KR20130013921A - Mehtod for solar cell rear local bsf using screen printing - Google Patents

Mehtod for solar cell rear local bsf using screen printing Download PDF

Info

Publication number
KR20130013921A
KR20130013921A KR1020110075857A KR20110075857A KR20130013921A KR 20130013921 A KR20130013921 A KR 20130013921A KR 1020110075857 A KR1020110075857 A KR 1020110075857A KR 20110075857 A KR20110075857 A KR 20110075857A KR 20130013921 A KR20130013921 A KR 20130013921A
Authority
KR
South Korea
Prior art keywords
solar cell
printing
local bsf
screen printing
bsf
Prior art date
Application number
KR1020110075857A
Other languages
Korean (ko)
Inventor
김대일
Original Assignee
미리넷솔라 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 미리넷솔라 주식회사 filed Critical 미리넷솔라 주식회사
Priority to KR1020110075857A priority Critical patent/KR20130013921A/en
Publication of KR20130013921A publication Critical patent/KR20130013921A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0368Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors
    • H01L31/03682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors including only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE: A method for forming a local BSF is provided to form the local BSF by using a firing process after an electrode is formed by using a screen printing method and to improve the efficiency of a solar cell. CONSTITUTION: A passivation film(20) is formed in the rear surface of a polycrystalline solar cell. A back contact electrode(30) is formed on the passivation film. The back contact electrode is formed by using a screen printing method. A local BSF(10) is formed in the rear surface of a polycrystalline solar cell by using screen printing equipment. The local BSF has a thick net shape.

Description

스크린 프린팅 방식을 이용한 태양전지 후면 로컬 비에스에프 형성 방법{Mehtod for solar cell rear local BSF using Screen Printing}Method for forming local BSF in back of solar cell using screen printing method {Mehtod for solar cell rear local BSF using Screen Printing}

본 발명은 스크린 프린팅 방식을 이용한 태양전지 후면 로컬 BSF 형성 방법에 대한 것으로서, 보다 상세하게는 Screen Printing 방법으로 전극을 인쇄한 후 Firing 공정을 통하여 Local BSF를 형성하는 스크린 프린팅 방식을 이용한 태양전지 후면 로컬 BSF 형성 방법에 관한 것이다.The present invention relates to a method of forming a local BSF on the back of a solar cell using a screen printing method, and more particularly, to a local back of the solar cell using a screen printing method of forming a local BSF through a firing process after printing an electrode by a screen printing method. A method for forming a BSF.

도1 (a), (b)에서 보는 바와 같이 현재 일반적인 태양광 발전용 다결정 태양전지 제조시 Si wafer뒷면에 Al을 Screen printing 방식으로 인쇄 후 열처리를 통하여 BSF를 형성 시키고 있다. As shown in Figure 1 (a), (b) is currently forming a BSF through the heat treatment after printing Al on the back of the Si wafer by the screen printing method in the production of a general photovoltaic polycrystalline solar cell.

이 방식은 간단하게 BSF를 형성 시킬 수 있으나 많은 양의 Al을 소비하고 후면에서 재 결합율이 높아 태양전지 변환효율의 감소를 초래한다. This method can easily form a BSF, but consumes a large amount of Al and has a high recombination rate at the rear surface, resulting in a decrease in solar cell conversion efficiency.

이런 문제점을 극복하기 위해 태양광 발전용 다결정 고효율 태양전지 제조를 위해 Si wafer뒷면에 Passivation layer를 증착 하고 local BSF를 형성 시키는공정이 활발히 연구되고 상용화되고 있다. In order to overcome this problem, a process of depositing a passivation layer on the back side of a Si wafer and forming a local BSF for the production of polycrystalline high efficiency solar cells for photovoltaic power generation has been actively studied and commercialized.

이러한 Local BSF를 형성 시키는 방법에는 대표적으로 laser 방식과 Photo lithography 방식이 있으며, 이중에서 상대적으로 공정비용이 저렴하고 간단한 방식의 laser를 이용한 local BSF공정이 활발히 연구, 상용화 되고 있다.Representative methods of forming such local BSF include laser method and photo lithography method. Among them, local BSF process using laser of low cost and simple method has been actively researched and commercialized.

한편 한국공개특허 제2009-0118056호는 BSF 코팅이 있는 태양전지의 제조 방법으로써, 태양 전지의 기판, 특히 실리콘 기판의 후면에, 알루미늄 또는 TCO를 제공한 후 그 후 상기 기판에 합금화를 수행하여 상기 기판에 BSF 코팅이 제공되고, 상기 BSF 코팅은 빛에 대해 투명한, 태양전지의 제조방법에 관한 것이다.Meanwhile, Korean Laid-Open Patent Publication No. 2009-0118056 is a method for manufacturing a solar cell having a BSF coating, which provides aluminum or TCO to a substrate of a solar cell, particularly a silicon substrate, and then alloys the substrate by performing alloying. A substrate is provided with a BSF coating, and the BSF coating relates to a method for manufacturing a solar cell, which is transparent to light.

그러나 상술한 종래 발명에 따른 laser를 이용한 Local BSF공정은 기존의 Screen Printing을 이용한 BSF공정에 비해 공정이 복잡해지고 생산 속도 감소 및 장비가격 상승에 의한 공정비용 상승 등의 문제점을 갖고 있다. However, the local BSF process using a laser according to the conventional invention described above has a problem that the process becomes more complicated than the conventional BSF process using screen printing, and the process cost increases due to the reduction in production speed and the increase in the price of equipment.

상술한 문제점을 해결하기 위하여 Screen Printing 방법으로 전극을 인쇄한 후 Firing 공정을 통하여 Local BSF를 형성하여 후면에서 재결합 속도가 줄어 들어 태양전지의 효율을 상승시키는 스크린 프린팅 방식을 이용한 태양전지 후면 로컬 BSF 형성 방법을 제공하는 데 목적이 있다.In order to solve the above problems, after printing the electrodes by screen printing method, local BSF is formed through firing process to reduce the recombination speed at the rear side, thus forming local BSF at the back of solar cell using screen printing method which increases the efficiency of solar cell. The purpose is to provide a method.

본 발명은 다결정 태양전지에 있어서, 다결정 태양전지 후면에 스크린 프린팅(Screen printing) 장비를 이용하여 프린팅(Printing)하여 촘촘한 그물망 형태로 Local BSF를 형성하는 단계와, 상기 다결정 태양전지 후면에 패시베이션 막(Passivation layer)을 증착하고 상기 패시베이션 막 위에 Rear Electrode(Bus Bar) Ag를 프린팅하고 상기 Local BSF를 형성하는 Al을 프린팅하는 단계로 이루어 진다.In the polycrystalline solar cell, a step of forming a local BSF in the form of a dense net by printing using a screen printing (Screen printing) equipment on the rear of the polycrystalline solar cell, the passivation film ( Depositing a passivation layer) and printing Rear Electrode (Bus Bar) Ag on the passivation film and printing Al forming the Local BSF.

상기 패시베이션 막 위에 Rear Electrode(Bus Bar) Ag를 프린팅(Printing)하고 상기 Local BSF를 형성하는 Al을 프린팅하는 단계는, 상기 Al을 프린팅(Printing)하고 상기 Local BSF를 형성하는 Ag를 프린팅하는 단계이다.Printing Al Electrode (Bus Bar) Ag on the passivation film and printing Al to form the Local BSF is a step of printing the Al and printing Ag to form the Local BSF. .

상기 Ag 및 Al은 Firing Process중에 Passivation layer를 etch하기 위해 glass frit을 전체 100 중량% 중에서 5중량% 내지 50중량% 함유한다.The Ag and Al contain 5% to 50% by weight of glass frit in 100% by weight to etch the passivation layer during the firing process.

본 발명에 따르면 기존의 Screen Printing 장비를 이용하여 Local BSF의 형성이 가능하여, 종래의 Laser Local BSF공정에 비해 공정이 간단하고 공정 비용이 저렴하다.According to the present invention, it is possible to form a local BSF using existing screen printing equipment, and the process is simpler and the process cost is lower than that of the conventional Laser Local BSF process.

본 발명에 따르면 Local BSF 형성에 따른 후면 재결합이 감소되어 태양전지 효율이 상승된다.According to the present invention, backside recombination due to Local BSF formation is reduced, and solar cell efficiency is increased.

본 발명에 따르면 후면 반사율 저감으로 인한 광원의 증가로 인해 태양전지 효율이 상승한다.According to the present invention, the solar cell efficiency increases due to the increase in the light source due to the reduction of the rear reflectance.

도1은 종래 발명에 따른 태양전지 후면 로컬 BSF 형성 방법을 보여주는 도면.
도2는 본 발명에 따른 스크린 프린팅 방식을 이용한 태양전지 후면 로컬 BSF의 형성 모습을 보여주는 도면.
도3은 도2의 정면도.
1 is a view showing a solar cell rear local BSF forming method according to the prior invention.
Figure 2 is a view showing the formation of the local BSF rear solar cell using the screen printing method according to the present invention.
3 is a front view of FIG. 2;

이어지는 본 발명의 실시하기 위한 구체적인 내용은 사실상 본 발명의 단순한 예시에 해당하며 본 발명이나 본 발명의 적용 및 사용들을 제한하고자 의도된 것은 아니다. 또한, 앞에서 기재된 기술 분야, 배경기술 및 하기 상세한 설명에서 내포된 어떤 이론들에 의해 구속되고자 하는 어떤 의도도 없다. The following detailed description of the invention is in fact a mere illustration of the invention and is not intended to limit the invention or its application and uses. Moreover, there is no intention to be bound by any theory implied in the technical field, background or the foregoing detailed description.

또한 상술한 목적, 특징 및 효과는 첨부된 도면을 참조하여 상세하게 후술되어 있는 상세한 설명을 통하여 보다 명확해 질 것이며, 그에 따라 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 것이다. 또한, 본 발명을 설명함에 있어서 본 발명과 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에 그 상세한 설명을 생략하기로 한다. 이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세히 설명하기로 한다.In addition, the above-described objects, features and effects will become more apparent from the following detailed description with reference to the accompanying drawings, and accordingly, those skilled in the art to which the present invention pertains the technical idea of the present invention. It will be easy to implement. In the following description, well-known functions or constructions are not described in detail since they would obscure the invention in unnecessary detail. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

본 발명에 따른 스크린 프린팅 방식을 이용한 태양전지 후면 로컬 BSF(10)는 다결정 태양전지 후면에 스크린 프린팅(Screen printing) 장비를 이용하여 프린팅(Printing)하여 형성된다.The solar cell backside local BSF 10 using the screen printing method according to the present invention is formed by printing on the rear surface of the polycrystalline solar cell using screen printing equipment.

그리고 상기 다결정 태양전지 후면에 패시베이션 막(Passivation layer)(20)을 증착하고 상기 패시베이션 막(20) 위에 Rear Electrode(Bus Bar)(30) Ag를 프린팅하고 상기 로컬 BSF(10)를 형성하는 Al을 프린팅하는 것이 바람직하다.And depositing a passivation layer 20 on the rear surface of the polycrystalline solar cell, printing Ag on the passivation layer 20, and printing the rear electrode (bus bar) 30 Ag and forming the local BSF 10. It is preferable to print.

따라서 상술한 스크린 프린팅장비를 통하여 스크린 프린팅 방법으로 전극을 인쇄한 후 Firing 공정을 통하여 로컬 BSF(10)를 형성하여 후면에서 재결합 속도가 줄어 들어 태양전지의 효율을 상승시킨다.
Therefore, after printing the electrode by the screen printing method through the above-described screen printing equipment to form a local BSF (10) through the firing process to reduce the recombination rate at the rear to increase the efficiency of the solar cell.

이하 본 발명에 따른 스크린 프린팅 방식을 이용한 태양전지 후면 로컬 BSF(10) 형성 방법에 대하여 자세히 설명한다.Hereinafter, a method of forming the local BSF 10 on the rear of the solar cell using the screen printing method according to the present invention will be described in detail.

먼저 다결정 태양전지 후면에 스크린 프린팅(Screen printing) 장비를 이용하여 프린팅(Printing)하여 촘촘한 그물망 형태로 로컬 BSF(10)를 형성한다.First, the local BSF 10 is formed in the form of a dense net by printing using a screen printing device on the back of the polycrystalline solar cell.

그리고 상기 다결정 태양전지 후면에 패시베이션 막(Passivation layer)(20)을 증착하고 상기 패시베이션 막 위에 Rear Electrode(Bus Bar) Ag를 프린팅하고 상기 로컬 BSF(10)를 형성하는 Al을 프린팅한다.In addition, a passivation layer 20 is deposited on the rear surface of the polycrystalline solar cell, and a rear electrode (Bus Bar) Ag is printed on the passivation layer and Al is formed to form the local BSF 10.

이를 통해 로컬 BSF(10) 형성에 따른 후면 재결합이 감소되며, 후면 반사율 저감으로 인한 광원의 증가로 인해 태양전지 효율이 상승한다.Through this, the rear recombination due to the local BSF 10 is reduced, and the solar cell efficiency is increased due to the increase in the light source due to the reduction of the rear reflectance.

또한 상기 패시베이션 막(20) 위에 Rear Electrode(Bus Bar)(30) Ag를 프린팅(Printing)하고 로컬 BSF(10)를 형성하는 Al을 프린팅하는 단계는, 상기 Al을 프린팅(Printing)하고 상기 로컬 BSF(10)를 형성하는 Ag를 프린팅하는 것이다. In addition, the printing step of printing the Al (Bus Bar) (30) Ag on the passivation film 20 and printing the Al forming the local BSF (10), the printing (Al) and printing the local BSF It prints Ag which forms (10).

또한 Ag 및 Al Printing 순서는 필요에 따라 바뀔 수도 있다.Also, the order of Ag and Al Printing may be changed as needed.

여기에서 상기 Ag 및 Al은 Firing Process중에 상기 패시베이션 막(20)을 에치(etch)하기 위해 glass frit을 전체 100 중량% 중에서 5중량% 내지 50중량% 함유하는 데 5중량% 이하인 경우 glass frit의 접착력이 떨어져 절연성 및 기밀성이 저하될 수 있고, 50중량% 이상인 경우 과잉 접착력에 문제가 생겨 공정이 복잡해지고, 전체적인 태양전지의 효율을 저하시킬 수 있다.
Wherein the Ag and Al contained 5% to 50% by weight of the glass frit in the total 100% by weight to etch the passivation film 20 during the firing process when the adhesive strength of the glass frit less than 5% by weight In this case, the insulation and airtightness may be lowered. If the content is 50% by weight or more, problems with excessive adhesion may occur, thereby complicating the process and reducing the efficiency of the entire solar cell.

이상에서 설명한 본 발명은, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하므로 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니다.It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit or scope of the invention. The present invention is not limited to the drawings.

10 : 로컬 BSF
20 : 패시베이션 막
30 : Rear Electrode
10: local BSF
20: passivation film
30: Rear Electrode

Claims (3)

다결정 태양전지에 있어서,
다결정 태양전지 후면에 스크린 프린팅(Screen printing) 장비를 이용하여 프린팅(Printing)하여 촘촘한 그물망 형태로 Local BSF를 형성하는 단계와;
상기 다결정 태양전지 후면에 패시베이션 막(Passivation layer)을 증착하고 상기 패시베이션 막 위에 Rear Electrode(Bus Bar) Ag를 프린팅하고 상기 Local BSF를 형성하는 Al을 프린팅하는 단계;
로 이루어 지는 것을 특징으로 하는 스크린 프린팅 방식을 이용한 태양전지 후면 로컬 BSF 형성 방법.
In polycrystalline solar cell,
Forming a local BSF in the form of a dense net by printing on a rear surface of the polycrystalline solar cell using a screen printing apparatus;
Depositing a passivation layer on the rear surface of the polycrystalline solar cell, printing a rear electrode Ag on the passivation film, and printing Al forming the local BSF;
Local BSF forming method on the back of the solar cell using the screen printing method, characterized in that consisting of.
제1항에 있어서,
상기 패시베이션 막 위에 Rear Electrode(Bus Bar) Ag를 프린팅(Printing)하고 상기 Local BSF를 형성하는 Al을 프린팅하는 단계는,
상기 Al을 프린팅(Printing)하고 상기 Local BSF를 형성하는 Ag를 프린팅하는 단계인 것을 특징으로 하는 스크린 프린팅 방식을 이용한 태양전지 후면 로컬 BSF 형성 방법.
The method of claim 1,
Printing Al Electrode (Bus Bar) Ag on the passivation film and printing Al to form the Local BSF,
Printing the Al and printing Ag forming the Local BSF; and forming a local BSF at the rear of the solar cell using a screen printing method.
제1항에 있어서,
상기 Ag 및 Al은 Firing Process중에 Passivation layer를 에치(etch)하기 위해 glass frit을 전체 100 중량% 중에서 5중량% 내지 50중량% 함유하는 것을 특징으로 하는 스크린 프린팅 방식을 이용한 태양전지 후면 로컬 BSF 형성 방법.
The method of claim 1,
The Ag and Al is a method of forming a local BSF on the back of the solar cell using a screen printing method characterized in that it contains 5 to 50% by weight of the glass frit in 100% by weight to etch the passivation layer during the firing process .
KR1020110075857A 2011-07-29 2011-07-29 Mehtod for solar cell rear local bsf using screen printing KR20130013921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110075857A KR20130013921A (en) 2011-07-29 2011-07-29 Mehtod for solar cell rear local bsf using screen printing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110075857A KR20130013921A (en) 2011-07-29 2011-07-29 Mehtod for solar cell rear local bsf using screen printing

Publications (1)

Publication Number Publication Date
KR20130013921A true KR20130013921A (en) 2013-02-06

Family

ID=47894312

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110075857A KR20130013921A (en) 2011-07-29 2011-07-29 Mehtod for solar cell rear local bsf using screen printing

Country Status (1)

Country Link
KR (1) KR20130013921A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104218102A (en) * 2013-05-31 2014-12-17 茂迪股份有限公司 Solar cell and module thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104218102A (en) * 2013-05-31 2014-12-17 茂迪股份有限公司 Solar cell and module thereof
CN104218102B (en) * 2013-05-31 2017-04-26 茂迪股份有限公司 Solar cell and module thereof

Similar Documents

Publication Publication Date Title
Goodrich et al. A wafer-based monocrystalline silicon photovoltaics road map: Utilizing known technology improvement opportunities for further reductions in manufacturing costs
JP2020506529A (en) Tubular PERC double-sided solar cell, method of manufacturing the same, and dedicated apparatus
CN105826405A (en) Mono-crystalline silicon double-sided solar cell and preparation method thereof
CN103026494A (en) Silicon solar cell having boron diffusion layer and method for manufacturing same
CN105074936A (en) Methods for electroless conductivity enhancement of solar cell metallization
CN103029423B (en) Solar battery sheet and printing screen thereof
CN101840953B (en) Method for preparing surface hybrid modulation crystal silicon solar battery
JP2011135053A (en) Photoelectric conversion device and method of producing the same
Chen et al. Low cost multicrystalline bifacial PERC solar cells–Fabrication and thermal improvement
WO2012102368A1 (en) Solar battery element manufacturing method, solar battery element, and solar battery module
Heo et al. ZnO: B back reflector with high haze and low absorption enhanced triple-junction thin film Si solar modules
Aurang et al. Nanowire decorated, ultra-thin, single crystalline silicon for photovoltaic devices
Khazaka et al. Silver versus white sheet as a back reflector for microcrystalline silicon solar cells deposited on LPCVD‐ZnO electrodes of various textures
CN102931278A (en) Back local contact structure of solar battery, manufacture method of structure, corresponding solar battery and manufacture method of solar battery
JP2016029675A (en) Light-transmissible insulation board for thin film solar battery and integration type thin film silicon solar battery
CN102945890B (en) Process for implementing qualification of potential-induced decay of crystalline silicon battery assembly
JP2019079916A (en) Back-contact type solar battery module
US20160126406A1 (en) Solar cell, solar cell module, method for manufacturing solar cell, and method for manufacturing solar cell module
JP6564219B2 (en) Crystalline silicon solar cell, manufacturing method thereof, and solar cell module
KR20130013921A (en) Mehtod for solar cell rear local bsf using screen printing
CN103474515B (en) Manufacturing method of P-type double-sided solar cell
TW201222851A (en) Manufacturing method of bifacial solar cells
TWI435462B (en) Manufacturing method for multi-color crayoned solar cells
Seren et al. Efficiency potential of RGS silicon from current R&D production
CN114582983A (en) Heterojunction solar cell and preparation method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application