KR20120134249A - Solar cell apparatus and method of fabricating the same - Google Patents

Solar cell apparatus and method of fabricating the same Download PDF

Info

Publication number
KR20120134249A
KR20120134249A KR1020110053031A KR20110053031A KR20120134249A KR 20120134249 A KR20120134249 A KR 20120134249A KR 1020110053031 A KR1020110053031 A KR 1020110053031A KR 20110053031 A KR20110053031 A KR 20110053031A KR 20120134249 A KR20120134249 A KR 20120134249A
Authority
KR
South Korea
Prior art keywords
layer
well
barrier
solar cell
back electrode
Prior art date
Application number
KR1020110053031A
Other languages
Korean (ko)
Other versions
KR101241647B1 (en
Inventor
배도원
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Priority to KR1020110053031A priority Critical patent/KR101241647B1/en
Publication of KR20120134249A publication Critical patent/KR20120134249A/en
Application granted granted Critical
Publication of KR101241647B1 publication Critical patent/KR101241647B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03923Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIBIIICVI compound materials, e.g. CIS, CIGS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE: A solar cell and a manufacturing method thereof are provided to increase open circuit voltage by alternately forming a barrier layer and a well layer on a light absorption layer. CONSTITUTION: A back surface electrode layer(150) is arranged on a substrate. A light absorption layer(200) is arranged on the back surface electrode layer. A buffer layer(300) is formed on the light absorption layer. The buffer layer is formed by alternately laminating the barrier layer and a well layer. A window layer is arranged on the buffer layer.

Description

태양전지 및 이의 제조방법{SOLAR CELL APPARATUS AND METHOD OF FABRICATING THE SAME}SOLAR CELL AND MANUFACTURING METHOD THEREOF {SOLAR CELL APPARATUS AND METHOD OF FABRICATING THE SAME}

실시예는 태양전지 및 이의 제조방법에 관한 것이다.An embodiment relates to a solar cell and a manufacturing method thereof.

최근 에너지의 수요가 증가함에 따라서, 태양광 에너지를 전기에너지로 변환시키는 태양전지에 대한 개발이 진행되고 있다.Recently, as the demand for energy increases, development of solar cells for converting solar energy into electrical energy is in progress.

특히, 유리기판, 금속 후면 전극층, p형 CIGS계 광 흡수층, 고 저항 버퍼층, n형 윈도우층 등을 포함하는 기판 구조의 pn 헤테로 접합 장치인 CIGS계 태양전지가 널리 사용되고 있다.Particularly, a CIGS-based solar cell which is a pn heterojunction device of a substrate structure including a glass substrate, a metal back electrode layer, a p-type CIGS light absorbing layer, a high resistance buffer layer, an n-type window layer and the like is widely used.

이러한 태양전지에 있어서 낮은 저항, 높은 투과율 등의 전기적인 특성을 향상시키기 위한 연구가 진행되고 있다.In such a solar cell, research is being conducted to improve electrical characteristics such as low resistance and high transmittance.

실시예는 환경오염의 문제를 개선하고 광-전 변환효율이 향상된 태양전지 및 그 제조방법을 제공하고자 한다.The embodiment is to improve the problem of environmental pollution and to provide a solar cell and a method of manufacturing the improved photo-electric conversion efficiency.

일 실시예에 따른 태양전지는 기판; 상기 기판 상에 배치되는 이면전극층; 상기 이면전극층 상에 배치되는 광 흡수층; 상기 광 흡수층 상에, 장벽층과 우물층이 번갈아 적층되어 형성되는 버퍼층; 및 상기 버퍼층 상에 배치되는 윈도우층;을 포함한다.Solar cell according to one embodiment includes a substrate; A back electrode layer disposed on the substrate; A light absorbing layer disposed on the back electrode layer; A buffer layer formed by alternately stacking a barrier layer and a well layer on the light absorbing layer; And a window layer disposed on the buffer layer.

일 실시예에 따른 태양전지 제조방법은 기판 상에 이면전극층을 배치하는 단계; 상기 이면전극층 상에 광 흡수층을 형성하는 단계; 상기 광 흡수층 상에 장벽층과 우물층을 번갈아 적층하여 버퍼층을 형성하는 단계; 및 상기 버퍼층 상에 윈도우층을 형성하는 단계;를 포함한다.A solar cell manufacturing method according to an embodiment includes disposing a back electrode layer on a substrate; Forming a light absorbing layer on the back electrode layer; Alternately stacking a barrier layer and a well layer on the light absorbing layer to form a buffer layer; And forming a window layer on the buffer layer.

실시예에 따르면, 광 흡수층 상에 장벽층과 우물층이 번갈아 형성되어, 전자의 트랩 효과로 인해 개방전압(Voc: open-circuit voltage)이 증가하고 이에 따라 광전변환효율이 향상된다.According to the embodiment, the barrier layer and the well layer are alternately formed on the light absorbing layer, so that the open-circuit voltage (Voc) increases due to the trapping effect of electrons, thereby improving the photoelectric conversion efficiency.

도 1은 실시예에 따른 태양전지를 도시한 단면도이다.
도 2 내지 도 4는 실시예에 따른 태양전지를 제조하는 과정을 도시한 도면들이다.
도 5는 실시예에 따른 태양전지에서 장벽층과 우물층의 밴드갭 변화를 도시한 도면이다.
1 is a cross-sectional view showing a solar cell according to an embodiment.
2 to 4 are views illustrating a process of manufacturing a solar cell according to the embodiment.
5 is a view showing a band gap change of the barrier layer and the well layer in the solar cell according to the embodiment.

실시예의 설명에 있어서, 각 기판, 층, 막 또는 전극 등이 각 기판, 층, 막, 또는 전극 등의 "상(on)"에 또는 "아래(under)"에 형성되는 것으로 기재되는 경우에 있어, "상(on)"과 "아래(under)"는 "직접(directly)" 또는 "다른 구성요소를 개재하여(indirectly)" 형성되는 것을 모두 포함한다. 또한 각 구성요소의 상 또는 아래에 대한 기준은 도면을 기준으로 설명한다. 도면에서의 각 구성요소들의 크기는 설명을 위하여 과장될 수 있으며, 실제로 적용되는 크기를 의미하는 것은 아니다.In the description of the embodiments, where each substrate, layer, film, or electrode is described as being formed "on" or "under" of each substrate, layer, film, or electrode, etc. , “On” and “under” include both “directly” or “indirectly” other components. In addition, the upper or lower reference of each component is described with reference to the drawings. The size of each component in the drawings may be exaggerated for the sake of explanation and does not mean the size actually applied.

도 1은 실시예에 따른 태양전지를 도시한 단면도이다. 도 1을 참조하면, 태양전지 패널은 지지기판(100)과, 이면전극층(150), 광 흡수층(200), 버퍼층(300) 및 윈도우층(400)을 포함한다.1 is a cross-sectional view showing a solar cell according to an embodiment. Referring to FIG. 1, the solar cell panel includes a support substrate 100, a back electrode layer 150, a light absorbing layer 200, a buffer layer 300, and a window layer 400.

상기 지지기판(100)은 플레이트 형상을 가지며, 상기 이면전극층(150), 광 흡수층(200), 버퍼층(300) 및 윈도우층(400)을 지지한다.The support substrate 100 has a plate shape and supports the back electrode layer 150, the light absorbing layer 200, the buffer layer 300, and the window layer 400.

상기 지지기판(100)은 절연체일 수 있다. 상기 지지기판(100)은 유리기판, 폴리머와 같은 플라스틱기판, 또는 금속기판일 수 있다. 이외에, 지지기판(100)의 재질로 알루미나와 같은 세라믹 기판, 스테인레스 스틸(SUS), 유연성이 있는 고분자 등이 사용될 수 있다. 상기 지지기판(100)은 투명할 수 있고 리지드하거나 플렉서블할 수 있다.The support substrate 100 may be an insulator. The support substrate 100 may be a glass substrate, a plastic substrate such as a polymer, or a metal substrate. In addition, a ceramic substrate such as alumina, stainless steel (SUS), a flexible polymer, or the like may be used as the material of the support substrate 100. The support substrate 100 may be transparent, rigid, or flexible.

상기 지지기판(100) 상에 이면전극층(150)이 배치된다. 상기 이면전극층(150)은 도전층이다. 상기 이면전극층(150)은 태양전지 중 상기 광 흡수층(200)에서 생성된 전하가 이동하도록 하여 태양전지의 외부로 전류를 흐르게 할 수 있다. 상기 이면전극층(150)은 이러한 기능을 수행하기 위하여 전기 전도도가 높고 비저항이 작아야 한다.The back electrode layer 150 is disposed on the support substrate 100. The back electrode layer 150 is a conductive layer. The back electrode layer 150 may allow electric charges generated in the light absorbing layer 200 of the solar cell to move so that current flows to the outside of the solar cell. The back electrode layer 150 should have high electrical conductivity and low specific resistance in order to perform this function.

또한, 상기 이면전극층(150)은 CIGS 화합물 형성시 수반되는 황(S) 또는 셀레늄(Se) 분위기 하에서의 열처리 시 고온 안정성이 유지되어야 한다. 또한, 상기 이면전극층(150)은 열팽창 계수의 차이로 인하여 상기 지지기판(100)과 박리현상이 발생되지 않도록 상기 지지기판(100)과 접착성이 우수하여야 한다.In addition, the back electrode layer 150 should be maintained at a high temperature during heat treatment in a sulfur (S) or selenium (Se) atmosphere accompanying the formation of the CIGS compound. In addition, the back electrode layer 150 should be excellent in adhesion with the support substrate 100 so that peeling does not occur with the support substrate 100 due to a difference in thermal expansion coefficient.

이러한 이면전극층(150)은 몰리브덴(Mo), 금(Au), 알루미늄(Al), 크롬(Cr), 텅스텐(W) 및 구리(Cu) 또는 상기 물질의 합금등으로 형성될 수 있다. 이 가운데, 특히 몰리브덴(Mo)은 다른 원소에 비해 상기 지지기판(100)과 열팽창 계수의 차이가 적기 때문에 접착성이 우수하여 박리현상이 발생하는 것을 방지할 수 있고 상술한 이면전극층(150)에 요구되는 특성을 전반적으로 충족시킬 수 있다.The back electrode layer 150 may be formed of molybdenum (Mo), gold (Au), aluminum (Al), chromium (Cr), tungsten (W) and copper (Cu) or an alloy of the above materials. Among them, in particular, molybdenum (Mo) has a small difference between the support substrate 100 and the coefficient of thermal expansion compared to other elements, and thus excellent adhesion can be prevented from occurring in the peeling phenomenon. Overall required properties can be met.

상기 이면전극층(150)은 두 개 이상의 층들을 포함할 수 있다. 이때, 각각의 층들은 같은 금속으로 형성되거나, 서로 다른 금속으로 형성될 수 있다.The back electrode layer 150 may include two or more layers. In this case, each of the layers may be formed of the same metal, or may be formed of different metals.

상기 이면전극층(150) 상에는 광 흡수층(200)이 형성될 수 있다. 상기 광 흡수층(200)은 Ⅰ-Ⅲ-Ⅵ족 계 화합물을 포함한다. 예를 들어, 상기 광 흡수층(200)은 구리-인듐-갈륨-셀레나이드계(Cu(In,Ga)Se2;CIGS계) 결정 구조, 구리-인듐-셀레나이드계 또는 구리-갈륨-셀레나이드계 결정 구조를 가질 수 있다.The light absorbing layer 200 may be formed on the back electrode layer 150. The light absorbing layer 200 includes a group I-III-VI compound. For example, the light absorbing layer 200 may be formed of a copper-indium-gallium-selenide-based (Cu (In, Ga) Se 2 ; CIGS-based) crystal structure, copper-indium-selenide-based, or copper-gallium-selenide It may have a system crystal structure.

버퍼층(300)은 상기 광 흡수층(200) 상에 배치된다. CIGS 화합물을 광 흡수층(200)으로 갖는 태양전지는 p형 반도체인 CIGS 화합물 박막과 n형 반도체인 윈도우층(400) 박막간에 pn 접합을 형성한다. 하지만 두 물질은 격자상수와 밴드갭 에너지의 차이가 크기 때문에 양호한 접합을 형성하기 위해서는 밴드갭이 두 물질의 중간에 위치하는 버퍼층이 필요하다.The buffer layer 300 is disposed on the light absorbing layer 200. The solar cell having the CIGS compound as the light absorbing layer 200 forms a pn junction between the CIGS compound thin film as the p-type semiconductor and the window layer 400 thin film as the n-type semiconductor. However, since the two materials have a large difference in lattice constant and band gap energy, a buffer layer having a band gap in between the two materials is required to form a good junction.

버퍼층(300)을 형성하는 물질로 CdS가 효율이 우수하나 카드뮴으로 인해 환경오염의 문제가 있다. 이를 개선하기 위해 ZnS 또는 In2S3 등의 다양한 대안 물질들을 사용한 태양전지가 개발되고 있으나 기존 CdS에 비해 효율면에서 개선의 여지가 있다.CdS has excellent efficiency as a material for forming the buffer layer 300, but there is a problem of environmental pollution due to cadmium. To improve this, solar cells using various alternative materials such as ZnS or In 2 S 3 have been developed, but there is room for improvement in efficiency compared to existing CdS.

본 발명에서는 상기 버퍼층(300)이 다층 구조로 형성된다. 구체적으로 상기 광 흡수층(200) 상에 제1 장벽층(310), 제1 우물층(320), 제2 장벽층(330), 제2 우물층(340)이 형성될 수 있다. 즉, 우물층과 장벽층이 번갈아 형성될 수 있다.In the present invention, the buffer layer 300 is formed in a multilayer structure. In detail, a first barrier layer 310, a first well layer 320, a second barrier layer 330, and a second well layer 340 may be formed on the light absorbing layer 200. That is, the well layer and the barrier layer may be formed alternately.

상기 우물층 및 장벽층의 두께는 2nm 내지 40nm의 범위로 형성될 수 있다. 상기 장벽층의 밴드갭은 2eV 내지 4eV 범위일 수 있으며, 상기 우물층의 밴드갭은 인접하는 장벽층의 밴드갭보다 작은 값을 갖도록 형성될 수 있다.The thickness of the well layer and the barrier layer may be formed in the range of 2nm to 40nm. The band gap of the barrier layer may range from 2 eV to 4 eV, and the band gap of the well layer may be formed to have a value smaller than that of the adjacent barrier layer.

실시예에서 우물층이 장벽층보다 먼저 형성되었으나 이에 대해 한정하지는 않는다.In the embodiment, the well layer is formed before the barrier layer, but is not limited thereto.

상기 버퍼층(300) 내에서 상부로 갈수록 형성되는 우물층 및 장벽층의 에너지는 각각 감소할 수 있다.Energy of the well layer and the barrier layer formed toward the upper portion of the buffer layer 300 may decrease, respectively.

도 5는 실시예에 따른 태양전지에서 장벽층과 우물층의 밴드갭 변화를 도시한 도면으로 장벽층과 우물층이 번갈아 형성되므로 에너지 밴드갭은 증가와 감소를 반복하여 형성되게 된다.FIG. 5 is a diagram illustrating a band gap change between the barrier layer and the well layer in the solar cell according to the embodiment. Since the barrier layer and the well layer are alternately formed, the energy band gap is increased and decreased repeatedly.

상기 우물층과 장벽층은 금속물질을 포함하고, 황 또는 셀레늄계 물질을 포함하여 형성될 수 있다. 상기 우물층과 장벽층에 포함되는 금속원소의 종류를 달리함으로써 밴드갭을 변화시킬 수 있다. 우물층과 장벽층에 포함되는 금속원소는 카드뮴(Cd), 아연(Zn), 갈륨(Ga) 혹은 인듐(In)을 포함할 수 있다.The well layer and the barrier layer may include a metal material and may include sulfur or selenium-based material. The band gap can be changed by changing the type of metal element included in the well layer and the barrier layer. The metal elements included in the well layer and the barrier layer may include cadmium (Cd), zinc (Zn), gallium (Ga), or indium (In).

그리고 상기 우물층 및 장벽층의 에너지 밴드값은 하기의 조건을 만족하면서 지그재그 형식으로 형성될 수 있다.The energy band values of the well layer and the barrier layer may be formed in a zigzag form while satisfying the following conditions.

Eg장벽n > Eg우물n, n=1, 2, 3… ;Eg barrier n > Eg well n , n = 1, 2, 3... ;

Eg장벽n ≤ Eg장벽n+1 ; Eg barrier n ≦ Eg barrier n + 1;

Eg우물n ≤ Eg우물n+1 Eg well n ≤ Eg well n + 1

물질별 밴드갭 테이블 (소수점 이하는 변동이 있음)Band Gap Table by Material (Variable below Decimal Point)

물질matter Bandgap(eV)Bandgap (eV) 물질matter Bandgap(eV)Bandgap (eV) CdSCdS 2.42.4 ZnSZnS 3.63.6 CdSeCdSe 1.731.73 ZnSeZnSe 2.72.7 CdZnSCdZnS ≥2.4≥2.4 In2S3In2S3 2.12.1 GaSGaS 2.52.5 In(OH)xSyIn (OH) xSy 2.542.54 AgInS2AgInS2 1.931.93 AgInSe2AgInSe2 1.21.2

상기 버퍼층(300) 상에는 고저항 버퍼층(미도시)이 형성될 수 있다. 상기 고저항 버퍼층은 불순물이 도핑되지 않은 징크 옥사이드(i-ZnO)를 포함한다.A high resistance buffer layer (not shown) may be formed on the buffer layer 300. The high resistance buffer layer includes zinc oxide (i-ZnO) that is not doped with impurities.

상기 버퍼층(300) 상에는 윈도우층(400)이 배치된다. 상기 윈도우층(400)은 투명하며, 도전층이다. 또한, 상기 윈도우층(400)의 저항은 상기 이면전극층(150)의 저항보다 높다.The window layer 400 is disposed on the buffer layer 300. The window layer 400 is transparent and is a conductive layer. In addition, the resistance of the window layer 400 is higher than the resistance of the back electrode layer 150.

상기 윈도우층(400)은 산화물을 포함한다. 예를 들어, 상기 윈도우층(400)은 징크 옥사이드(zinc oxide), 인듐 틴 옥사이드(induim tin oxide;ITO) 또는 인듐 징크 옥사이드(induim zinc oxide;IZO) 등을 포함할 수 있다.The window layer 400 includes an oxide. For example, the window layer 400 may include zinc oxide, indium tin oxide (ITO), or indium zinc oxide (IZO).

또한, 상기 윈도우층(400)은 알루미늄 도핑된 징크 옥사이드(Al doped zinc oxide;AZO) 또는 갈륨 도핑된 징크 옥사이드(Ga doped zinc oxide;GZO) 등을 포함할 수 있다.In addition, the window layer 400 may include aluminum doped zinc oxide (AZO) or gallium doped zinc oxide (GZO).

본 발명의 실시예에 따른 태양전지에 따르면, 밴드갭이 상이한 물질이 반복 적층되어 버퍼층이 형성되므로 개방전압(Voc: open-circuit voltage)이 증가하고 이에 따라 광전변환효율이 향상되는 효과가 있다.
According to the solar cell according to the embodiment of the present invention, since a material having a different band gap is repeatedly stacked to form a buffer layer, an open-circuit voltage (Voc) is increased, thereby improving photoelectric conversion efficiency.

도 2 내지 도 4는 실시예에 따른 태양전지의 제조방법을 도시한 단면도들이다. 본 제조방법에 관한 설명은 앞서 설명한 태양전지에 대한 설명을 참고한다. 앞서 설명한 태양전지에 대한 설명은 본 제조방법에 관한 설명에 본질적으로 결합될 수 있다.2 to 4 are cross-sectional views illustrating a method of manufacturing a solar cell according to an embodiment. For a description of the present manufacturing method, refer to the description of the solar cell described above. The description of the solar cell described above may be essentially combined with the description of the present manufacturing method.

도 2를 참조하면, 지지기판(100) 상에 이면전극층(150)이 형성될 수 있다. 상기 이면전극층(150)은 몰리브덴을 사용하여 증착될 수 있다. 상기 이면전극층(150)은 PVD(Physical Vapor Deposition) 또는 도금의 방법으로 형성될 수 있다.Referring to FIG. 2, the back electrode layer 150 may be formed on the support substrate 100. The back electrode layer 150 may be deposited using molybdenum. The back electrode layer 150 may be formed by physical vapor deposition (PVD) or plating.

또한, 상기 지지기판(100) 및 이면전극층(150) 사이에 확산방지막 등과 같은 추가적인 층이 개재될 수 있다.In addition, an additional layer such as a diffusion barrier may be interposed between the support substrate 100 and the back electrode layer 150.

다음으로, 상기 이면전극층(150) 상에 광 흡수층(200)이 형성된다. 상기 광 흡수층(200)은 예를 들어, 구리, 인듐, 갈륨, 셀레늄을 동시 또는 구분하여 증발시키면서 구리-인듐-갈륨-셀레나이드계(Cu(In,Ga)Se2;CIGS계)의 광 흡수층(200)을 형성하는 방법과 금속 프리커서 막을 형성시킨 후 셀레니제이션(Selenization) 공정에 의해 형성시키는 방법이 폭넓게 사용되고 있다.Next, the light absorbing layer 200 is formed on the back electrode layer 150. The light absorbing layer 200 may be, for example, copper, indium, gallium, or selenium, while simultaneously or separately evaporating a copper-indium-gallium-selenide-based (Cu (In, Ga) Se 2; CIGS-based) light absorbing layer ( The method of forming 200 and the method of forming a metal precursor film and forming it by the selenization process are widely used.

금속 프리커서 막을 형성시킨 후 셀레니제이션 하는 것을 세분화하면, 구리 타겟, 인듐 타겟, 갈륨 타겟을 사용하는 스퍼터링 공정에 의해서, 상기 이면전극(200) 상에 금속 프리커서 막이 형성된다.After the metal precursor film is formed and then subjected to selenization, a metal precursor film is formed on the back electrode 200 by a sputtering process using a copper target, an indium target, and a gallium target.

이후, 상기 금속 프리커서 막은 셀레니제이션(selenization) 공정에 의해서, 구리-인듐-갈륨-셀레나이드계(Cu(In,Ga)Se2;CIGS계)의 광 흡수층(200)이 형성된다.Subsequently, the metal precursor film is formed of a copper-indium-gallium-selenide (Cu (In, Ga) Se 2; CIGS-based) light absorbing layer 200 by a selenization process.

이와는 다르게, 상기 구리 타겟, 인듐 타겟, 갈륨 타겟을 사용하는 스퍼터링 공정 및 상기 셀레니제이션 공정은 동시에 진행될 수 있다.Alternatively, the copper target, the indium target, the sputtering process using the gallium target, and the selenization process may be performed simultaneously.

이와는 다르게, 구리 타겟 및 인듐 타겟 만을 사용하거나, 구리 타겟 및 갈륨 타겟을 사용하는 스퍼터링 공정 및 셀레니제이션 공정에 의해서, CIS계 또는 CIG계 광 흡수층(200)이 형성될 수 있다.Alternatively, the CIS-based or CIG-based light absorbing layer 200 may be formed by using only a copper target and an indium target, or by a sputtering process and a selenization process using a copper target and a gallium target.

도 3 및 도 4를 참조하면, 상기 광 흡수층(200) 상에 MOCVD(Metal Organic Chemical Vapor Deposition) 공정 또는 용액성장법(chemical bath depositon;CBD) 등에 의해서 증착되어 버퍼층(300)이 형성된다. 상기 버퍼층(300)은 밴드갭이 각각 상이한 층들을 적층하여 형성할 수 있는데, 예를 들어, 제1 장벽층(310)은 ZnSe, 제1 우물층(320)은 In2S3, 제2 장벽층(330)은 ZnS로 형성될 수 있다.3 and 4, the buffer layer 300 is formed on the light absorbing layer 200 by a metal organic chemical vapor deposition (MOCVD) process or a chemical bath depositon (CBD). The buffer layer 300 may be formed by stacking layers having different band gaps. For example, the first barrier layer 310 is ZnSe, the first well layer 320 is In 2 S 3 , and the second barrier is formed. Layer 330 may be formed of ZnS.

다음으로, 상기 버퍼층(300) 상에 투명한 도전물질이 증착되어 윈도우층(400)이 형성된다.Next, a transparent conductive material is deposited on the buffer layer 300 to form a window layer 400.

이상에서 실시예들에 설명된 특징, 구조, 효과 등은 본 발명의 적어도 하나의 실시예에 포함되며, 반드시 하나의 실시예에만 한정되는 것은 아니다. 나아가, 각 실시예에서 예시된 특징, 구조, 효과 등은 실시예들이 속하는 분야의 통상의 지식을 가지는 자에 의해 다른 실시예들에 대해서도 조합 또는 변형되어 실시 가능하다. 따라서 이러한 조합과 변형에 관계된 내용들은 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.Features, structures, effects, and the like described in the above embodiments are included in at least one embodiment of the present invention, and are not necessarily limited to only one embodiment. Furthermore, the features, structures, effects, and the like illustrated in each embodiment may be combined or modified with respect to other embodiments by those skilled in the art to which the embodiments belong. Therefore, it should be understood that the present invention is not limited to these combinations and modifications.

이상에서 실시예를 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시예에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.
While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments, but, on the contrary, It will be understood that various modifications and applications are possible. For example, each component specifically shown in the embodiments can be modified and implemented. It is to be understood that all changes and modifications that come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein.

Claims (9)

기판;
상기 기판 상에 배치되는 이면전극층;
상기 이면전극층 상에 배치되는 광 흡수층;
상기 광 흡수층 상에, 장벽층과 우물층이 번갈아 적층되어 형성되는 버퍼층; 및
상기 버퍼층 상에 배치되는 윈도우층;을 포함하는 태양전지.
Board;
A back electrode layer disposed on the substrate;
A light absorbing layer disposed on the back electrode layer;
A buffer layer formed by alternately stacking a barrier layer and a well layer on the light absorbing layer; And
And a window layer disposed on the buffer layer.
제1항에 있어서,
상기 버퍼층은 제1 장벽층, 제1 우물층, 제2 장벽층 및 제2 우물층을 포함하고 상기 제1 및 제2 장벽층의 밴드갭은 상기 제1 및 제2 우물층의 밴드갭보다 큰 값을 갖도록 형성되는 태양전지.
The method of claim 1,
The buffer layer includes a first barrier layer, a first well layer, a second barrier layer, and a second well layer, and the band gaps of the first and second barrier layers are greater than the band gaps of the first and second well layers. Solar cell formed to have a value.
제2항에 있어서,
상기 우물층 및 장벽층의 에너지 밴드값은 하기의 조건을 만족하는 태양전지.
Eg장벽n > Eg우물n, n=1, 2, 3… ; Eg장벽n ≤ Eg장벽n+1; Eg우물n ≤ Eg우물n+1
The method of claim 2,
The energy band value of the well layer and the barrier layer satisfies the following conditions.
Eg barrier n > Eg well n , n = 1, 2, 3... ; Eg barrier n ≦ Eg barrier n + 1 ; Eg well n ≤ Eg well n + 1
제1항에 있어서,
상기 우물층과 장벽층은 각각 2nm 내지 40nm의 범위로 형성되는 태양전지.
The method of claim 1,
The well layer and the barrier layer are each formed in the range of 2nm to 40nm.
제1항에 있어서,
상기 우물층과 장벽층은 금속원소를 포함하고, 황 또는 셀레늄을 포함하는 태양전지.
The method of claim 1,
The well layer and the barrier layer comprises a metal element, the solar cell comprising sulfur or selenium.
제1항에 있어서,
상기 장벽층의 밴드갭은 2eV 내지 4eV 범위이며, 상기 우물층의 밴드갭은 인접하는 장벽층의 밴드갭보다 작은 값을 갖도록 형성되는 태양전지.
The method of claim 1,
The band gap of the barrier layer is in the range of 2eV to 4eV, the band gap of the well layer is formed to have a value smaller than the band gap of the adjacent barrier layer.
기판 상에 이면전극층을 배치하는 단계;
상기 이면전극층 상에 광 흡수층을 형성하는 단계;
상기 광 흡수층 상에, 장벽층과 우물층이 번갈아 적층되여 버퍼층을 형성하는 단계; 및
상기 버퍼층 상에 윈도우층을 형성하는 단계;를 포함하는 태양전지 제조방법.
Disposing a back electrode layer on the substrate;
Forming a light absorbing layer on the back electrode layer;
A barrier layer and a well layer are alternately stacked on the light absorbing layer to form a buffer layer; And
Forming a window layer on the buffer layer;
제7항에 있어서,
상기 버퍼층은 금속원소를 포함하고, 황 또는 셀레늄을 포함하여 형성하는 태양전지 제조방법.
The method of claim 7, wherein
The buffer layer is a solar cell manufacturing method comprising a metal element, sulfur or selenium formed.
제7항에 있어서,
상기 우물층과 장벽층에 포함되는 금속원소는 카드뮴(Cd), 아연(Zn), 갈륨(Ga) 혹은 인듐(In)을 포함하는 태양전지 제조방법.
The method of claim 7, wherein
The metal element included in the well layer and the barrier layer includes a cadmium (Cd), zinc (Zn), gallium (Ga) or indium (In).
KR1020110053031A 2011-06-01 2011-06-01 Solar cell apparatus and method of fabricating the same KR101241647B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110053031A KR101241647B1 (en) 2011-06-01 2011-06-01 Solar cell apparatus and method of fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110053031A KR101241647B1 (en) 2011-06-01 2011-06-01 Solar cell apparatus and method of fabricating the same

Publications (2)

Publication Number Publication Date
KR20120134249A true KR20120134249A (en) 2012-12-12
KR101241647B1 KR101241647B1 (en) 2013-03-11

Family

ID=47902466

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110053031A KR101241647B1 (en) 2011-06-01 2011-06-01 Solar cell apparatus and method of fabricating the same

Country Status (1)

Country Link
KR (1) KR101241647B1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2945647B2 (en) 1998-02-02 1999-09-06 株式会社日立製作所 Solar cell
JP2009026887A (en) 2007-07-18 2009-02-05 Omron Corp Solar cell
KR20100049451A (en) * 2008-11-03 2010-05-12 삼성엘이디 주식회사 Nitride semiconductor device
JP2011066072A (en) 2009-09-15 2011-03-31 Toyota Motor Corp Solar cell

Also Published As

Publication number Publication date
KR101241647B1 (en) 2013-03-11

Similar Documents

Publication Publication Date Title
KR101219972B1 (en) Solar cell and preparing method of the same
KR101154786B1 (en) Solar cell apparatus and method of fabricating the same
KR100999810B1 (en) Solar cell and method of fabricating the same
KR101283183B1 (en) Solar cell apparatus and method of fabricating the same
KR101219835B1 (en) Solar cell apparatus and method of fabricating the same
KR101428146B1 (en) Solar cell module and method of fabricating the same
KR101014039B1 (en) Solar cell and method of fabricating the same
KR101241708B1 (en) Solar cell apparatus and method of fabricating the same
KR101154696B1 (en) Solar cell apparatus and method of fabricating the same
KR101327126B1 (en) Solar cell and solar cell module unsing the same
KR101283240B1 (en) Solar cell and method of fabricating the same
KR101241647B1 (en) Solar cell apparatus and method of fabricating the same
KR101326970B1 (en) Solaa cell and solaa cell module using the same
KR101765924B1 (en) Solar cell apparatus and method of fabricating the same
KR101814814B1 (en) Solar cell and method of fabricating the same
KR101305603B1 (en) Solar cell apparatus and method of fabricating the same
KR101846337B1 (en) Solar cell apparatus and method of fabricating the same
KR101103897B1 (en) Solar cell and method of fabircating the same
KR101283191B1 (en) Solar cell and method of fabricating the same
KR101273174B1 (en) Solar cell apparatus and method of fabricating the same
KR101273093B1 (en) Solar cell and method of fabricating the same
KR101055135B1 (en) Solar cell
KR101326968B1 (en) Solar cell apparatus and method of fabricating the same
KR101210154B1 (en) Solar cell and method of fabricating the same
KR20120085104A (en) Solar cell apparatus and method of fabricating the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160205

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170207

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee