。当該方法によっても、粉末の内部および表面にパラジウムの金属超微粒子が均一に含まれ、可視光領域で光触媒活性を示す物質が得られる。   Moreover, once titanium hydroxide is generated, an aqueous solution of a palladium compound is added to the titanium hydroxide, mixed well and dried, and sintered at 300 to 800 ° C., more preferably 300 to 400 ° C., A method of forming a powder is also preferable. Also by this method, a substance that contains palladium metal ultrafine particles uniformly in and on the surface of the powder and exhibits photocatalytic activity in the visible light region can be obtained.

パラジウムの化合物としては、塩化パラジウム(II)、硫酸パラジウム(II)、硝酸パラジウム(II)、酸化パラジウム(II)、パラジウム粉末を使うことができる。   As the palladium compound, palladium chloride (II), palladium sulfate (II), palladium nitrate (II), palladium oxide (II), and palladium powder can be used.

〈モリブデン〉
チタン原料と、モリブデンの化合物とを混合する場合、酸化チタン粒子の製造過程において、当該モリブデンの化合物と、塩化チタン、硫酸チタン、硫酸チタニルとを混合しておくことで、モリブデンの化合物と水酸化チタンとを共沈させることができる。塩化チタンを使う場合は、溶液のpHが10以上になるまでアルカリを加える。得られた沈殿を濾過し、含まれる硫酸ナトリウムや塩化ナトリウムを取り除くため、純水で5〜6回洗浄したのち、乾燥させる。乾燥後の沈殿を300〜800℃で焼結し粉末にすることで、当該粉末の内部および表面に、モリブデンの化合物が均一に含まれた物質ができる。当該粉末の内部および表面に、モリブデンの化合物が均一に含まれた物質は、可視光領域で光触媒活性を示す。
<molybdenum>
When mixing a titanium raw material and a molybdenum compound, the molybdenum compound is mixed with titanium chloride, titanium sulfate, and titanyl sulfate in the course of manufacturing the titanium oxide particles, so that the molybdenum compound and the hydroxide are mixed. Titanium can be co-precipitated. When using titanium chloride, alkali is added until the pH of the solution reaches 10 or higher. The obtained precipitate is filtered and washed with pure water 5 to 6 times to remove sodium sulfate and sodium chloride, and then dried. By sintering the precipitate after drying at 300 to 800 ° C. to form a powder, a substance in which the molybdenum compound is uniformly contained inside and on the surface of the powder is formed. A substance in which a molybdenum compound is uniformly contained inside and on the surface of the powder exhibits photocatalytic activity in the visible light region.

また、一旦、水酸化チタンを生成させた後に、当該水酸化チタンへモリブデンの化合物
の水溶液を加え、よく混合して乾燥させ、300〜800℃、より好ましくは300〜400℃で焼結し、粉末にする方法も好ましい。当該方法によっても、粉末の内部および表面にモリブデンの金属超微粒子が均一に含まれ、可視光領域で光触媒活性を示す物質が得られる。
In addition, once titanium hydroxide is generated, an aqueous solution of a molybdenum compound is added to the titanium hydroxide, mixed well and dried, and sintered at 300 to 800 ° C, more preferably 300 to 400 ° C. A method of forming a powder is also preferable. Also by this method, a substance that contains molybdenum metal ultrafine particles uniformly inside and on the surface of the powder and exhibits photocatalytic activity in the visible light region can be obtained.

モリブデンの化合物としては、塩化モリブデン(V)、酸化モリブデン(IV)、酸化モ
リブデン(VI)、モリブデン酸(VI)、七モリブデン酸六アンモニウム、モリブデン酸(IV)二ナトリウム、硫化モリブデン(IV)、炭化モリブデン、モリブデン粉末を使うことができる。
The molybdenum compounds include molybdenum chloride (V), molybdenum oxide (IV), molybdenum oxide (VI), molybdate (VI), hexaammonium heptamolybdate, disodium molybdate (IV), molybdenum sulfide (IV), Molybdenum carbide and molybdenum powder can be used.

〈亜鉛〉
亜鉛は、イオン化傾向が大きく酸化されやすい金属である。
亜鉛の化合物は白色で可視光を吸収しない。一方、亜鉛粉末は灰色であり、可視光を吸収する。そこで、水酸化チタンを生成させた後に、塩化チタンを使う場合は、溶液のpHが10以上になるまでアルカリを加える。当該水酸化チタンへ亜鉛を加え、よく混合して乾燥させ、300〜800℃、より好ましくは300〜400℃で焼結し、粉末にする方法が好ましい。当該方法により、粉末の内部に亜鉛の超微粒子が均一に含まれ、可視光領域で光触媒活性を示す物質が得られる。
<zinc>
Zinc is a metal that has a large ionization tendency and is easily oxidized.
Zinc compounds are white and do not absorb visible light. On the other hand, zinc powder is gray and absorbs visible light. Therefore, when titanium chloride is used after producing titanium hydroxide, alkali is added until the pH of the solution becomes 10 or more. A method in which zinc is added to the titanium hydroxide, mixed well, dried, sintered at 300 to 800 ° C., more preferably 300 to 400 ° C., and powdered is preferred. By this method, a substance that contains ultrafine zinc particles uniformly in the powder and exhibits photocatalytic activity in the visible light region can be obtained.

亜鉛としては、亜鉛粉末を使うことができる。
例えば、酸化チタン粒子製造過程で、亜鉛粉末を混合して、380℃で焼結して、内部に金属の亜鉛を均一に含む灰色に着色した酸化チタン粉末を作ることができた。可視光の領域で光触媒活性を調べた結果、従来知られている触媒と比べ、高い活性を示した。
Zinc powder can be used as zinc.
For example, in the production process of titanium oxide particles, zinc powder was mixed and sintered at 380 ° C. to produce a gray-colored titanium oxide powder uniformly containing metallic zinc inside. As a result of examining the photocatalytic activity in the visible light region, it showed higher activity than the conventionally known catalysts.

酸化チタン粒子に対する、上記、銅、白金、銀、ニッケル、コバルト、鉄、マンガン、クロム、バナジウム、パラジウム、モリブデン、亜鉛の混合比は、0.1〜10重量%の範囲が好ましい。さらに、酸化チタン粒子に対する、これら銅、白金、銀、ニッケル、コバルト、マンガン、クロム、バナジウム、パラジウム、モリブデン、亜鉛の混合比は、1〜5重量%であることが更に好ましい。一方、酸化チタン粒子に対する鉄の混合比は5〜20重量%が最適である。   The mixing ratio of copper, platinum, silver, nickel, cobalt, iron, manganese, chromium, vanadium, palladium, molybdenum, and zinc to titanium oxide particles is preferably in the range of 0.1 to 10% by weight. Furthermore, the mixing ratio of these copper, platinum, silver, nickel, cobalt, manganese, chromium, vanadium, palladium, molybdenum, and zinc to the titanium oxide particles is more preferably 1 to 5% by weight. On the other hand, the mixing ratio of iron to titanium oxide particles is optimally 5 to 20% by weight.

以上説明したように、酸化チタン粒子製造過程で金属化合物を混合すると、酸化チタン粒子の内部に金属化合物を含むことになる。最終的に焼結すると、表面だけでなく、内部に金属微粒子が含有された酸化チタン粒子ができ、可視光を十分に吸収できるようになり、活性を高めることが出来た。   As described above, when a metal compound is mixed in the production process of titanium oxide particles, the metal compound is contained inside the titanium oxide particles. When finally sintered, titanium oxide particles containing metal fine particles were formed not only on the surface but also inside, and it was possible to absorb visible light sufficiently, thereby enhancing the activity.

以下、実施例を参照しながら、本発明を具体的に説明する。
[実施例1]
(試料の調製)
2Lビーカーに水1.5Lを入れ、塩化チタン(IV)5mLを除々に投入れする。次に、ここへ、濃度1mol/Lの炭酸ナトリウム水溶液90mLを少しずつ加え、水酸化チタンを沈殿させた。塩化チタンを使うので、溶液のpHが10以上になるまで炭酸ナトリウム水溶液を加えた。尚、塩化チタン(IV)を水で希釈する際は、激しく発煙し発熱する。ここへ、炭酸ナトリウム水溶液を加えると、さらに発熱する。そこで、当該添加操作は、ドラフト中において溶液を氷水で冷却し、溶液を撹拌しながら除々に行った。生成した沈殿を、吸引ロートを使って濾過し、得られた水酸化チタン沈殿に純水を加えてよく撹拌し、再度吸引濾過した。この操作を6度繰り返し、水酸化チタン沈殿中の塩化ナトリウムを除去した。
Hereinafter, the present invention will be specifically described with reference to examples.
[Example 1]
(Sample preparation)
Put 1.5 L of water in a 2 L beaker and gradually add 5 mL of titanium (IV) chloride. Next, 90 mL of a sodium carbonate aqueous solution having a concentration of 1 mol / L was added little by little to precipitate titanium hydroxide. Since titanium chloride is used, an aqueous sodium carbonate solution was added until the pH of the solution reached 10 or higher. In addition, when diluting titanium (IV) with water, it generates intense smoke and generates heat. If sodium carbonate aqueous solution is added here, it will generate | occur | produce further. Therefore, the addition operation was gradually performed while cooling the solution with ice water in the draft and stirring the solution. The produced precipitate was filtered using a suction funnel, pure water was added to the resulting titanium hydroxide precipitate, and the mixture was thoroughly stirred, followed by suction filtration again. This operation was repeated 6 times to remove sodium chloride in the titanium hydroxide precipitate.

硝酸銀0.06gを水20mLに溶かし、ここへ塩化ナトリウムを除去した水酸化チタンの沈殿を加えて撹拌した。次に、当該攪拌物を90℃で15時間放置し、水を完全に蒸発させて残査物を得た。当該残査物を380℃で4時間焼結して粒塊を得た。得られた粒塊を乳鉢で粉砕し、灰色に着色した粉末(試料A)が得られた。   0.06 g of silver nitrate was dissolved in 20 mL of water, and a precipitate of titanium hydroxide from which sodium chloride was removed was added and stirred. Next, the stirred product was left at 90 ° C. for 15 hours, and water was completely evaporated to obtain a residue. The residue was sintered at 380 ° C. for 4 hours to obtain agglomerates. The obtained agglomerates were pulverized in a mortar to obtain a gray colored powder (Sample A).

(色素溶液の分解実験)
試料Aの光触媒作用を調べるために、試料Aによる色素溶液の分解実験を行った。ここで、色素としてのメチレンブルーは664nmに吸光度を持ち、色素濃度を測定できる為、当該色素溶液の分解実験に用いた。
(Dye solution decomposition experiment)
In order to examine the photocatalytic action of sample A, a dye solution decomposition experiment using sample A was performed. Here, since methylene blue as a dye has absorbance at 664 nm and can measure the dye concentration, it was used in the decomposition experiment of the dye solution.

初期濃度5mg/Lのメチレンブルー40mLをガラス製サンプル管に入れ、試料Aを30mg入れ、マグネチックスターラーで30分間光を照射しないで撹拌し、分解実験用試料とした。
ここで、比較の為、市販品(石原産業(株)製の可視光応答の酸化チタン光触媒(MPT−623):以下、市販品と記載する。)の酸化チタン光触媒粉末30mgを準備し、試料Aと同様にメチレンブルーを混合し、マグネチックスターラーで30分間光を照射しないで攪拌し、分解実験用試料とした。攪拌開始時(照射前30分間)、攪拌10分間後(照射前20分間)、攪拌30分間後(照射0分間)に、実験用試料溶液の一部分取し、小型遠心分離器(FB−4000)を用いて12000回転で4分間遠心分離し、固体分を分離除去した。遠心分離後の実験用試料溶液の664nmの吸光度を測定した。
一方、光源として、150Wキセノンランプの光を、紫外線カットフィルターL−42と熱線をカットする水フィルターに通した可視光を準備した。
分解実験用試料に90分間、当該可視光を照射した。そして、照射30分間後、60分間後、90分間後に、分解実験用試料溶液の一部分取し、小型遠心分離器(FB−4000)を用いて12000回転で4分間遠心分離し、固体分を分離除去した。遠心分離後の分解実験用試料溶液に対し、664nmの吸光度を測定した。実験結果を表1に示す。
40 mL of methylene blue having an initial concentration of 5 mg / L was placed in a glass sample tube, 30 mg of Sample A was added, and the mixture was stirred with a magnetic stirrer for 30 minutes without irradiating light to obtain a sample for decomposition experiment.
Here, for comparison, 30 mg of titanium oxide photocatalyst powder of a commercial product (visible light-responsive titanium oxide photocatalyst (MPT-623): hereinafter referred to as a commercial product) manufactured by Ishihara Sangyo Co., Ltd. was prepared, and a sample was prepared. Methylene blue was mixed in the same manner as in A, and the mixture was stirred for 30 minutes without irradiating light with a magnetic stirrer to prepare a sample for decomposition experiment. At the start of stirring (30 minutes before irradiation), 10 minutes after stirring (20 minutes before irradiation), and 30 minutes after stirring (irradiation 0 minutes), a part of the sample solution for experiment was taken and a small centrifuge (FB-4000). Was centrifuged at 12,000 rpm for 4 minutes to separate and remove solids. The absorbance at 664 nm of the experimental sample solution after centrifugation was measured.
On the other hand, as a light source, visible light was prepared by passing light from a 150 W xenon lamp through a UV filter L-42 and a water filter for cutting heat rays.
The sample for decomposition experiment was irradiated with the visible light for 90 minutes. Then, after 30 minutes, 60 minutes, and 90 minutes after irradiation, a part of the sample solution for decomposition experiment was taken and centrifuged at 12,000 rpm for 4 minutes using a small centrifuge (FB-4000) to separate the solid content. Removed. The absorbance at 664 nm was measured for the sample solution for decomposition experiment after centrifugation. The experimental results are shown in Table 1.

ここで、酸化チタン触媒は、色素を分解するだけでなく吸着もする為、当該吸着分を明確化する為、可視光を照射しない以外は、同様の操作を行う暗実験も行った。
当該実験結果を表1に示す。
Here, since the titanium oxide catalyst not only decomposes the pigment but also adsorbs it, a dark experiment was performed in which the same operation was performed except that no visible light was irradiated in order to clarify the adsorbed component.
The experimental results are shown in Table 1.

Figure 2009078264
Figure 2009078264

試料A、市販品とも、照射前20分間にメチレンブルー色素濃度が急速に減少している。これは、酸化チタン粉末によるメチレンブルー色素吸着の結果であると考えられる。当該、照射前20分間のメチレンブルー色素濃度に関し、試料Aの方が市販品より下がって
いる。
In both Sample A and the commercial product, the concentration of methylene blue dye decreased rapidly within 20 minutes before irradiation. This is considered to be a result of the methylene blue dye adsorption by the titanium oxide powder. Regarding the methylene blue dye concentration for 20 minutes before irradiation, the sample A is lower than the commercial product.

ここで、図1は、試料Aと市販品とについて、横軸に光の照射時間(暗実験においては経過時間)をとり、縦軸にはメチレンブルーの濃度をとり、縦軸を対数プロットしたグラフである。当該グラフの傾きから、メチレンブルーの分解速度を解析した。メチレンブルーが0.8mg/Lの濃度になる時間は、試料Aで30分間以内であるが、市販品は90分間以上必要である。試料Aの性能は、吸着性能と分解性能とを総合的に判断すると、市販品より上回っていることがわかった。暗実験試験の90分間後の溶液は、吸着が起こっただけで、色は薄くなったが、メチレンブルーの青色のままであった。光照射試験の90分間後の溶液は、メチレンブルーが分解するため青紫色に変色した。当該変色は、波長664nmの吸収より600nm付近の吸収の寄与が大きいメチレンブルーの分解生成物であるアズールBやアズールA等の有色の反応中間体の(以下、単に「反応中間体」と記載する場合がある。)影響である。吸収スペクトルの測定により、吸収の波形の変化から確認できた。
さらに、初期濃度2mg/Lのメチレンブルー15mLを30mLガラス製サンプル管に入れ、試料Aを40mg入れ、マグネチックスターラーで攪拌しながら60分間可視光を照射すると、完全に白くなったことから、分解が起きていることが確認できた。対照実験として、可視光応答型光触媒でないST―01(石原産業(株)製)を使い、同様に実験してメチレンブルーの色が消えないことを確認した。
さらに、図1において、当該実施例に係る試料の光照射試験結果は●と実線にて示し、暗実験試験結果は◆と長破線にて示し、市販品の光照射試験結果は■と短破線にて示し、暗実験試験結果は▲と一点鎖線にて示した。以下、図2〜図14においても同様である。
Here, FIG. 1 is a graph in which the horizontal axis represents the light irradiation time (elapsed time in the dark experiment), the vertical axis represents the concentration of methylene blue, and the vertical axis represents the logarithm plot for Sample A and a commercial product. It is. From the slope of the graph, the decomposition rate of methylene blue was analyzed. The time for methylene blue to reach a concentration of 0.8 mg / L is 30 minutes or less for sample A, but 90 minutes or more is required for commercially available products. The performance of the sample A was found to be superior to that of a commercially available product when the adsorption performance and the decomposition performance were comprehensively judged. The solution after 90 minutes of the dark experiment was only lightly adsorbed and faded in color, but remained methylene blue blue. The solution after 90 minutes of the light irradiation test turned blue-purple due to decomposition of methylene blue. The discoloration is caused by a colored reaction intermediate such as Azure B or Azure A, which is a decomposition product of methylene blue, which has a greater contribution of absorption around 600 nm than absorption at a wavelength of 664 nm (hereinafter simply referred to as “reaction intermediate”). There is an influence. It was confirmed from the change in the absorption waveform by measuring the absorption spectrum.
Furthermore, when 15 mL of methylene blue having an initial concentration of 2 mg / L was placed in a 30 mL glass sample tube, 40 mg of Sample A was added and irradiated with visible light for 60 minutes while stirring with a magnetic stirrer, it turned completely white. I was able to confirm that it was happening. As a control experiment, ST-01 (manufactured by Ishihara Sangyo Co., Ltd.), which is not a visible light responsive photocatalyst, was used to confirm that methylene blue color did not disappear.
Furthermore, in FIG. 1, the light irradiation test result of the sample according to the example is indicated by ● and a solid line, the dark experiment test result is indicated by ◆ and a long broken line, and the light irradiation test result of a commercial product is indicated by ■ and a short broken line. The dark test results are indicated by ▲ and a one-dot chain line. The same applies to FIGS. 2 to 14 below.

[実施例2]
(試料の調製)
500mLビーカーを使い、硝酸銀0.6gをエタノール200mLに溶かし溶液とした。当該溶液へ、チタニウムテトライソプロポキシドを25mL加え、マグネチックスターラーで撹拌した。当該攪拌物へ、水を少しずつ1mL加えると水酸化チタンが沈殿した。この後、当該沈殿物を70℃で12時間放置し、エタノールを完全に蒸発させて残査物を得た。当該残査を380℃で4時間焼結した後、さらに500℃で1時間焼結し粒塊を得た。得られた粒塊を乳鉢で粉砕し、灰紫色に着色した粉末(試料B)を得た。
[Example 2]
(Sample preparation)
Using a 500 mL beaker, 0.6 g of silver nitrate was dissolved in 200 mL of ethanol to obtain a solution. To this solution, 25 mL of titanium tetraisopropoxide was added and stirred with a magnetic stirrer. When 1 mL of water was added little by little to the stirred product, titanium hydroxide precipitated. Thereafter, the precipitate was left at 70 ° C. for 12 hours, and ethanol was completely evaporated to obtain a residue. The residue was sintered at 380 ° C. for 4 hours, and further sintered at 500 ° C. for 1 hour to obtain agglomerates. The obtained agglomerates were pulverized in a mortar to obtain a grayish purple-colored powder (Sample B).

(色素溶液の分解実験)
初期濃度5mg/Lのメチレンブルー40mLをガラス製サンプル管に入れ、試料Bを30mg入れ、マグネチックスターラーで撹拌し、分解実験用試料とした。この後は、実施例1と同様の実験を行った。当該実験結果を表2に示す。
(Dye solution decomposition experiment)
40 mL of methylene blue having an initial concentration of 5 mg / L was placed in a glass sample tube, 30 mg of Sample B was added, and stirred with a magnetic stirrer to obtain a sample for decomposition experiment. Thereafter, the same experiment as in Example 1 was performed. The experimental results are shown in Table 2.

Figure 2009078264
Figure 2009078264

試料B、市販品とも、照射前20分間にメチレンブルーの色素濃度が急速に減少するのは、実施例1と同様に、酸化チタン粉末による吸着の結果であると考えられる。そして、当該照射前20分間に、内部に銀の成分を含有した試料Bの方が、市販品よりメチレンブルーの濃度を下げている。   In both Sample B and the commercial product, the rapid decrease in the methylene blue dye concentration within 20 minutes before irradiation is considered to be the result of adsorption with titanium oxide powder, as in Example 1. And 20 minutes before the said irradiation, the sample B containing the silver component inside lowers the concentration of methylene blue than the commercially available product.

90分間後の結果は、試料Bの方が、市販品の性能を上回っている。
ここで、図2は、試料Bと市販品とについて、照射時間とメチレンブルーの濃度との関係を対数プロットしたグラフである。当該グラフの傾きからメチレンブルーの分解速度を解析し、吸着性能と分解性能とを総合的に判断すると、試料Bの性能は、市販品より上回っていることがわかった。光照射試験の90分間後の溶液は、青紫色に変化した。さらに、初期濃度2mg/Lのメチレンブルー15mLを30mLガラス製サンプル管に入れ、試料Bを40mg入れ、マグネチックスターラーで攪拌しながら60分間可視光を照射すると、完全に白くなったことから、メチレンブルーが分解され、さらに、有色のメチレンブルーの反応中間体の分解が起きていることが確認できた。
As a result after 90 minutes, the performance of the sample B exceeds the performance of the commercial product.
Here, FIG. 2 is a graph in which the relationship between the irradiation time and the concentration of methylene blue is logarithmically plotted for Sample B and a commercial product. When the decomposition rate of methylene blue was analyzed from the slope of the graph and the adsorption performance and the decomposition performance were comprehensively determined, it was found that the performance of the sample B exceeded that of the commercial product. The solution after 90 minutes of the light irradiation test turned blue-violet. Furthermore, when 15 mL of methylene blue having an initial concentration of 2 mg / L was placed in a 30 mL glass sample tube, 40 mg of Sample B was added and irradiated with visible light for 60 minutes while stirring with a magnetic stirrer, methylene blue was completely whitened. It was confirmed that decomposition of the colored methylene blue reaction intermediate occurred.

[実施例3]
(試料の調製)
実施例1と同様にして、塩化ナトリウムを除去した水酸化チタンの沈殿を調製した。
塩化白金酸0.05gを水20mLに溶かし溶液とした。この塩化白金酸溶液に、調製した塩化ナトリウムを除去した水酸化チタンの沈殿を加えて撹拌した。次に、当該沈殿物を90℃で15時間放置し、水を完全に蒸発させて残査物を得た。当該残査物を380℃で4時間焼結して粒塊を得た。得られた粒塊を乳鉢で粉砕し、茶色に着色した粉末(試料C)を得た。
[Example 3]
(Sample preparation)
In the same manner as in Example 1, a titanium hydroxide precipitate from which sodium chloride was removed was prepared.
A solution was prepared by dissolving 0.05 g of chloroplatinic acid in 20 mL of water. To this chloroplatinic acid solution, the prepared titanium hydroxide precipitate from which sodium chloride was removed was added and stirred. Next, the precipitate was left at 90 ° C. for 15 hours, and water was completely evaporated to obtain a residue. The residue was sintered at 380 ° C. for 4 hours to obtain agglomerates. The obtained agglomerates were pulverized in a mortar to obtain a brown colored powder (Sample C).

(色素溶液の分解実験)
初期濃度5mg/Lのメチレンブルー40mLをガラス製サンプル管に入れ、試料Cを30mg入れ、マグネチックスターラーで撹拌し、分解実験用試料とした。この後は、実施例1と同様の実験を行った。当該実験結果を表3に示す。
(Dye solution decomposition experiment)
40 mL of methylene blue having an initial concentration of 5 mg / L was placed in a glass sample tube, 30 mg of Sample C was added, and stirred with a magnetic stirrer to obtain a sample for decomposition experiment. Thereafter, the same experiment as in Example 1 was performed. The experimental results are shown in Table 3.

Figure 2009078264
Figure 2009078264

試料C、市販品とも、照射前20分間にメチレンブルーの色素濃度が急速に減少するのは、実施例1と同様に、酸化チタン粉末による吸着の結果であると考えられる。   In both Sample C and the commercial product, the rapid decrease in the methylene blue dye concentration within 20 minutes before irradiation is considered to be the result of adsorption by the titanium oxide powder as in Example 1.

90分間後の結果は、試料Cの方が、市販品の性能を上回っている。
ここで、図3は、試料Cと市販品とについて、照射時間とメチレンブルーの濃度との関係を対数プロットしたグラフである。当該グラフの傾きから、メチレンブルーの分解速度を解析し、吸着性能と分解性能を総合的に判断すると、試料Cの性能は、市販品より上回っていることがわかった。光照射試験の90分後の溶液は、青紫色に変化した。さらに、初期濃度2mg/Lのメチレンブルー15mLを30mLガラス製サンプル管に入れ、試料Cを40mg入れ、マグネチックスターラーで攪拌しながら60分間可視光を照射すると、完全に白くなったことから、メチレンブルーが分解され、さらに、有色のメチレンブルーの反応中間体の分解が起きていることが確認できた。
The result after 90 minutes indicates that the performance of the sample C exceeds that of the commercial product.
Here, FIG. 3 is a graph obtained by logarithmically plotting the relationship between the irradiation time and the concentration of methylene blue for the sample C and the commercial product. From the slope of the graph, when the decomposition rate of methylene blue was analyzed and the adsorption performance and the decomposition performance were comprehensively determined, it was found that the performance of the sample C exceeded that of the commercial product. The solution after 90 minutes of the light irradiation test turned blue-violet. Furthermore, when 15 mL of methylene blue having an initial concentration of 2 mg / L was placed in a 30 mL glass sample tube, 40 mg of sample C was added and irradiated with visible light for 60 minutes while stirring with a magnetic stirrer, methylene blue was completely whitened. It was confirmed that decomposition of the colored methylene blue reaction intermediate occurred.

[実施例4]
(試料の調製)
500mLビーカーを使い、塩化白金酸0.36gをエタノール200mLに溶かし溶液とした。この後は、実施例2と同様の操作を行い、得られた粒塊を乳鉢で粉砕し、茶色に着色した粉末(試料D)を得た。
[Example 4]
(Sample preparation)
Using a 500 mL beaker, 0.36 g of chloroplatinic acid was dissolved in 200 mL of ethanol to obtain a solution. Thereafter, the same operation as in Example 2 was performed, and the obtained agglomerates were pulverized in a mortar to obtain a brown colored powder (Sample D).

(色素溶液の分解実験)
初期濃度5mg/Lのメチレンブルー40mLをガラス製サンプル管に入れ、試料Dを30mg入れ、マグネチックスターラーで撹拌し、分解実験用試料とした。この後は、実施例1と同様の実験を行った。当該実験結果を表4に示す。ここで、比較の為、市販品の酸化チタン光触媒粉末30mgを準備し、試料Dと同様にメチレンブルーを混合し、攪拌し、分解実験用試料とした。
(Dye solution decomposition experiment)
40 mL of methylene blue having an initial concentration of 5 mg / L was placed in a glass sample tube, 30 mg of Sample D was added, and stirred with a magnetic stirrer to prepare a sample for decomposition experiment. Thereafter, the same experiment as in Example 1 was performed. The experimental results are shown in Table 4. Here, for comparison, 30 mg of a commercially available titanium oxide photocatalyst powder was prepared, and methylene blue was mixed and stirred in the same manner as Sample D to prepare a sample for decomposition experiment.

Figure 2009078264
Figure 2009078264

試料D、市販品とも、照射前20分間にメチレンブルーの色素濃度が急速に減少するのは、実施例1と同様に、酸化チタン粉末による吸着の結果であると考えられる。内部および表面に白金を含有した試料Dと、市販品とで照射前20分間、ほぼ同じ結果が得られた。   In both Sample D and the commercial product, the rapid decrease in the methylene blue dye concentration within 20 minutes before irradiation is considered to be the result of adsorption by the titanium oxide powder as in Example 1. About the same result was obtained with Sample D containing platinum on the inside and on the surface and a commercially available product for 20 minutes before irradiation.

90分間後の結果は、試料Dの方が、市販品の性能を上回っている。
ここで、図4は、試料Dと市販品とについて、照射時間とメチレンブルーの濃度との関係を対数プロットしたグラフである。当該グラフの傾きから、メチレンブルーの分解速度を解析し、吸着性能と分解性能を総合的に判断すると、試料Dの性能は、市販品より上回っていることがわかった。光照射試験の90分後の溶液は、青紫色に変化した。さらに、初期濃度2mg/Lのメチレンブルー15mLを30mLガラス製サンプル管に入れ、試料Dを40mg入れ、マグネチックスターラーで攪拌しながら60分間可視光を照射すると、完全に白くなったことから、メチレンブルーが分解され、さらに、有色のメチレンブルーの反応中間体の分解が起きていることが確認できた。
As a result after 90 minutes, the performance of the sample D exceeds the performance of the commercial product.
Here, FIG. 4 is a graph obtained by logarithmically plotting the relationship between the irradiation time and the concentration of methylene blue for the sample D and the commercial product. From the slope of the graph, when the decomposition rate of methylene blue was analyzed and the adsorption performance and the decomposition performance were comprehensively determined, it was found that the performance of the sample D exceeded that of the commercial product. The solution after 90 minutes of the light irradiation test turned blue-violet. Further, when 15 mL of methylene blue having an initial concentration of 2 mg / L was placed in a 30 mL glass sample tube, 40 mg of sample D was added and irradiated with visible light for 60 minutes while stirring with a magnetic stirrer, methylene blue was completely whitened. It was confirmed that decomposition of the colored methylene blue reaction intermediate occurred.

[実施例5]
(試料の調製)
500mLビーカーを使い、塩化銅(II)0.27gをエタノール200mLに溶かし溶液とした。当該溶液へ、チタニウムテトライソプロポキシドを25mL加え、マグネチックスターラーで撹拌した。当該攪拌物へ、水を少しずつ1mL加えると水酸化チタンが沈殿した。この後、当該沈殿物を70℃で12時間放置し、エタノールを完全に蒸発させて残査物を得た。当該残査を380℃で4時間焼結した後、さらに500℃で1時間焼結し粒塊を得た。得られた粒塊を乳鉢で粉砕し、灰紫色に着色した粉末(試料E)を得た。
[Example 5]
(Sample preparation)
Using a 500 mL beaker, 0.27 g of copper (II) chloride was dissolved in 200 mL of ethanol to obtain a solution. To this solution, 25 mL of titanium tetraisopropoxide was added and stirred with a magnetic stirrer. When 1 mL of water was added little by little to the stirred product, titanium hydroxide precipitated. Thereafter, the precipitate was left at 70 ° C. for 12 hours, and ethanol was completely evaporated to obtain a residue. The residue was sintered at 380 ° C. for 4 hours, and further sintered at 500 ° C. for 1 hour to obtain agglomerates. The obtained agglomerates were pulverized in a mortar to obtain a grayish purple-colored powder (Sample E).

(色素溶液の分解実験)
初期濃度10mg/Lのメチレンブルー40mLをガラス製サンプル管に入れ、薄緑に着色した試料Eを10mg入れ、マグネチックスターラーで撹拌し、分解実験用試料とした。この後は、実施例1と同様の実験を行った。当該実験結果を表5に示す。
(Dye solution decomposition experiment)
40 mL of methylene blue having an initial concentration of 10 mg / L was placed in a glass sample tube, 10 mg of sample E colored light green was added, and stirred with a magnetic stirrer to prepare a sample for decomposition experiment. Thereafter, the same experiment as in Example 1 was performed. The experimental results are shown in Table 5.

Figure 2009078264
Figure 2009078264

試料E、市販品とも、照射前20分間にメチレンブルーの色素濃度が急速に減少するのは、実施例1と同様に、酸化チタン粉末による吸着の結果であると考えられる。   In both sample E and the commercial product, the rapid decrease in methylene blue dye concentration within 20 minutes before irradiation is considered to be the result of adsorption by titanium oxide powder as in Example 1.

90分間後の結果は、試料Eの方が、市販品の性能を上回っている。
ここで、図5は、試料Eと市販品とについて、照射時間とメチレンブルーの濃度との関係を対数プロットしたグラフである。当該グラフの傾きから、メチレンブルーの分解速度を解析すると、試料Eの性能は、吸着性能と分解性能を総合的に判断すると、市販品より上回っていることがわかった。光照射試験の90分間後の溶液は、青紫色に変化した。さらに、初期濃度2mg/Lのメチレンブルー15mLを30mLガラス製サンプル管に入れ、試料Eを40mg入れ、マグネチックスターラーで攪拌しながら60分間可視光を照射すると、完全に白くなったことから、メチレンブルーが分解され、さらに、有色のメチレンブルーの反応中間体の分解が起きていることが確認できた。
The result after 90 minutes indicates that the sample E exceeds the performance of the commercial product.
Here, FIG. 5 is a graph in which the relationship between the irradiation time and the concentration of methylene blue is logarithmically plotted for the sample E and the commercial product. From the slope of the graph, when analyzing the decomposition rate of methylene blue, it was found that the performance of sample E was higher than that of a commercially available product when the adsorption performance and the decomposition performance were comprehensively judged. The solution after 90 minutes of the light irradiation test turned blue-violet. Furthermore, when 15 mL of methylene blue having an initial concentration of 2 mg / L was placed in a 30 mL glass sample tube, 40 mg of sample E was added and irradiated with visible light for 60 minutes while stirring with a magnetic stirrer, methylene blue was completely whitened. It was confirmed that decomposition of the colored methylene blue reaction intermediate occurred.

[実施例6]
(試料の調製)
2Lビーカーに水1.5Lを入れ、塩化銅(II)0.06gを投入し溶解して溶液とした。当該溶液へ、塩化チタン(IV)5mLを除々に投入した。次に、当該溶液へ、濃度1mol/Lの炭酸ナトリウム水溶液90mLを少しずつ加え、水酸化チタンを沈殿させた。溶液のpHが10以上になるまで炭酸ナトリウム水溶液を加えた。尚、塩化チタン(IV)を水で希釈する際は、激しく発煙し発熱する。ここへ、炭酸ナトリウム水溶液を加えると、さらに発熱する。そこで、当該添加操作は、ドラフト中において溶液を氷水で冷却し、溶液を撹拌しながら除々に行った。生成した沈殿を、吸引ロートを使って濾過し、得られた水酸化チタン沈殿に純水を加えてよく撹拌し、再度吸引濾過した。この操作を7度繰り返し、水酸化チタン沈殿中の塩化ナトリウムを除去した。
[Example 6]
(Sample preparation)
1.5 L of water was put into a 2 L beaker, 0.06 g of copper (II) chloride was added and dissolved to obtain a solution. To the solution, 5 mL of titanium (IV) chloride was gradually added. Next, 90 mL of a sodium carbonate aqueous solution having a concentration of 1 mol / L was gradually added to the solution to precipitate titanium hydroxide. Sodium carbonate aqueous solution was added until the pH of the solution reached 10 or more. In addition, when diluting titanium (IV) with water, it generates intense smoke and generates heat. If sodium carbonate aqueous solution is added here, it will generate | occur | produce further. Therefore, the addition operation was gradually performed while cooling the solution with ice water in the draft and stirring the solution. The produced precipitate was filtered using a suction funnel, pure water was added to the resulting titanium hydroxide precipitate, and the mixture was thoroughly stirred, followed by suction filtration again. This operation was repeated 7 times to remove sodium chloride in the titanium hydroxide precipitate.

次に、当該沈殿物を90℃で10時間放置し、水を完全に蒸発させて残査物を得た。当該残査物を380℃で4時間焼結して粒塊を得た。得られた粒塊を乳鉢で粉砕し、薄緑色に着色した粉末(試料F)が得られた。   Next, the precipitate was left at 90 ° C. for 10 hours, and water was completely evaporated to obtain a residue. The residue was sintered at 380 ° C. for 4 hours to obtain agglomerates. The obtained agglomerates were pulverized with a mortar to obtain a light green colored powder (Sample F).

(色素溶液の分解実験)
初期濃度10mg/Lのメチレンブルー40mLをガラス製サンプル管に入れ、薄緑に着色した試料Fを10mg入れ、マグネチックスターラーで撹拌し、分解実験用試料とした。この後は、実施例1と同様の実験を行った。当該実験結果を表6に示す。
(Dye solution decomposition experiment)
40 mL of methylene blue having an initial concentration of 10 mg / L was put into a glass sample tube, 10 mg of sample F colored light green was added, and stirred with a magnetic stirrer to prepare a sample for decomposition experiment. Thereafter, the same experiment as in Example 1 was performed. The experimental results are shown in Table 6.

Figure 2009078264
Figure 2009078264

試料F、市販品とも、照射前20分間にメチレンブルーの色素濃度が急速に減少するのは、実施例1と同様に、酸化チタン粉末による吸着の結果であると考えられる。そして、当該照射前20分間に、内部に銅の化合物を含有した試料Fの方が、市販品よりメチレンブルーの濃度を下げている。   In both Sample F and the commercial product, the rapid decrease in the methylene blue dye concentration within 20 minutes before irradiation is considered to be the result of adsorption with titanium oxide powder, as in Example 1. And 20 minutes before the said irradiation, the sample F which contains the compound of copper inside has lowered the density | concentration of methylene blue from the commercial item.

90分間後の結果は、試料Fの方が、市販品の性能を上回っている。
ここで、図6は、試料Fと市販品とについて、照射時間とメチレンブルーの濃度との関係を対数プロットしたグラフである。当該グラフの傾きから、メチレンブルーの分解速度を解析し、吸着性能と分解性能を総合的に判断すると、試料Fの性能は、市販品より上回っていることがわかった。光照射試験の90分間後の溶液は、青紫色に変化した。さらに、初期濃度2mg/Lのメチレンブルー15mLを30mLガラス製サンプル管に入れ、試料Fを40mg入れ、マグネチックスターラーで攪拌しながら60分間光を照射すると、完全に白くなったことから、メチレンブルーが分解され、さらに、有色のメチレンブルーの反応中間体の分解が起きていることが確認できた。
The result after 90 minutes shows that the sample F exceeds the performance of the commercial product.
Here, FIG. 6 is a graph in which the relationship between the irradiation time and the concentration of methylene blue is logarithmically plotted for the sample F and a commercial product. From the slope of the graph, when the decomposition rate of methylene blue was analyzed and the adsorption performance and the decomposition performance were comprehensively determined, it was found that the performance of the sample F exceeded that of the commercial product. The solution after 90 minutes of the light irradiation test turned blue-violet. Furthermore, when 15 mL of methylene blue with an initial concentration of 2 mg / L was placed in a 30 mL glass sample tube, 40 mg of sample F was added, and when light was irradiated for 60 minutes while stirring with a magnetic stirrer, methylene blue decomposed because it turned completely white Furthermore, it was confirmed that decomposition of the colored methylene blue reaction intermediate occurred.

[実施例7]、[実施例8]
(試料の調製)
2Lビーカーに水1.5Lを入れ、塩化ニッケル(II)[実施例7]、または、塩化コバルト(II)[実施例8]0.0.6gを投入し溶解して溶液とした。当該溶液へ、塩化チタン(IV)5mLを除々に投入した。次に、当該溶液へ、濃度1mol/Lの炭酸ナトリウム水溶液90mLを少しずつ加え、水酸化チタンを沈殿させた。溶液のpHが10以上になるまで炭酸ナトリウム水溶液を加えた。尚、塩化チタン(IV)を水で希釈する際は、激しく発煙し発熱する。ここへ、炭酸ナトリウム水溶液を加えると、さらに発熱する。そこで、当該添加操作は、ドラフト中において溶液を氷水で冷却し、溶液を撹拌しながら除々に行った。生成した沈殿を、吸引ロートを使って濾過し、得られた水酸化チタン沈殿に純水を加えてよく撹拌し、再度吸引濾過した。この操作を7度繰り返し、水酸化チタン沈殿中の塩化ナトリウムを除去した。
[Example 7], [Example 8]
(Sample preparation)
Into a 2 L beaker, 1.5 L of water was added, and 0.06 g of nickel (II) chloride [Example 7] or cobalt chloride (II) [Example 8] was added and dissolved to obtain a solution. To the solution, 5 mL of titanium (IV) chloride was gradually added. Next, 90 mL of a sodium carbonate aqueous solution having a concentration of 1 mol / L was gradually added to the solution to precipitate titanium hydroxide. Sodium carbonate aqueous solution was added until the pH of the solution reached 10 or more. In addition, when diluting titanium (IV) with water, it generates intense smoke and generates heat. If sodium carbonate aqueous solution is added here, it will generate | occur | produce further. Therefore, the addition operation was gradually performed while cooling the solution with ice water in the draft and stirring the solution. The produced precipitate was filtered using a suction funnel, pure water was added to the resulting titanium hydroxide precipitate, and the mixture was thoroughly stirred, followed by suction filtration again. This operation was repeated 7 times to remove sodium chloride in the titanium hydroxide precipitate.

次に、当該沈殿物を90℃で10時間放置し、水を完全に蒸発させて残査物を得た。当該残査物を380℃で4時間焼結して粒塊を得た。得られた粒塊を乳鉢で粉砕し、薄緑色に着色した粉末(試料G)[実施例7]、または、薄青に着色した粉末(試料H)[実施例8]が得られた。   Next, the precipitate was left at 90 ° C. for 10 hours, and water was completely evaporated to obtain a residue. The residue was sintered at 380 ° C. for 4 hours to obtain agglomerates. The obtained agglomerates were pulverized in a mortar to obtain a light green colored powder (Sample G) [Example 7] or a light blue colored powder (Sample H) [Example 8].

(色素溶液の分解実験)
初期濃度5mg/Lのメチレンブルー40mLをガラス製サンプル管に入れ、薄黄緑に着色した試料G[実施例7]、または、薄青に着色した試料H[実施例8]を30mg入れ、マグネチックスターラーで撹拌し、分解実験用試料とした。この後は、実施例1と同様の実験を行った。当該実験結果を表7および表8に示す。
(Dye solution decomposition experiment)
40 mL of methylene blue having an initial concentration of 5 mg / L is placed in a glass sample tube, and 30 mg of Sample G [Example 7] colored pale yellowish green or Sample H [Example 8] colored pale blue is magnetically added. The sample was stirred with a stirrer and used as a sample for decomposition experiments. Thereafter, the same experiment as in Example 1 was performed. The experimental results are shown in Table 7 and Table 8.

Figure 2009078264
Figure 2009078264

Figure 2009078264
Figure 2009078264

18分間後の結果は、試料G[実施例7]、試料H[実施例8]の方が、市販品の性能を上回っている。
ここで、図7は、試料Gと市販品とについて、照射時間とメチレンブルーの濃度との関係を対数プロットしたグラフであり、図8は、試料Hと市販品とについて、照射時間とメチレンブルーの濃度との関係を対数プロットしたグラフである。当該グラフの傾きから、メチレンブルーの分解速度を解析し、吸着性能と分解性能を総合的に判断すると、試料G[実施例7]の性能は、市販品より上回っていること、試料H[実施例8]の分解性能は、市販品より上回っていることがわかった。光照射試験の90分間後の溶液は、青紫色に変化した。さらに、初期濃度2mg/Lのメチレンブルー15mLを2本の30mLガラス製サンプル管に入れ、試料G[実施例7]、試料H[実施例8]を各々40mg入れ、マグネチックスターラー攪拌しながらで60分間可視光を照射すると、試料G[実施例7]、試料H[実施例8]とも完全に白くなったことから、メチレンブルーが分解され、さらに、有色のメチレンブルーの反応中間体の分解が起きていることが確認できた。
As a result after 18 minutes, the performance of the sample G [Example 7] and the sample H [Example 8] exceeds the performance of the commercial product.
Here, FIG. 7 is a graph in which the relationship between the irradiation time and the methylene blue concentration is logarithmically plotted for the sample G and the commercial product, and FIG. 8 is the irradiation time and the methylene blue concentration for the sample H and the commercial product. Is a logarithmic plot of the relationship with. When the decomposition rate of methylene blue is analyzed from the slope of the graph and the adsorption performance and the decomposition performance are comprehensively determined, the performance of the sample G [Example 7] exceeds that of a commercially available product, and the sample H [Example] It was found that the decomposition performance of 8] exceeded that of the commercial product. The solution after 90 minutes of the light irradiation test turned blue-violet. Further, 15 mL of methylene blue having an initial concentration of 2 mg / L was placed in two 30 mL glass sample tubes, and 40 mg of each of Sample G [Example 7] and Sample H [Example 8] was added and stirred with a magnetic stirrer. When visible light was irradiated for a minute, both Sample G [Example 7] and Sample H [Example 8] became completely white, so that methylene blue was decomposed, and further, a colored methylene blue reaction intermediate was decomposed. It was confirmed that

[実施例9]
(試料の調製)
2Lビーカーに水1.5L入れ、塩化鉄(III)を0.6g溶解して溶液とした。次に
、当該溶液へ、塩化チタン(IV)5mLを除々に投入し、さらに、濃度1mol/Lの炭酸ナトリウム水溶液90mLを少しずつ投入し水酸化チタンを沈殿させた。溶液のpHが10以上になるまで炭酸ナトリウム水溶液を加えた。塩化チタン(IV)を水で希釈する際には、激しく発煙し発熱し、さらに、炭酸ナトリウム水溶液を加えると発熱する。そこで、当該操作は、ドラフト中で溶液を氷水で冷却し、撹拌しながら除々行った。
生成した沈殿を、吸引ロートを使って濾過し、得られた水酸化チタン沈殿に純水を加えてよく撹拌し、再度吸引濾過した。この操作を6度繰り返し、水酸化チタン沈殿中の塩化ナトリウムを除去した。
[Example 9]
(Sample preparation)
1.5 L of water was put into a 2 L beaker, and 0.6 g of iron (III) chloride was dissolved to prepare a solution. Next, 5 mL of titanium (IV) chloride was gradually added to the solution, and 90 mL of a sodium carbonate aqueous solution having a concentration of 1 mol / L was gradually added to precipitate titanium hydroxide. Sodium carbonate aqueous solution was added until the pH of the solution reached 10 or more. When titanium (IV) chloride is diluted with water, it emits smoke vigorously and generates heat, and when an aqueous sodium carbonate solution is added, it generates heat. Therefore, this operation was gradually carried out while stirring the solution with ice water in a fume hood.
The produced precipitate was filtered using a suction funnel, pure water was added to the resulting titanium hydroxide precipitate, and the mixture was thoroughly stirred, followed by suction filtration again. This operation was repeated 6 times to remove sodium chloride in the titanium hydroxide precipitate.

次に、当該沈殿物を90℃で10時間放置し、水を完全に蒸発させて残査物を得た。当該残査物を380℃で4時間焼結して粒塊を得た。得られた粒塊を乳鉢で粉砕し、薄赤褐色に着色した粉末(試料J)が得られた。   Next, the precipitate was left at 90 ° C. for 10 hours, and water was completely evaporated to obtain a residue. The residue was sintered at 380 ° C. for 4 hours to obtain agglomerates. The obtained agglomerates were pulverized in a mortar to obtain a light red-brown colored powder (Sample J).

(色素溶液の分解実験)
初期濃度5mg/Lのメチレンブルー40mLをガラス製サンプル管に入れ、薄赤褐色に着色した試料Jを30mg入れ、マグネチックスターラーで撹拌し、分解実験用試料とした。この後は、実施例1と同様の実験を行った。当該実験結果を表9に示す。
(Dye solution decomposition experiment)
40 mL of methylene blue having an initial concentration of 5 mg / L was placed in a glass sample tube, and 30 mg of Sample J colored light reddish brown was added and stirred with a magnetic stirrer to prepare a sample for decomposition experiment. Thereafter, the same experiment as in Example 1 was performed. The experimental results are shown in Table 9.

Figure 2009078264
Figure 2009078264

18分間後の結果は、試料Jの方が、市販品の性能を上回っている。
ここで、図9は、試料Jと市販品とについて、照射時間とメチレンブルーの濃度との関係を対数プロットしたグラフである。当該グラフの傾きから、メチレンブルーの分解速度を解析すると、試料Jの性能は、吸着性能と分解性能を総合的に判断すると、市販品より上回っていることがわかった。光照射試験の90分間後の溶液は、青紫色に変化した。さらに、初期濃度2mg/Lのメチレンブルー15mLを30mLガラス製サンプル管に入れ、試料Jを40mg入れ、マグネチックスターラーで攪拌しながら60分間可視光を照射すると、完全に白くなったことから、メチレンブルーが分解され、さらに、有色のメチレンブルーの反応中間体の分解が起きていることが確認できた。
The result after 18 minutes shows that the performance of the sample J exceeds the performance of the commercial product.
Here, FIG. 9 is a graph obtained by logarithmically plotting the relationship between the irradiation time and the concentration of methylene blue for the sample J and the commercial product. From the slope of the graph, when analyzing the decomposition rate of methylene blue, it was found that the performance of Sample J was higher than that of a commercially available product when the adsorption performance and the decomposition performance were comprehensively judged. The solution after 90 minutes of the light irradiation test turned blue-violet. Furthermore, when 15 mL of methylene blue having an initial concentration of 2 mg / L was placed in a 30 mL glass sample tube, 40 mg of sample J was added and irradiated with visible light for 60 minutes while stirring with a magnetic stirrer, methylene blue was completely whitened. It was confirmed that decomposition of the colored methylene blue reaction intermediate occurred.

[実施例10]、[実施例11]
(試料の調製)
2Lビーカーに水1.5Lを入れ、塩化マンガン(II)[実施例10]、または、塩化クロム(III)[実施例11]0.06gを投入し溶解して溶液とした。当該溶液へ、塩
化チタン(IV)5mLを除々に投入した。次に、当該溶液へ、濃度1mol/Lの炭酸ナトリウム水溶液90mLを少しずつ加え、水酸化チタンを沈殿させた。溶液のpHが10以上になるまで炭酸ナトリウム水溶液を加えた。尚、塩化チタン(IV)を水で希釈する際は、激しく発煙し発熱する。ここへ、炭酸ナトリウム水溶液を加えると、さらに発熱する。そこで、当該添加操作は、ドラフト中において溶液を氷水で冷却し、溶液を撹拌しながら除々に行った。生成した沈殿を、吸引ロートを使って濾過し、得られた水酸化チタン沈殿に純水を加えてよく撹拌し、再度吸引濾過した。この操作を6度繰り返し、水酸化チタン沈殿中の塩化ナトリウムを除去した。
[Example 10], [Example 11]
(Sample preparation)
1.5 L of water was put into a 2 L beaker, and manganese (II) chloride [Example 10] or chromium (III) chloride [Example 11] was added and dissolved to make a solution. To the solution, 5 mL of titanium (IV) chloride was gradually added. Next, 90 mL of a sodium carbonate aqueous solution having a concentration of 1 mol / L was gradually added to the solution to precipitate titanium hydroxide. Sodium carbonate aqueous solution was added until the pH of the solution reached 10 or more. In addition, when diluting titanium (IV) with water, it generates intense smoke and generates heat. If sodium carbonate aqueous solution is added here, it will generate | occur | produce further. Therefore, the addition operation was gradually performed while cooling the solution with ice water in the draft and stirring the solution. The produced precipitate was filtered using a suction funnel, pure water was added to the resulting titanium hydroxide precipitate, and the mixture was thoroughly stirred, followed by suction filtration again. This operation was repeated 6 times to remove sodium chloride in the titanium hydroxide precipitate.

次に、当該沈殿物を90℃で10時間放置し、水を完全に蒸発させて残査物を得た。当該残査物を380℃で4時間焼結して粒塊を得た。得られた粒塊を乳鉢で粉砕し、薄黄色に着色した粉末(試料K)[実施例10]、または、薄青緑色に着色した(試料L)[実施例11]が得られた。   Next, the precipitate was left at 90 ° C. for 10 hours, and water was completely evaporated to obtain a residue. The residue was sintered at 380 ° C. for 4 hours to obtain agglomerates. The obtained agglomerates were pulverized in a mortar to obtain a light yellow colored powder (Sample K) [Example 10] or a pale blue-green colored (Sample L) [Example 11].

(色素溶液の分解実験)
初期濃度5mg/Lのメチレンブルー40mLをガラス製サンプル管に入れ、薄黄色に着色した試料K[実施例10]、または、薄青緑色に着色した試料L[実施例11]をそれぞれ別々に試料K[実施例10]は20mg、試料L[実施例11]は30mg入れ、マグネチックスターラーで撹拌し、分解実験用試料とした。この後は、実施例1と同様の実験を行った。当該実験結果を表10および表11に示す。
(Dye solution decomposition experiment)
40 mL of methylene blue having an initial concentration of 5 mg / L is placed in a glass sample tube, and the sample K [Example 10] colored pale yellow or the sample L [Example 11] colored pale blue green is separately sample K. [Example 10] was 20 mg, and sample L [Example 11] was 30 mg. The sample was stirred with a magnetic stirrer to prepare a sample for a decomposition experiment. Thereafter, the same experiment as in Example 1 was performed. The experimental results are shown in Table 10 and Table 11.

Figure 2009078264
Figure 2009078264

Figure 2009078264
Figure 2009078264

18分間後の結果は、試料K[実施例10]、試料L[実施例11]の方が、市販品の性能を上回っている。
ここで、図10は、試料Kと市販品とについて、照射時間とメチレンブルーの濃度との関係を対数プロットしたグラフであり、図11は、試料Lと市販品とについて、照射時間とメチレンブルーの濃度との関係を対数プロットしたグラフである。当該グラフの傾きから、メチレンブルーの分解速度を解析すると、試料K[実施例10]の分解性能は、市販品より上回っていること、試料L[実施例11]の性能は、吸着性能と分解性能を総合的に判断すると、市販品より上回っていることがわかった。光照射試験の90分間後の溶液は、青紫色に変化した。さらに、初期濃度2mg/Lのメチレンブルー15mLを30mLガラス製サンプル管に入れ、試料K[実施例10]、試料L[実施例11]を40mg入れ、マグネチックスターラーで攪拌しながら60分間可視光を照射すると、完全に白くなったことから、メチレンブルーが分解され、さらに、有色のメチレンブルーの反応中間体の分解が起きていることが確認できた。
As a result after 18 minutes, the performance of the sample K [Example 10] and the sample L [Example 11] exceeds the performance of the commercial product.
Here, FIG. 10 is a graph obtained by logarithmically plotting the relationship between the irradiation time and the concentration of methylene blue for the sample K and the commercially available product, and FIG. 11 shows the irradiation time and the concentration of methylene blue for the sample L and the commercially available product. Is a logarithmic plot of the relationship with. Analysis of the decomposition rate of methylene blue from the slope of the graph shows that the decomposition performance of sample K [Example 10] exceeds that of a commercially available product, and the performance of sample L [Example 11] is the adsorption performance and decomposition performance. Overall, it was found that it was higher than the commercial product. The solution after 90 minutes of the light irradiation test turned blue-violet. Further, 15 mL of methylene blue having an initial concentration of 2 mg / L is placed in a 30 mL glass sample tube, 40 mg of Sample K [Example 10] and Sample L [Example 11] are added, and visible light is stirred for 60 minutes while stirring with a magnetic stirrer. When irradiated, methylene blue was decomposed because it turned completely white, and further, it was confirmed that decomposition of a colored methylene blue reaction intermediate occurred.

[実施例12]
(試料の調製)
実施例1と同様にして、塩化ナトリウムを除去した水酸化チタンの沈殿を調製した。
得られた水酸化チタンに亜鉛粉末0.08gを加えてよく混合し、90℃で10時間放置し、水を完全に蒸発させた。380℃で4時間焼結した。得られた粒塊を乳鉢で粉砕し、灰色に着色した粉末(試料M)を得た。
[Example 12]
(Sample preparation)
In the same manner as in Example 1, a titanium hydroxide precipitate from which sodium chloride was removed was prepared.
To the obtained titanium hydroxide, 0.08 g of zinc powder was added and mixed well, and the mixture was left at 90 ° C. for 10 hours to completely evaporate water. Sintered at 380 ° C. for 4 hours. The obtained agglomerates were pulverized in a mortar to obtain a gray colored powder (Sample M).

(色素溶液の分解実験)
初期濃度5mg/Lのメチレンブルー40mLをガラス製サンプル管に入れ、灰色に着色した試料Mを30mg入れ、マグネチックスターラーで撹拌し、分解実験用試料とした。この後は、実施例1と同様の実験を行った。当該実験結果を表12に示す。
(Dye solution decomposition experiment)
40 mL of methylene blue having an initial concentration of 5 mg / L was put in a glass sample tube, 30 mg of gray-colored sample M was added, and stirred with a magnetic stirrer to obtain a sample for decomposition experiment. Thereafter, the same experiment as in Example 1 was performed. The experimental results are shown in Table 12.

Figure 2009078264
Figure 2009078264

18分間後の結果は、試料Mの方が、市販品の性能を上回っている。
ここで、図12は、試料Mと市販品とについて、照射時間とメチレンブルーの濃度との関係を対数プロットしたグラフである。当該グラフの傾きから、メチレンブルーの分解速度を解析すると、試料Lの分解性能は、市販品より上回っていることがわかった。光照射試験の90分間後の溶液は、青紫色に変化した。さらに、初期濃度2mg/Lのメチレンブルー15mLを30mLガラス製サンプル管に入れ、試料Mを40mg入れ、マグネチックスターラーで攪拌しながら90分間可視光を照射すると、完全に白くなったことから、メチレンブルーが分解され、さらに、有色のメチレンブルーの反応中間体の分解が起きていることが確認できた。
As a result after 18 minutes, the performance of the sample M exceeds the performance of the commercial product.
Here, FIG. 12 is a graph in which the relationship between the irradiation time and the concentration of methylene blue is logarithmically plotted for the sample M and a commercial product. From the slope of the graph, when the decomposition rate of methylene blue was analyzed, it was found that the decomposition performance of sample L was higher than that of a commercially available product. The solution after 90 minutes of the light irradiation test turned blue-violet. Furthermore, when 15 mL of methylene blue with an initial concentration of 2 mg / L was placed in a 30 mL glass sample tube, 40 mg of sample M was added and irradiated with visible light for 90 minutes while stirring with a magnetic stirrer, methylene blue was completely whitened. It was confirmed that decomposition of the colored methylene blue reaction intermediate occurred.

[実施例13]、[実施例14]
(試料の調製)
2Lビーカーに水1.5Lを入れ、メタバナジン酸ナトリウム[実施例13]、または、七モリブデン酸六アンモニウム[実施例14]0.06gを投入し溶解して溶液とした。当該溶液へ、塩化チタン(IV)5mLを除々に投入した。次に、当該溶液へ、濃度1mol/Lの炭酸ナトリウム水溶液90mLを少しずつ加え、水酸化チタンを沈殿させた。溶液のpHが10以上になるまで炭酸ナトリウム水溶液を加えた。尚、塩化チタン(IV)を水で希釈する際は、激しく発煙し発熱する。ここへ、炭酸ナトリウム水溶液を加えると、さらに発熱する。そこで、当該添加操作は、ドラフト中において溶液を氷水で冷却し、溶液を撹拌しながら除々に行った。生成した沈殿を、吸引ロートを使って濾過し、得られた水酸化チタン沈殿に純水を加えてよく撹拌し、再度吸引濾過した。この操作を6度繰り返し、水酸化チタン沈殿中の塩化ナトリウムを除去した。
[Example 13], [Example 14]
(Sample preparation)
1.5 L of water was put into a 2 L beaker, and 0.06 g of sodium metavanadate [Example 13] or hexaammonium heptamolybdate [Example 14] was added and dissolved to obtain a solution. To the solution, 5 mL of titanium (IV) chloride was gradually added. Next, 90 mL of a sodium carbonate aqueous solution having a concentration of 1 mol / L was gradually added to the solution to precipitate titanium hydroxide. Sodium carbonate aqueous solution was added until the pH of the solution reached 10 or more. In addition, when diluting titanium (IV) with water, it generates intense smoke and generates heat. If sodium carbonate aqueous solution is added here, it will generate | occur | produce further. Therefore, the addition operation was gradually performed while cooling the solution with ice water in the draft and stirring the solution. The produced precipitate was filtered using a suction funnel, pure water was added to the resulting titanium hydroxide precipitate, and the mixture was thoroughly stirred, followed by suction filtration again. This operation was repeated 6 times to remove sodium chloride in the titanium hydroxide precipitate.

次に、当該沈殿物を90℃で10時間放置し、水を完全に蒸発させて残査物を得た。当該残査物を380℃で4時間焼結して粒塊を得た。得られた粒塊を乳鉢で粉砕し、微黄色に着色した粉末(試料N)[実施例13]、または、微黄色に着色した(試料O)[実施例14]が得られた。   Next, the precipitate was left at 90 ° C. for 10 hours, and water was completely evaporated to obtain a residue. The residue was sintered at 380 ° C. for 4 hours to obtain agglomerates. The obtained agglomerates were pulverized in a mortar to obtain a slightly yellow powder (Sample N) [Example 13] or a slightly yellow color (Sample O) [Example 14].

(色素溶液の分解実験)
初期濃度5mg/Lのメチレンブルー40mLをガラス製サンプル管に入れ、微黄色に着色した試料N[実施例13]、または、微黄色に着色した試料O[実施例14]をそれぞれ別々に30mg入れ、マグネチックスターラーで撹拌し、分解実験用試料とした。この後は、実施例1と同様の実験を行った。当該実験結果を表13および表14に示す。
(Dye solution decomposition experiment)
40 mL of methylene blue having an initial concentration of 5 mg / L is placed in a glass sample tube, and 30 mg of Sample N [Example 13] colored slightly yellow or Sample O [Example 14] colored slightly yellow is separately added. The sample was stirred with a magnetic stirrer to obtain a sample for decomposition experiments. Thereafter, the same experiment as in Example 1 was performed. The experimental results are shown in Table 13 and Table 14.

Figure 2009078264
Figure 2009078264

Figure 2009078264
Figure 2009078264

90分間後の結果は、試料N[実施例13]、試料O[実施例14]の方が、市販品の性能を上回っている。
ここで、図13は、試料Nと市販品とについて、照射時間とメチレンブルーの濃度との関係を対数プロットしたグラフであり、図14は、試料Oと市販品とについて、照射時間とメチレンブルーの濃度との関係を対数プロットしたグラフである。当該グラフの傾きからメチレンブルーの分解速度を解析し、吸着性能と分解性能を総合的に判断すると、試料N[実施例13]の性能は、市販品より上回っていること、試料O[実施例14]の分解性能は、市販品より上回っていることがわかった。光照射試験の90分間後の溶液は、青紫色に変化した。さらに、初期濃度2mg/Lのメチレンブルー15mLを30mLガラス製サンプル管に入れ、試料N[実施例13]、試料O[実施例14]を40mg入れ、マグネチックスターラーで攪拌しながら60分間可視光を照射すると、完全に白くなったことから、メチレンブルーが分解され、さらに、有色のメチレンブルーの反応中間体の分解が起きていることが確認できた。
As a result after 90 minutes, the performance of the sample N [Example 13] and the sample O [Example 14] exceeds the performance of the commercial product.
Here, FIG. 13 is a graph obtained by logarithmically plotting the relationship between the irradiation time and the concentration of methylene blue for the sample N and the commercially available product, and FIG. 14 shows the irradiation time and the concentration of methylene blue for the sample O and the commercially available product. Is a logarithmic plot of the relationship with. When the decomposition rate of methylene blue is analyzed from the slope of the graph and the adsorption performance and the decomposition performance are comprehensively determined, the performance of the sample N [Example 13] exceeds that of a commercially available product, and the sample O [Example 14]. ], It was found that the decomposition performance exceeded that of the commercial product. The solution after 90 minutes of the light irradiation test turned blue-violet. Further, 15 mL of methylene blue having an initial concentration of 2 mg / L is placed in a 30 mL glass sample tube, 40 mg of Sample N [Example 13] and Sample O [Example 14] are added, and visible light is stirred for 60 minutes while stirring with a magnetic stirrer. When irradiated, methylene blue was decomposed because it turned completely white, and further, it was confirmed that decomposition of a colored methylene blue reaction intermediate occurred.

ここで示した実施例は、酸化チタン粒子の内部および表面に、白金、銀、銅、ニッケル、コバルト、鉄、マンガン、クロム、バナジウム、パラジウム、モリブデン、亜鉛からなる1種類の元素を分散させた可視光応答型光触媒を示した。さらに本発明者らの検討によると、酸化チタン粒子の内部および表面に、白金、銀、銅、ニッケル、コバルト、鉄、マ
ンガン、クロム、バナジウム、パラジウム、モリブデン、亜鉛からなる2種類以上の組み合わせの元素を分散させた場合も、可視光応答型光触媒が得られることがわかった。
In the example shown here, one kind of element consisting of platinum, silver, copper, nickel, cobalt, iron, manganese, chromium, vanadium, palladium, molybdenum, and zinc was dispersed inside and on the surface of the titanium oxide particles. A visible light responsive photocatalyst was shown. Further, according to the study by the present inventors, two or more kinds of combinations consisting of platinum, silver, copper, nickel, cobalt, iron, manganese, chromium, vanadium, palladium, molybdenum, and zinc are formed inside and on the surface of the titanium oxide particles. It was found that a visible light responsive photocatalyst can be obtained even when the element is dispersed.

さらに本発明者らの検討によると、本発明に係る光触媒は、空気試験の結果、可視光だけで、アセトアルデヒドも分解できることもわかった。   Further, according to the study by the present inventors, it has been found that the photocatalyst according to the present invention can decompose acetaldehyde with only visible light as a result of an air test.

本発明に係る光触媒は、可視光線だけで光触媒作用を示すため、紫外線を多く含まない室内の蛍光灯などの照明を利用した空間で、脱臭や防汚、殺菌、脱色などの環境改善に好適なものである。   Since the photocatalyst according to the present invention exhibits a photocatalytic action only with visible light, it is suitable for environmental improvement such as deodorization, antifouling, sterilization, and decolorization in a space that uses illumination such as an indoor fluorescent lamp that does not contain much ultraviolet rays. Is.

実施例1に係る試料Aと市販品とのメチレンブルー分解速度を示すグラフである。2 is a graph showing the methylene blue decomposition rate of Sample A according to Example 1 and a commercially available product. 実施例2に係る試料Bと市販品とのメチレンブルー分解速度を示すグラフである。It is a graph which shows the methylene blue decomposition | disassembly rate of the sample B which concerns on Example 2, and a commercial item. 実施例3に係る試料Cと市販品とのメチレンブルー分解速度を示すグラフである。It is a graph which shows the methylene blue decomposition | disassembly rate of the sample C which concerns on Example 3, and a commercial item. 実施例4に係る試料Dと市販品とのメチレンブルー分解速度を示すグラフである。It is a graph which shows the methylene blue decomposition rate of the sample D which concerns on Example 4, and a commercial item. 実施例5に係る試料Eと市販品とのメチレンブルー分解速度を示すグラフである。It is a graph which shows the methylene blue decomposition | disassembly rate of the sample E which concerns on Example 5, and a commercial item. 実施例6に係る試料Fと市販品とのメチレンブルー分解速度を示すグラフである。It is a graph which shows the methylene blue decomposition | disassembly rate of the sample F which concerns on Example 6, and a commercial item. 実施例7に係る試料Gと市販品とのメチレンブルー分解速度を示すグラフである。It is a graph which shows the methylene blue decomposition rate of the sample G which concerns on Example 7, and a commercial item. 実施例8に係る試料Hと市販品とのメチレンブルー分解速度を示すグラフである。It is a graph which shows the methylene blue decomposition | disassembly rate of the sample H which concerns on Example 8, and a commercial item. 実施例9に係る試料Jと市販品とのメチレンブルー分解速度を示すグラフである。It is a graph which shows the methylene blue decomposition | disassembly rate of the sample J which concerns on Example 9, and a commercial item. 実施例10に係る試料Kと市販品とのメチレンブルー分解速度を示すグラフである。It is a graph which shows the methylene blue decomposition rate of the sample K which concerns on Example 10, and a commercial item. 実施例11に係る試料Lと市販品とのメチレンブルー分解速度を示すグラフである。It is a graph which shows the methylene blue decomposition | disassembly rate of the sample L which concerns on Example 11, and a commercial item. 実施例12に係る試料Mと市販品とのメチレンブルー分解速度を示すグラフである。It is a graph which shows the methylene blue decomposition rate of the sample M which concerns on Example 12, and a commercial item. 実施例13に係る試料Nと市販品とのメチレンブルー分解速度を示すグラフである。It is a graph which shows the methylene blue decomposition rate of the sample N which concerns on Example 13, and a commercial item. 実施例14に係る試料Oと市販品とのメチレンブルー分解速度を示すグラフである。It is a graph which shows the methylene blue decomposition | disassembly rate of the sample O which concerns on Example 14, and a commercial item.

Claims (8)

酸化チタン粒子の内部および表面に、白金、銀、銅、ニッケル、コバルト、鉄、マンガン、クロム、バナジウム、パラジウム、モリブデン、亜鉛からなる群より選ばれる少なくとも1種類の元素が分散していることを特徴とする可視光応答型光触媒。   At least one element selected from the group consisting of platinum, silver, copper, nickel, cobalt, iron, manganese, chromium, vanadium, palladium, molybdenum, and zinc is dispersed inside and on the surface of the titanium oxide particles. A visible light responsive photocatalyst. 前記元素が、当該元素の金属微粒子として分散していることを特徴とする請求項1に記載の可視光応答型光触媒。   The visible light responsive photocatalyst according to claim 1, wherein the element is dispersed as metal fine particles of the element. 前記元素が、当該元素を含む化合物として分散していることを特徴とする請求項1に記載の可視光応答型光触媒。   The visible light responsive photocatalyst according to claim 1, wherein the element is dispersed as a compound containing the element. 前記元素が、酸化チタン粒子の内部では当該元素の金属微粒子として分散しており、酸化チタン粒子の表面では当該元素を含む化合物として分散していることを特徴とする請求項1に記載の可視光応答型光触媒。   2. The visible light according to claim 1, wherein the element is dispersed as metal fine particles of the element inside the titanium oxide particles, and is dispersed as a compound containing the element on the surface of the titanium oxide particles. Responsive photocatalyst. チタン化合物の溶液を加水分解、または、チタン化合物の溶液へアルカリを加えて水酸化チタンを沈殿させる第1の工程と、当該水酸化チタンを焼結して酸化チタン粒子を得る第2の工程とを有し、
前記第1の工程、または、第1と第2の工程の間において、銅、白金、銀、ニッケル、コバルト、鉄、マンガン、クロム、バナジウム、パラジウム、モリブデン、亜鉛からなる群より選ばれる少なくとも1種類の元素を含む物質を加え、
前記第2の工程において、水酸化チタンと前記化合物との混合物を焼結し、酸化チタン粒子の内部および表面に、白金、銀、銅、ニッケル、コバルト、鉄、マンガン、クロム、バナジウム、パラジウム、モリブデン、亜鉛からなる群より選ばれる少なくとも1種類の元素を分散させたことを特徴とする可視光応答型光触媒の製造方法。
A first step of hydrolyzing a solution of the titanium compound or adding an alkali to the solution of the titanium compound to precipitate titanium hydroxide; a second step of sintering the titanium hydroxide to obtain titanium oxide particles; Have
At least one selected from the group consisting of copper, platinum, silver, nickel, cobalt, iron, manganese, chromium, vanadium, palladium, molybdenum, and zinc in the first step or between the first and second steps. Add substances containing various elements,
In the second step, a mixture of titanium hydroxide and the compound is sintered, and platinum, silver, copper, nickel, cobalt, iron, manganese, chromium, vanadium, palladium, A method for producing a visible light responsive photocatalyst, wherein at least one element selected from the group consisting of molybdenum and zinc is dispersed.
前記酸化チタン化合物として、塩化チタン、硫酸チタン、硫酸チタニル、チタニウムテトライソプロポキシドを用いたことを特徴とする、請求項5に記載の可視光応答型光触媒の製造方法。   The method for producing a visible light responsive photocatalyst according to claim 5, wherein titanium chloride, titanium sulfate, titanyl sulfate, and titanium tetraisopropoxide are used as the titanium oxide compound. 前記物質を、前記元素の金属微粒子として分散させたことを特徴とする、請求項5に記載の可視光応答型光触媒の製造方法。   The method for producing a visible light responsive photocatalyst according to claim 5, wherein the substance is dispersed as metal fine particles of the element. 前記物質を、前記元素を含む化合物として分散させたことを特徴とする、請求項5に記載の可視光応答型光触媒の製造方法。   The method for producing a visible light responsive photocatalyst according to claim 5, wherein the substance is dispersed as a compound containing the element.
JP2008225776A 2007-09-03 2008-09-03 Visible light-responsive photocatalyst and its manufacturing method Pending JP2009078264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008225776A JP2009078264A (en) 2007-09-03 2008-09-03 Visible light-responsive photocatalyst and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007228272 2007-09-03
JP2008225776A JP2009078264A (en) 2007-09-03 2008-09-03 Visible light-responsive photocatalyst and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2009078264A true JP2009078264A (en) 2009-04-16

Family

ID=40653422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008225776A Pending JP2009078264A (en) 2007-09-03 2008-09-03 Visible light-responsive photocatalyst and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2009078264A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010254887A (en) * 2009-04-28 2010-11-11 Shin-Etsu Chemical Co Ltd Photocatalyst-coating liquid that gives thin photocatalyst film excellent in optical responsivity, and the photocatalyst thin film
WO2012023612A1 (en) * 2010-08-20 2012-02-23 株式会社フジコー Method for producing photocatalyst coating film, and photocatalyst coating film
KR101326314B1 (en) 2011-08-25 2013-11-11 금오공과대학교 산학협력단 Visible ray reaction type photocatalyst and preparation method thereof
KR20170124840A (en) * 2016-05-03 2017-11-13 울산과학기술원 Hydrogen peroxide-titanium dioxide photocatalyst doped by coblat, method for producing the same and method for treating organic compound using the same
WO2018101044A1 (en) * 2016-11-30 2018-06-07 国立大学法人山形大学 Crystallized titanium dioxide production method, and titanium dioxide precursor, and production method therefor
WO2018167914A1 (en) * 2017-03-16 2018-09-20 ヒロセ株式会社 Photocatalyst coating agent
CN111701604A (en) * 2020-06-10 2020-09-25 河南理工大学 Preparation method of silver iodide-silver oxide-bismuth oxyhalide-cobalt ferrite magnetic visible-light-driven photocatalyst

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010254887A (en) * 2009-04-28 2010-11-11 Shin-Etsu Chemical Co Ltd Photocatalyst-coating liquid that gives thin photocatalyst film excellent in optical responsivity, and the photocatalyst thin film
WO2012023612A1 (en) * 2010-08-20 2012-02-23 株式会社フジコー Method for producing photocatalyst coating film, and photocatalyst coating film
JPWO2012023612A1 (en) * 2010-08-20 2013-10-28 株式会社フジコー Method for producing photocatalytic film and photocatalytic film
JP5723883B2 (en) * 2010-08-20 2015-05-27 株式会社フジコー Method for producing photocatalytic film and photocatalytic film
KR101326314B1 (en) 2011-08-25 2013-11-11 금오공과대학교 산학협력단 Visible ray reaction type photocatalyst and preparation method thereof
KR20170124840A (en) * 2016-05-03 2017-11-13 울산과학기술원 Hydrogen peroxide-titanium dioxide photocatalyst doped by coblat, method for producing the same and method for treating organic compound using the same
WO2018101044A1 (en) * 2016-11-30 2018-06-07 国立大学法人山形大学 Crystallized titanium dioxide production method, and titanium dioxide precursor, and production method therefor
JPWO2018101044A1 (en) * 2016-11-30 2019-11-21 国立大学法人山形大学 Method for producing crystallized titanium dioxide, titanium dioxide precursor and method for producing the same
JP7121395B2 (en) 2016-11-30 2022-08-18 国立大学法人山形大学 Method for producing crystallized titanium dioxide and precursors of titanium dioxide and method for producing same
WO2018167914A1 (en) * 2017-03-16 2018-09-20 ヒロセ株式会社 Photocatalyst coating agent
CN111701604A (en) * 2020-06-10 2020-09-25 河南理工大学 Preparation method of silver iodide-silver oxide-bismuth oxyhalide-cobalt ferrite magnetic visible-light-driven photocatalyst

Similar Documents

Publication Publication Date Title
Kanigaridou et al. Solar photocatalytic degradation of bisphenol A with CuOx/BiVO4: insights into the unexpectedly favorable effect of bicarbonates
JP2009078264A (en) Visible light-responsive photocatalyst and its manufacturing method
Yao et al. Effects of molybdenum substitution on the photocatalytic behavior of BiVO 4
Wang et al. Visible light photocatalytic activities of plasmonic Ag/AgBr particles synthesized by a double jet method
Moafi et al. Tungsten-doped ZnO nanocomposite: Synthesis, characterization, and highly active photocatalyst toward dye photodegradation
AU2016237640B2 (en) Visible-light-responsive photocatalytic-titanium-oxide-particulate dispersion liquid, manufacturing method therefor, and member having thin photocatalytic film on surface thereof
EP2459485B1 (en) Photocatalytic materials and process for producing the same
CN103079700B (en) Tungsten oxide photocatalyst and method for producing the same
US11059036B2 (en) Mixture of visible light-responsive photocatalytic titanium oxide fine particles, dispersion liquid thereof, method for producing dispersion liquid, photocatalyst thin film, and member having photocatalyst thin film on surface
Antony et al. Enhancing the visible light induced photocatalytic properties of WO3 nanoparticles by doping with vanadium
Murugalakshmi et al. Unravelling the visible light-assisted catalytic prowess of an n–n type In 2 S 3/CeO 2 Z-scheme heterojunction towards organic and inorganic water pollution mitigation
Varshney et al. Influence of Ni doping on PtNi nanoparticles: Synthesis, electronic/atomic structure and photocatalyst investigations
RU2627496C1 (en) Method for producing photocatalizer based on a mechanoactivated powder of zinc oxide
Rani et al. Efficient visible light photocatalytic organic colorants elimination performance induced by biosynthesized titanium dioxide coupled cadmium sulfide nanostructures
Nawaz et al. Manipulation of the Ti3+/Ti4+ ratio in colored titanium dioxide and its role in photocatalytic degradation of environmental pollutants
Orona-Návar et al. Gd3+ doped BiVO4 and visible light-emitting diodes (LED) for photocatalytic decomposition of bisphenol A, bisphenol S and bisphenol AF in water
Demir et al. Photocatalytic degradation of organic dyes under visible light on sol-gel derived M/ZnO (M= Cr, Mn, Sn, Fe, Ni, Cu, Co, Ba) catalysts
Amuthan et al. A novel p-CuFe2O4/n-ZnS heterojunction photocatalyst: Co-precipitation synthesis, characterization and improved visible-light driven photocatalytic activity for removal of MB and CV dyes
Ghosh et al. Steroid glycosides as potential analytes for Cu‐doping on TiO2 for photocatalytic water treatment
JP2009178636A (en) Titanium oxide photocatalyst showing high photocatalytic activity under visible light, and its manufacturing method
Kohsakowski et al. Electrostatically Directed Assembly of Nanostructured Composites for Enhanced Photocatalysis
KR101367627B1 (en) TiO2-BASED PHOTO CATALYSTS HAVING VISIBLE-LIGHT SENSITIVITY AND METHOD FOR MANUFACTURING THE SAME
JPH09942A (en) Photocatalyst with titanium dioxide used as substrate and its production
JP7288709B2 (en) Visible light responsive photocatalyst tungsten compound and paint
Ananda et al. Musa sapientum mediated synthesis of Erbium doped copper oxide for the sensitive detection of nitrites and degradation of azo dye