KR20120085104A - Solar cell apparatus and method of fabricating the same - Google Patents

Solar cell apparatus and method of fabricating the same Download PDF

Info

Publication number
KR20120085104A
KR20120085104A KR1020110006525A KR20110006525A KR20120085104A KR 20120085104 A KR20120085104 A KR 20120085104A KR 1020110006525 A KR1020110006525 A KR 1020110006525A KR 20110006525 A KR20110006525 A KR 20110006525A KR 20120085104 A KR20120085104 A KR 20120085104A
Authority
KR
South Korea
Prior art keywords
layer
solar cell
light absorbing
barrier layer
back electrode
Prior art date
Application number
KR1020110006525A
Other languages
Korean (ko)
Inventor
윤희경
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Priority to KR1020110006525A priority Critical patent/KR20120085104A/en
Publication of KR20120085104A publication Critical patent/KR20120085104A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0272Selenium or tellurium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE: A solar cell apparatus and a fabricating method thereof are provided to improve light conversion efficiency by separating and spreading natrium included in a barrier layer to light absorption layer. CONSTITUTION: A barrier layer(200) is formed on a supporting substrate(100). A back surface electrode layer(300) is formed on the barrier layer. A light absorption layer(400) is formed on the back surface electrode layer. A buffer layer(500) is formed on the light absorption layer. A high resistant buffer layer(600) is formed on the buffer layer. A window layer(700) is formed on the high resistant buffer layer.

Description

태양전지 및 이의 제조방법{SOLAR CELL APPARATUS AND METHOD OF FABRICATING THE SAME}SOLAR CELL AND MANUFACTURING METHOD THEREOF {SOLAR CELL APPARATUS AND METHOD OF FABRICATING THE SAME}

실시예는 태양전지 및 이의 제조방법에 관한 것이다.An embodiment relates to a solar cell and a manufacturing method thereof.

최근 에너지의 수요가 증가함에 따라서, 태양광 에너지를 전기에너지로 변환시키는 태양전지에 대한 개발이 진행되고 있다.Recently, as the demand for energy increases, development of solar cells for converting solar energy into electrical energy is in progress.

특히, 유리기판, 금속 후면 전극층, p형 CIGS계 광 흡수층, 고 저항 버퍼층, n형 윈도우층 등을 포함하는 기판 구조의 pn 헤테로 접합 장치인 CIGS계 태양전지가 널리 사용되고 있다.In particular, a CIGS solar cell which is a pn heterojunction device having a substrate structure including a glass substrate, a metal back electrode layer, a p-type CIGS-based light absorbing layer, a high resistance buffer layer, an n-type window layer, and the like is widely used.

이러한 태양전지에 있어서 낮은 저항, 높은 투과율 등의 전기적인 특성을 향상시키기 위한 연구가 진행되고 있다.In such a solar cell, research is being conducted to improve electrical characteristics such as low resistance and high transmittance.

실시예는 신뢰성이 향상된 태양전지 및 그 제조방법을 제공하고자 한다.The embodiment provides a solar cell and a method of manufacturing the same having improved reliability.

일 실시예에 따른 태양전지는 기판; 상기 기판 상에 배치되고 6족 원소를 포함하는 배리어층; 상기 배리어층 상에 배치되는 이면전극층; 상기 이면전극층 상에 배치되는 광 흡수층; 상기 광 흡수층 상에 배치되는 버퍼층; 상기 버퍼층 상에 배치되는 윈도우층;을 포함한다.Solar cell according to one embodiment includes a substrate; A barrier layer disposed on the substrate and comprising a Group 6 element; A back electrode layer disposed on the barrier layer; A light absorbing layer disposed on the back electrode layer; A buffer layer disposed on the light absorbing layer; And a window layer disposed on the buffer layer.

일 실시예에 따른 태양전지 제조방법은 기판 상에 6족 원소를 포함하는 배리어층을 형성하는 단계; 상기 배리어층 상에 이면전극층을 형성하는 단계; 상기 이면전극층 상에 광 흡수층을 형성하는 단계; 상기 광 흡수층 상에 버퍼층을 형성하는 단계; 상기 버퍼층 상에 윈도우층을 형성하는 단계;를 포함한다.A solar cell manufacturing method according to an embodiment includes forming a barrier layer including a group 6 element on a substrate; Forming a back electrode layer on the barrier layer; Forming a light absorbing layer on the back electrode layer; Forming a buffer layer on the light absorbing layer; And forming a window layer on the buffer layer.

실시예에 따르면, 배리어층이 기판으로부터 광 흡수층으로 확산되는 불순물을 방지하고, 상기 배리어층에 포함된 나트륨이 광 흡수층으로 확산되어 나트륨 도핑효과를 동시에 구현할 수 있는 태양전지를 제공할 수 있다.According to the embodiment, it is possible to provide a solar cell capable of preventing impurities from diffusing the barrier layer from the substrate to the light absorbing layer and simultaneously implementing sodium doping effect by diffusing sodium contained in the barrier layer into the light absorbing layer.

도 1은 실시예에 따른 태양전지를 도시한 단면도이다.
도 2 내지 도 5는 실시예에 따른 태양전지 패널을 제조하는 과정을 도시한 도면들이다.
1 is a cross-sectional view showing a solar cell according to an embodiment.
2 to 5 are views illustrating a process of manufacturing the solar cell panel according to the embodiment.

실시예의 설명에 있어서, 각 기판, 층, 막 또는 전극 등이 각 기판, 층, 막, 또는 전극 등의 "상(on)"에 또는 "아래(under)"에 형성되는 것으로 기재되는 경우에 있어, "상(on)"과 "아래(under)"는 "직접(directly)" 또는 "다른 구성요소를 개재하여 (indirectly)" 형성되는 것을 모두 포함한다. 또한 각 구성요소의 상 또는 아래에 대한 기준은 도면을 기준으로 설명한다. 도면에서의 각 구성요소들의 크기는 설명을 위하여 과장될 수 있으며, 실제로 적용되는 크기를 의미하는 것은 아니다.In the description of the embodiments, where each substrate, layer, film, or electrode is described as being formed "on" or "under" of each substrate, layer, film, or electrode, etc. , "On" and "under" include both "directly" or "indirectly" formed through other components. In addition, the upper or lower reference of each component is described with reference to the drawings. The size of each component in the drawings may be exaggerated for the sake of explanation and does not mean the size actually applied.

도 1은 실시예에 따른 태양전지를 도시한 단면도이다. 도 1을 참조하면, 태양전지 패널은 지지기판(100)과, 배리어층(200), 이면전극층(300), 광 흡수층(400), 버퍼층(500), 고저항 버퍼층(600) 및 윈도우층(700)을 포함한다.1 is a cross-sectional view showing a solar cell according to an embodiment. Referring to FIG. 1, the solar cell panel includes a support substrate 100, a barrier layer 200, a back electrode layer 300, a light absorbing layer 400, a buffer layer 500, a high resistance buffer layer 600, and a window layer ( 700).

상기 지지기판(100)은 플레이트 형상을 가지며, 상기 배리어층(200), 이면전극층(300), 광 흡수층(400), 버퍼층(500), 고저항 버퍼층(600) 및 윈도우층(700)을 지지한다.The support substrate 100 has a plate shape and supports the barrier layer 200, the back electrode layer 300, the light absorbing layer 400, the buffer layer 500, the high resistance buffer layer 600, and the window layer 700. do.

상기 지지기판(100)은 절연체일 수 있다. 상기 지지기판(100)은 유리기판, 폴리머와 같은 플라스틱기판, 또는 금속기판일 수 있다. 이외에, 지지기판(100)의 재질로 알루미나와 같은 세라믹 기판, 스테인레스 스틸, 유연성이 있는 고분자 등이 사용될 수 있다. 상기 지지기판(100)은 투명할 수 있고 리지드하거나 플렉서블할 수 있다.The support substrate 100 may be an insulator. The support substrate 100 may be a glass substrate, a plastic substrate such as a polymer, or a metal substrate. In addition, a ceramic substrate such as alumina, stainless steel, a flexible polymer, or the like may be used as the material of the support substrate 100. The support substrate 100 may be transparent, rigid, or flexible.

상기 지지기판(100) 상에 배리어층(200)이 형성될 수 있다. 상기 배리어층(200)은 Na 및 SeO3를 포함할 수 있고, 100nm 내지 1000nm의 두께로 형성될 수 있다.The barrier layer 200 may be formed on the support substrate 100. The barrier layer 200 may include Na and SeO 3 , and may be formed to a thickness of 100 nm to 1000 nm.

상기 지지기판(100)이 플렉서블한 경우, 상기 지지기판(100)에 포함되어 있는 불순물이 태양전지 제조과정에서 상기 광 흡수층(400)으로 확산되어 신뢰성이 저하될 수 있다. 본 발명의 실시예에 따른 배리어층(200)은 이러한 현상을 방지하는 기능 외에, 나트륨(Na)을 포함하여 형성되어 태양전지의 제조공정 중에 CIGS로 형성된 광 흡수층(400)으로 나트륨이 확산될 수 있는데, 이에 의해 광 흡수층(400)의 전하 농도가 증가하게 될 수 있다. 이는 태양전지의 광전 변환 효율을 향상시킬 수 있는 요인이 될 수 있다.When the support substrate 100 is flexible, impurities included in the support substrate 100 may diffuse into the light absorbing layer 400 in the solar cell manufacturing process, thereby reducing reliability. In addition to the function of preventing the phenomenon, the barrier layer 200 according to the embodiment of the present invention may include sodium (Na) to diffuse sodium into the light absorbing layer 400 formed of CIGS during the manufacturing process of the solar cell. In this case, the charge concentration of the light absorbing layer 400 may be increased. This may be a factor for improving the photoelectric conversion efficiency of the solar cell.

즉, 상기 배리어층(200)은 배리어층 및 광 흡수층으로의 나트륨 도핑 효과를 동시에 구현할 수 있다.That is, the barrier layer 200 may simultaneously implement a sodium doping effect on the barrier layer and the light absorbing layer.

상기 이면전극층(300)은 상기 배리어층(200) 상에 배치된다. 상기 이면전극층(300)은 도전층이다. 상기 이면전극층(300)은 태양전지 중 상기 광 흡수층(400)에서 생성된 전하가 이동하도록 하여 태양전지의 외부로 전류를 흐르게 할 수 있다. 상기 이면전극층(300)은 이러한 기능을 수행하기 위하여 전기 전도도가 높고 비저항이 작아야 한다.The back electrode layer 300 is disposed on the barrier layer 200. The back electrode layer 300 is a conductive layer. The back electrode layer 300 may allow electric current generated in the light absorbing layer 400 of the solar cell to move so that current flows to the outside of the solar cell. In order to perform this function, the back electrode layer 300 should have high electrical conductivity and low specific resistance.

또한, 상기 이면전극층(300)은 CIGS 화합물 형성시 수반되는 황(S) 또는 셀레늄(Se) 분위기 하에서의 열처리 시 고온 안정성이 유지되어야 한다. 또한, 상기 이면전극층(300)은 열팽창 계수의 차이로 인하여 상기 지지기판(100)과 박리현상이 발생되지 않도록 상기 지지기판(100)과 접착성이 우수하여야 한다.In addition, the back electrode layer 300 must maintain high temperature stability during heat treatment under sulfur (S) or selenium (Se) atmosphere accompanying CIGS compound formation. In addition, the back electrode layer 300 should be excellent in adhesion with the support substrate 100 so that peeling does not occur with the support substrate 100 due to a difference in thermal expansion coefficient.

이러한 이면전극층(300)은 몰리브덴(Mo), 금(Au), 알루미늄(Al), 크롬(Cr), 텅스텐(W) 및 구리(Cu)중 어느 하나로 형성될 수 있다. 이 가운데, 특히 몰리브덴(Mo)은 다른 원소에 비해 상기 지지기판(100)과 열팽창 계수의 차이가 적기 때문에 접착성이 우수하여 박리현상이 발생하는 것을 방지할 수 있고 상술한 이면전극층(300)에 요구되는 특성을 전반적으로 충족시킬 수 있다.The back electrode layer 300 may be formed of any one of molybdenum (Mo), gold (Au), aluminum (Al), chromium (Cr), tungsten (W), and copper (Cu). In particular, since molybdenum (Mo) has a smaller difference between the support substrate 100 and the coefficient of thermal expansion than other elements, it is excellent in adhesiveness and can prevent peeling from occurring. Overall required properties can be met.

상기 이면전극층(300)은 두 개 이상의 층들을 포함할 수 있다. 이때, 각각의 층들은 같은 금속으로 형성되거나, 서로 다른 금속으로 형성될 수 있다.The back electrode layer 300 may include two or more layers. In this case, each of the layers may be formed of the same metal, or may be formed of different metals.

상기 이면전극층(300) 상에는 광 흡수층(400)이 형성될 수 있다. 상기 광 흡수층(400)은 p형 반도체 화합물을 포함한다. 더 자세하게, 상기 광 흡수층(400)은 Ⅰ-Ⅲ-Ⅵ족 계 화합물을 포함한다. 예를 들어, 상기 광 흡수층(400)은 구리-인듐-갈륨-셀레나이드계(Cu(In,Ga)Se2;CIGS계) 결정 구조, 구리-인듐-셀레나이드계 또는 구리-갈륨-셀레나이드계 결정 구조를 가질 수 있다. 상기 광 흡수층(400)의 에너지 밴드갭(band gap)은 약 1.1eV 내지 1.2eV일 수 있다.The light absorbing layer 400 may be formed on the back electrode layer 300. The light absorbing layer 400 includes a p-type semiconductor compound. In more detail, the light absorbing layer 400 includes a group I-III-VI compound. For example, the light absorbing layer 400 may be formed of a copper-indium-gallium-selenide-based (Cu (In, Ga) Se 2 ; CIGS-based) crystal structure, copper-indium-selenide-based, or copper-gallium-selenide It may have a system crystal structure. The energy band gap of the light absorbing layer 400 may be about 1.1 eV to 1.2 eV.

버퍼층(500)은 상기 광 흡수층(400) 상에 배치된다. CIGS 화합물을 광 흡수층(400)으로 갖는 태양전지는 p형 반도체인 CIGS 화합물 박막과 n형 반도체인 투명전극층(500) 박막간에 pn 접합을 형성한다. 하지만 두 물질은 격자상수와 밴드갭 에너지의 차이가 크기 때문에 양호한 접합을 형성하기 위해서는 밴드갭이 두 물질의 중간에 위치하는 버퍼층이 필요하다. The buffer layer 500 is disposed on the light absorbing layer 400. The solar cell having the CIGS compound as the light absorbing layer 400 forms a pn junction between the CIGS compound thin film as the p-type semiconductor and the transparent electrode layer 500 thin film as the n-type semiconductor. However, since the two materials have a large difference in lattice constant and band gap energy, a buffer layer having a band gap in between the two materials is required to form a good junction.

버퍼층(500)을 형성하는 물질로는 CdS, ZnS등이 있고 태양전지의 발전 효율 측면에서 CdS가 상대적으로 우수하다. 상기 버퍼층(500)의 에너지 밴드갭은 2.2eV 내지 2.5eV일 수 있다. Materials for forming the buffer layer 500 include CdS, ZnS and the like, and CdS is relatively excellent in terms of power generation efficiency of the solar cell. The energy band gap of the buffer layer 500 may be 2.2 eV to 2.5 eV.

상기 버퍼층(500) 상에 고저항 버퍼층(600)이 배치된다. 상기 고저항 버퍼층(600)은 불순물이 도핑되지 않은 징크 옥사이드(i-ZnO)를 포함한다. 상기 고저항 버퍼층(600)의 에너지 밴드갭은 약 3.1eV 내지 3.3eV이다.The high resistance buffer layer 600 is disposed on the buffer layer 500. The high resistance buffer layer 600 includes zinc oxide (i-ZnO) that is not doped with impurities. The energy band gap of the high resistance buffer layer 600 is about 3.1 eV to 3.3 eV.

상기 윈도우층(700)은 상기 고저항 버퍼층(600) 상에 배치된다. 상기 윈도우층(700)은 투명하며, 도전층이다. 또한, 상기 윈도우층(700)의 저항은 상기 이면전극층(300)의 저항보다 높다.The window layer 700 is disposed on the high resistance buffer layer 600. The window layer 700 is transparent and is a conductive layer. In addition, the resistance of the window layer 700 is higher than the resistance of the back electrode layer 300.

상기 윈도우층(700)은 산화물을 포함한다. 예를 들어, 상기 윈도우층(700)은 징크 옥사이드(zinc oxide), 인듐 틴 옥사이드(induim tin oxide;ITO) 또는 인듐 징크 옥사이드(induim zinc oxide;IZO) 등을 포함할 수 있다.The window layer 700 includes an oxide. For example, the window layer 700 may include zinc oxide, indium tin oxide (ITO), or indium zinc oxide (IZO).

또한, 상기 윈도우층(700)은 알루미늄 도핑된 징크 옥사이드(Al doped zinc oxide;AZO) 또는 갈륨 도핑된 징크 옥사이드(Ga doped zinc oxide;GZO) 등을 포함할 수 있다.In addition, the window layer 700 may include aluminum doped zinc oxide (AZO) or gallium doped zinc oxide (GZO).

본 발명의 실시예에 따른 태양전지에 따르면, 배리어층(200)이 상기 지지기판(100)으로부터 광 흡수층(400)으로 확산되는 불순물을 방지하고, 상기 배리어층(200)에 포함된 나트륨이 광 흡수층(400)으로 확산되어 나트륨 도핑효과를 동시에 구현할 수 있는 태양전지를 제공할 수 있다.
According to the solar cell according to the embodiment of the present invention, the barrier layer 200 prevents impurities from being diffused from the support substrate 100 to the light absorbing layer 400, and sodium contained in the barrier layer 200 is lighted. Diffusion into the absorbing layer 400 may provide a solar cell that can simultaneously implement the sodium doping effect.

도 2 내지 도 5는 실시예에 따른 태양전지의 제조방법을 도시한 단면도들이다. 본 제조방법에 관한 설명은 앞서 설명한 태양전지에 대한 설명을 참고한다. 앞서 설명한 태양전지에 대한 설명은 본 제조방법에 관한 설명에 본질적으로 결합될 수 있다.2 to 5 are cross-sectional views illustrating a method of manufacturing a solar cell according to an embodiment. For a description of the present manufacturing method, refer to the description of the solar cell described above. The description of the solar cell described above may be essentially combined with the description of the present manufacturing method.

도 2를 참조하면, 지지기판(100) 상에 배리어층(200)이 형성될 수 있다. 상기 지지기판(100)은 플렉서블할 수 있다. 상기 배리어층(200)은 Na2SeO3를 포함할 수 있다. 상기 배리어층(200)은 용액(solution) 상태의 스프레이 코팅이나 PVD(Physical Vapor Deposition)의 방법으로 형성될 수 있다.Referring to FIG. 2, a barrier layer 200 may be formed on the support substrate 100. The support substrate 100 may be flexible. The barrier layer 200 may include Na 2 SeO 3 . The barrier layer 200 may be formed by spray coating in a solution state or physical vapor deposition (PVD).

도 3을 참조하면, 상기 배리어층(200) 상에 이면전극층(300)이 형성될 수 있다. 상기 이면전극층(300)은 몰리브덴을 사용하여 증착될 수 있다. 상기 이면전극층(300)은 PVD(Physical Vapor Deposition) 또는 도금의 방법으로 형성될 수 있다.Referring to FIG. 3, a back electrode layer 300 may be formed on the barrier layer 200. The back electrode layer 300 may be deposited using molybdenum. The back electrode layer 300 may be formed by physical vapor deposition (PVD) or plating.

또한, 상기 지지기판(100) 및 이면전극층(300) 사이에 확산방지막 등과 같은 추가적인 층이 개재될 수 있다.In addition, an additional layer such as a diffusion barrier may be interposed between the support substrate 100 and the back electrode layer 300.

다음으로, 상기 이면전극층(300) 상에 광 흡수층(400)이 형성된다. 상기 광 흡수층(400)은 예를 들어, 구리, 인듐, 갈륨, 셀레늄을 동시 또는 구분하여 증발시키면서 구리-인듐-갈륨-셀레나이드계(Cu(In,Ga)Se2;CIGS계)의 광 흡수층(400)을 형성하는 방법과 금속 프리커서 막을 형성시킨 후 셀레니제이션(Selenization) 공정에 의해 형성시키는 방법이 폭넓게 사용되고 있다.Next, the light absorbing layer 400 is formed on the back electrode layer 300. The light absorbing layer 400 may be, for example, copper, indium, gallium, or selenium while simultaneously or separately evaporating a light absorbing layer (Cu (In, Ga) Se 2; CIGS). The method of forming 400 and the method of forming a metal precursor film and forming it by the selenization process are widely used.

금속 프리커서 막을 형성시킨 후 셀레니제이션 하는 것을 세분화하면, 구리 타겟, 인듐 타겟, 갈륨 타겟을 사용하는 스퍼터링 공정에 의해서, 상기 이면전극(200) 상에 금속 프리커서 막이 형성된다.When the metal precursor film is formed and selenization is subdivided, a metal precursor film is formed on the back electrode 200 by a sputtering process using a copper target, an indium target, and a gallium target.

이후, 상기 금속 프리커서 막은 셀레니제이션(selenization) 공정에 의해서, 구리-인듐-갈륨-셀레나이드계(Cu(In,Ga)Se2;CIGS계)의 광 흡수층(400)이 형성된다.Subsequently, the metal precursor film is formed of a copper-indium-gallium-selenide-based (Cu (In, Ga) Se 2; CIGS-based) light absorbing layer 400 by a selenization process.

이와는 다르게, 상기 구리 타겟, 인듐 타겟, 갈륨 타겟을 사용하는 스퍼터링 공정 및 상기 셀레니제이션 공정은 동시에 진행될 수 있다.Alternatively, the copper target, the indium target, the sputtering process using the gallium target, and the selenization process may be performed simultaneously.

이와는 다르게, 구리 타겟 및 인듐 타겟 만을 사용하거나, 구리 타겟 및 갈륨 타겟을 사용하는 스퍼터링 공정 및 셀레니제이션 공정에 의해서, CIS계 또는 CIG계 흡수층(400)이 형성될 수 있다.Alternatively, the CIS-based or CIG-based absorbing layer 400 may be formed by a sputtering process and a selenization process using only a copper target and an indium target, or using a copper target and a gallium target.

상기 광 흡수층(400)이 형성되는 과정에서 상기 배리어층(200)에 포함된 Na이 분리되어 상기 광 흡수층(400)으로 확산될 수 있다. 이에 의해 광 흡수층(400)의 전하 농도가 증가하여 태양전지의 광전 변환 효율을 향상시킬 수 있다.In the process of forming the light absorbing layer 400, Na included in the barrier layer 200 may be separated and diffused into the light absorbing layer 400. As a result, the charge concentration of the light absorbing layer 400 increases to improve the photoelectric conversion efficiency of the solar cell.

도 4를 참조하면, 상기 광 흡수층(400) 상에 황화 카드뮴이 스퍼터링 공정 또는 용액성장법(chemical bath depositon;CBD) 등에 의해서 증착되고, 상기 버퍼층(400)이 형성된다.Referring to FIG. 4, cadmium sulfide is deposited on the light absorbing layer 400 by a sputtering process, a chemical bath depositon (CBD), or the like, and the buffer layer 400 is formed.

이후, 상기 버퍼층(400) 상에 징크 옥사이드가 스퍼터링 공정 등에 의해서 증착되고, 상기 고저항 버퍼층(500)이 형성된다.Thereafter, zinc oxide is deposited on the buffer layer 400 by a sputtering process, and the high resistance buffer layer 500 is formed.

상기 버퍼층(400) 및 상기 고저항 버퍼층(500)은 낮은 두께로 증착된다. 예를 들어, 상기 버퍼층(400) 및 상기 고저항 버퍼층(500)의 두께는 약 1㎚ 내지 약 80㎚이다.The buffer layer 400 and the high resistance buffer layer 500 are deposited to a low thickness. For example, the thickness of the buffer layer 400 and the high resistance buffer layer 500 is about 1 nm to about 80 nm.

도 5를 참조하면, 상기 고저항 버퍼층(600) 상에 윈도우층(700)이 형성된다. 상기 윈도우층(700)은 상기 고저항 버퍼층(600)의 상에 투명한 도전물질이 증착되어 형성된다.Referring to FIG. 5, a window layer 700 is formed on the high resistance buffer layer 600. The window layer 700 is formed by depositing a transparent conductive material on the high resistance buffer layer 600.

이상에서 실시예들에 설명된 특징, 구조, 효과 등은 본 발명의 적어도 하나의 실시예에 포함되며, 반드시 하나의 실시예에만 한정되는 것은 아니다. 나아가, 각 실시예에서 예시된 특징, 구조, 효과 등은 실시예들이 속하는 분야의 통상의 지식을 가지는 자에 의해 다른 실시예들에 대해서도 조합 또는 변형되어 실시 가능하다. 따라서 이러한 조합과 변형에 관계된 내용들은 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.Features, structures, effects, and the like described in the above embodiments are included in at least one embodiment of the present invention, and are not necessarily limited to only one embodiment. Furthermore, the features, structures, effects, and the like illustrated in the embodiments may be combined or modified with respect to other embodiments by those skilled in the art to which the embodiments belong. Therefore, it should be understood that the present invention is not limited to these combinations and modifications.

이상에서 실시예를 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시예에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments, but, on the contrary, It will be understood that various modifications and applications are possible. For example, each component specifically shown in the embodiments can be modified and implemented. It is to be understood that all changes and modifications that come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein.

Claims (9)

기판;
상기 기판 상에 배치되고 6족 원소를 포함하는 배리어층;
상기 배리어층 상에 배치되는 이면전극층;
상기 이면전극층 상에 배치되는 광 흡수층;
상기 광 흡수층 상에 배치되는 버퍼층; 및
상기 버퍼층 상에 배치되는 윈도우층;을 포함하는 태양전지.
Board;
A barrier layer disposed on the substrate and comprising a Group 6 element;
A back electrode layer disposed on the barrier layer;
A light absorbing layer disposed on the back electrode layer;
A buffer layer disposed on the light absorbing layer; And
And a window layer disposed on the buffer layer.
제1항에 있어서,
상기 배리어층은 셀레늄(Se)을 포함하는 태양전지.
The method of claim 1,
The barrier layer comprises a selenium (Se).
제1항에 있어서,
상기 배리어층은 SeO3를 포함하는 태양전지.
The method of claim 1,
The barrier layer is a solar cell comprising SeO 3 .
제1항에 있어서,
상기 배리어층은 Na를 포함하는 태양전지.
The method of claim 1,
The barrier layer is a solar cell containing Na.
제1항에 있어서,
상기 배리어층은 100nm 내지 1000nm의 두께로 형성되는 태양전지 .
The method of claim 1,
The barrier layer is formed of a solar cell having a thickness of 100nm to 1000nm .
제1항에 있어서,
상기 기판은 폴리머를 포함하는 태양전지.
The method of claim 1,
The substrate is a solar cell comprising a polymer.
기판 상에 6족 원소를 포함하는 배리어층을 형성하는 단계;
상기 배리어층 상에 이면전극층을 형성하는 단계;
상기 이면전극층 상에 광 흡수층을 형성하는 단계;
상기 광 흡수층 상에 버퍼층을 형성하는 단계; 및
상기 버퍼층 상에 윈도우층을 형성하는 단계;를 포함하는 태양전지 제조방법.
Forming a barrier layer comprising a Group 6 element on the substrate;
Forming a back electrode layer on the barrier layer;
Forming a light absorbing layer on the back electrode layer;
Forming a buffer layer on the light absorbing layer; And
Forming a window layer on the buffer layer;
제7항에 있어서,
상기 배리어층은 용액 상태의 스프레이 코팅의 방법으로 형성되는 태양전지 제조방법.
The method of claim 7, wherein
The barrier layer is a solar cell manufacturing method formed by the method of spray coating in a solution state.
제7항에 있어서,
상기 배리어층은 나트륨(Na), 셀레늄(Se) 및 산소(O)를 이용하여 형성되는 태양전지 제조방법.
The method of claim 7, wherein
The barrier layer is formed using sodium (Na), selenium (Se) and oxygen (O) solar cell manufacturing method.
KR1020110006525A 2011-01-21 2011-01-21 Solar cell apparatus and method of fabricating the same KR20120085104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110006525A KR20120085104A (en) 2011-01-21 2011-01-21 Solar cell apparatus and method of fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110006525A KR20120085104A (en) 2011-01-21 2011-01-21 Solar cell apparatus and method of fabricating the same

Publications (1)

Publication Number Publication Date
KR20120085104A true KR20120085104A (en) 2012-07-31

Family

ID=46715792

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110006525A KR20120085104A (en) 2011-01-21 2011-01-21 Solar cell apparatus and method of fabricating the same

Country Status (1)

Country Link
KR (1) KR20120085104A (en)

Similar Documents

Publication Publication Date Title
KR101219972B1 (en) Solar cell and preparing method of the same
KR101219948B1 (en) Solar cell apparatus and method of fabricating the same
KR101154786B1 (en) Solar cell apparatus and method of fabricating the same
KR20100109315A (en) Solar cell and method of fabricating the same
KR101283183B1 (en) Solar cell apparatus and method of fabricating the same
KR101219835B1 (en) Solar cell apparatus and method of fabricating the same
KR20130111815A (en) Solar cell apparatus and method of fabricating the same
KR101189415B1 (en) Solar cell apparatus and method of fabricating the same
KR101241708B1 (en) Solar cell apparatus and method of fabricating the same
KR101210046B1 (en) Solar cell and method of fabricating the same
KR101154696B1 (en) Solar cell apparatus and method of fabricating the same
KR101180998B1 (en) Solar cell and method of fabricating the same
KR101220060B1 (en) Solar cell apparatus and method of fabricating the same
KR101305603B1 (en) Solar cell apparatus and method of fabricating the same
KR101273174B1 (en) Solar cell apparatus and method of fabricating the same
KR20120085104A (en) Solar cell apparatus and method of fabricating the same
KR101273123B1 (en) Solar cell apparatus and method of fabricating the same
KR101273093B1 (en) Solar cell and method of fabricating the same
KR101231398B1 (en) Solar cell apparatus and method of fabricating the same
KR101305845B1 (en) Solar cell apparatus and method of fabricating the same
KR101372026B1 (en) Solar cell apparatus and method of fabricating the same
KR20130051219A (en) Solar cell apparatus and method of fabricating the same
KR20120090394A (en) Solar cell apparatus and method of fabricating the same
KR20130072648A (en) Solar cell and method of fabricating the same
KR20130074701A (en) Solar cell apparatus and method of fabricating the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
E601 Decision to refuse application
E801 Decision on dismissal of amendment