KR20130008192A - Hybrid electric generating system using solid oxide electrolyzer cell (soec) and solid oxide fuel cell(sofc) - Google Patents

Hybrid electric generating system using solid oxide electrolyzer cell (soec) and solid oxide fuel cell(sofc) Download PDF

Info

Publication number
KR20130008192A
KR20130008192A KR1020110068784A KR20110068784A KR20130008192A KR 20130008192 A KR20130008192 A KR 20130008192A KR 1020110068784 A KR1020110068784 A KR 1020110068784A KR 20110068784 A KR20110068784 A KR 20110068784A KR 20130008192 A KR20130008192 A KR 20130008192A
Authority
KR
South Korea
Prior art keywords
solid oxide
fuel cell
cell
cathode
hydrogen
Prior art date
Application number
KR1020110068784A
Other languages
Korean (ko)
Inventor
김정현
정연호
최원석
강현일
Original Assignee
한밭대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한밭대학교 산학협력단 filed Critical 한밭대학교 산학협력단
Priority to KR1020110068784A priority Critical patent/KR20130008192A/en
Publication of KR20130008192A publication Critical patent/KR20130008192A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0656Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by electrochemical means
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • H01M16/003Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/40Combination of fuel cells with other energy production systems
    • H01M2250/402Combination of fuel cell with other electric generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE: A hybrid generation system using solid oxide electrolyzer cells and solid oxide fuel cell is provided to reduce fuel cost of hydrogen by supplying hydrogen to solid oxide fuel cells. CONSTITUTION: A hybrid generation system using solid oxide electrolyzer cells(100) comprises solid oxide electrolysis cell(110) which produces hydrogen and oxygen as by-products, and solid oxide fuel cell(120) capable of producing electricity by being delivered hydrogen and oxygen. Cathode(111) of the solid oxide electrolysis cell is connected to be fluid communicated with cathode(121) of the solid oxide fuel cell. The oxygen generated from the cathode of the solid oxide electrolysis cell is flowed into the cathode of the solid oxide fuel cell. [Reference numerals] (AA) Hydrogen; (BB) Oxygen

Description

고체산화물 전기분해셀과 고체산화물 연료전지를 이용한 하이브리드 발전시스템{Hybrid electric generating system using solid oxide electrolyzer cell (SOEC) and solid oxide fuel cell(SOFC)}Hybrid electric generating system using solid oxide electrolyzer cell (SOEC) and solid oxide fuel cell (SOFC)}

본 발명은 고체산화물 전기분해셀과 고체산화물 연료전지를 이용한 하이브리드 발전시스템에 관한 것으로, 보다 상세하게는 별도의 수소 등의 공급없이 수증기만 공급하여도, SOEC에서 수소를 생산하고 , 별도의 저장장치 없이 SOFC에 수소를 공급함으로서 수소의 연료비를 절감할 수 있다는 장점이 있는 고체산화물 전기분해셀과 고체산화물 연료전지를 이용한 하이브리드 발전시스템에 관한 것이다. The present invention relates to a hybrid power generation system using a solid oxide electrolysis cell and a solid oxide fuel cell. More specifically, even if only water vapor is supplied without supplying hydrogen, a separate storage device is produced in SOEC. The present invention relates to a hybrid power generation system using a solid oxide electrolysis cell and a solid oxide fuel cell, which have an advantage of reducing hydrogen fuel cost by supplying hydrogen to SOFC.

1870년대 Jules Vemes가 물이 미래에 연료로써 사용될 것이라 주창한 이래 물은 수소와 산소로 반복하여 이용 가능한 재생가능성을 갖는 이상적인 수소 연료로 생각되고 있다. 현재 지구 온난화와 화석연료의 고갈에 따른 대체에너지의 연구개발에 대한 요구가 지속적으로 높아지고 있는 가운데 실용 가능성 있는 환경 및 에너지 문제해결의 유일한 대안으로 수소에너지가 주목받고 있는데, 전기에너지를 이용하여 순수한 물로부터 수소를 생산하는 기술 중의 하나인 고체산화물을 이용한 고온수증기 전해기술의 경우 전해질과 분리막으로 구성되며 수소 또는 산소이온 전도성을 갖는 산화물 막을 이용하는 기술로 700-900oC의 고온운전조건을 특징으로 하며 고체산화물 전기분해셀 (Solid Oxide Electrolyzer Cell, SOEC)이다. 이는 표1에 의해서 정리된 전기화학반응을 통해서 설명이 가능하다. 이에 대해서 상술하자면 고체산화물 전기분해셀에 주입된 수증기는 외부 전원을 고체산화물에 인가했을 경우 연료극에서 순수한 수소가 발생되며 캐쏘드에서 순수한 산소와 함께 2개의 전자가 발생하게 된다.Since Jules Vemes advocated water in the future in the 1870s, water has been considered the ideal hydrogen fuel with renewables that can be used repeatedly with hydrogen and oxygen. Currently, demand for research and development of alternative energy due to global warming and depletion of fossil fuels is continuously increasing, and hydrogen energy is attracting attention as the only alternative to solving the viable environment and energy problems. The high temperature steam electrolytic technology using solid oxide, which is one of the technologies for producing hydrogen from, consists of electrolyte and separator and uses oxide film with hydrogen or oxygen ion conductivity and features high temperature operating condition of 700-900 o C. Solid Oxide Electrolyzer Cell (SOEC). This can be explained through the electrochemical reactions summarized in Table 1. In detail, the water vapor injected into the solid oxide electrolysis cell generates pure hydrogen from the anode when external power is applied to the solid oxide, and generates two electrons together with pure oxygen from the cathode.

고체산화물 전기분해셀(SOEC)Solid Oxide Electrolysis Cell (SOEC) 캐쏘드(EC):Cathode (EC): 애노드(EC):Anode (EC): 전체반응(EC):Total reaction (EC):

반면, 대기 중에 풍부한 수소와 산소를 이용, 전력을 생산하는 시스템 중 하나는 고체산화물 연료전지(Solid Oxide Fuel Cell, SOFC)이다. 고체산화물 연료전지는 공기와 산소의 반응에 따른 화학에너지를 전기에너지로 변환시킨다. 이는 표2에 의해서 정리된 전기화학반응을 통해서 설명이 가능하다. 이에 대해서 상술하자면 고체산화물 연료전지에서는 캐쏘드에 공기가 주입될 경우 산소분자는 산소이온으로 환원이 되며 산소이온은 전해질을 통과하여 애노드에 공급된 수소와 산화작용을 하여 물과 함께 외부 전원을 제공할 수 있는 두 개의 전자를 발생시킨다. On the other hand, one of the systems that generate power by using abundant hydrogen and oxygen in the atmosphere is a solid oxide fuel cell (SOFC). A solid oxide fuel cell converts chemical energy into electrical energy according to a reaction between air and oxygen. This can be explained through the electrochemical reactions summarized in Table 2. In detail, in the solid oxide fuel cell, when air is injected into the cathode, oxygen molecules are reduced to oxygen ions, and oxygen ions pass through an electrolyte to oxidize with hydrogen supplied to the anode to provide an external power source with water. It generates two electrons that can.

고체산화물 연료전지(SOFC)Solid Oxide Fuel Cell (SOFC) 캐쏘드(FC):Cathode (FC): 애노드(FC):Anode (FC): 전체반응(FC):Total reaction (FC):

현재 수소를 기반으로 하여 사용중인 신재생에너지 생성 수단으로 고체산화물 전기분해셀(이하 SOEC)과 고체산화물 연료전지(SOFC)의 경우 SOEC는 외부전력을 공급하여 수소를 발생시키는 연구에 집중하고 있으며 SOFC는 수소와 산소를 이용하여 전력을 발생시키는 연구가 수행되고 있다. In the case of solid oxide electrolysis cell (SOEC) and solid oxide fuel cell (SOFC) as a means of generating renewable energy currently based on hydrogen, SOEC is focusing on research to generate hydrogen by supplying external power. Has been researched to generate power using hydrogen and oxygen.

본 발명이 해결하고자 하는 과제는 SOEC와 SOFC를 하나의 시스템에서 융합시키는 하이브리드형 발전 시스템을 제공하는 것이다. The problem to be solved by the present invention is to provide a hybrid power generation system that combines SOEC and SOFC in one system.

상기 과제를 해결하기 위하여, 본 발명에 따른 하이브리드 발전시스템은 고체산화물 전기분해셀 (Solid Oxide Electrolyzer Cell, SOEC)과 고체산화물 연료전지(Solid Oxide Fuel Cell, SOFC)를 이용한 하이브리드 발전시스템으로, 상기 시스템은, 외부로부터 수증기를 입력받아 상기 수증기를 분해하여 전기를 생산하며, 수소와 산소를 부산물로 생성하는 고체산화물 전기분해셀 (Solid Oxide Electrolyzer Cell, SOEC); 및 상기 고체산화물 전기분해셀로부터 생성되는 수소와 산소를 전달받아 전기를 생산하는 고체산화물 연료전지(Solid Oxide Fuel Cell, SOFC)를 포함하는 것을 특징으로 한다. In order to solve the above problems, the hybrid power generation system according to the present invention is a hybrid power generation system using a solid oxide electrolyzer cell (SOEC) and a solid oxide fuel cell (SOFC), the system Silver, which receives the water vapor from the outside to decompose the steam to produce electricity, a solid oxide electrolysis cell (Solid Oxide Electrolyzer Cell, SOEC) to produce hydrogen and oxygen as by-products; And a solid oxide fuel cell (SOFC) for generating electricity by receiving hydrogen and oxygen generated from the solid oxide electrolysis cell.

본 발명의 일 실시예에서 상기 고체산화물 전기분해셀의 캐쏘드는 상기 고체산화물 연료전지의 캐쏘드와 유체가능하도록 체결되며, 상기 고체산화물 전기분해셀의 캐쏘드에서 발생한 산소는 상기 고체산화물 연료전지의 캐쏘드로 유입된다. In one embodiment of the present invention, the cathode of the solid oxide electrolysis cell is fastened to be able to be fluidly connected with the cathode of the solid oxide fuel cell, the oxygen generated in the cathode of the solid oxide electrolysis cell of the solid oxide fuel cell Flows into the cathode.

본 발명의 또 다른 일 실시예에서 상기 고체산화물 전기분해셀의 애노드는 상기 고체산화물 연료전지의 애노드와 절연이 된 상태에서 유체가능하도록 체결되며, 상기 고체산화물 전기분해셀의 애노드에서 발생한 수소는 절연이 된 상태에서상기 고체산화물 연료전지의 애노드로 유입된다. In another embodiment of the present invention, the anode of the solid oxide electrolysis cell is fastened to be fluidly insulated from the anode of the solid oxide fuel cell, and hydrogen generated from the anode of the solid oxide electrolysis cell is insulated. In this state, it flows into the anode of the solid oxide fuel cell.

본 발명의 또 다른 일 실시예에서 상기 고체산화물 전기분해셀의 캐쏘드와 애노드는 상기 고체산화물 연료전지의 애노드는 유체 채널을 통하여 서로 직접 연결된다. In another embodiment of the present invention, the cathode and anode of the solid oxide electrolysis cell are directly connected to each other through a fluid channel.

별도의 수소 등의 공급없이 수증기만 공급하여도, SOEC에서 수소를 생산하고, 별도의 저장장치 없이 SOFC에 수소를 공급함으로서 수소의 연료비를 절감할 수 있다는 장점이 있다. 아울러, 별도의 에너지 저장장치 없이 친환경의 전력생산이 가능하다. Even if only water vapor is supplied without supplying hydrogen, there is an advantage in that hydrogen fuel can be reduced by producing hydrogen from SOEC and supplying hydrogen to SOFC without a separate storage device. In addition, eco-friendly power generation is possible without a separate energy storage device.

도 1은 본 발명의 일 실시예에 따른 하이브리드 발전시스템의 모식도이다.
도 2는 본 발명의 일 실시예에 따른 발전시스템에 따른 발전 흐름의 모식도이다.
1 is a schematic diagram of a hybrid power generation system according to an embodiment of the present invention.
2 is a schematic diagram of the power generation flow according to the power generation system according to an embodiment of the present invention.

이하 도면을 이용하여 본 발명을 상세히 설명한다. 하지만, 하기의 내용은 모두 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이에 제한되거나, 한정되지 않는다. Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. However, the following contents are all for illustrating the present invention, and the scope of the present invention is not limited thereto or limited.

본 발명에 따른 하이브리드 발전시스템은 고체산화물 전기분해셀과 고체산화물 연료전지를 하나의 시스템 내에서 바로 연결한 구성을 갖는다. 이로써 고체산화물 전기분해셀로 유입된 수증기는 산소와 수소로 전기분해되며, 이에 따라 제 1 전력이 발생한다. 더 나아가, 본 발명은 고체산화물 전기분해셀에서 생상된 산소와 수소를 각각 고체산화물 연료전지의 캐쏘드와 애노드에 직접 공급한다. 이로써 별도의 수소공급 없이, 수증기의 고급만으로 전력을 생산할 수 있다. The hybrid power generation system according to the present invention has a configuration in which a solid oxide electrolysis cell and a solid oxide fuel cell are directly connected in one system. As a result, water vapor introduced into the solid oxide electrolysis cell is electrolyzed into oxygen and hydrogen, thereby generating the first electric power. Furthermore, the present invention directly supplies oxygen and hydrogen generated in the solid oxide electrolysis cell to the cathode and the anode of the solid oxide fuel cell, respectively. This makes it possible to produce electric power only by the high quality of water vapor without a separate hydrogen supply.

도 1은 본 발명의 일 실시예에 따른 하이브리드 발전시스템의 모식도이다.1 is a schematic diagram of a hybrid power generation system according to an embodiment of the present invention.

도 1을 참조하면, 본 발명에 따른 하이브리드 발전시스템(100)은 고체산화물 전기분해셀 (Solid Oxide Electrolyzer Cell, SOEC, 110)과 고체산화물 연료전지(Solid Oxide Fuel Cell, SOFC, 120)를 포함한다. Referring to FIG. 1, the hybrid power generation system 100 according to the present invention includes a solid oxide electrolyzer cell (SOEC) 110 and a solid oxide fuel cell (SOFC) 120. .

본 발명의 일 실시예에서 상기 고체산화물 전기분해셀(110)과 고체산화물 연료전지(120)는 각각 캐쏘드와 애노드를 포함하며, 각 단위 셀(110, 120)의 반응식은 하기 표 3과 같다. In an embodiment of the present invention, the solid oxide electrolysis cell 110 and the solid oxide fuel cell 120 include a cathode and an anode, respectively, and reaction schemes of the unit cells 110 and 120 are shown in Table 3 below. .

고체산화물 연료전지(SOFC)Solid Oxide Fuel Cell (SOFC) 고체산화물 전기분해셀(SOEC)Solid Oxide Electrolysis Cell (SOEC) 캐쏘드(FC):Cathode (FC): 캐쏘드(EC):Cathode (EC): 애노드(FC):Anode (FC): 애노드(EC):Anode (EC): 전체반응(FC):Total reaction (FC): 전체반응(EC):Total reaction (EC):

본 발명의 일 실시예에 따른 하이브리드 발전시스템(100)은 외부로 유입되는 수증기를 이용, 먼저 고체산화물 전기분해셀에서 수소 및 산소를 생산하게 된다. 캐쏘드(111)에서는 산소가, 애노드(113)에서는 수소가 발생하며, 이때의 반응식은 상기 표 3의 고체산화물 전기분해셀에 관련된 반응식을 따른다. Hybrid power generation system 100 according to an embodiment of the present invention is to produce hydrogen and oxygen in a solid oxide electrolysis cell by using water vapor introduced to the outside. Oxygen is generated at the cathode 111 and hydrogen is generated at the anode 113, and the reaction formula follows a reaction formula related to the solid oxide electrolysis cell of Table 3 above.

이후, 고체산화물 전기분해셀(110)의 캐쏘드(111), 애노드(113)에서 발생한 산소, 수소는 고체산화물 연료전지(120)의 캐쏘드(121), 애노드(123)로 유입되는데, 이때 상기 캐쏘드(111)-캐쏘드(121), 애노드(113)-애노드(123) 간 유체이동은 두 전극을 유체연통하도록 구성된 채널(131, 133)에 의한다. 산소의 경우 금속 채널라인(131)이 절연이 된 상태(141)에서 연결된다. 수소의 경우 금속 채널라인 (133)이 절연이 된 상태(143)에서 연결된다. Thereafter, oxygen and hydrogen generated from the cathode 111 and the anode 113 of the solid oxide electrolysis cell 110 flow into the cathode 121 and the anode 123 of the solid oxide fuel cell 120. The fluid movement between the cathode 111-cathode 121 and the anode 113-anode 123 is by channels 131, 133 configured to fluidly communicate the two electrodes. In the case of oxygen, the metal channel line 131 is connected in an insulated state 141. In the case of hydrogen, the metal channel line 133 is connected in an insulated state 143.

도 2는 본 발명의 일 실시예에 따른 발전시스템에 따른 발전 흐름의 모식도이다. 2 is a schematic diagram of the power generation flow according to the power generation system according to an embodiment of the present invention.

도 2를 참조하면, 캐쏘드와 애노드 사이로 산소와 수소가 흐르며, 각각의 셀에서는 전력이 발생한다. 따라서, 별도의 수소, 산소의 공급 없이 외부로부터 수증기만을 공급함으로써 전력이 생산된다. Referring to FIG. 2, oxygen and hydrogen flow between the cathode and the anode, and power is generated in each cell. Therefore, electric power is produced by supplying only water vapor from the outside without supplying hydrogen and oxygen.

상술한 본 발명의 하이브리드 발전시스템은 상술한 바와 같이 별도의 수소와 같은 반응가스의 공급없이 수증기만 공급하여도, SOEC에서 수소를 생산하고 , 별도의 저장장치 없이 SOFC에 수소를 공급함으로서 수소의 연료비를 절감할 수 있다는 장점이 있다. 아울러, 별도의 에너지 저장장치 없이 친환경의 전력생산이 가능하다. As described above, the hybrid power generation system of the present invention produces hydrogen in SOEC even if only steam is supplied without supplying a reactive gas such as hydrogen, and supplies hydrogen to SOFC without a separate storage device. There is an advantage that can be saved. In addition, eco-friendly power generation is possible without a separate energy storage device.

Claims (5)

고체산화물 전기분해셀 (Solid Oxide Electrolyzer Cell, SOEC)과 고체산화물 연료전지(Solid Oxide Fuel Cell, SOFC)를 이용한 하이브리드 발전시스템으로, 상기 시스템은,
외부로부터 수증기를 입력받아 상기 수증기를 분해하여 전기를 생산하며, 수소와 산소를 부산물로 생성하는 고체산화물 전기분해셀 (Solid Oxide Electrolyzer Cell, SOEC);
상기 고체산화물 전기분해셀로부터 생성되는 수소와 산소를 전달받아 전기를 생산하는 고체산화물 연료전지(Solid Oxide Fuel Cell, SOFC)를 포함하는 것을 특징으로 하는 하이브리드 발전시스템.
Hybrid power generation system using a solid oxide electrolyzer cell (SOEC) and a solid oxide fuel cell (SOFC), the system,
Solid Oxide Electrolyzer Cell (SOEC) which receives electricity vapor from the outside and decomposes the steam to produce electricity and generates hydrogen and oxygen as by-products;
And a solid oxide fuel cell (SOFC) for generating electricity by receiving hydrogen and oxygen generated from the solid oxide electrolysis cell.
제 1항에 있어서,
상기 고체산화물 전기분해셀의 캐쏘드는 상기 고체산화물 연료전지의 캐쏘드와 유체연통하도록 체결되며, 상기 고체산화물 전기분해셀의 캐쏘드에서 발생한 산소는 상기 고체산화물 연료전지의 캐쏘드로 유입되는 것을 특징으로 하는 하이브리드 발전시스템.
The method of claim 1,
The cathode of the solid oxide electrolysis cell is fastened in fluid communication with the cathode of the solid oxide fuel cell, and oxygen generated from the cathode of the solid oxide electrolysis cell is introduced into the cathode of the solid oxide fuel cell. Hybrid power generation system.
제 2항에 있어서,
상기 고체산화물 전기분해셀의 애노드는 상기 고체산화물 연료전지의 애노드와 유체연통하도록 체결되며, 상기 고체산화물 전기분해셀의 애노드에서 발생한 수소는 상기 고체산화물 연료전지의 애노드로 유입되는 것을 특징으로 하는 하이브리드 발전시스템.
The method of claim 2,
The anode of the solid oxide electrolysis cell is fastened in fluid communication with the anode of the solid oxide fuel cell, the hydrogen generated from the anode of the solid oxide electrolysis cell hybrid, characterized in that flowing into the anode of the solid oxide fuel cell Power generation system.
제 3항에 있어서,
상기 고체산화물 전기분해셀의 캐쏘드와 애노드는 유체채널을 통하여 상기 고체산화물 연료전지의 케쏘드와 애노드 각각에 직접 연결된 것을 특징으로 하는 하이브리드 발전시스템.
The method of claim 3,
And a cathode and an anode of the solid oxide electrolysis cell are directly connected to each of the cathode and the anode of the solid oxide fuel cell through a fluid channel.
제 2항 내지 제 4항 중 어느 한 항에 있어서,
상기 유체채널은 절연된 금속 채널인 것을 특징으로 하는 하이브리드 발전시스템.
The method according to any one of claims 2 to 4,
And said fluid channel is an insulated metal channel.
KR1020110068784A 2011-07-12 2011-07-12 Hybrid electric generating system using solid oxide electrolyzer cell (soec) and solid oxide fuel cell(sofc) KR20130008192A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110068784A KR20130008192A (en) 2011-07-12 2011-07-12 Hybrid electric generating system using solid oxide electrolyzer cell (soec) and solid oxide fuel cell(sofc)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110068784A KR20130008192A (en) 2011-07-12 2011-07-12 Hybrid electric generating system using solid oxide electrolyzer cell (soec) and solid oxide fuel cell(sofc)

Publications (1)

Publication Number Publication Date
KR20130008192A true KR20130008192A (en) 2013-01-22

Family

ID=47838342

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110068784A KR20130008192A (en) 2011-07-12 2011-07-12 Hybrid electric generating system using solid oxide electrolyzer cell (soec) and solid oxide fuel cell(sofc)

Country Status (1)

Country Link
KR (1) KR20130008192A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019056079A1 (en) * 2017-09-25 2019-03-28 Votorantim Metais Zinco S/A Hybrid system for generating and supplying electric power used in an electrolysis method for producing non-ferrous metals
KR20220059247A (en) * 2020-11-02 2022-05-10 한국수력원자력 주식회사 Hydrogen production system in a plurality of power plant
EP4311058A1 (en) * 2022-07-20 2024-01-24 Linde GmbH Method and system for the production of hydrogen

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019056079A1 (en) * 2017-09-25 2019-03-28 Votorantim Metais Zinco S/A Hybrid system for generating and supplying electric power used in an electrolysis method for producing non-ferrous metals
KR20220059247A (en) * 2020-11-02 2022-05-10 한국수력원자력 주식회사 Hydrogen production system in a plurality of power plant
EP4311058A1 (en) * 2022-07-20 2024-01-24 Linde GmbH Method and system for the production of hydrogen
WO2024017502A1 (en) 2022-07-20 2024-01-25 Linde Gmbh Method and plant for producing hydrogen

Similar Documents

Publication Publication Date Title
AU2011244435B2 (en) Device for storing and restoring electrical energy
JP6574891B2 (en) Hydrogen production system and hydrogen production method
US9518331B2 (en) Hydrogen system and method of operation
Giddey et al. Low emission hydrogen generation through carbon assisted electrolysis
CN112736270A (en) Proton conduction SOEC and oxygen ion conduction SOFC combined device
JP2021068532A (en) Energy management system
KR20130008192A (en) Hybrid electric generating system using solid oxide electrolyzer cell (soec) and solid oxide fuel cell(sofc)
SK50222011A3 (en) Combined magnetohydrodynamic and electrochemical method for production especially of electric energy and device
JP2012153965A (en) Method for operating high pressure water electrolysis apparatus
KR101634816B1 (en) Fuel Cell System
JP2006236598A (en) Water recovery device for fuel cell power generator
KR100802748B1 (en) Supply system of hydrogen and oxygen for activation of fuel cell
CN114725428A (en) Zero-carbon-emission solid oxide fuel cell and renewable energy source combined power generation system with ammonia gas as carrier
JP6491512B2 (en) Hydrogen generator combined use power generation system
JP5415168B2 (en) Water electrolysis system
KR20090124176A (en) Renewable energy-regenerative fuel cells hybrid system for residence
KR102082942B1 (en) Hybrid electric generating system with fuel cell stack using solid oxide electrolyzer cell (SOEC) and solid oxide fuel cell (SOFC)
JP2014165042A (en) Fuel cell system
KR20140133301A (en) The membrane electrdoe assembly for an electrochemical cell
JP2007059196A (en) Power generating system
JP2015230813A (en) Fuel battery system and operation method for the same
CN114566687B (en) Power generation system of solid oxide fuel cell
Pala Fuel cell system and their technologies: a review
CN106299422A (en) A kind of electrochemistry tail gas recycling device
US20140072890A1 (en) Fuel cell power generation system with oxygen inlet instead of air

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application