KR20130007193A - Electrode assembly atmospheric pressure chemical vapor deposition - Google Patents

Electrode assembly atmospheric pressure chemical vapor deposition Download PDF

Info

Publication number
KR20130007193A
KR20130007193A KR1020110064242A KR20110064242A KR20130007193A KR 20130007193 A KR20130007193 A KR 20130007193A KR 1020110064242 A KR1020110064242 A KR 1020110064242A KR 20110064242 A KR20110064242 A KR 20110064242A KR 20130007193 A KR20130007193 A KR 20130007193A
Authority
KR
South Korea
Prior art keywords
gas
vapor deposition
chemical vapor
atmospheric pressure
electrode assembly
Prior art date
Application number
KR1020110064242A
Other languages
Korean (ko)
Other versions
KR101299160B1 (en
Inventor
임철현
윤능구
야스타케키요시
히로아키 카키우치
이석호
박주영
Original Assignee
재단법인 서남권청정에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 서남권청정에너지기술연구원 filed Critical 재단법인 서남권청정에너지기술연구원
Priority to KR1020110064242A priority Critical patent/KR101299160B1/en
Publication of KR20130007193A publication Critical patent/KR20130007193A/en
Application granted granted Critical
Publication of KR101299160B1 publication Critical patent/KR101299160B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4412Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45561Gas plumbing upstream of the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45574Nozzles for more than one gas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Abstract

PURPOSE: An electrode assembly for a deposition device on an atmospheric pressure plasma chemical group is provided to grow the high quality of thin films by supply uniform gas in a narrow gap between an electrode and a substrate. CONSTITUTION: An electrode assembly for a deposition device on an atmospheric pressure plasma chemical group comprises an electrode body(10), a supply manifold(20), and an exhaust manifold(30). The electrode body is fixed to receive super high frequency power source. The supply manifold is fixed and installed on one side of the electrode body and has a slit gas injection port on the underside thereof. The exhaust manifold is fixed and installed in the other side of the electrode body and has multiple gas exhaust ports on the underside thereof to flow reaction gas supplied through the gas injection port of the supply manifold.

Description

상압 플라즈마 화학기상 증착장치용 전극 어셈블리{ELECTRODE ASSEMBLY ATMOSPHERIC PRESSURE CHEMICAL VAPOR DEPOSITION}Electrode Assembly for Atmospheric Pressure Plasma Chemical Vapor Deposition Apparatus {ELECTRODE ASSEMBLY ATMOSPHERIC PRESSURE CHEMICAL VAPOR DEPOSITION}

본 발명은 상압 플라즈마 화학기상 증착장치용 전극 어셈블리에 관한 것으로서, 상세하게는 가스의 흐름을 생성시키기 위하여 전극 내부에 가스주입구와 배기구를 형성시켜 가스의 흐름을 생성시키도록 하는 상압 플라즈마 화학기상 증착장치용 전극 어셈블리에 관한 것이다.The present invention relates to an electrode assembly for an atmospheric pressure plasma chemical vapor deposition apparatus, and in particular, an atmospheric pressure plasma chemical vapor deposition apparatus for generating a gas flow by forming a gas inlet and an exhaust port inside the electrode to generate a gas flow. It relates to an electrode assembly for.

최근 신재생에너지 분야의 박막태양전지 관련기술의 발전 방향은 고품질의 박막을 얼마나 저가에 대면적의 박막을 제조하느냐 인데, 즉 이는 대면적의 저가의 기판에 고속성장 시키는 기술이 차세대 박막태양전지의 제조 기술의 핵심이 될 수 있다.Recently, the direction of development of thin film solar cell related technology in the field of new and renewable energy is how to manufacture high quality thin film at low cost and large area. It can be at the heart of manufacturing technology.

특히, 증착 공정은 반도체 소자 제조의 재현성 및 신뢰성에 있어서 개선이 요구되는 필수적인 공정으로 졸겔(sol-gel) 방법, 스퍼터링(sputtering) 방법, 전기도금(electro-plating) 방법, 진공증발(evaporation) 방법, 화학기상 증착(chemical vapor deposition) 방법, 분자 빔 에피택시(molecule beam epitaxy) 방법 등이 있다.In particular, the deposition process is an essential process requiring improvement in the reproducibility and reliability of semiconductor device fabrication. The sol-gel method, the sputtering method, the electroplating method, and the evaporation method are required. , Chemical vapor deposition, molecular beam epitaxy, and the like.

그 중 화학기상 증착 방법은 다른 증착 방법보다 웨이퍼 상에 형성되는 박막의 스텝 커버리지(step coverage), 균일성(uniformity) 및 양산성등 같은 증착 특성이 우수하기 때문에 가장 보편적으로 사용되고 있다.Among them, the chemical vapor deposition method is most commonly used because of better deposition characteristics such as step coverage, uniformity, and mass productivity of the thin film formed on the wafer than other deposition methods.

APCVD(Atmospheric Pressure Chemical Vapor Deposition), LPCVD(Low Pressure Chemical Vapor Deposition), PECVD(Plasma Enhanced Chemical Vapor Deposition) 등이 있다.Atmospheric Pressure Chemical Vapor Deposition (APCVD), Low Pressure Chemical Vapor Deposition (LPCVD), and Plasma Enhanced Chemical Vapor Deposition (PECVD).

예컨대, 상기 APCVD는 일반적인 저압CVD과 비교하여 고가의 진공장비 없이도 증착이 가능하며 상압에서 증착시키므로 성장속도가 높아 기판의 베리어층 생성, 산화막 제조, 박막 제조 등으로 여러 방면에 적용되고 있다.For example, the APCVD can be deposited without expensive vacuum equipment compared to the general low pressure CVD, and is deposited at atmospheric pressure, so that the growth rate is high, and thus, the APCVD has been applied to various aspects such as barrier layer generation, oxide film production, and thin film production of a substrate.

한편, APCVD, 즉 상압 플라즈마 화학기상 증착장치에서 서브미리미터 이하로 좁은 전극간격 때문에 가스의 흐름(gas flow)을 전극 사이로 유도하기 힘들어 불균일한 가스공급은 박막의 균일도를 떨어뜨리고 불균일한 가스공급 및 원활하지 못한 가스의 흐름으로 인한 파티클의 생성은 양산성 및 막질을 떨어뜨리는 문제가 있다.On the other hand, it is difficult to induce gas flow between electrodes due to narrow electrode spacing below sub-millimeter in APCVD, that is, atmospheric plasma chemical vapor deposition apparatus, so that non-uniform gas supply decreases uniformity of thin film, and Generation of particles due to inefficient gas flow has a problem of poor productivity and film quality.

상기와 같은 문제를 해결하기 위하여 제안된 기존의 전극은 도 1에 도시된 바와 같이 원기둥타입의 전극구조로 전극을 고속 회전시켜 가스의 흐름(gas flow)을 유도하고 플라즈마에서 생기는 열을 분산시키고자 하였다.The conventional electrode proposed to solve the above problems is a cylindrical electrode structure as shown in Figure 1 to induce a gas flow (gas flow) by dispersing the heat generated in the plasma by rotating the electrode at high speed It was.

그러나, 전극을 고속으로 회전시키면서 플라즈마를 안정화시키기에는 어려움이 따르며 고가의 장비구성이 요구되는 문제점이 있다.However, there is a problem that it is difficult to stabilize the plasma while rotating the electrode at a high speed, and expensive equipment configuration is required.

본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 균일한 가스 주입을 위하여 일자형의 슬릿 형태의 가스주입구와, 배기구를 형성시켜 가스의 흐름을 생성시키고, 전극을 고정시킨 상태에서 하단의 기판을 스캔하며 증착시킴으로써 전극과 기판간 좁은 간극 내에 원활하고 균일한 가스공급이 가능하여 고품질의 박막을 고속 성장시킬 수 있도록 하는 상압 플라즈마 화학기상 증착장치용 전극 어셈블리를 제공하는데 그 목적이 있다.The present invention is to solve the above problems, to form a gas inlet in the form of a straight slit and exhaust port for uniform gas injection, to generate a gas flow, and scan the lower substrate while the electrode is fixed It is an object of the present invention to provide an electrode assembly for an atmospheric plasma chemical vapor deposition apparatus capable of supplying a smooth and uniform gas in a narrow gap between the electrode and the substrate to enable high-speed growth of high quality thin films.

상기와 같은 목적을 달성하기 위한 본 발명의 특징은,According to an aspect of the present invention,

상압 플라즈마 화학기상 증착장치용 전극 어셈블리에 있어서, 직사각 형태로 형성되고, 고정 설치되어 초고주파 전원이 인가되는 전극 본체와; 절연 재질로 상기 전극 본체의 일측면에 고정 설치되고, 저면에 일자형의 슬릿 형태의 가스주입구가 형성되는 급기 매니 폴더; 및 절연 재질로 상기 전극 본체의 타측면에 고정 설치되고, 상기 급기 매니 폴더의 가스주입구를 통해 공급되는 반응 가스의 흐름을 형성시키도록 저면에 복수의 가스배출구가 형성되는 배기 매니 폴더를 포함하는 것을 특징으로 한다.An electrode assembly for an atmospheric pressure plasma chemical vapor deposition apparatus, comprising: an electrode body formed in a rectangular shape and fixedly installed to receive an ultra high frequency power; An air supply manifold that is fixedly installed on one side of the electrode body with an insulating material and has a straight slit-shaped gas inlet formed on a bottom surface thereof; And an exhaust manifold fixed to the other side of the electrode body with an insulating material and having a plurality of gas discharge ports formed at a bottom thereof to form a flow of the reactive gas supplied through the gas inlet of the air supply manifold. It features.

여기에서, 상기 전극 본체는 저면에 일정 간극을 형성하도록 테이블 또는 기판 홀더 상에 기판을 위치시키고, 상기 기판을 일방향으로 슬라이딩시켜 상기 기판 상면에 박막을 증착시킨다.Here, the electrode body is placed on the table or substrate holder to form a predetermined gap on the bottom surface, and the substrate is slid in one direction to deposit a thin film on the upper surface of the substrate.

여기에서 또한, 상기 급기 매니 폴더는 가스 공급관을 통해 상기 가스주입구 내부로 반응 가스를 주입할 수 있도록 상면 또는 일측면에 상기 가스 공급관과 연통되는 제 1가이드 홀이 더 형성된다.Here, the air supply manifold is further provided with a first guide hole communicating with the gas supply pipe on the upper surface or one side thereof so as to inject the reaction gas into the gas inlet through the gas supply pipe.

여기에서 또, 상기 급기 매니 폴더의 가스주입구는 상기 기판에 분사되는 반응 가스의 균일하면서 고속으로 분사가 이루어지도록 그 폭을 0.1~0.5mm로 형성한다.Here, the gas inlet of the air supply manifold has a width of 0.1 to 0.5 mm so that the injection of the reaction gas injected into the substrate is performed at a uniform and high speed.

여기에서 또, 상기 배기 매니 폴더는 가스 배출관을 통해 상기 가스배출구 내부로 반응 가스를 배출시킬 수 있도록 상면 또는 일측면에 상기 가스 배출관과 연통되는 제 2가이드 홀이 더 형성된다.Here, the exhaust manifold further includes a second guide hole communicating with the gas discharge pipe on an upper surface or one side thereof so as to discharge the reaction gas into the gas discharge port through a gas discharge pipe.

여기에서 또, 배기 매니 폴더의 가스배출구는 상기 전극 본체와 기판 사이에서 반응하여 증착된 박막을 제외한 반응 부산물의 배출될 수 있도록 지름이 1~5mm로 형성된다.Here, the gas outlet of the exhaust manifold is formed with a diameter of 1 to 5 mm so that the reaction by-products other than the thin film deposited by reacting between the electrode body and the substrate can be discharged.

여기에서 또, 상기 일정 간극은 수십㎛~수십㎜로 유지된다.Herein, the constant gap is maintained at several tens of micrometers to several tens of mm.

여기에서 또, 상기 전극 본체는 수냉식 냉각이 적용된다.Here, the electrode body is subjected to water cooling cooling.

상기와 같이 구성되는 본 발명인 상압 플라즈마 화학기상 증착장치용 전극 어셈블리에 따르면, 균일한 가스 주입을 위하여 일자형의 슬릿 형태의 가스주입구와, 배기구를 형성시켜 가스의 흐름을 생성시키고, 전극을 고정시킨 상태에서 하단의 기판을 스캔하며 증착시킴으로써 전극과 기판간 좁은 간극 내에 원활하고 균일한 가스공급이 가능하여 고품질의 박막을 고속 성장시킬 수 있다.According to the electrode assembly for the atmospheric pressure plasma chemical vapor deposition apparatus of the present invention configured as described above, the gas injection port and the exhaust port of the slit-shaped to form a uniform gas injection to form a gas flow to form a gas flow, the electrode fixed state By scanning and depositing the substrate at the bottom, it is possible to supply a smooth and uniform gas in a narrow gap between the electrode and the substrate, thereby enabling high-speed growth of high quality thin films.

도 1은 원기둥타입의 전극구조를 나타낸 도면이다.
도 2는 본 발명에 따른 상압 플라즈마 화학기상 증착장치용 전극 어셈블리의 구성을 나타낸 사시도이다.
도 3은 본 발명에 따른 상압 플라즈마 화학기상 증착장치용 전극 어셈블리의 구성을 나타낸 측단면도이다.
도 4는 도 2의 A-A 단면도이다.
도 5는 도 2의 B-B 단면도이다.
도 6 및 도 7은 본 발명에 따른 상압 플라즈마 화학기상 증착장치용 전극 어셈블리가 적용되어 동작되는 모습을 나타낸 설명도이다.
1 is a view showing a cylindrical electrode structure.
2 is a perspective view showing the configuration of an electrode assembly for an atmospheric pressure plasma chemical vapor deposition apparatus according to the present invention.
Figure 3 is a side cross-sectional view showing the configuration of an electrode assembly for an atmospheric pressure plasma chemical vapor deposition apparatus according to the present invention.
4 is a sectional view taken along the line AA in Fig.
5 is a cross-sectional view taken along line BB of FIG. 2.
6 and 7 are explanatory views showing the operation of the electrode assembly for the atmospheric pressure plasma chemical vapor deposition apparatus according to the present invention is applied.

이하, 본 발명에 따른 상압 플라즈마 화학기상 증착장치용 전극 어셈블리의 구성을 첨부된 도면을 참조하여 상세하게 설명하면 다음과 같다.Hereinafter, the configuration of an electrode assembly for an atmospheric pressure plasma chemical vapor deposition apparatus according to the present invention will be described in detail with reference to the accompanying drawings.

하기에서 본 발명을 설명함에 있어, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략할 것이다. 그리고 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.In the following description of the present invention, detailed description of known functions and configurations incorporated herein will be omitted when it may make the subject matter of the present invention rather unclear. The following terms are defined in consideration of the functions of the present invention, and may be changed according to the intentions or customs of the user, the operator, and the like. Therefore, the definition should be based on the contents throughout this specification.

도 2는 본 발명에 따른 상압 플라즈마 화학기상 증착장치용 전극 어셈블리의 구성을 나타낸 사시도이고, 도 3은 본 발명에 따른 상압 플라즈마 화학기상 증착장치용 전극 어셈블리의 구성을 나타낸 측단면도이며, 도 4는 도 2의 A-A 단면도이고, 도 5는 도 2의 B-B 단면도이며, 도 6 및 도 7은 본 발명에 따른 상압 플라즈마 화학기상 증착장치용 전극 어셈블리가 적용되어 동작되는 모습을 나타낸 설명도이다.Figure 2 is a perspective view showing the configuration of the electrode assembly for atmospheric pressure plasma chemical vapor deposition apparatus according to the present invention, Figure 3 is a side cross-sectional view showing the configuration of the electrode assembly for atmospheric pressure plasma chemical vapor deposition apparatus according to the present invention, Figure 4 FIG. 2 is a cross-sectional view taken along line AA, and FIG. 5 is a cross-sectional view taken along line BB of FIG. 2, and FIGS. 6 and 7 are explanatory views showing the operation of an electrode assembly for an atmospheric plasma chemical vapor deposition apparatus according to the present invention.

도 2 내지 도 7을 참조하면, 본 발명에 따른 상압 플라즈마 화학기상 증착장치용 전극 어셈블리(1)는, 전극 본체(10)와, 급기 매니 폴더(20)와, 배기 매니 폴더(30)로 구성된다.2 to 7, the electrode assembly 1 for an atmospheric pressure plasma chemical vapor deposition apparatus according to the present invention includes an electrode body 10, an air supply manifold 20, and an exhaust manifold 30. do.

먼저, 전극 본체(10)는 직사각 형태로 형성되고, 고정 설치되어 초고주파 전원이 인가된다. 여기에서, 전극 본체(10)는 저면에 수십㎛~수십㎜의 간극을 형성하도록 테이블 또는 기판 홀더(40) 상에 웨이퍼 또는 기판(50)을 위치시키고, 기판(50)을 일방향으로 슬라이딩시켜 기판(50) 상면에 박막(60)을 증착시킨다. 여기에서 또한, 전극 본체(10)는 수냉식 냉각이 적용되는 것이 바람직하다. 이때, 전극 본체(10)에 인가되는 초고주파 전원의 주파수는 40MHz-150MHz의 주파수를 사용하는 것이 바람직하다.
First, the electrode main body 10 is formed in a rectangular shape, and is fixedly installed to apply an ultra-high frequency power source. Here, the electrode body 10 is placed on the table or substrate holder 40 on the table or substrate holder 40 so as to form a gap of several tens of micrometers to several tens of millimeters on the bottom, and the substrate 50 is slid in one direction. The thin film 60 is deposited on the top surface. Here, it is preferable that the electrode main body 10 is water-cooled cooling applied. At this time, the frequency of the ultra-high frequency power source applied to the electrode body 10 is preferably used a frequency of 40MHz-150MHz.

그리고, 급기 매니 폴더(20)는 전극 본체(10)와 절연을 위해 직사각 형태의 절연 재질로 이루어져 전극 본체(10)의 일측면에 고정 설치되고, 저면에 길이 방향으로 일자형의 슬릿 형태의 가스주입구(21)가 형성된다. 여기에서, 급기 매니 폴더(20)는 가스 공급관(23)을 통해 가스주입구(21) 내부로 반응 가스를 주입할 수 있도록 상면 또는 일측면에 가스 공급관(23)과 연통되는 제 1가이드홀(25)이 더 형성된다. 이때, 급기 매니 폴더(20)의 가스주입구(21)는 기판(50)에 분사되는 반응 가스의 균일하면서 고속으로 분사가 이루어지도록 그 폭을 0.1~0.5mm로 형성하는 것이 바람직하다.
In addition, the air supply manifold 20 is made of a rectangular insulating material for insulation with the electrode main body 10, and is fixedly installed on one side of the electrode main body 10, and has a straight slit-shaped gas inlet in the longitudinal direction on the bottom. 21 is formed. Here, the air supply manifold 20 is the first guide hole 25 in communication with the gas supply pipe 23 on the upper surface or one side so as to inject the reaction gas into the gas inlet 21 through the gas supply pipe 23. ) Is further formed. At this time, the gas inlet 21 of the air supply manifold 20 is preferably formed in a width of 0.1 ~ 0.5mm so that the injection of the reaction gas to the substrate 50 at a uniform and high speed.

또한, 배기 매니 폴더(30)는 전극 본체(10)와 절연을 위해 직사각 형태의 절연 재질로 이루어져 전극 본체(10)의 타측면에 고정 설치되고, 급기 매니 폴더(20)의 가스주입구(21)를 통해 공급되는 반응 가스의 흐름을 형성시키도록 저면에 복수의 가스배출구(31)가 형성된다. 여기에서, 배기 매니 폴더(30)는 가스 배출관(33)을 통해 가스배출구(31) 내부로 반응 가스를 배출시킬 수 있도록 상면 또는 일측면에 가스 배출관과 연통되는 제 2가이드홀(35)이 더 형성된다. 이때, 배기 매니 폴더(30)는 전극 본체(10)와 기판(50) 사이에서 반응하여 증착된 박막(60)을 제외한 반응 부산물의 배출될 수 있도록 가스배출구(31)의 지름이 1~5mm로 형성되고, 전극 본체(10)와 기판(50) 사이에서의 표면반응 뿐만 아니라 기상 반응을 통해 생성된 미세 파티클의 제거가 충분히 일어나도록 진공 챔버(70) 내의 기체 유동이 점성유동을 유지하면서 미세 파티클이 배기될 수 있도록 제어한다.
In addition, the exhaust manifold 30 is made of a rectangular insulating material for insulation with the electrode main body 10 and is fixedly installed on the other side of the electrode main body 10, and the gas injection port 21 of the air supply manifold 20 is provided. A plurality of gas outlets 31 are formed on the bottom to form a flow of the reaction gas supplied through the gas. Here, the exhaust manifold 30 further includes a second guide hole 35 communicating with the gas discharge pipe on the top or one side thereof so as to discharge the reaction gas into the gas discharge port 31 through the gas discharge pipe 33. Is formed. At this time, the exhaust manifold 30 has a diameter of the gas outlet 31 so that the reaction by-product except for the thin film 60 deposited by reacting between the electrode body 10 and the substrate 50 may be 1 to 5 mm. Formed, and the gas flow in the vacuum chamber 70 maintains the viscous flow so that not only the surface reaction between the electrode body 10 and the substrate 50 but also the fine particles generated through the gas phase reaction are sufficiently maintained. It is controlled so that it can be exhausted.

한편, 기판(50)은 피처리 대상으로서는 대표적으로 반도체, 수지 또는 유리등으로 된 웨이퍼 또는 기판이며, 웨이퍼 또는 기판 그 자체에 대해 수행될 수 있고, 또한 웨이퍼 또는 기판 위에 형성되는 적층에 대해 수행될 수 있다.
On the other hand, the substrate 50 is typically a wafer or a substrate made of a semiconductor, a resin, or a glass, and can be performed on the wafer or the substrate itself, and also on a lamination formed on the wafer or the substrate. Can be.

이하, 본 발명에 따른 상압 플라즈마 화학기상 증착장치용 전극 어셈블리의 동작을 첨부된 도면을 참조하여 상세하게 설명하면 다음과 같다.Hereinafter, an operation of an electrode assembly for an atmospheric pressure plasma chemical vapor deposition apparatus according to the present invention will be described in detail with reference to the accompanying drawings.

먼저, 진공 챔버(70) 내의 하단에 설치된 테이블 또는 기판 홀더(40)에 기판(50)을 설치한다.First, the substrate 50 is installed on the table or substrate holder 40 installed at the lower end of the vacuum chamber 70.

그런 다음, 전극 본체(10)를 고정시킨 상태에서 초고주파 전원을 인가하고, 기판 홀더(40) 상에 웨이퍼 또는 기판(50)을 일방향으로 슬라이딩시킴과 동시에 급기 매니 폴더(20)의 가스주입구(21)를 통해 반응 가스를 간극 내부로 주입한다.Then, the microwave main power is applied while the electrode body 10 is fixed, the wafer or the substrate 50 is slid in one direction on the substrate holder 40, and at the same time, the gas inlet 21 of the air supply manifold 20 is applied. The reaction gas is injected into the gap through

그러면, 반응 가스가 플라즈마에 의해 분해되어 화학적으로 안정된 박막(60)이 기판(50) 상에 증착된다.Then, the reaction gas is decomposed by the plasma to deposit a chemically stable thin film 60 on the substrate 50.

그리고, 기판(50) 증착된 박막(60)을 제외한 반응 부산물은 배기 매니 폴더(30)의 가스배출구(31)를 통해 배출된다.The reaction by-products except the thin film 60 deposited on the substrate 50 are discharged through the gas outlet 31 of the exhaust manifold 30.

즉, 반응 가스가 급기 매니 폴더(20)의 가스주입구(21)를 통해 균일하면서 고속으로 분사되고, 배기 매니 폴더(30)의 가스배출구(31)를 통해 배출되어 가스의 흐름을 생성된다.That is, the reaction gas is injected at a uniform and high speed through the gas inlet 21 of the air supply manifold 20 and is discharged through the gas outlet 31 of the exhaust manifold 30 to generate a gas flow.

그리고, 전극 본체(10)를 고정시킨 상태에서 하단의 기판만을 이동시키면서 박막을 증착시킴으로써 전극 본체(10)와 기판(50)간 좁은 간극내에 원활하고 균일한 가스공급이 가능하여 고품질의 박막을 고속 성장시킬 수 있다.In addition, by depositing a thin film while moving only the lower substrate while the electrode main body 10 is fixed, a smooth and uniform gas supply is possible within a narrow gap between the electrode main body 10 and the substrate 50, thereby providing a high quality thin film. You can grow.

본 발명은 다양하게 변형될 수 있고 여러 가지 형태를 취할 수 있으며 상기 발명의 상세한 설명에서는 그에 따른 특별한 실시 예에 대해서만 기술하였다. 하지만 본 발명은 상세한 설명에서 언급되는 특별한 형태로 한정되는 것이 아닌 것으로 이해되어야 하며, 오히려 첨부된 청구범위에 의해 정의되는 본 발명의 정신과 범위 내에 있는 모든 변형물과 균등물 및 대체물을 포함하는 것으로 이해되어야 한다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. It is to be understood, however, that the invention is not to be limited to the specific forms thereof, which are to be considered as being limited to the specific embodiments, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims. .

10 : 전극 본체 20 : 급기 매니 폴더
30 : 배기 매니 폴더 40 : 테이블 또는 기판 홀더
50 : 기판 60 : 박막
70 : 진공 챔버
10: electrode body 20: air supply manifold
30: exhaust manifold folder 40: table or substrate holder
50: substrate 60: thin film
70: vacuum chamber

Claims (8)

상압 플라즈마 화학기상 증착장치용 전극 어셈블리에 있어서,
직사각 형태로 형성되고, 고정 설치되어 초고주파 전원이 인가되는 전극 본체와;
절연 재질로 상기 전극 본체의 일측면에 고정 설치되고, 저면에 일자형의 슬릿 형태의 가스주입구가 형성되는 급기 매니 폴더; 및
절연 재질로 상기 전극 본체의 타측면에 고정 설치되고, 상기 급기 매니 폴더의 가스주입구를 통해 공급되는 반응 가스의 흐름을 형성시키도록 저면에 복수의 가스배출구가 형성되는 배기 매니 폴더를 포함하는 것을 특징으로 하는 상압 플라즈마 화학기상 증착장치용 전극 어셈블리.
In the electrode assembly for atmospheric plasma chemical vapor deposition apparatus,
An electrode body which is formed in a rectangular shape and is fixedly installed and to which ultra-high frequency power is applied;
An air supply manifold that is fixedly installed on one side of the electrode body with an insulating material and has a straight slit-shaped gas inlet formed on a bottom surface thereof; And
And an exhaust manifold having a plurality of gas discharge ports formed on the bottom thereof to be fixed to the other side of the electrode body with an insulating material and to form a flow of the reactive gas supplied through the gas inlet of the air supply manifold. An electrode assembly for an atmospheric pressure plasma chemical vapor deposition apparatus.
제 1 항에 있어서,
상기 전극 본체는,
저면에 일정 간극을 형성하도록 테이블 또는 기판 홀더 상에 기판을 위치시키고, 상기 기판을 일방향으로 슬라이딩시켜 상기 기판 상면에 박막을 증착시키는 것을 특징으로 하는 상압 플라즈마 화학기상 증착장치용 전극 어셈블리.
The method of claim 1,
The electrode body,
An electrode assembly for an atmospheric pressure plasma chemical vapor deposition apparatus, comprising placing a substrate on a table or a substrate holder to form a predetermined gap in a bottom surface, and sliding the substrate in one direction to deposit a thin film on the upper surface of the substrate.
제 1 항에 있어서,
상기 급기 매니 폴더는,
가스 공급관을 통해 상기 가스주입구 내부로 반응 가스를 주입할 수 있도록 상면 또는 일측면에 상기 가스 공급관과 연통되는 제 1가이드홀이 더 형성되는 것을 특징으로 하는 상압 플라즈마 화학기상 증착장치용 전극 어셈블리.
The method of claim 1,
The air supply manifold,
An electrode assembly for an atmospheric pressure plasma chemical vapor deposition apparatus, characterized in that the first guide hole in communication with the gas supply pipe is further formed on the upper surface or one side so as to inject the reaction gas into the gas inlet through the gas supply pipe.
제 3 항에 있어서,
상기 급기 매니 폴더의 가스주입구는,
상기 기판에 분사되는 반응 가스의 균일하면서 고속으로 분사가 이루어지도록 그 폭을 0.1~0.5mm로 형성하는 것을 특징으로 하는 상압 플라즈마 화학기상 증착장치용 전극 어셈블리.
The method of claim 3, wherein
The gas inlet of the air supply manifold is
Electrode assembly for an atmospheric pressure plasma chemical vapor deposition apparatus characterized in that the width of the reaction gas to be sprayed on the substrate to form a width of 0.1 ~ 0.5mm to achieve a uniform and high speed.
제 1 항에 있어서,
상기 배기 매니 폴더는,
가스 배출관을 통해 상기 가스배출구 내부로 반응 가스를 배출시킬 수 있도록 상면 또는 일측면에 상기 가스 배출관과 연통되는 제 2가이드홀이 더 형성되는 것을 특징으로 하는 상압 플라즈마 화학기상 증착장치용 전극 어셈블리.
The method of claim 1,
The exhaust manifold is,
An electrode assembly for an atmospheric pressure plasma chemical vapor deposition apparatus, characterized in that the second guide hole is further formed in communication with the gas discharge pipe on the upper surface or one side so as to discharge the reaction gas into the gas outlet through the gas discharge pipe.
제 5 항에 있어서,
상기 배기 매니 폴더의 가스배출구는,
상기 전극 본체와 기판 사이에서 반응하여 증착된 박막을 제외한 반응 부산물의 배출될 수 있도록 지름이 1~5mm로 형성되는 것을 특징으로 하는 상압 플라즈마 화학기상 증착장치용 전극 어셈블리.
The method of claim 5, wherein
The gas outlet of the exhaust manifold is
An electrode assembly for an atmospheric pressure plasma chemical vapor deposition apparatus, characterized in that the diameter of 1 ~ 5mm is formed so as to discharge the reaction by-products except the thin film deposited by reacting between the electrode body and the substrate.
제 2 항에 있어서,
상기 일정 간극은,
수십㎛~수십㎜로 유지되는 것을 특징으로 하는 상압 플라즈마 화학기상 증착장치용 전극 어셈블리.
The method of claim 2,
The constant gap is,
Electrode assembly for atmospheric pressure plasma chemical vapor deposition apparatus, characterized in that maintained in several tens of ㎛ ~ several tens of mm.
제 1 항에 있어서,
상기 전극 본체는,
수냉식 냉각이 적용되는 것을 특징으로 하는 상압 플라즈마 화학기상 증착장치용 전극 어셈블리.
The method of claim 1,
The electrode body,
Electrode assembly for atmospheric pressure plasma chemical vapor deposition apparatus characterized in that the water-cooled cooling is applied.
KR1020110064242A 2011-06-30 2011-06-30 Electrode assembly atmospheric pressure chemical vapor deposition KR101299160B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110064242A KR101299160B1 (en) 2011-06-30 2011-06-30 Electrode assembly atmospheric pressure chemical vapor deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110064242A KR101299160B1 (en) 2011-06-30 2011-06-30 Electrode assembly atmospheric pressure chemical vapor deposition

Publications (2)

Publication Number Publication Date
KR20130007193A true KR20130007193A (en) 2013-01-18
KR101299160B1 KR101299160B1 (en) 2013-08-22

Family

ID=47837808

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110064242A KR101299160B1 (en) 2011-06-30 2011-06-30 Electrode assembly atmospheric pressure chemical vapor deposition

Country Status (1)

Country Link
KR (1) KR101299160B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD816386S1 (en) 2016-10-13 2018-05-01 Samsung Electronics Co., Ltd. Gas range

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4233348B2 (en) * 2003-02-24 2009-03-04 シャープ株式会社 Plasma process equipment
KR100535656B1 (en) * 2004-02-26 2005-12-08 위순임 Apparatus for generating plasma at atmospheric pressure having antenna with combined electrode
KR100860039B1 (en) * 2007-07-12 2008-09-25 성균관대학교산학협력단 Atmospheric pressure plasma system
JP5025614B2 (en) * 2008-10-21 2012-09-12 三菱電機株式会社 Atmospheric pressure plasma treatment method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD816386S1 (en) 2016-10-13 2018-05-01 Samsung Electronics Co., Ltd. Gas range

Also Published As

Publication number Publication date
KR101299160B1 (en) 2013-08-22

Similar Documents

Publication Publication Date Title
EP2469611B1 (en) Movable jig for silicon-based thin film solar cell
TWI550123B (en) Gas delivery and distribution system for uniform process in linear-type large-area plasma reactor and a processing chamber therefor
KR101337026B1 (en) Deposition box for silicon-based thin film solar cell
EP2469610B1 (en) Clamping unit for depositing thin film solar cell and signal feed-in method
EP2451991A2 (en) Apparatus and method for plasma processing
KR20080105617A (en) Chemical vapor deposition apparatus and plasma enhanced chemical vapor deposition apparatus
CN107452616A (en) Use the system and method for electric asymmetrical effect control plasma processing space
CN103890229B (en) Plasma film forming apparatus
CN104160790A (en) Apparatus for plasma generation, method for manufacturing rotating electrodes for plasma generation apparatus, method for plasma treatment of substrate, and method for forming thin film of mixed structure using plasma
US8438989B2 (en) Surface feed-in electrodes for deposition of thin film solar cell and signal feed-in method thereof
KR101299160B1 (en) Electrode assembly atmospheric pressure chemical vapor deposition
JP5378416B2 (en) Plasma processing equipment
TWI727316B (en) Substrate processing apparatus
US8931433B2 (en) Plasma processing apparatus
CN101472384B (en) Atmos plasma reactor
EP2304775A2 (en) Deposition apparatus for improving the uniformity of material processed over a substrate and method of using the apparatus
KR101407068B1 (en) FAST REMOTE PLASMA ATOmic layer deposition apparatus
CN108315722A (en) A kind of arc-shaped electrode plasma enhanced chemical vapor deposition unit
TWI585232B (en) Linear pecvd apparatus
KR20240035313A (en) Apparatus for spraying gas, apparatus for processing substrate and method for depositing thin film
CN101442873A (en) Equipment and method for processing plasma
TW202338131A (en) Plasma-enhanced chemical vapour deposition apparatus
KR20230100635A (en) Gas Supply Unit and Substrate Processing Apparatus Including Gas Supply Unit
TW202410259A (en) Gas injection device, apparatus for processing substrate and method for depositing thin film
KR101619152B1 (en) Plasma cvd apparatus

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170720

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180611

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190902

Year of fee payment: 7