KR20120132594A - Cancer gene therapeutic agent through regulation using microRNA - Google Patents

Cancer gene therapeutic agent through regulation using microRNA Download PDF

Info

Publication number
KR20120132594A
KR20120132594A KR1020110050324A KR20110050324A KR20120132594A KR 20120132594 A KR20120132594 A KR 20120132594A KR 1020110050324 A KR1020110050324 A KR 1020110050324A KR 20110050324 A KR20110050324 A KR 20110050324A KR 20120132594 A KR20120132594 A KR 20120132594A
Authority
KR
South Korea
Prior art keywords
gene
cancer
expression vector
ribozyme
promoter
Prior art date
Application number
KR1020110050324A
Other languages
Korean (ko)
Other versions
KR101478869B1 (en
Inventor
이성욱
정진숙
김주현
원유섭
Original Assignee
단국대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 단국대학교 산학협력단 filed Critical 단국대학교 산학협력단
Priority to KR20110050324A priority Critical patent/KR101478869B1/en
Publication of KR20120132594A publication Critical patent/KR20120132594A/en
Application granted granted Critical
Publication of KR101478869B1 publication Critical patent/KR101478869B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • C12N15/861Adenoviral vectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Virology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

PURPOSE: A cancer-specific gene therapeutic agent using microRNA is provided to regulate expression of an expression vector during post-transcription and to reduce side effects. CONSTITUTION: An expression vector contains a promoter, a trans-splicing ribozyme coding DNA which is operatively linked with the promoter and acts in a cancer-specific gene; and a microRNA target sequence coding DNA. The expression vector additionally contains a therapeutic gene or reporter gene. The cancer-specific gene is hTERT(human telomerase reverse transcriptase). The ribozyme is trans-splicing group I intron ribozyme which specifically targets hTERT mRNA. The reporter gene is firefly luciferase gene or renillar luciferase. The promoter is a promoter of PEPCK(phosphoenolpyruvate carboxykinase) gene. The expression vector contains a base sequence selected from sequence numbers 4-9. A pharmaceutical composition for anti-cancer contains the expression vector as an active ingredient.

Description

마이크로RNA를 이용한 조절을 통한 암 특이적 유전자 치료제 {Cancer gene therapeutic agent through regulation using microRNA} Cancer gene therapeutic agent through regulation using microRNA

본 발명은 마이크로 RNA를 이용하여 발현벡터의 발현을 전사 후 과정에서 조절함으로써 암 특이적인 항암효과 및 진단 효과를 갖는 유전자 치료제에 관한 것이다.The present invention relates to a gene therapeutic agent having cancer-specific anticancer and diagnostic effects by controlling the expression of expression vectors in the post-transcriptional process using microRNA.

현재까지의 암 치료는 대부분 외과적 제거(수술)와 방사선 치료를 이용하거나 전신적인 치료가 필요한 경우 항암화학요법을 시행하고 있다. 그러나, 이러한 치료법은 암세포만을 특이적으로 죽이지 못하고 정상세포에도 손상을 주어 이로 인한 이차 감염과 출혈의 위험 등 여러 가지 부작용을 유발한다. 따라서 최근에는 이러한 치료법들과는 개념이 다른 치료법들이 연구되고 있는데 그 중에서 특히 유전자 치료법이 활발히 연구되고 있다.Most of the cancer treatments to date have been performed using surgery (surgery) and radiation therapy, or chemotherapy if systemic treatment is needed. However, these therapies do not specifically kill cancer cells but also damage normal cells, causing various side effects such as secondary infection and risk of bleeding. Therefore, in recent years, therapies that are different from these therapies have been studied. Among them, gene therapies have been actively studied.

유전자 치료(gene therapy)란 통상적인 방법으로는 치료가 곤란한 선천적 또는 후천적 유전자 이상을 유전공학적 방법으로 치료하는 방법을 일컫는다. 구체적으로, 유전자 치료는 선천적 또는 후천적 유전자 결함, 바이러스성 질병, 암 또는 심혈관계 질환 등과 같은 만성 질환의 치료와 예방을 위하여, DNA 및 RNA 등의 유전 물질을 인체 내에 투여하여 치료 단백질을 발현시키거나 특정 단백질의 발현을 억제하도록 하는 치료 방법으로서, 질병의 원인을 유전자 차원에서 해석하여 근본적으로 치료할 수 있기 때문에 난치병의 극복은 물론 기존 의료 방식의 대체 수단으로 기대되고 있는 방법이다.Gene therapy refers to a method of genetically treating a congenital or acquired gene abnormality that is difficult to treat by conventional methods. Specifically, gene therapy may be performed by expressing therapeutic proteins by administering genetic material such as DNA and RNA in the human body to treat and prevent chronic diseases such as congenital or acquired genetic defects, viral diseases, cancer or cardiovascular diseases. As a treatment method to suppress the expression of a specific protein, it is expected to overcome the incurable disease as well as to replace the existing medical methods, since the cause of the disease can be interpreted at the genetic level.

그동안 암세포 특이적인 표적 유전자를 찾아 그것을 제거하거나 그 특정 유전자의 프로모터를 이용하여 독성물질을 암세포 특이적으로 발현시킴으로써 암 세포 사멸을 유도하려는 많은 유전자 치료법들이 시도되어왔지만 각기 한계점과 장단점을 가지고 있다. Many gene therapies have been attempted to induce cancer cell death by finding and removing cancer cell specific target genes or by expressing toxic substances using cancer promoters, but each has its limitations and disadvantages.

구체적으로, CMV나 RSV 대신 조직 특이적(tissue-specific) 프로모터를 쓰는 방법이 고려되고 있으나, 특이성이 높아지는 대신 약 50~300배까지 유전자 발현 기능이 떨어지는 단점(Kuhnnel et al., Cancer Gene Therapy 11:28-40, 2004)을 가지고, 조직 특이적 프로모터를 이용하는 경우 유전자전달 바이러스 벡터 안에 존재시 그 특이성을 잃어버릴 수 있다(Gene Ther. 1996;3:1094, Trends Mol. Med. 2003;9:421). Specifically, a method of using a tissue-specific promoter instead of CMV or RSV has been considered, but the disadvantage of decreasing gene expression function by about 50 to 300 times instead of increasing specificity (Kuhnnel et al., Cancer Gene Therapy 11 : 28-40, 2004) and the use of tissue specific promoters may lose their specificity when present in a transgenic viral vector (Gene Ther. 1996; 3: 1094, Trends Mol. Med. 2003; 9: 421).

한편, 테트라하이메나 써모필라(Tetrahymena thermophila)로부터의 그룹 I 인트론 라이보자임이 실험관 내에서뿐만 아니라 박테리아 나아가 인체 세포 내에서 트랜스-스플라이싱 반응을 수행함으로써 두 별도로 존재하는 전사체를 서로 연결시킬 수 있음이 보고되었다(Been, M. et al., 1986, Cell 47: 207-216; Sullenger, B.A. et al., 1994, Nature 371: 619-622; Jones, J.T., et al., 1996, Nat Med. 2: 643-648).On the other hand, Tetrahymena Thermo pillar (Tetrahymena It has been reported that the group I intron ribozyme from Thermophila can perform trans-splicing reactions not only in vitro but also in bacteria and further in human cells, thereby linking two separate transcripts to each other (Been, M. et Jones, JT, et al., 1996, Nat Med. 2: 643-648).

따라서, 그룹 I 인트론을 기초로 한 트랜스-스플라이싱 라이보자임에 의해 질환과 관련된 유전자 전사체 또는 정상세포에서는 발현이 안 되고 질병 세포에서만 특이적으로 발현되는 특정 RNA가 표적이 된 후 그 RNA가 정상적인 RNA로 보정되거나 또는 새로운 치료용 유전자 전사체로 치환되도록 재 프로그램을 유발함으로써 매우 질환 특이적이며 안전한 유전자 치료 기술이 될 수 있다. 특히, 세포 내 발현되는 RNA를 표적으로 한 후 원하는 유전자 산물로 대치하는 방법이므로 도입하고자 하는 유전자 발현 양이 조절될 수 있다. 또한, 트랜스-스플라이싱 라이보자임은 질환 특이 RNA를 제거함과 동시에 우리가 원하는 치료용 유전자 산물의 발현을 유도할 수 있으므로 치료 효과를 배가시킬 수 있다.Thus, by trans-splicing ribozymes based on group I introns, specific RNAs that are not expressed in disease-related gene transcripts or normal cells but specifically expressed in diseased cells are targeted to the RNA. It can be a very disease specific and safe gene therapy technique by causing the reprogramming to be corrected with normal RNA or replaced with a new therapeutic gene transcript. In particular, since the target RNA is expressed in the cell and replaced with a desired gene product, the amount of gene expression to be introduced can be controlled. In addition, trans-splicing ribozymes can induce expression of therapeutic gene products we desire while eliminating disease specific RNA, thus doubling the therapeutic effect.

hTERT(human Telomerase reverse transcriptase)는 암 세포의 영속성(immortality) 및 증식 (proliferation) 능력을 조절하는 가장 중요한 효소 중의 하나로, 이 텔로머라제(telomerase)는 무한히 복제되는 생식세포, 조혈세포 및 암세포에서 80 내지 90%의 텔로머라제 활성을 가지고 있지만, 암세포 주변의 정상세포들은 그 활성을 가지고 있지 않다(Bryan, T.M. et al., 1999, Curr. Opin. Cell Biol. 11; 318-324). 텔로머라제의 이런 특성을 이용하여 세포 성장에 관여하는 텔로머라제의 억제자를 개발함으로써 암세포의 증식을 억제하려는 시도가 최근 활발히 진행되고 있다 (Bryan, T.M. et al, 1995, Embo J. 14; 4240-4248; Artandi, S.E. et al., 2000, Nat. Med. 6; 852-855).Human Telomerase reverse transcriptase (hTERT) is one of the most important enzymes that regulates cancer cell's immortality and proliferation ability, and this telomerase is found in endlessly replicating germ cells, hematopoietic cells and cancer cells. To telomerase activity, but normal cells around cancer cells do not have that activity (Bryan, TM et al., 1999, Curr. Opin. Cell Biol. 11; 318-324). Attempts have recently been made to inhibit the proliferation of cancer cells by developing telomerase inhibitors involved in cell growth using this property of telomerase (Bryan, TM et al, 1995, Embo J. 14; 4240). -4248; Artandi, SE et al., 2000, Nat. Med. 6; 852-855).

본 발명자들은 암세포에서 발현되지 않는 특정 마이크로RNA에 대한 표적 서열을 라이보자임의 3' UTR 부위에 반복적으로 삽입하여 포함시킴으로써 발현벡터의 발현이 전사 후 과정에서 조절되도록 하면, 정상세포에서의 세포 독성이 나타나는 부작용을 현저하게 감소시키고 종래 기술들에 비하여 암 특이성을 더욱 보강할 수 있으며, 치료 효능도 우수하다는 것을 확인하고, 이를 토대로 본 발명을 완성하였다.
The inventors have repeatedly inserted the target sequence for a specific microRNA not expressed in cancer cells into the 3 'UTR region of the ribozyme so that expression of the expression vector is regulated in the post-transcriptional process. Significantly reduce the side effects that appear and can further enhance cancer specificity compared to the prior art, it was confirmed that the excellent therapeutic efficacy, based on this, the present invention was completed.

본 발명은 프로모터; 상기 프로모터와 작동 가능하게 연결된, 암 특이 유전자에 작용하는 트랜스-스플라이싱 라이보자임 코딩 DNA; 및 상기 라이보자임의 3' UTR 대응 부위에 포함된, 마이크로RNA 표적 서열 코딩 DNA를 포함하고, 상기 마이크로RNA는 암세포에서 발현되지 않는 것인 발현벡터를 제공하고자 한다.The present invention is a promoter; A trans-splicing ribozyme coding DNA that acts on a cancer specific gene, operably linked to said promoter; And a microRNA target sequence coding DNA contained in the 3 ′ UTR corresponding site of the ribozyme, wherein the microRNA is not expressed in cancer cells.

또한, 본 발명은 상기 발현벡터를 유효성분으로 포함하는 항암용 약학 조성물 및 암 진단용 조성물을 제공하고자 한다.In addition, the present invention is to provide an anticancer pharmaceutical composition and cancer diagnostic composition comprising the expression vector as an active ingredient.

또한, 본 발명은 상기 발현벡터를 암 세포에 도입하는 단계; 및 암 세포에서 리포터 단백질을 검출하는 단계를 포함하는 암의 진단을 위한 정보제공방법을 제공하고자 한다.In addition, the present invention comprises the steps of introducing the expression vector to cancer cells; And to provide a method for providing information for the diagnosis of cancer comprising the step of detecting the reporter protein in cancer cells.

또한, 본 발명은 암 특이 유전자에 작용하는 트랜스-스플라이싱 라이보자임 코딩 DNA를 프로모터와 작동 가능하게 연결하는 단계; 및 상기 라이보자임의 3'UTR 대응 부위에 마이크로RNA 표적 서열 코딩 DNA를 포함시키는 단계를 포함하고, 상기 마이크로RNA는 암세포에서 발현되지 않는 것인, 암 치료용 발현벡터 제조방법을 제공하고자 한다. In addition, the present invention includes the steps of operatively linking a trans-splicing ribozyme coding DNA to a promoter that acts on a cancer specific gene; And including a microRNA target sequence coding DNA in the 3′UTR corresponding site of the ribozyme, wherein the microRNA is not expressed in cancer cells.

하나의 양태로서, 본 발명은 프로모터; 상기 프로모터와 작동 가능하게 연결된, 암 특이 유전자에 작용하는 트랜스-스플라이싱 라이보자임 코딩 DNA; 및 상기 라이보자임의 3' UTR 대응 부위에 포함된, 마이크로RNA 표적 서열 코딩 DNA를 포함하고, 상기 마이크로RNA는 암세포에서 발현되지 않는 것인 발현벡터를 제공한다.In one aspect, the invention provides a promoter; A trans-splicing ribozyme coding DNA that acts on a cancer specific gene, operably linked to said promoter; And a microRNA target sequence coding DNA contained in the 3 ′ UTR corresponding site of the ribozyme, wherein the microRNA is not expressed in cancer cells.

본 발명에서는 암세포에서 발현되지 않는 특정 마이크로RNA (microRNA, miRNA)에 대한 표적 서열을 라이보자임의 3' UTR 부위에 반복적으로 삽입하여 포함시킴으로써 발현벡터의 발현이 전사 후 과정에서 조절되도록 하였다. 마이크로RNA 표적 서열은 마이크로RNA의 안티센스 서열일 수 있고, 상기 마이크로RNA 표적 서열은 1개 이상, 바람직하게는 2개 내지 3개 포함될 수 있다. 즉, 암세포가 아닌 세포에서는 마이크로RNA가 발현되어 세포 내 마이크로RNA가 마이크로RNA 표적 서열과 결합하므로, 암 특이 유전자에 작용하는 트랜스-스플라이싱 라이보자임의 발현이 억제되고 불활성화되며, 마이크로RNA를 발현하지 않는 암세포에서는 암 특이 유전자에 작용하는 트랜스-스플라이싱 라이보자임의 발현 및 기능이 활성화되어 암 특이 효과가 더욱 강조된다. In the present invention, by repeatedly inserting the target sequence for a specific microRNA (microRNA, miRNA) not expressed in cancer cells into the 3 'UTR region of the ribozyme, expression of the expression vector is controlled in the post-transcriptional process. The microRNA target sequence may be an antisense sequence of the microRNA, and the microRNA target sequence may include one or more, preferably two to three. That is, in non-cancer cells, microRNAs are expressed so that the intracellular microRNAs bind to the microRNA target sequences, thereby inhibiting and inactivating the expression of trans-splicing ribozymes acting on cancer-specific genes. In non-expressing cancer cells, the expression and function of trans-splicing ribozymes that act on cancer-specific genes are activated to further emphasize cancer-specific effects.

즉, 암 특이 유전자에 작용하는 트랜스-스플라이싱 라이보자임에 있어서, 상기 암 특이 유전자가 암세포 아닌 정상세포에도 존재할 수 있고(예: hTERT의 텔로메라제(telomerase) 활성은 조혈모 세포 및 정상세포에서도 나타날 수 있음); 조직특이적 프로모터를 이용하여 전사 수준에서 암세포 특이적으로 발현을 조절하는 방법에 있어서는, 유전자전달 바이러스 벡터 안에 존재시 조직 특이적 프로모터가 그 특이성을 잃어버릴 수 있는(Gene Ther. 1996;3:1094, Trends Mol. Med. 2003;9:421) 문제점이 있다. 본 발명의 암세포에서 발현되지 않는 특정 마이크로RNA에 대한 표적 서열을 라이보자임의 3' UTR 부위에 반복적으로 삽입하여 포함시킴으로써 발현벡터의 발현이 전사 후 과정에서 조절되도록 한 전략은, 정상세포에서의 세포 독성이 나타나는 부작용을 현저하게 감소시키고 암 특이성을 더욱 보강할 수 있다. That is, in a trans-splicing ribozyme acting on a cancer specific gene, the cancer specific gene may also be present in normal cells rather than cancer cells (e.g., the telomerase activity of hTERT is associated with hematopoietic stem cells and normal cells). May also appear in cells); In a method of controlling cancer cell-specific expression at the transcriptional level using a tissue-specific promoter, the tissue-specific promoter may lose its specificity when present in a transgenic virus vector (Gene Ther. 1996; 3: 1094). , Trends Mol. Med. 2003; 9: 421). The strategy for the expression of the expression vector to be regulated in the post-transcriptional process by repeatedly inserting a target sequence for a specific microRNA not expressed in cancer cells of the present invention into the 3 'UTR region of the ribozyme is a cell in normal cells. Significantly reduce the side effects of toxicity and further enhance cancer specificity.

본 발명에서 마이크로RNA는 19-25 nt 길이의 단일 가닥 RNA 분자로서 내재적 (endogenous) 헤어핀-구조 전사체 (hairpin-shaped transcript) (Bartel, D.P., Cell 116:281-297, 2004; Kim, V.N., Mol. Cells. 19:1-15, 2005)에 의해 생성되고, 표적 서열을 포함하는 mRNA의 3' 비번역 영역 (UTR)에 상보적으로 결합하여 전사 후 유전자 억압자 (post-transcriptional gene suppressor)로서 작용하며, 번역 억제와 mRNA 불안정화를 유도함으로써 표적 유전자를 억제한다. miRNA는 발달, 분화, 증식, 세포사멸 및 물질대사와 같은 다양한 과정에서 중요한 역할을 하는 것으로 알려져 있으며, 암 세포에서는 miRNA들이 거의 발현되지 않는다.In the present invention, the microRNA is a single-stranded RNA molecule of 19-25 nt length, endogenous hairpin-shaped transcript (Bartel, DP, Cell 116: 281-297, 2004; Kim, VN, Mol. It acts to inhibit target genes by inducing translation inhibition and mRNA destabilization. miRNAs are known to play an important role in various processes such as development, differentiation, proliferation, apoptosis and metabolism, and little miRNAs are expressed in cancer cells.

본 발명의 구체적 실시예에서는 특정 마이크로RNA로서 혈액세포 특이적인 miR-181a와 정상 간세포 특이적인 miR-122를 이용하여 라이보자임의 활성에 의한 혈액세포와 정상 간세포에서의 비특이적인 세포사 유도를 억제하고, 발현벡터의 간암 특이적인 발현을 유도하였다. 혈액세포 특이적으로 발현되는 miR181a에 대한 표적 서열(miR-181aT)을 포함한 라이보자임의 경우 혈액세포에서의 비특이적 활성은 억제되고, 간암세포에서의 특이적인 활성을 통한 암세포 치료를 유도함을 확인하였다. 또한 간세포 특이적으로 발현되는 miR122a의 표적 서열(miR-122aT)을 포함한 라이보자임의 경우 정상 간세포에서의 비특이적 활성은 억제되고, 간암세포에서의 특이적인 활성을 통한 암세포 치료를 유도함을 확인하였다. In a specific embodiment of the present invention by using the blood cell-specific miR-181a and normal hepatocyte-specific miR-122 as a specific microRNA inhibits the induction of non-specific cell death in blood cells and normal hepatocytes by the activity of ribozyme, Liver cancer specific expression of the expression vector was induced. In the case of the ribozyme including the target sequence (miR-181aT) for miR181a, which is specifically expressed in blood cells, it was confirmed that nonspecific activity in blood cells is suppressed and cancer cell treatment is induced through specific activity in liver cancer cells. In addition, it was confirmed that the ribozyme including the target sequence of miR122a (miR-122aT) that is specifically expressed in hepatocytes inhibits nonspecific activity in normal hepatocytes and induces cancer cell treatment through specific activity in hepatic cancer cells.

본 발명의 발현벡터는 상기 라이보자임의 3'측 엑손 대응 부위에 연결된, 치료 유전자 또는 리포터 유전자를 추가로 포함할 수 있다.The expression vector of the present invention may further comprise a therapeutic gene or reporter gene, linked to the 3 'side exon corresponding site of the ribozyme.

본 발명에서, "발현벡터"란 적당한 숙주세포에서 목적 단백질 또는 목적 RNA를 발현할 수 있는 벡터로서, 유전자 삽입물이 발현되도록 작동가능하게 연결된 필수적인 조절요소를 포함하는 유전자 작제물을 말한다. 상기 발현 벡터는 바람직하게는 바이러스 벡터일 수 있다. 더욱 바람직하게는 유전자 전달의 높은 효율, 미분화세포로 유전자를 전달하는 능력 및 높은 역가의 바이러스 저장물 제조의 용이성을 가지는 아데노바이러스 벡터일 수 있다. 아데노바이러스 벡터는 복제에 필수적인 일련의 유전자들을 삭제시키고, 프로모터 활성의 수준이 높은 사이토메갈로바이러스(CMV) 또는 로우스 사르코마 바이러스(RSV) 프로모터를 넣어 치료 목적 단백질의 생체 내에서의 높은 발현을 유도할 수 있다.In the present invention, an "expression vector" refers to a gene construct that is capable of expressing a target protein or target RNA in a suitable host cell, and includes a gene regulatory element operably linked to express the gene insert. The expression vector may preferably be a viral vector. More preferably, they may be adenovirus vectors with high efficiency of gene transfer, the ability to transfer genes into undifferentiated cells, and the ease of preparing high titers of viral storage. Adenovirus vectors delete a series of genes essential for replication and induce high expression of the therapeutic protein in vivo with a cytomegalovirus (CMV) or loose sarcoma virus (RSV) promoter with high levels of promoter activity. can do.

본 발명에서 "프로모터"는 적당한 숙주 세포에서 작동 가능하게 연결된 다른 핵산 서열의 발현을 조절하는 핵산 서열을 의미하며, 본 발명에서 "작동가능하게 연결(operably linked)"은 일반적 기능을 수행하도록 핵산 발현조절 서열과 목적하는 단백질 또는 RNA를 코딩하는 핵산 서열이 기능적으로 연결(functional linkage)되어 있는 것을 말한다. 예를 들어 프로모터와 단백질 또는 RNA를 코딩하는 핵산 서열이 작동가능하게 연결되어 코딩서열의 발현에 영향을 미칠 수 있다. 발현 벡터와의 작동적 연결은 당해 기술분야에서 잘 알려진 유전자 재조합 기술을 이용하여 제조할 수 있으며, 부위-특이적 DNA 절단 및 연결은 당해 기술 분야에서 일반적으로 알려진 효소 등을 사용한다.As used herein, "promoter" refers to a nucleic acid sequence that regulates the expression of another nucleic acid sequence operably linked in a suitable host cell, and in the present invention "operably linked" refers to nucleic acid expression to perform a general function. It refers to a functional linkage between a regulatory sequence and a nucleic acid sequence encoding a protein or RNA of interest. For example, a promoter and a nucleic acid sequence encoding a protein or RNA may be operably linked to affect expression of the coding sequence. Operative linkage with expression vectors can be prepared using genetic recombination techniques well known in the art, and site-specific DNA cleavage and ligation employs enzymes and the like generally known in the art.

상기 프로모터는 구성적 또는 유도성일 수 있으며, 바람직하게는 특정한 조직에서 특이적으로 활성화될 수 있으며, 더욱 바람직하게는 암 세포 특이적으로 활성화되는 프로모터일 수 있다. 대표적으로, 간 조직 특이적인 PEPCK(phosphoenolpyruvate carboxykinase) 유전자, 아포리포프로테인 E(apolipoprotein E) 유전자, 혈청 알부민 유전자; 간암 특이적 AFP(alphafetoprotein) 유전자; 대장암 특이적 CEA(carcinoembryonic antigen) 유전자; 또는 전립선암 특이적 PSA(Prostate-specific antigen) 유전자의 프로모터 등이 가능하나 이에 제한되지 않는다. 가장 바람직하게는 간에서의 발현이 가장 명백하게 나타나는 조직 특이성을 보이는 PEPCK 유전자의 프로모터를 사용할 수 있다.The promoter may be constitutive or inducible, preferably may be specifically activated in specific tissues, and more preferably may be a promoter that is specifically activated for cancer cells. Typically, liver tissue specific phosphoenolpyruvate carboxykinase (PEPCK) gene, apolipoprotein E gene, serum albumin gene; Liver cancer specific AFP (alphafetoprotein) gene; Colorectal cancer specific carcinoembryonic antigen (CEA) gene; Or a promoter of prostate-specific antigen (PSA) gene, but is not limited thereto. Most preferably, a promoter of the PEPCK gene that exhibits tissue specificity in which expression in the liver is most evident can be used.

상기 암 특이 유전자에 작용하는 트랜스-스플라이싱 라이보자임은 세포 내 발현되는 특정 암 특이 유전자를 표적으로 하여 트랜스-스플라이싱 반응을 수행한다. 상기 라이보자임은 암 특이 유전자의 mRNA를 인지하여 트랜스-스플라이싱 반응을 수행함으로써 상기 암 특이 유전자를 불활성화시키는 작용을 하는 것이고, 라이보자임의 3'측 엑손 대응 부위에 치료 유전자 또는 리포터 유전자가 연결된 경우에는, 상기 라이보자임은 암 특이 유전자의 mRNA를 인지하여 트랜스-스플라이싱 반응을 수행함으로써 상기 치료 유전자 또는 리포터 유전자를 상기 암 특이 유전자에 연결하는 작용을 할 수 있다. 이러한 작용을 통하여, 암세포 선택적으로 암화 진행 및 세포의 비정상적 증식을 불활성화하고, 암세포 선택적으로 세포사를 유발하여 암을 치료할 수 있고, 또한, 암세포를 선택적으로 진단할 수 있다.Trans-splicing ribozymes that act on the cancer specific genes perform a trans-splicing reaction by targeting specific cancer specific genes expressed in cells. The ribozyme is to inactivate the cancer specific gene by performing a trans-splicing reaction by recognizing the mRNA of the cancer specific gene, and the therapeutic or reporter gene is added to the 3'-side exon corresponding site of the ribozyme. When linked, the ribozyme may act to link the therapeutic gene or reporter gene to the cancer specific gene by performing a trans-splicing reaction by recognizing the mRNA of the cancer specific gene. Through this action, cancer cells can selectively inactivate cancer progression and abnormal proliferation of cells, and cancer cells can be selectively induced to treat cancer, and cancer cells can be selectively diagnosed.

이때 상기 암 특이 유전자는 암 세포에서 특이적으로 발현되는 유전자를 의미하는데, 대표적으로, hTERT(human Telomerase reverse transcriptase), AFP(alphafetoprotein), CEA(carcinoembryonic antigen), PSA(Prostate-specific antigen), 또는 CKAP2(Cytoskeleton-associated protein 2) 등이 가능하지만, 이에 제한되지 않고, 바람직하게는 hTERT일 수 있다.In this case, the cancer-specific gene refers to a gene specifically expressed in cancer cells, typically, human telomerase reverse transcriptase (hTERT), alphafetoprotein (AFP), carcinoembryonic antigen (CEA), prostate-specific antigen (PSA), or Cytoskeleton-associated protein 2 (CKAP2) may be used, but the present invention is not limited thereto, and preferably hTERT.

본 발명의 라이보자임은 암에 특이적 유전자를 표적으로 하여 트랜스-스플라이싱 반응을 수행함으로써 새로운 치료 유전자(또는 리포터 유전자)를 암 특이적 유전자에 연결하는 것이라면 어떠한 것이라도 사용 가능하다. 대표적으로 암에 특이적인 RNA 전사체인 hTERT(human Telomerase reverse transcriptase)의 mRNA를 특이적으로 인지하여 트랜스-스플라이싱하는 능력이 검증된 hTERT 표적 트랜스-스플라이싱 그룹 I 인트론 라이보자임 등을 포함하고, 본 발명의 구체적인 실시예에서는, 테트라하이메나 써모필라(Tetrahymena Thermophila)의 그룹 I 인트론 라이보자임을 사용하였다.
The ribozyme of the present invention can be used as long as it links a new therapeutic gene (or reporter gene) to a cancer specific gene by performing a trans-splicing reaction by targeting a gene specific to cancer. Representatives include hTERT target trans-splicing Group I intron ribozymes, which have demonstrated the ability to specifically recognize and trans-splice the mRNA of hTERT (human telomerase reverse transcriptase), a cancer-specific RNA transcript In a specific embodiment of the present invention, tetrahimena I was used that group I intron See Lai of Thermo pillar (Tetrahymena Thermophila).

본 발명의 "치료 유전자(therapeutic gene)"는 암 세포 내에서 발현되어 치료학적 효과를 나타내는 뉴클레오타이드 서열을 말한다. 예를 들면, 약제감수성 유전자, 세포사멸 유전자, 세포증식 억제 유전자, 세포독성 유전자, 종양 억제인자 유전자, 항원성 유전자, 항신생 혈관 생성 유전자, 사이토카인 유전자 등이 포함되며, 이에 한정되는 것은 아니다. The "therapeutic gene" of the present invention refers to a nucleotide sequence that is expressed in cancer cells to exhibit a therapeutic effect. For example, drug susceptibility genes, apoptosis genes, cytostatic genes, cytotoxic genes, tumor suppressor genes, antigenic genes, antiangiogenic genes, cytokine genes, and the like, are not limited thereto.

상기 약제감수성 유전자(drug-sensitizinggene)는 독성이 없는 전구체(prodrug)를 독성물질로 전환시키는 효소에 대한 유전자로 유전자가 이입된 세포가 사멸하게 되므로 자살 유전자(suicide gene)로도 불린다. 즉, 정상세포에는 독성이 없는 전구체를 전신적으로 투여했을 때 암세포에만 전구체가 독성 대사체(toxic metabolite)로 전환되어 약제에 대한 감수성을 변화시킴으로써 암세포를 파괴시키는 방법이다. 대표적으로 HSV-tk(Herpes simplex virus-thymidine kinase) 유전자와 갠시클로비르(ganciclovir), 대장균의 사이토신 탈아미노효소(cytosine deaminase, CD) 유전자와 5-플루오로시토신(5-fluorocytosine, 5-FC)가 가능하다.The drug-sensitive gene (drug-sensitizing gene) is also called a suicide gene because a cell into which the gene is introduced is killed as a gene for an enzyme that converts a non-toxic precursor (prodrug) into a toxic substance. In other words, when a non-toxic precursor is administered systemically to a normal cell, the precursor is converted into a toxic metabolite only to cancer cells, thereby destroying cancer cells by changing sensitivity to drugs. Typically, HSV-tk (Herpes simplex virus-thymidine kinase) gene, ganciclovir, E. coli cytosine deaminase (CD) gene and 5-fluorocytosine (5-FC) Is possible.

상기 세포사멸 유전자(proapoptotic gene)는 발현되어 프로그램된 세포 소멸을 유도하는 뉴클레오타이드 서열을 말한다. 당업자에게 공지된 세포사멸 유전자로, p53, 아데노바이러스 E3-11.6K (Ad2 및 Ad5에서 유래) 또는 아데노바이러스 E3-10.5K (Ad에서 유래), 아데노바이러스 E4 유전자, p53 경로 유전자 및 카스파제를 코딩하는 유전자가 포함된다.The proapoptotic gene refers to a nucleotide sequence that is expressed to induce programmed cell death. Apoptosis genes known to those skilled in the art, encoding p53, adenovirus E3-11.6K (from Ad2 and Ad5) or adenovirus E3-10.5K (from Ad), adenovirus E4 gene, p53 pathway gene and caspase Genes are included.

상기 세포증식 억제 유전자(cytostatic gene)는 세포 내에서 발현되어 세포 주기 도중에 세포 주기를 정지시키는 뉴클레오타이드 서열을 의미한다. 대표적으로 p21, 망막아세포종 유전자, E2F-Rb 융합 단백질 유전자, 사이클린-종속성 카이네이즈 억제인자를 코딩하는 유전자(예를 들면, p16, p15, p18 및 p19), 성장 중지 특이성 호메오박스(growth arrest specific homeobox, GAX) 유전자 (국제특허출원공개 WO 97/16459호 및 WO 96/30385호) 등이 있다.The cytostatic gene refers to a nucleotide sequence that is expressed in a cell and stops the cell cycle during the cell cycle. Typically p21, retinoblastoma gene, E2F-Rb fusion protein gene, genes encoding cyclin-dependent kinase inhibitors (eg p16, p15, p18 and p19), growth arrest specific homeobox , GAX) genes (WO 97/16459 and WO 96/30385).

상기 세포독성 유전자(cytotoxic gene)는 세포 내에서 발현되어 독성 효과를 나타내는 뉴클레오타이드 서열을 말한다. 일 예로, 슈도모나스 외독소(exotoxin), 리신 독소, 디프테리아 독소 등을 코딩하는 뉴클레오타이드 서열 등이 있다.The cytotoxic gene refers to a nucleotide sequence that is expressed in a cell and exhibits a toxic effect. For example, there are nucleotide sequences encoding Pseudomonas exotoxin, lysine toxin, diphtheria toxin, and the like.

상기 종양 억제인자 유전자(tumor suppressor gene)는 표적 세포 내에서 발현되어 종양 표현형을 억제할 수 있거나 세포사멸을 유도할 수 있는 뉴클레오타이드 서열을 의미한다. 대표적으로 종양 괴사 인자(tumor necrosis factor-α, TNF-α), p53 유전자, APC 유전자, DPC-4/Smad4 유전자, BRCA-1 유전자, BRCA-2 유전자, WT-1 유전자, 망막아세포종 유전자(Lee et al., Nature, 329,642, 1987), MMAC-1 유전자, 선종양 폴립증 코일 단백질(adenomatous polyposis coil protein)(Albertsen et al. 미국특허공보 US 5,783,666호), 결손된 결장 종양 (DCC) 유전자, MMSC-2 유전자, NF-1 유전자, 염색체 3p21.3에 위치한 비인후 종양 억제인자 유전자(Cheng et al. Proc.Nat.Acad.Sci., 95,3042-3047, 1998), MTS1 유전자, CDK4 유전자, NF-1 유전자, NF-2 유전자 및 VHL 유전자가 포함된다.The tumor suppressor gene refers to a nucleotide sequence that can be expressed in a target cell to suppress a tumor phenotype or induce apoptosis. Tumor necrosis factor-α (TNF-α), p53 gene, APC gene, DPC-4 / Smad4 gene, BRCA-1 gene, BRCA-2 gene, WT-1 gene, retinoblastoma gene (Lee) et al., Nature, 329,642, 1987), MMAC-1 gene, adenomatous polyposis coil protein (Albertsen et al. US Pat. No. 5,783,666), missing colon tumor (DCC) gene, MMSC-2 gene, NF-1 gene, nasopharyngeal tumor suppressor gene located on chromosome 3p21.3 (Cheng et al. Proc. Nat. Acad. Sci., 95,3042-3047, 1998), MTS1 gene, CDK4 gene , NF-1 gene, NF-2 gene and VHL gene.

상기 항원성 유전자(antigenic gene)는 표적 세포 내에서 발현되어 면역 시스템에서 인식할 수 있는 세포 표면 항원성 단백질을 생산하는 뉴클레오타이드 서열을 말한다. 당업자에게 공지된 항원성 유전자의 예에는 암태아성 항원 (carcinoembryonic antigen, CEA) 및 p53(Levine, A., 국제특허출원공개 WO 94/02167호)이 포함된다.The antigenic gene refers to a nucleotide sequence that is expressed in target cells to produce cell surface antigenic proteins that can be recognized by the immune system. Examples of antigenic genes known to those skilled in the art include carcinoembryonic antigens (CEAs) and p53 (Levine, A., WO 94/02167).

상기 사이토카인 유전자(cytokine gene)는 세포 내에서 발현되어 사이토카인을 생성하는 뉴클레오타이드 서열을 의미한다. 대표적으로 GM-CSF, 인터류킨(IL-1, IL-2, IL-4, IL-12, IL-10, IL-19,IL-20), 인터페론 α, β, γ(인터페론 α-2b) 및 인터페론 α-2α-1과 같은 융합체 등이 포함된다.The cytokine gene refers to a nucleotide sequence that is expressed in a cell to produce a cytokine. Representatively GM-CSF, interleukin (IL-1, IL-2, IL-4, IL-12, IL-10, IL-19, IL-20), interferon α, β, γ (interferon α-2b) and Fusions such as interferon α-2α-1 and the like.

상기 항신생혈관 생성 유전자(anti-angiogenic gene)는 발현되어 항-신생혈관 생성 인자를 세포밖으로 방출하는 뉴클레오타이드 서열을 말한다. 그 예로 안지오스타틴, 혈관 내피 성장 인자(VEGF)의 억제 인자, 엔도스타틴 등이 포함된다.
The anti-angiogenic gene refers to a nucleotide sequence that is expressed to release anti-angiogenic factors out of the cell. Examples include angiostatin, inhibitors of vascular endothelial growth factor (VEGF), endostatin, and the like.

본 발명의 리포터 유전자는 암 특이 유전자에 작용하는 트랜스-스플라이싱 라이보자임에 의하여 암 특이 유전자에 접합됨으로써 프로모터의 전사 활성에 따라 리포터 단백질로 발현된다. 이에 따라 발현된 리포터 단백질의 활성 또는 양을 측정함으로써 암 세포를 진단할 수 있다. 이때 리포터 유전자는 본 발명이 속하는 분야에서 공지된 것을 사용할 수 있으며, 바람직하게는 LacZ, 클로람페니콜 아세틸 전이효소(CAT: chloramphenicol acetyl transferase), 레닐라 루시퍼라제(Renila luciferase), 반딧불이(firefly) 루시페라제, 적색형광단백질(RFP), 녹색형광단백질(GFP), 분비성 태반 알칼라인 포스파타아제(secreted placental alkaline phosphatase, SEAP) 또는 HSV-tk(Herpes simplex virus-thymidine kinase)를 암호화하는 유전자를 사용할 수 있다.The reporter gene of the present invention is expressed as a reporter protein according to the transcriptional activity of the promoter by conjugation to the cancer specific gene by a trans-splicing ribozyme acting on the cancer specific gene. Cancer cells can be diagnosed by measuring the activity or amount of the reporter protein thus expressed. In this case, the reporter gene may be one known in the art to which the present invention pertains. Preferably, LacZ, chloramphenicol acetyl transferase (CAT), Renila luciferase, and firefly luciferase Genes encoding red fluorescent protein (RFP), green fluorescent protein (GFP), secreted placental alkaline phosphatase (SEAP) or HSV-tk (Herpes simplex virus-thymidine kinase) can be used. .

이러한 리포터 단백질들의 활성은, 반딧불이 루시페라제(de Wet J. et al., Mol. Cell Biol., 7, 725-737, 1987 참조), 레닐라 루시페라제([Lorenz W.W. et al., PNAS 88, 4438-42, 1991) 참조), 클로람페니콜 아세틸 전이효소(Gorman C. et al.,Mol. Cell Biol., 2, 1044-1051, 1982 참조), LacZ(Hall C.V. et al., J. Mol. Appl. Genet., 2,101-109, 1983 참조), 인간 성장 호르몬(Selden R. et al.., Mol. Cell Biol., 6, 3173-3179, 1986 참조), 녹색 형광 단백질(Chalfie M. et al., Science, 263, 802-805, 1994 참조) 및 분비성 태반 알칼린 포스파타아제(Berger, J. et al., Gene, 66, 1-10, 1988 참조)에 대하여 당업자에게 공지되어 있는 방법을 사용하여 측정할 수 있다. 또한, 티미딘 키나제(thymidine kinase)를 리포터 단백질로 한 경우 PET(positron emission tomography) 이미징 법을 이용할 수 있다.
The activity of these reporter proteins is shown by firefly luciferase (see de Wet J. et al., Mol. Cell Biol., 7, 725-737, 1987) and Renilla luciferase (Lorenz WW et al., PNAS). 88, 4438-42, 1991), chloramphenicol acetyl transferase (see Gorman C. et al., Mol. Cell Biol., 2, 1044-1051, 1982), LacZ (Hall CV et al., J. Mol) Genel., 2,101-109, 1983), human growth hormone (see Selden R. et al., Mol. Cell Biol., 6, 3173-3179, 1986), green fluorescent protein (Chalfie M. et. al., Science, 263, 802-805, 1994) and secretory placental alkaline phosphatase (see Berger, J. et al., Gene, 66, 1-10, 1988). It can be measured using the method. In addition, when thymidine kinase is used as a reporter protein, a positron emission tomography (PET) imaging method may be used.

본 발명의 일실시예에서, 본 발명의 발현벡터는 서열번호 4 내지 서열번호 9에서 선택된 염기서열로 표시되는 염기서열을 포함할 수 있고, 상기 프로모터는 서열번호 10 또는 서열번호 11로 표시되는 염기서열을 갖는 것일 수 있으며, 상기 라이보자임 코딩 DNA는 서열번호 12 또는 서열번호 16으로 표시되는 염기서열을 갖는 것일 수 있고, 상기 치료 유전자는 서열번호 13 또는 서열번호 17로 표시되는 염기서열을 갖는 것일 수 있고, 상기 리포터 유전자는 서열번호 14 또는 서열번호 15로 표시되는 염기서열을 갖는 것일 수 있고, 상기 마이크로RNA 표적 서열 코딩 DNA는 서열번호 1 또는 2로 표시되는 염기서열을 갖는 것일 수 있다.In one embodiment of the present invention, the expression vector of the present invention may include a nucleotide sequence represented by a base sequence selected from SEQ ID NO: 4 to SEQ ID NO: 9, the promoter is a base represented by SEQ ID NO: 10 or SEQ ID NO: 11 It may have a sequence, the ribozyme coding DNA may have a nucleotide sequence represented by SEQ ID NO: 12 or SEQ ID NO: 16, the therapeutic gene has a nucleotide sequence represented by SEQ ID NO: 13 or SEQ ID NO: 17 The reporter gene may have a nucleotide sequence represented by SEQ ID NO: 14 or SEQ ID NO: 15, and the microRNA target sequence coding DNA may have a nucleotide sequence represented by SEQ ID NO: 1 or 2.

구체적으로, 서열번호 4는 CMV Rib-TK-mir181aT(2x), 서열번호 5는 PEPCK Rib-TK-mir181aT(2x), 서열번호 6은 CMV hRib TK-mir122T(3x), 서열번호 7은 PEPCK hRib-TK-mir122T(3x), 서열번호 8은 CMV mRib-TK-mir122T(3x), 서열번호 9는 PEPCK mRib-TK-mir122T(3x)의 서열이다. 서열번호 10은 CMV 프로모터, 서열번호 11은 PEPCK 프로모터 서열이며, 서열번호 12는 hTERT 표적화 라이보자임 코딩 DNA 서열, 서열번호 16은 mTERT 표적화 라이보자임 코딩 DNA 서열이고, 서열번호 13 및 17은 tk 유전자 서열이다. 서열번호 14는 반딧불이 루시페라제 서열이고, 서열번호 15는 레닐라 루시페라제 서열이다. Specifically, SEQ ID NO: 4 is CMV Rib-TK-mir181aT (2x), SEQ ID NO: 5 is PEPCK Rib-TK-mir181aT (2x), SEQ ID NO: 6 is CMV hRib TK-mir122T (3x), and SEQ ID NO: 7 is PEPCK hRib -TK-mir122T (3x), SEQ ID NO: 8 is CMV mRib-TK-mir122T (3x), SEQ ID NO: 9 is the sequence of PEPCK mRib-TK-mir122T (3x). SEQ ID NO: 10 is a CMV promoter, SEQ ID NO: 11 is a PEPCK promoter sequence, SEQ ID NO: 12 is an hTERT targeting ribozyme coding DNA sequence, SEQ ID NO: 16 is an mTERT targeting ribozyme coding DNA sequence, and SEQ ID NOs: 13 and 17 are tk Gene sequence. SEQ ID NO: 14 is a firefly luciferase sequence, and SEQ ID NO: 15 is a lenilla luciferase sequence.

또하나의 양태로서, 본 발명은 상기 발현벡터를 유효성분으로 포함하는 항암용 약학 조성물, 및 암을 치료하는 방법을 제공한다. 구체적으로 상기 방법은 본 발명의 발현벡터를 암 환자에게 투여하는 단계를 포함할 수 있다. 상기 항암용 약학 조성물은 암세포가 아닌 세포에서는 세포독성을 갖지 않는 것이다. 구체적으로, 암세포가 아닌 세포에서는 세포 내 마이크로RNA가 마이크로RNA 표적 서열과 결합하여, 암 특이 유전자에 작용하는 트랜스-스플라이싱 라이보자임이 불활성화되는 것이다. 본 발명의 구체적 실시예에서, 조직 특이적이고 암세포에서는 발현되지 않는 마이크로RNA에 대한 표적 서열을 포함시킴으로써, 마이크로RNA가 발현되는 정상 조직에서는 라이보자임의 활성이 저해되고, 암세포에서의 라이보자임 활성은 매우 특이적으로 증가하였으며, 간암 세포의 세포사도 효과적으로 유도하는 것을 확인하였다. As another aspect, the present invention provides an anticancer pharmaceutical composition comprising the expression vector as an active ingredient, and a method for treating cancer. Specifically, the method may include administering the expression vector of the present invention to a cancer patient. The anticancer pharmaceutical composition does not have cytotoxicity in cells other than cancer cells. Specifically, in non-cancer cells, intracellular microRNA binds to the microRNA target sequence, thereby inactivating the trans-splicing ribozymes acting on cancer specific genes. In a specific embodiment of the present invention, by including a target sequence for microRNA that is tissue specific and not expressed in cancer cells, the activity of ribozyme is inhibited in normal tissues where the microRNA is expressed, and the ribozyme activity in cancer cells is It was specifically increased, and it was confirmed that the induction of cell death of liver cancer cells effectively.

본 발명의 항암용 약학적 조성물은 투여를 위해서 상기 기재한 유효 성분 이외에 추가로 약제학적으로 허용 가능한 담체를 1종 이상 포함하여 약제학적 조성물로 바람직하게 제제화할 수 있다.The anticancer pharmaceutical composition of the present invention may be preferably formulated into a pharmaceutical composition including one or more pharmaceutically acceptable carriers in addition to the active ingredients described above for administration.

본 발명의 조성물에 포함되는 약제학적으로 허용되는 담체는 제제시에 통상적으로 이용되는 것으로서, 액상 용액으로 제제화되는 조성물에 있어서 허용 가능한 약제학적 담체로는, 멸균 및 생체에 적합한 것으로서, 식염수, 멸균수, 링거액, 완충 식염수, 알부민 주사용액, 덱스트로즈 용액, 말토 덱스트린 용액, 글리세롤, 에탄올 및 이들 성분 중 1성분 이상을 혼합하여 사용할 수 있으며, 필요에 따라 항산화제, 완충액, 정균제 등 다른 통상의 첨가제를 첨가할 수 있다. 또한, 희석제, 분산제, 계면활성제, 결합제 및 윤활제를 부가적으로 첨가하여 수용액, 현탁액, 유탁액 등과 같은 주사용 제형, 환약, 캡슐, 과립 또는 정제로 제제화할 수 있으며, 표적 기관에 특이적으로 작용할 수 있도록 표적 기관 특이적 항체 또는 기타 리간드를 상기 담체와 결합시켜 사용할 수 있다.The pharmaceutically acceptable carrier included in the composition of the present invention is commonly used in the preparation, and the acceptable pharmaceutical carrier in the composition formulated into a liquid solution is sterile and biocompatible, and is saline, sterile water. , Ringer's solution, buffered saline solution, albumin injection solution, dextrose solution, maltodextrin solution, glycerol, ethanol and one or more of these components can be mixed and used as needed, and other conventional additives such as antioxidants, buffers, bacteriostatic agents, etc. Can be added. In addition, diluents, dispersants, surfactants, binders, and lubricants may be additionally added to formulate into injectable formulations, pills, capsules, granules, or tablets, such as aqueous solutions, suspensions, emulsions, and the like, which will act specifically on target organs. Target organ specific antibodies or other ligands can be used in combination with the carriers.

본 발명의 조성물은 다양한 종양 세포에 대하여 항종양 효능을 나타내므로, 본 발명의 약제학적 조성물은 종양과 관련된 다양한 질병 또는 질환, 예컨대 뇌암, 위암, 폐암, 유방암, 난소암, 간암, 기관지암, 비인두암, 후두암, 식도암, 췌장암, 방광암, 전립선암, 대장암, 결장암, 골암, 피부암, 갑상선암, 부갑상선암, 요관암 및 자궁경부암 등의 치료에 이용될 수 있다.Since the composition of the present invention exhibits antitumor efficacy against various tumor cells, the pharmaceutical composition of the present invention can be used for various diseases or diseases related to tumors such as brain cancer, stomach cancer, lung cancer, breast cancer, ovarian cancer, liver cancer, Can be used for the treatment of cancer of the head and neck, larynx cancer, esophageal cancer, pancreatic cancer, bladder cancer, prostate cancer, colon cancer, colon cancer, osteocarcinoma, skin cancer, thyroid cancer, papillary cancer, ureter cancer and cervical cancer.

본 발명의 약제학적 조성물은 비경구 투여가 바람직하고, 예컨대 정맥내 투여, 복강내 투여, 종양내 투여, 근육내 투여, 피하 투여, 또는 국부 투여를 이용하여 투여할 수 있으나, 이에 한정되는 것은 아니다. 예를 들면, 난소암에서 복강내로 투여하는 경우 및 간암에서 문맥으로 투여하는 경우에는 주입 방법으로 투여할 수 있고, 유방암 및 두경부암의 경우에는 종양 매스에 직접 주사하여 투여할 수 있으며, 결장암의 경우에는 관장으로 직접 주사하여 투여할 수 있고, 방광암의 경우에는 카테터 내로 직접 주사하여 투여할 수 있다.The pharmaceutical composition of the present invention is preferably parenteral administration, and may be administered using, for example, intravenous administration, intraperitoneal administration, intratumoral administration, intramuscular administration, subcutaneous administration, or topical administration, but is not limited thereto. . For example, intraperitoneal administration in ovarian cancer and in the portal vein in liver cancer can be administered by infusion method, in the case of breast cancer and head and neck cancer can be administered by injection directly into the tumor mass, in the case of colon cancer It can be administered by injection directly into the enema, in the case of bladder cancer can be administered by injection directly into the catheter.

본 발명 항암용 약학적 조성물의 투여량은 질환의 종류, 질환의 중증도, 조성물에 함유된 유효 성분 및 다른 성분의 종류 및 함량, 제형의 종류 및 환자의 연령, 체중, 일반 건강 상태, 성별 및 식이, 투여 시간, 투여 경로 및 조성물의 분비율, 치료기간, 동시 사용되는 약물을 비롯한 다양한 인자에 따라 조절될 수 있다.The dosage of the anticancer pharmaceutical composition of the present invention may be determined by the type of the disease, the severity of the disease, the type and amount of the active ingredient and other ingredients contained in the composition, the type of the dosage form, and the age, weight, general state of health, sex and diet of the patient. It can be adjusted according to various factors including the time of administration, the route of administration and the rate of secretion of the composition, the duration of treatment, and the drugs used simultaneously.

본 발명의 약학적 조성물은 단독으로, 또는 외과적 수술요법 등의 보조 치료 방법들과 병행하여 사용할 수 있다. 본 발명의 조성물과 함께 이용될 수 있는 화학 요법제(chemotherapeutic agent)는 시스플라틴(cisplatin), 카르보플라틴 carboplatin), 프로카르바진(procarbazine), 메클로레타민(mechlorethamine), 시클로포스파미드(cyclophosphamide), 이포스파미드 (ifosfamide), 멜팔란(melphalan), 클로라부실(chlorambucil), 비술판(bisulfan), 니트로소우레아 (nitrosourea), 디악티노마이신(dactinomycin), 다우노루비신(daunorubicin), 독소루비신(doxorubicin), 블레오마이신(bleomycin), 플리코마이신(plicomycin), 마이토마이신(mitomycin), 에토포시드(etoposide), 타목시펜(tamoxifen), 택솔(taxol), 트랜스플라티눔(transplatinum), 5-플루오로우라실(5-fluorouracil), 빈크리스틴(vincristin), 빈블라스틴(vinblastin) 및 메토트렉세이트(methotrexate) 등을 포함한다. The pharmaceutical composition of the present invention can be used alone or in combination with adjuvant treatment methods such as surgical surgery. Chemotherapeutic agents that can be used with the compositions of the invention include cisplatin, carboplatin carboplatin, procarbazine, mechlorethamine, cyclophosphamide ), Ifosfamide, melphalan, chlorambucil, bisulfan, nitrosourea, diactinomycin, daunorubicin, doxorubicin, doxorubicin (doxorubicin), bleomycin, blecomycin, plicomycin, mitomycin, etoposide, tamoxifen, taxol, transplatinum, 5- 5-fluorouracil, vincristin, vinblastin, methotrexate, and the like.

본 발명의 조성물과 함께 이용될 수 있는 방사 요법은 X-선 조사 및 γ-선 조사 등이다. 바람직하게는 갠시클로비르(ganciclovir)와 병용하여 사용한다.
Radiation therapy that can be used with the composition of the present invention is X-ray irradiation, γ-ray irradiation, and the like. It is preferably used in combination with ganciclovir.

또하나의 양태로서, 본 발명은 상기 리포터 유전자를 포함하는 발현벡터를 유효성분으로 포함하는 암 진단용 조성물, 및 암 진단을 위한 정보를 제공하는 방법을 제공한다. 구체적으로 상기 방법은 상기 리포터 유전자를 포함하는 본 발명의 발현벡터를 암 세포에 도입하는 단계; 및 암 세포에서 리포터 단백질을 검출하는 단계를 포함할 수 있다. As another aspect, the present invention provides a composition for diagnosing cancer comprising the expression vector including the reporter gene as an active ingredient, and a method for providing information for diagnosing cancer. Specifically, the method comprises the steps of introducing the expression vector of the present invention comprising the reporter gene into cancer cells; And detecting the reporter protein in cancer cells.

본 발명의 리포터 유전자는 마이크로RNA를 발현하지 않는 암세포에서만 암 특이 유전자에 작용하는 트랜스-스플라이싱 라이보자임에 의하여 암 특이 유전자에 접합됨으로써 프로모터의 전사 활성에 따라 리포터 단백질로 발현되고, 이에 따라 발현된 리포터 단백질의 활성 또는 양을 측정함으로써 암세포만을 선택적으로 진단할 수 있다. 리포터 단백질의 활성 또는 양 측정은 상술한 당업계에 공지된 방법을 사용할 수 있다.The reporter gene of the present invention is expressed as a reporter protein according to the transcriptional activity of the promoter by conjugation to the cancer specific gene by trans-splicing ribozymes acting on the cancer specific gene only in cancer cells that do not express the microRNA. Only cancer cells can be selectively diagnosed by measuring the activity or amount of the expressed reporter protein. Determination of the activity or amount of the reporter protein may use methods known in the art described above.

본 발명에 의해 진단될 수 있는 암 또는 종양은 특별히 제한되지 않으며, 바람직하게는, 위암, 폐암, 유방암, 난소암, 간암, 기관지암, 비인두암, 후두암, 췌장암, 방광암, 대장암, 결장암, 자궁경부암, 뇌암, 전립선암, 골암, 피부암, 갑상선암, 부갑상선암 또는 요관암이며, 가장 바람직하게는 간암이다.The cancer or tumor that can be diagnosed by the present invention is not particularly limited, and preferably, gastric cancer, lung cancer, breast cancer, ovarian cancer, liver cancer, bronchial cancer, nasopharyngeal cancer, laryngeal cancer, pancreatic cancer, bladder cancer, colon cancer, colon cancer, uterus Cervical cancer, brain cancer, prostate cancer, bone cancer, skin cancer, thyroid cancer, parathyroid cancer or ureter cancer, most preferably liver cancer.

본 발명의 구체적 일실시예에 따르면, miR181a+인 세포에서 모두 리포터 활성이 최대 60% 이상 현격히 감소된 반면 miR181a-인 세포에서는 리포터 활성이 모두 miR181a+ cell 경우보다 현격히 증가되었다(도 2 및 3). 또한, 리포터 구조물의 3'-UTR에 122aT가 삽입된 경우 miR-122a에 의해 리포터 유전자의 발현이 현저히 줄어드는 것을 확인할 수 있었으며 대조군인 16T가 삽입된 경우는 그렇지 않은 것을 확인하였다(도 19). 이러한 결과는 본 발명의 발현벡터를 이용하여 생체 내 암 세포 진단에 활용할 수 있음을 보여준다.
According to a specific embodiment of the present invention, all of the reporter activity in miR181a + cells was significantly reduced by up to 60% or more, while in miR181a-in cells, all of the reporter activities were significantly increased than in miR181a + cells (FIGS. 2 and 3). In addition, when 122aT was inserted into the 3'-UTR of the reporter construct, it was confirmed that miR-122a significantly reduced the expression of the reporter gene, and when the control group 16T was inserted, it was confirmed that it was not. These results show that the expression vector of the present invention can be used for diagnosis of cancer cells in vivo.

또하나의 양태로서, 본 발명은 암 특이 유전자에 작용하는 트랜스-스플라이싱 라이보자임 코딩 DNA를 프로모터와 작동 가능하게 연결하는 단계; 및 상기 라이보자임의 3'UTR 대응 부위에 마이크로RNA 표적 서열 코딩 DNA를 포함시키는 단계를 포함하고, 상기 마이크로RNA는 암세포에서 발현되지 않는 것인, 암 치료용 발현벡터 제조방법을 제공한다. 상기 방법은 상기 라이보자임의 3'측 엑손 대응 부위에 치료 유전자 또는 리포터 유전자를 연결하는 단계를 추가로 포함할 수 있다.
In another aspect, the present invention provides a method of activating a trans-splicing ribozyme coding DNA that acts on a cancer specific gene with a promoter; And including the microRNA target sequence coding DNA in the 3′UTR corresponding site of the ribozyme, wherein the microRNA is not expressed in cancer cells. The method may further comprise linking a therapeutic or reporter gene to the 3 'side exon corresponding site of the ribozyme.

본 발명을 이용하면, 암세포에서 발현되지 않는 특정 마이크로RNA에 대한 표적 서열을 라이보자임의 3' UTR 부위에 반복적으로 포함시킴으로써 발현벡터의 발현이 전사 후 과정에서 조절되도록 하여, 정상세포에서 세포 독성이 나타나는 부작용을 현저하게 감소시키고 종래 기술들에 비하여 암 특이성을 더욱 보강할 수 있으며, 암 세포 특이적으로 치료 유전자를 도입함으로써 암 치료 효능도 우수한 장점이 있다. 또한, 암 특이적으로 암 진행 여부를 진단할 수 있는 진단제 및 생체내 영상화제로 이용할 수도 있다.
Using the present invention, by repeatedly including the target sequence for a particular microRNA that is not expressed in cancer cells in the 3 'UTR region of the ribozyme, the expression of the expression vector is regulated in the post-transcriptional process, thereby preventing cytotoxicity in normal cells. Significantly reduce side effects and reinforce the cancer specificity compared to the prior art, there is an advantage of excellent cancer treatment efficacy by introducing a therapeutic gene specifically for cancer cells. In addition, it can be used as a diagnostic agent and an in vivo imaging agent that can diagnose cancer progress specifically cancer.

도 1은 Rib21AS의 3'-UTR 부위에 miR-181aT 서열을 2번 또는 3번 연속적으로 반복하여 XhoI 부위에 삽입시킨 구조물, 및 음성 대조군으로서 스크램블 삽입시킨 구조물을 도시한다.
도 2는 miR181a+인 Jurkat, TF-1a, HeLa 세포에서 CRF-181aT (CMV Rib-F.luc-miR181aT)에 의한 리포터 활성을 비교한 그래프이다.
도 3은 miR181a-인 Hep3B, HepG2, MCF7 세포에서 CRF-181aT에 의한 리포터 활성을 비교한 그래프이다.
도 4는 TK 유전자가 태깅된 Rib21AS의 3'-UTR 부위에 miR-181aT 서열을 2번 또는 3번 연속적으로 반복하여 BstBI 부위에 삽입시킨 구조물을 도시한다.
도 5는 miR181a+인 TF-1a 세포에서 CRT(x2) (CMV Rib-TK-miR181aT(x2)), CRT(x3) (CMV Rib-TK-miR181aT(x3))에 의한 세포사 유도 활성을 비교한 그래프이다.
도 6은 miR181a-인 Hep3B, HepG2 세포에서 CRT-181aT에 의한 세포사 유도 활성을 비교한 그래프이다.
도 7은 TK 유전자가 태깅된 라이보자임 (hTERT를 특이적으로 치환할 수 있는 트랜스-스플라이싱 라이보자임)의 3'-UTR 부위에 조혈 세포 전구체 특이적 마이크로 RNA인 miR-181a에 대한 안티센스 서열 (miR-181aT, 5'-ACTCAGCGACAGCGTTGAATGTT-3')을 2번 또는 3번 연속적으로 반복하여 삽입시킨 구조물을 CMV 프로모터 하에 발현시킬 수 있는 아데노바이러스 (Ad CMV Rib-TK-miR181aT(2x), Ad CMV Rib-TK-miR181aT(3x))와 대조군 아데노바이러스 (CMV 프로모터하에서 TK 태깅된 라이보자임을 발현하는 바이러스 벡터; Ad CMV Rib-TK, CMV 프로모터하에서 TK 유전자를 발현하는 바이러스 벡터; Ad CMV-TK)의 모식도이다.
도 8은 TK 유전자가 태깅된 라이보자임 (hTERT를 특이적으로 치환할 수 있는 트랜스-스플라이싱 라이보자임) 의 3’-UTR 부위에 조혈 세포 전구체 특이적 마이크로 RNA인 miR-181a에 대한 안티센스 서열 (miR-181aT, 5'-ACTCAGCGACAGCGTTGAATGTT -3')를 2번 또는 3번 연속적으로 반복하여 삽입시킨 구조물을 PEPCK 프로모터 하에 발현시킬 수 있는 아데노바이러스 (Ad PEPCK Rib-TK-miR181aT(2x), Ad CMV Rib-TK-miR181aT(3x))와 대조군 아데노바이러스 (PEPCK 프로모터하에서 TK 태깅된 라이보자임을 발현하는 바이러스 벡터; Ad PEPCK Rib-TK, PEPCK 프로모터하에서 TK 유전자를 발현하는 바이러스 벡터; Ad PEPCK-TK)로 구축한 구조물의 모식도이다.
도 9는 miR181a-인 Hep3B, HepG2, Hela cell에서 CRT(Ad CMV Rib-TK)에 의한 세포사 유도 활성을 비교한 그래프이다.
도 10은 Hep3B 세포에 각각의 아데노바이러스를 50MOI 감염시키고 48시간 후에 RT-PCR을 수행한 결과이다.
도 11은 Hep3B 세포 (간암)를 3×106개 세포 양으로 비장 내로 이식된 종양 (동소 다발성 간암 모델)에 PRT(Ad PEPCK Rib-TK), PRT-miR181(Ad PEPCK Rib-TK-miR181aT(2x)) (1×109 v.p.)를 주입하고, 대조군은 PBS, PT(Ad PEPCK-TK) (1×109 v.p.) 바이러스를 주입한 후 종양 무게를 나타낸 그래프이다.
도 12는 1.0×109 pfu양의 PT(Ad PEPCK-TK), PRT(Ad PEPCK Rib-TK), PRT-miR181(Ad PEPCK Rib-TK-miR181aT(2x)) 바이러스를 종양이 없는 정상 쥐에 주입시킨 후 10일 동안 GCV를 투입해준 후 간의 모양과 간에서 나오는 효소의 정도를 측정한 그래프이다.
도 13은 마우스에서 적출해낸 간 조직의 사진이다.
도 14는 현미경으로 관찰한 마우스의 간 전체 사진이다.
도 15는 리포터 유전자 (Renillar luciferase)의 3'-UTR에 miR-122aT 염기서열을 3번 삽입시킨 구조물 (TK-R.luc-miR122aT/ TK-R.luc-Let 7a_대조군)의 모식도 및 마우스 간암세포에서 miR-122a 효과를 비교한 그래프이다.
도 16은 U6 프로모터, 7SL 프로모터 뒤에 인간 pre122a (hsa-pre-miR122a), 마우스 pre122a (mmu-pre-122a)를 붙인 구조물 및 3'UTR에 122aT, 16T, MCS 부위를 갖는 리포터 유전자 (Renilla Luciferase)의 구조물을 도시한다.
도 17은 마우스와 인간 HCC 세포주 (Hepa 1-6, HepG2)에서 miR-122의 존재 여부에 따른 U6 프로모터 및 7SL 프로모터와 관련된 마이크로 RNA 효과를 도시한 그래프이다.
도 18은 대조군으로 사용하기 위한 변이체 122at 시리즈 구조물의 모식도 및 각각의 발현 정도를 나타낸 그래프이다.
도 19는 인간, 마우스 HCC 세포주인 HepG2와 Hepa 1-6에서 리포터 분석을 수행한 그래프이다.
도 20은 인간 TERT 표적화 T/S 라이보자임 (hTERT +21)과 마우스 TERT 표적화 T/S 라이보자임 (hTERT +67)의 3'-UTR 부위에 각각 miR-122aT 또는 mut miR-122aT 서열을 3번 연속적으로 반복하여 삽입시킨 구조물을 CMV 프로모터 하에 발현시킬 수 있는 발현 벡터의 모식도이다.
도 21은 hRibTK-122aT, hRibTK-mut122aT, mRibTK-122aT, mRibTK-mut122aT를 간세포 특이적으로 발현하는 PEPCK 프로모터 뒤에 삽입하여 제작한 PEPCK-hRib-TK-122T, PEPCK-hRib-TK-mut122T, PEPCK-mRib-TK-122T, PEPCK-mRib-TK-mut122T의 모식도이다.
도 22는 마우스 세포 (mTERT+)인 Hepa 1-6와 NIH 3T3 세포에서 mCRT (CMV mRib-TK-122T(3x))의 RT-PCR 및 시퀀싱 결과를 도시한다.
도 23은 인간 세포 (hTERT+)인 Huh7 세포에서 hCRT-122at(CMV hRib-TK-122T(3x))의 RT-PCR 및 시퀀싱 결과를 도시한다.
도 24는 hTERT+이면서 miR122a+인 Huh7 세포에 CMV mRib-TK-122T(3x)를 형질주입시 표적 부위를 갖지 않는 야생 (CMV-mRibTK)나 CMV mRib-TK-mut 122T(3x)와 miR122a의 TK의 발현을 비교한 사진이다.
도 25는 또한 AntimiR-122a (Anti 122a)를 처리했을 때 CMV mRib-TK-122T(3x)에 의한 TK 발현 억제를 나타낸 그래프이다.
도 26은 마우스 HCC 세포인 Hepa 1-6 (mTERT+, miR122a-)에서 mmu-pre122a와 mmu-mut-pre122a를 각각 처리하여 CMV mRib-TK-122T(3x)에 의한 TK 유전자의 발현을 확인한 그래프이다.
도 27은 Mir-122aT가 함유된 간암 특이적 라이보자임의 암세포 치료제로서의 가능성을 검증하기 위하여 Hepa1-6 세포 (간암)를 3×106 세포 양으로 비장 내로 이식된 종양 (동소 다발성 간암 모델)에 재조합체 아데노바이러스인 Ad-CMV mRib-TK-122T(3x), Ad-CMV mRib-TK-mut 122T(3x) (1×108 v.p.)를 i.v로 주입한 후 종양 무게를 나타낸 그래프이다.
도 28은 Ad-CMV mRib-TK-122T(3x)가 정상 세포에 독성을 나타내는지 알아보기 위해 1.0×108 VP양의 Ad-CMV mRib-TK-122T(3x), Ad-CMV mRib-TK-mut 122T(3x), PBS를 종양이 없는 정상 쥐에 주입시킨 후 10일 동안 GCV를 투입하고 간의 모양과 간에서 나오는 효소의 정도를 측정한 그래프이다.
도 29는 마우스에서 적출해낸 간 조직을 제시한 사진이다.
1 shows a construct in which the miR-181aT sequence is repeatedly inserted two or three times in a XhoI region into a 3′-UTR region of Rib21AS, and a scrambled construct as a negative control.
Figure 2 is a graph comparing the reporter activity by CRF-181aT (CMV Rib-F.luc-miR181aT) in Jurkat, TF-1a, HeLa cells miR181a +.
3 is a graph comparing reporter activity by CRF-181aT in Hep3B, HepG2, and MCF7 cells, miR181a-.
Figure 4 shows a structure in which the miR-181aT sequence was repeatedly inserted two or three times in a 3st-UTR region of Rib21AS tagged with the TK gene and inserted into the BstBI region.
5 is a graph comparing cell death induction activity by CRT (x2) (CMV Rib-TK-miR181aT (x2)), CRT (x3) (CMV Rib-TK-miR181aT (x3)) in TF-1a cells with miR181a + to be.
Figure 6 is a graph comparing the cell death induced activity by CRT-181aT in Hep3B, HepG2 cells miR181a-.
FIG. 7 shows miR-181a, a hematopoietic cell precursor specific microRNA at the 3′-UTR region of a TK gene tagged ribozyme (a trans-splicing ribozyme capable of specifically replacing hTERT) Adenovirus (Ad CMV Rib-TK-miR181aT (2x), capable of expressing a construct in which the antisense sequence (miR-181aT, 5'-ACTCAGCGACAGCGTTGAATGTT-3 ') was repeatedly inserted two or three times under the CMV promoter, Ad CMV Rib-TK-miR181aT (3x)) and control adenovirus (viral vector expressing TK tagged ribozyme under CMV promoter; Ad CMV Rib-TK, viral vector expressing TK gene under CMV promoter; Ad CMV- It is a schematic diagram of TK).
FIG. 8 shows miR-181a, a hematopoietic cell precursor specific microRNA at the 3′-UTR site of a ribozyme tagged with TK gene (a trans-splicing ribozyme capable of specifically replacing hTERT) Adenovirus (Ad PEPCK Rib-TK-miR181aT (2x), capable of expressing a construct in which the antisense sequence (miR-181aT, 5'-ACTCAGCGACAGCGTTGAATGTT-3 ') was repeatedly inserted two or three times under the PEPCK promoter, Viral vectors expressing Ad CMV Rib-TK-miR181aT (3x) and control adenovirus (TK tagged ribozymes under PEPCK promoter; viral vectors expressing TK gene under Ad PEPCK Rib-TK, PEPCK promoter; Ad PEPCK- It is a schematic diagram of the structure constructed with TK).
9 is a graph comparing cell death induction activity by CRT (Ad CMV Rib-TK) in Hep3B, HepG2, and Hela cells of miR181a-.
Figure 10 shows the result of RT-PCR 48 hours after 50MOI infection of each adenovirus to Hep3B cells.
FIG. 11 shows PRTs (Ad PEPCK Rib-TK), PRT-miR181 (Ad PEPCK Rib-TK-miR181aT (2 ×) in tumors transplanted into the spleen with Hep3B cells (liver cancer) in the amount of 3 × 10 6 cells )) (1 × 109 vp) is injected, and the control group is a graph showing tumor weight after injection of PBS, PT (Ad PEPCK-TK) (1 × 109 vp) virus.
Figure 12 shows injection of normal mice without tumors in amounts of 1.0 × 10 9 pfu of PT (Ad PEPCK-TK), PRT (Ad PEPCK Rib-TK), PRT-miR181 (Ad PEPCK Rib-TK-miR181aT (2x)) After the injection of GCV for 10 days after the measurement of the shape of the liver and the amount of enzyme coming out of the liver is a graph.
Fig. 13 is a photograph of liver tissue extracted from a mouse.
14 is a picture of the liver of the mouse observed under a microscope.
15 is a schematic diagram and mouse of the construct (TK-R.luc-miR122aT / TK-R.luc-Let 7a_control) in which the miR-122aT sequence was inserted three times into the 3'-UTR of the reporter gene (Renillar luciferase) This is a graph comparing miR-122a effect in liver cancer cells.
FIG. 16 shows a construct with the U6 promoter, a human pre122a (hsa-pre-miR122a) followed by a 7SL promoter, a mouse pre122a (mmu-pre-122a), and a reporter gene (Renilla Luciferase) having a 122aT, 16T, MCS site at 3'UTR. Shows the structure of.
FIG. 17 is a graph depicting microRNA effects associated with the U6 promoter and the 7SL promoter with and without miR-122 in mouse and human HCC cell lines (Hepa 1-6, HepG2).
18 is a graph showing the schematic diagram and the degree of expression of each of the variants 122at series structure for use as a control.
19 is a graph of reporter analysis in human and mouse HCC cell lines HepG2 and Hepa 1-6.
20 shows miR-122aT or mut miR-122aT sequences at the 3′-UTR sites of human TERT targeting T / S ribozyme (hTERT +21) and mouse TERT targeting T / S ribozyme (hTERT +67), respectively. It is a schematic diagram of an expression vector capable of expressing the construct inserted three times in succession under the CMV promoter.
Figure 21 shows the PEPCK-hRib-TK-122T, PEPCK-hRib-TK-mut122T, PEPCK-h prepared by inserting hRibTK-122aT, hRibTK-mut122aT, mRibTK-122aT, mRibTK-mut122aT after the PEPCK promoter expressing hepatocyte-specific It is a schematic diagram of mRib-TK-122T and PEPCK-mRib-TK-mut122T.
22 shows RT-PCR and sequencing results of mCRT (CMV mRib-TK-122T (3 ×)) in Hepa 1-6 and NIH 3T3 cells, mouse cells (mTERT +).
FIG. 23 depicts RT-PCR and sequencing results of hCRT-122at (CMV hRib-TK-122T (3 ×)) in Huh7 cells, human cells (hTERT +).
FIG. 24 shows TK of wild (CMV-mRibTK) or CMV mRib-TK-mut 122T (3x) and miR122a that do not have a target site when transfected with CMV mRib-TK-122T (3x) in Huh7 cells that are hTERT + and miR122a + It is a photograph comparing expression.
25 is also a graph showing inhibition of TK expression by CMV mRib-TK-122T (3x) when treated with AntimiR-122a (Anti 122a).
Figure 26 is a graph confirming the expression of the TK gene by CMV mRib-TK-122T (3x) by treatment of mmu-pre122a and mmu-mut-pre122a in Hepa 1-6 (mTERT +, miR122a-), mouse HCC cells .
FIG. 27 shows recombination of Hepa1-6 cells (liver cancer) into tumors implanted into the spleen in an amount of 3 × 10 6 cells (in situ multiple liver cancer model) to demonstrate the potential of Mir-122aT-containing liver cancer specific ribozyme as a cancer cell therapy. Tumor weight after injection of Ad-CMV mRib-TK-122T (3x) and Ad-CMV mRib-TK-mut 122T (3x) (1 × 108 vp), a sieve adenovirus.
Figure 28 shows Ad-CMV mRib-TK-122T (3x), Ad-CMV mRib-TK-122T (3x), Ad-CMV mRib-TK- in an amount of 1.0 x 108 VP to determine whether Ad-CMV mRib-TK-122T (3x) is toxic to normal cells. After injecting mut 122T (3x), PBS into normal tumor-free mice, GCV was injected for 10 days and the shape of the liver and the level of enzymes from the liver were measured.
29 is a photograph showing liver tissue extracted from a mouse.

이하 본 발명을 실시예를 통하여 보다 상세하게 설명한다. 그러나. 이들 실시예는 본 발명을 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.
Hereinafter, the present invention will be described in more detail with reference to examples. But. These examples are for illustrative purposes only and the scope of the present invention is not limited to these examples.

실험 방법Experimental Method

(1) miR-181aT, miR-122aT 함유 hTERT 표적화 라이보자임의 클로닝(1) Cloning of miR-181aT, miR-122aT containing hTERT targeting ribozymes

CMV 프로모터 또는 PEPCK 프로모터를 이용하는 트랜스-스플라이싱(T/S) 라이보자임 (hTERT 표적화 T/S 라이보자임 또는 mTERT 표적화 T/S 라이보자임)의 3'-UTR에 miR-181aT (miR-181a 표적 서열, ACTCAGCGACAGCGTTGAATGTT: 서열번호 1) 또는 miR-122aT (miR-122a 표적 서열, ACAAACACCATTGTCAC ACTCCA:서열번호 2)를 BstB1(CMV-T/S 라이보자임) 또는 Not1(PEPCK-T/S 라이보자임)으로 단일 컷팅 클로닝하였다.MiR-181aT (miR) to 3'-UTR of trans-splicing (T / S) ribozyme (hTERT targeted T / S ribozyme or mTERT targeted T / S ribozyme) using CMV promoter or PEPCK promoter -181a target sequence, ACTCAGCGACAGCGTTGAATGTT: SEQ ID NO: 1) or miR-122aT (miR-122a target sequence, ACAAACACCATTGTCAC ACTCCA: SEQ ID NO: 2) was converted to BstB1 (CMV-T / S ribozyme) or Not1 (PEPCK-T / S lysine) Single cut cloning).

(2) 리포터 분석 (루시페라제 분석)(2) Reporter Analysis (Luciferase Analysis)

35 mm 디쉬에 형질주입한 각각 세포를 1x 수동 용해 완충액 (Dual luciferase Kit, promega)을 사용하여 용해시킨 후 상층액 20 ㎕를 LARII (Luciferase assay reagent II)와 스탑 앤 글로 리에이전트 믹스 (Stop & Glo reagent mix; Stop & Glo 20㎕ + Stop & Glo buffer 1㎖)를 사용하여 F.Luci, R.Luci 값을 측정하였다. 지연 시간은 3초, 통합 시간은 10초로 하고 감수성 수준은 각각의 세포에 알맞게 60%로 설정하였다.Cells transfected into 35 mm dishes were lysed using 1x manual luciferase kit (promega) and 20 μl of supernatant was added to LARII and Stop & Glo Agent Mix (Stop & Glo). F.Luci and R.Luci were measured using a reagent mix; 20 μl of Stop & Glo + 1 ml of Stop & Glo buffer). The delay time was 3 seconds, the integration time was 10 seconds, and the sensitivity level was set to 60% as appropriate for each cell.

(3) TK 분석(3) TK analysis

35 mm 디쉬에 각각의 발현벡터 구조물을 GFP 발현 벡터와 공동-형질주입한 후 24h, 72h에 각각 GCV(갠시클로비르)를 처리하였다. 형질주입 후 96h에 형광 현미경을 사용하여 GFP를 발현하는 세포의 수를 측정하였다. 각각 측정된 세포의 수는 GCV를 처리하지 않은 세포의 GFP 스팟으로 보정하였다.Each expression vector construct was co-transfected with a GFP expression vector in a 35 mm dish and treated with GCV (gancyclovir) at 24 h and 72 h, respectively. At 96 h after transfection, the number of cells expressing GFP was measured using a fluorescence microscope. The number of cells measured each was corrected with GFP spots of cells not treated with GCV.

(4) MTS(4) MTS

세포를 96 웰 플레이트 (TPP)에 104개의 세포를 시딩한 후 1일 후에, Ad-TK (자살 유전자인 HSVTK 유전자를 발현하는 아데노바이러스 벡터), Ad-Rib-TK (TERT를 표적하며 3' 엑손으로 TK를 발현하는 트랜스-스플라이싱 라이보자임 발현 아데노바이러스 벡터), Ad-LacZ (LacZ를 발현하는 아데노바이러스 벡터), Ad-Rib-TK-miRT (TERT를 표적하며 TK를 3' 엑손으로 가지는 트랜스-스플라이싱 라이보자임의 3’UTR에 마이크로 RNA에 대한 표적서열을 가진 아데노바이러스 벡터)를 각각 감염시켰다. 바이러스 감염 다음 날부터 5일동안 GCV가 함유된 배지를 2일에 한 번씩 갈아 주었다. 5일 후 CellTiter 96®AQueous ONE Solution Cell Proliferation assay(Promega)을 각 배지에 20%로 첨가하여 96웰에 각 웰 당 100㎕로 처리하여 마이크로플레이트 리더 모델 550 (Microplate reader model 550; BioRad)으로 490 ㎚ 파장으로 측정하여 세포의 생존률을 관찰하였다.
One day after seeding the cells in 96 well plates (TPP) 10 4 cells, Ad-TK (adenovirus vector expressing the HSVTK gene, a suicide gene), Ad-Rib-TK (targeting 3 'TTER) Trans-splicing ribozyme expressing adenovirus vectors expressing TK with exons, Ad-LacZ (adenovirus vectors expressing LacZ), Ad-Rib-TK-miRT (target TTER and TK to 3 'exons) 3'UTR of trans-splicing ribozyme having a) was infected with an adenovirus vector having a target sequence for micro RNA. The medium containing GCV was changed every other day for 5 days from the day following virus infection. After 5 days, CellTiter 96 ® AQueous ONE Solution Cell Proliferation assay (Promega) was added to each medium at 20% and treated with 100 μl per well in 96 wells and 490 with Microplate reader model 550 (BioRad). Viability of the cells was observed by measuring at the wavelength of nm.

실시예Example 1. 혈액 세포 특이 마이크로  1. Blood cell specific micro RNARNA 에 대한 표적 서열 (Target sequence for miRmiR -181-181 aTaT )을 함유한 Containing) 라이보자임에Libozyme 의한 간암 세포 특이적인 활성 검증 Hepatocellular carcinoma specific activity verification

실시예Example 1-1. 혈액 세포 특이 마이크로  1-1. Blood cell specific micro RNARNA 에 대한 표적 서열 (Target sequence for miRmiR -181-181 aTaT )을 함유한 Containing) 라이보자임에Libozyme 의한 간암 세포 특이적인 리포터 유전자 발현 유도 검증 Hepatocellular Cell Specific Reporter Gene Expression Induction Verification

간암 특이적이나 혈액 세포에선 활성이 없는 라이보자임 개발을 위하여 Rib21AS (hTERT를 특이적으로 치환할 수 있는 트랜스-스플라이싱 라이보자임) 의 3'-UTR 부위에 조혈 세포 전구체 특이적 마이크로 RNA인 miR-181a (PNAS 2007;104:2750, Leukemia Res. 2006;30:643, Science 2004;303:83) 에 대한 안티센스 서열 (miR-181aT, 서열번호 1)를 2번 또는 3번 연속적으로 반복하여 삽입시킨 구조물과 음성 대조군으로서 스크램블 서열 (서열번호 3: 5'-ACTAGTGAATCCCCCGGGCTGCAGGAATTCGATATCAAGCTTATCGATACCGTCGACCTCGAG-3')을 삽입시킨 구조물을 제작하였고 이러한 라이보자임 구조물을 CMV 혹은 PEPCK 프로모터 하에 발현시킬 수 있는 발현 벡터를 제작하였다 (CMV-Rib21AS-miRT, PEPCK-Rib21AS-miRT). 리포터 유전자로는 반딧불이 루시페라제 유전자를 삽입하였다 (CMV Rib-F.luc-miR181aT(x2), CMV Rib-F.luc-miR181aT(x3), CMV Rib-F.luc-scramble) (도 1).Hematopoietic cell precursor-specific microRNA at the 3'-UTR site of Rib21AS (a trans-splicing ribozyme that can specifically substitute hTERT) for the development of liver cancer-specific but inactive blood cells The antisense sequence (miR-181aT, SEQ ID NO: 1) for miR-181a (PNAS 2007; 104: 2750, Leukemia Res. 2006; 30: 643, Science 2004; 303: 83) was repeated two or three times in succession. A construct was constructed in which the inserted construct and the scrambled sequence (SEQ ID NO: 3: 5'-ACTAGTGAATCCCCCGGGCTGCAGGAATTCGATATCAAGCTTATCGATACCGTCGACCTCGAG-3 ') were inserted as a negative control, and an expression vector capable of expressing the ribozyme construct under the CMV or PEPCK promoter was prepared. CMV-Rib21AS-miRT, PEPCK-Rib21AS-miRT). As a reporter gene, the firefly luciferase gene was inserted (CMV Rib-F.luc-miR181aT (x2), CMV Rib-F.luc-miR181aT (x3), CMV Rib-F.luc-scramble) (Fig. 1). .

miR-181aT가 2 카피 또는 3 카피 들어가 있는 hTERT 표적 트랜스-스플라이싱 라이보자임 (CRF-181aT; CMV Rib-F.luc-miR181aT)을 miR181a+인 다양한 혈액 세포와 HeLa 세포 및 miR181a-인 다양한 간암세포와 MCF7 세포에 형질주입하여 과연 리포터 유전자 발현이 miR-181a의 발현도와 반비례하게 유도되는지 검증하였다. 대조군으로써 miRT대신에 스크램블 서열이 삽입되어 있는 오리지날 라이보자임 (CRF-scramble; CMV Rib-F.luc-scramble) 및 hTERT 발현과 상관없이 루시페라제를 발현하는 CMV-Fluc 등을 형질주입 후 유도되는 리포터 활성 (firefly luciferase)을 상호 비교하였다. hTERT target trans-splicing ribozyme (CRF-181aT; CMV Rib-F.luc-miR181aT) containing 2 or 3 copies of miR-181aT, a variety of hepatic cancers with HeLa cells and miR181a- Cells and MCF7 cells were transfected to verify whether reporter gene expression was inversely induced with miR-181a expression. Induction after transfection of the original ribozyme (CRF-scramble; CMV Rib-F.luc-scramble) with scramble sequence instead of miRT and luciferase-expressing CMV-Fluc regardless of hTERT expression The reporter activity (firefly luciferase) was compared with each other.

miR181a+인 Jurkat, TF-1a, HeLa 세포에서 모두 CRF-181aT(CMV Rib-F.luc-miR181aT) 2 카피 또는 3 카피에 의한 리포터 활성이 모두 현격히 감소되었다. CRF (CMV Rib-F.luc) 및 CRF-스크램블 (CMV Rib-F.luc-scramble)에 의해 유도되는 리포터 활성과 비교시 CRF-181aT (CMV Rib-F.luc-miR181aT)에 의해 최대 60% 이상 리포터 활성이 감소되었다 (도 2).Reporter activity by 2 copies or 3 copies of CRF-181aT (CMV Rib-F.luc-miR181aT) was significantly reduced in Jurkat, TF-1a, and HeLa cells, miR181a +. Up to 60% by CRF-181aT (CMV Rib-F.luc-miR181aT) compared to reporter activity induced by CRF (CMV Rib-F.luc) and CRF-Scramble (CMV Rib-F.luc-scramble) Abnormal reporter activity was reduced (FIG. 2).

반면에 miR181a-인 Hep3B, HepG2, MCF7 세포에서 CRF-181aT에 의한 리포터 활성이 2 카피 또는 3 카피 모두 miR181a+ cell 경우보다 현격히 증가되었다. CRF (CMV Rib-F.luc)에 의해 유도되는 리포터 활성과 비교시 CRF-181aT (CMV Rib-F.luc-miR181aT)에 의해 각각 100%의 리포터 활성을 보이며 대조군인 CRF-스크램블 (CMV Rib-F.luc-scramble) 벡터 및 오리지날 라이보자임 벡터와 비교시 거의 차이가 없었다. 또한, CRF-스크램블 (CMV Rib-F.luc-scramble) 벡터와 오리지날 라이보자임 (CMV Rib-F.luc) 벡터 간의 비교 시 차이가 없음을 확인함으로써 추가적인 서열에 의한 비특이적인 작용이 아닌 miR-181aT에 의한 특이적인 결과임을 확인하였다 (도 3).On the other hand, CRF-181aT reporter activity in miR181a-in Hep3B, HepG2, and MCF7 cells was significantly increased in both 2 and 3 copies of miR181a + cells. Compared with the reporter activity induced by CRF (CMV Rib-F.luc), each showed 100% reporter activity by CRF-181aT (CMV Rib-F.luc-miR181aT) and the control group CRF-scramble (CMV Rib- F.luc-scramble) vector and original ribozyme vector showed little difference. In addition, the comparison between the CRF-scramble (CMV Rib-F.luc-scramble) vector and the original ribozyme (CMV Rib-F.luc) vector showed no difference, indicating that miR- was not a nonspecific action by additional sequences. It was confirmed that this is a specific result by 181aT (FIG. 3).

이로써 혈액 세포 특이적으로 발현되고 간암 세포에선 발현이 거의 안 되는 마이크로 RNA에 대한 표적 서열을 트랜스-스플라이싱 라이보자임 발현 벡터에 삽입한 새로운 라이보자임 벡터를 개발하였으며 이러한 벡터에 의해 라이보자임의 발현을 보다 간암 특이적으로 발현시킬 수 있음을 검증하였다.
This resulted in the development of a new ribozyme vector in which the target sequences for microRNAs that are specifically expressed in blood cells and rarely in liver cancer cells were inserted into trans-splicing ribozyme expression vectors. It was verified that arbitrary expression can be expressed more specifically liver cancer.

실시예Example 1-2. 혈액 세포 특이 마이크로  1-2. Blood cell specific micro RNARNA 에 대한 표적 서열 (Target sequence for miRmiR -181-181 aTaT )을 함유한 Containing) 라이보자임에Libozyme 의한 간암 세포 특이적인  Caused by liver cancer cell specific 세포사Cell death 유도 검증 Induction verification

TK 유전자가 태깅된 라이보자임 (hTERT를 특이적으로 치환할 수 있는 트랜스-스플라이싱 라이보자임, Rib21AS) 의 3'-UTR 부위에 조혈 세포 전구체 특이적 마이크로 RNA인 miR-181a에 대한 안티센스 서열 (miR-181aT, 서열번호 1)를 2번 또는 3번 연속적으로 반복하여 삽입시킨 구조물을 CMV 혹은 PEPCK 프로모터 하에 발현시킬 수 있는 발현 벡터를 제작하였다 (CMV Rib-TK-miR181aT(x2), CMV Rib-TK-miR181aT(x3), PEPCK Rib-TK-miR181aT(x2), PEPCK Rib-TK-miR181aT(x3))(도 4).Antisense against miR-181a, a hematopoietic cell precursor specific microRNA at the 3'-UTR site of the TK gene tagged ribozyme (trans-splicing ribozyme capable of specifically replacing hTERT, Rib21AS) An expression vector capable of expressing a construct in which the sequence (miR-181aT, SEQ ID NO: 1) was repeatedly inserted two or three times under the CMV or PEPCK promoter was prepared (CMV Rib-TK-miR181aT (x2), CMV). Rib-TK-miR181aT (x3), PEPCK Rib-TK-miR181aT (x2), PEPCK Rib-TK-miR181aT (x3)) (Figure 4).

miR-181aT를 삽입한 라이보자임 벡터가 과연 hTERT를 발현하지만 miR-181a는 발현하지 않는 간암세포에서 특이적으로 세포사를 유도하고, miR-181a를 발현하는 혈관 세포에서는 세포사를 유도하는 활성이 억제되는지 관찰하기 위하여, CMV Rib-TK / PEPCK Rib-TK 벡터와 상호 비교하였다. 위에 제조한 구조물을 TF-1a, HepG2, Hp3B 세포에 CMV-GFP 벡터와 공동-형질주입하여 GCV 처리 후 상대적으로 녹색 세포의 상대량을 GCV를 처리하지 않은 대조군과 비교하여 관찰하였다.
The ribozyme vector inserted with miR-181aT indeed induces cell death in hepatocellular carcinoma cells expressing hTERT but not miR-181a, and inhibits cell death-inducing activity in vascular cells expressing miR-181a. In order to observe whether or not, we compared with CMV Rib-TK / PEPCK Rib-TK vector. The constructs prepared above were co-transfected with CMV-GFP vectors in TF-1a, HepG2, and Hp3B cells, and the relative amounts of green cells after GCV treatment were observed in comparison with controls not treated with GCV.

miR181a+인 TF-1a 세포에서 CRT(x2) (CMV Rib-TK-miR181aT(x2)), CRT(x3) (CMV Rib-TK-miR181aT(x3))에 의한 세포사 유도 활성이 2 카피 또는 3 카피 모두 현격히 감소되었다. CRT(CMV Rib-TK) 벡터는 CT(CMV-TK) 벡터와 비교하여 어느 정도 세포사 유도 활성을 보이나, miR-181aT가 삽입 되어진 벡터의 경우는 그 활성이 현저히 억제되는 것을 확인할 수 있었다. PEPCK 프로모터에 의해 발현이 유도되는 라이보자임 같은 경우 프로모터의 활성 자체가 억제되어 모든 구조물에서 세포사를 유도하지 못하는 것을 확인하였다 (도 5).Cell death-inducing activity by CRT (x2) (CMV Rib-TK-miR181aT (x2)), CRT (x3) (CMV Rib-TK-miR181aT (x3)) in TF-1a cells with miR181a + is either 2 or 3 copies Significantly reduced. The CRT (CMV Rib-TK) vector showed some degree of cell death-inducing activity compared with the CT (CMV-TK) vector, but the miR-181aT inserted vector was found to significantly inhibit the activity. In the case of the ribozyme expression is induced by the PEPCK promoter it was confirmed that the activity of the promoter itself is inhibited to induce cell death in all structures (Fig. 5).

반면에 miR181a-인 Hep3B, HepG2 세포에서 CRT-181aT에 의한 세포사 유도 활성이 2 카피 또는 3 카피 모두 유지되었다. miR-181aT가 삽입된 라이보자임 벡터의 세포사 유도 활성과 오리지날 라이보자임의 활성을 비교하여 관찰한 결과 두 간암 세포 모두에서 매우 높은 세포사를 유도하는 것을 확인하였다. PEPCK 프로모터에 의해 발현되는 라이보자임의 경우도 위의 혈관 세포에서와는 달리 매우 높은 세포사 유도 활성을 나타내는 것을 확인하였다. 따라서, 간암 특이적 프로모터를 이용한 라이보자임의 발현 유도와 miR-181aT에 의한 발현벡터의 발현 조절에 의하여 매우 효율적인 간암 세포 특이적 세포사를 유도할 수 있음을 확인하였다 (도 6).On the other hand, CRT-181aT induced cell death-inducing activity in both miR181a- and Hep3B and HepG2 cells. As a result of comparing the cell death induction activity of the miR-181aT-inserted ribozyme vector and the activity of the original ribozyme, it was confirmed that very high cell death was induced in both liver cancer cells. In the case of the ribozyme expressed by the PEPCK promoter, it was confirmed that unlike the above vascular cells show very high cell death inducing activity. Therefore, it was confirmed that highly efficient liver cancer cell-specific cell death can be induced by inducing expression of ribozyme using a liver cancer specific promoter and controlling expression of an expression vector by miR-181aT (FIG. 6).

이로써, 혈액 세포 특이적으로 발현되고 간암 세포에선 발현이 거의 안 되는 마이크로 RNA에 대한 표적 서열을 삽입한 새로운 라이보자임 벡터를 제조하였으며 또한, 간암 특이적인 프로모터에 의하여 발현이 유도되는 벡터에 의해 간암 세포 세포사를 간암 특이적으로 유도시킬 수 있음을 검증하였다.
As a result, a new ribozyme vector was prepared by inserting a target sequence for microRNA, which is specifically expressed in blood cells and rarely expressed in liver cancer cells, and was also expressed by a vector induced by expression of a liver cancer specific promoter. It was verified that cell cell death can be specifically induced by liver cancer.

실시예Example 1-3.  1-3. MirMir -181-181 aTaT 가 함유된 간암 특이적 라이보자임Cancer-specific ribozyme containing of 발현하는  Expressive 아데노바Adenova 이러스 벡터 제조Virus vector manufacturing

1) CMV 프로모터 하에 TK 유전자가 태깅되어 있으며 miR-181aT가 함유된 hTERT 특이 라이보자임을 발현할 수 있는 아데노바이러스 벡터 제조;1) preparation of an adenoviral vector capable of expressing a TK gene under the CMV promoter and expressing hTERT specific ribozymes containing miR-181aT;

TK 유전자가 태깅된 라이보자임 (hTERT를 특이적으로 치환할 수 있는 트랜스-스플라이싱 라이보자임) 의 3'-UTR 부위에 조혈 세포 선구체 특이적 마이크로 RNA인 miR-181a에 대한 안티센스 서열 (miR-181aT, 서열번호 1)를 2번 또는 3번 연속적으로 반복하여 삽입시킨 구조물을 CMV 프로모터 하에 발현시킬 수 있는 아데노바이러스 (Ad CMV Rib-TK-miR181aT(2x), Ad CMV Rib-TK-miR181aT(3x))와 대조군 아데노바이러스 (CMV 프로모터하에서 TK 태깅된 라이보자임을 발현하는 바이러스 벡터; Ad CMV Rib-TK, CMV 프로모터하에서 TK 유전자를 발현하는 바이러스 벡터; Ad CMV-TK) 등을 제작하였다 (도 7).Antisense sequence for miR-181a, a hematopoietic cell precursor specific microRNA at the 3'-UTR site of a ribozyme tagged with the TK gene (a trans-splicing ribozyme capable of specifically replacing hTERT) Adenovirus (Ad CMV Rib-TK-miR181aT (2x), Ad CMV Rib-TK-) capable of expressing a construct in which (miR-181aT, SEQ ID NO: 1) was repeatedly inserted two or three times under the CMV promoter miR181aT (3x)) and a control adenovirus (viral vector expressing TK tagged ribozyme under CMV promoter; Ad CMV Rib-TK, viral vector expressing TK gene under CMV promoter; Ad CMV-TK) were prepared. (FIG. 7).

2) 간조직 특이적 프로모터 하에 TK 유전자가 태깅되어 있으며 miR-181aT가 함유된 hTERT 특이 라이보자임을 발현할 수 있는 아데노바이러스 벡터 제조;2) preparation of an adenoviral vector capable of expressing a hTERT specific ribozyme tagged with the TK gene and containing miR-181aT under a liver tissue specific promoter;

TK 유전자가 태깅된 라이보자임 (hTERT를 특이적으로 치환할 수 있는 트랜스-스플라이싱 라이보자임) 의 3’-UTR 부위에 조혈 세포 선구체 특이적 마이크로 RNA인 miR-181a에 대한 안티센스 서열 (miR-181aT, 서열번호 1)를 2번 또는 3번 연속적으로 반복하여 삽입시킨 구조물을 PEPCK 프로모터 하에 발현시킬 수 있는 아데노바이러스 (Ad PEPCK Rib-TK-miR181aT(2x), Ad CMV Rib-TK-miR181aT(3x))와 대조군 아데노바이러스 (PEPCK 프로모터하에서 TK 태깅된 라이보자임을 발현하는 바이러스 벡터; Ad PEPCK Rib-TK, PEPCK 프로모터하에서 TK 유전자를 발현하는 바이러스 벡터; Ad PEPCK-TK) 등을 제작하였다 (도 8).
Antisense sequence for miR-181a, a hematopoietic cell precursor specific microRNA at the 3'-UTR site of a ribozyme tagged with the TK gene (a trans-splicing ribozyme capable of specifically replacing hTERT) Adenovirus (Ad PEPCK Rib-TK-miR181aT (2x), Ad CMV Rib-TK-) capable of expressing a construct in which (miR-181aT, SEQ ID NO: 1) was repeatedly inserted two or three times under the PEPCK promoter miR181aT (3x)) and a control adenovirus (viral vector expressing TK tagged ribozyme under PEPCK promoter; Ad PEPCK Rib-TK, viral vector expressing TK gene under PEPCK promoter; Ad PEPCK-TK) were prepared. (FIG. 8).

실시예Example 1-4.  1-4. MirMir -181-181 aTaT 가 함유된 특이 라이보자임Specific ribozyme containing of 발현하는  Expressive 아데노바이러스Adenovirus 벡터에 의한 간암세포 특이적인  Liver cancer cell specific by vector 세포사Cell death 관찰 observe

상기 제조한 miR-181aT를 삽입한 라이보자임발현 아데노바이러스 벡터가 과연 hTERT를 발현하지만 miR-181a는 발현하지 않는 간암세포에서 특이적으로 세포사를 유도하는지 관찰하기 위하여 CMV-Rib21AS-TK / PEPCK-Rib21AS-TK 벡터와 상호 비교하였다. 위에 제조한 구조물을 Hep3B, HepG2, HeLa 세포에 MOI 용량-의존적으로 감염시켜 GCV(100uM) 처리 후 MTT 분석을 수행하였다.
CMV-Rib21AS-TK / PEPCK- to observe whether the ribozyme-expressing adenovirus vector inserted with miR-181aT prepared above specifically induced cell death in liver cancer cells expressing hTERT but not miR-181a. Cross comparison with Rib21AS-TK vector. The constructs prepared above were infected with Hep3B, HepG2, and HeLa cells in a MOI dose-dependent manner, followed by MTT analysis after GCV (100 uM) treatment.

miR181a-인 Hep3B, HepG2, Hela cell에서 CRT(Ad CMV Rib-TK)에 의한 세포사 유도 활성이 miR-181aT 2 카피있는 경우에도 유지되었다. miR-181aT가 삽입되어진 라이보자임발현 아데노바이러스 벡터의 세포사 유도 활성과 오리지날 라이보자임발현 아데노바이러스 벡터 활성을 비교하여 관찰한 결과 간암 세포에서 매우 높은 세포사를 유도 하는 것을 확인하였다. PRT(Ad PEPCK Rib-TK)의 경우도 매우 높은 세포사 유도 활성을 나타내는 것을 확인하였다. 따라서, 간암 특이적 프로모터를 이용한 라이보자임의 발현 유도와 miR-181aT에 의한 발현벡터의 발현 조절에 의하여 매우 효율적인 간암 세포 특이적 세포사를 유도할 수 있음을 확인하였다 (도 9a 내지 c).Cell death-inducing activity of miR181a-in Hep3B, HepG2, and Hela cells by CRT (Ad CMV Rib-TK) was maintained even with miR-181aT 2 copies. The cell death induction activity of the ribozyme-expressing adenovirus vector into which miR-181aT was inserted was compared with the original ribozyme-expressing adenovirus vector, and it was confirmed that very high cell death was induced in liver cancer cells. It was confirmed that PRT (Ad PEPCK Rib-TK) also exhibited very high cell death inducing activity. Therefore, it was confirmed that highly efficient liver cancer cell-specific cell death can be induced by inducing expression of ribozyme using a liver cancer specific promoter and expression expression by miR-181aT (FIGS. 9A to C).

이로써, 혈액 세포 특이적으로 발현되고 간암 세포에선 발현이 거의 안 되는 마이크로 RNA에 대한 표적 서열을 삽입한 새로운 라이보자임을 발현하는 아데노바이러스 벡터를 제조하였으며, 또한 간암 특이적인 프로모터에 의하여 발현이 유도되는 벡터에 의해 간암 세포 특이적 세포사 유도 활성을 유지시킬 수 있음을 검증하였다.
Thus, an adenovirus vector expressing a new ribozyme inserted with a target sequence for microRNA, which is specifically expressed in blood cells and rarely expressed in liver cancer cells, was prepared, and expression was induced by a liver cancer specific promoter. It was verified that the vector can maintain liver cancer cell specific cell death inducing activity.

Hep3B 세포에 각각의 아데노바이러스를 50MOI 감염시키고 48시간 후에 RT-PCR을 수행하였다. 결과 라이보자임에 의한 간암 특이적인 세포사 유도가 실제 트랜스-스플라이싱에 의한 작용임을 분자 수준에서 확인하였다 (도 10).
Each adenovirus was infected with Hep3B cells by 50MOI and RT-PCR was performed 48 hours later. Results It was confirmed at the molecular level that liver cancer specific cell death induction by ribozyme is actually a trans-splicing action (FIG. 10).

실시예Example 1-5. 라이보자임 1-5. Libozyme on 의한 동물모델에서의 항암 효능 Anticancer efficacy in animal models

1) 이종이식된 마우스에서 Mir-181aT가 함유된 간암 특이적 라이보자임의 항암 효능1) Anticancer efficacy of liver cancer specific ribozyme containing Mir-181aT in xenograft mice

① hTERT를 가진 암조직의 효율적인 감소① Efficient reduction of cancer tissue with hTERT

hTERT 라이보자임의 암세포 치료제로서의 가능성을 검증하기 위하여 Hep3B 세포 (간암)을 3×106 cell 양으로 비장 내로 이식된 종양 (동소 다발성 간암 모델) 에 PRT(Ad PEPCK Rib-TK), PRT-miR181(Ad PEPCK Rib-TK-miR181aT(2x)) (1×109 v.p.)를 i.v로 주입한 후 그 결과를 관찰하였다. 대조군은 PBS, PT(Ad PEPCK-TK) (1×109 v.p.) 바이러스를 주입시켰다. 바이러스를 주입시킨 후 TK 유전자의 활성을 위하여 10일 동안 매일 GCV 50mg/kg을 주입시켰다. 10일 후 그 결과는 종양 무게로 나타내었다. PBS를 주입한 종양의 경우 무게가 증가하였지만 PT, PRT, PRT(x2)를 주입한 종양은 무게가 현저히 감소하였다 (도 11).hTERT Lai let PRT in the tumor (orthotopic multiple liver cancer model) transplanted into the spleen of Hep3B cells (liver cancer) in an amount of 3 × 10 6 cell to verify the possibility as any cancer therapeutic agent (Ad PEPCK Rib-TK), PRT-miR181 ( Ad PEPCK Rib-TK-miR181aT (2x)) (1 × 10 9 vp) was injected into iv and the results were observed. The control group was injected with PBS, PT (Ad PEPCK-TK) (1 × 10 9 vp) virus. After the virus injection, 50 mg / kg of GCV was injected daily for 10 days for the activity of the TK gene. After 10 days the results are expressed as tumor weight. In the case of tumors injected with PBS, the weight was increased, but the tumors injected with PT, PRT, and PRT (x2) significantly decreased in weight (FIG. 11).

② 종양이 없는 마우스에서 라이보자임을 가진 아데노바이러스의 간에 대한 독성이 없음을 확인② Confirm that there is no toxicity of liver of adenovirus with ribozyme in mice without tumor

PRT(Ad PEPCK Rib-TK), PRT-miR181(Ad PEPCK Rib-TK-miR181aT(2x)) 바이러스는 양성 대조군인 PT(Ad PEPCK-TK) 바이러스와 비슷한 잠재력을 가지고 있다. 그러나 PT(Ad PEPCK-TK) 바이러스의 지속적인 발현은 정상 세포에 독성을 나타낸다. 이것은 암치료제로서의 도구로 단점일 것이다. 이런 상황에서 PRT(Ad PEPCK Rib-TK), PRT-miR181(Ad PEPCK Rib-TK-miR181aT(2x)) 바이러스가 정상 세포에 독성을 나타내는지 알아보는 실험을 진행하였다. 1.0×109 pfu양의 PT(Ad PEPCK-TK), PRT(Ad PEPCK Rib-TK), PRT-miR181(Ad PEPCK Rib-TK-miR181aT(2x)) 바이러스를 종양이 없는 정상 쥐에 주입시켰다. 그 후 10일 동안 GCV를 투입해준 후 간의 모양과 간에서 나오는 효소의 정도를 측정하였다.PRTs (Ad PEPCK Rib-TK) and PRT-miR181 (Ad PEPCK Rib-TK-miR181aT (2x)) viruses have similar potential as the positive control PT (Ad PEPCK-TK) virus. However, continuous expression of PT (Ad PEPCK-TK) virus is toxic to normal cells. This would be a disadvantage as a tool for cancer therapy. Experiments were conducted to determine whether PRT (Ad PEPCK Rib-TK) and PRT-miR181 (Ad PEPCK Rib-TK-miR181aT (2x)) viruses are toxic to normal cells. Amounts of 1.0 × 10 9 pfu of PT (Ad PEPCK-TK), PRT (Ad PEPCK Rib-TK), and PRT-miR181 (Ad PEPCK Rib-TK-miR181aT (2x)) virus were injected into normal mice without tumors. After 10 days of injecting GCV was measured the shape of the liver and enzymes from the liver.

그 결과 PT(Ad PEPCK-TK)를 주입한 쥐는 2일 후부터 간 세포의 손상을 보였고 7일부터 14일 까지 현저하게 간 세포가 죽거나 지나친 면역반응을 일으키는 것을 관찰하였다. 이것은 PT(Ad PEPCK-TK)가 특이성 없게 정상세포에도 독성을 나타내기 때문이다. 이와 정반대로, 14일 동안 PRT(Ad PEPCK Rib-TK), PRT-miR181(Ad PEPCK Rib-TK-miR181aT(2x))를 주입한 쥐는 PBS를 주입한 쥐와 거의 비슷한 변화를 보였다. 이것은 hTERT가 없는 정상 간에서는 TK 유전자가 생성되지 않음을 시사하였다. 또한, GOT/GPT 양에도 PBS를 주입한 쥐와 비교하여 더 적은 수치가 관찰되었다. 그러나 PT(Ad PEPCK-TK) virus를 주입한 쥐에서는 7일과 14일후 GOT/GPT양이 증가함을 관찰하였다. 이것은 PRT(Ad PEPCK Rib-TK), PRT-miR181(Ad PEPCK Rib-TK-miR181aT(2x)) 바이러스가 1.0×109 pfu의 양으로 매우 미미한 독성을 정상 간에서 보여주는 것을 알려준다 (도 12).As a result, rats injected with PT (Ad PEPCK-TK) showed hepatic cell damage from 2 days later, and hepatic cell death or excessive immune response was observed from 7 to 14 days. This is because PT (Ad PEPCK-TK) is toxic to normal cells without specificity. In contrast, mice injected with PRTs (Ad PEPCK Rib-TK) and PRT-miR181 (Ad PEPCK Rib-TK-miR181aT (2x)) for 14 days showed almost similar changes as the mice injected with PBS. This suggested that no TK gene was produced in normal liver without hTERT. In addition, less GOT / GPT levels were observed compared to mice injected with PBS. However, in rats injected with PT (Ad PEPCK-TK) virus, GOT / GPT levels were increased after 7 and 14 days. This indicates that PRTs (Ad PEPCK Rib-TK) and PRT-miR181 (Ad PEPCK Rib-TK-miR181aT (2x)) viruses show very minimal toxicity in normal livers in amounts of 1.0 × 10 9 pfu (FIG. 12).

③ 이종이식된 마우스 모델에서 PRT(Ad PEPCK Rib-TK), PRT(x2)(Ad PEPCK Rib-TK-miR181aT(2x))를 주입한 간에 존재하는 종양 관찰.(3) Observation of tumors present in livers injected with PRTs (Ad PEPCK Rib-TK) and PRT (x2) (Ad PEPCK Rib-TK-miR181aT (2x)) in xenografted mouse models.

마지막으로 GCV를 투입한 다음날, 살아있는 쥐들을 모두 희생하였다. 그 후 간을 관찰해 보니 대조군그룹의 간들은 대부분이 종양으로 대체되어 있었다. 그와는 반대로 PRT(Ad PEPCK Rib-TK), PRT-miR181(Ad PEPCK Rib-TK-miR181aT(2x))를 주입한 쥐의 간은 종양 형성을 거의 관찰 할 수 없었고, 현미경으로 관찰할 때만 매우 작은 종양을 관찰할 수 있었다. 이것은 PRT(Ad PEPCK Rib-TK)와 PRT-miR181(Ad PEPCK Rib-TK-miR181aT(2x))의 효능이 암치료제로서 뛰어난 것을 시사한다. 도 13은 마우스에서 적출해낸 간 조직을 보여준다. 도 14는 현미경으로 관찰한 간 전체 사진이다. 각 바이러스가 주입된 간을 적출하여 자른 후 파라핀으로 감싸주었다. 그 후 파라핀으로 감싸진 간 조직을 얇게 썰은 후 슬라이드 위에서 H&E 염색하였다. 진한 파란색은 간암을 나타내고, 빨간색은 정상 간 조직을 나타낸다. 아래 그림에서 대조군은 진한 파란색이 많은 것으로 보아 간암이 많이 분포되어있고, PRT(Ad PEPCK Rib-TK), PRT-miR181(Ad PEPCK Rib-TK-miR181aT(2x))는 거의 다 빨간색으로 염색되어 간 암 조직이 거의 없는 것을 볼 수 있다.
Finally, the day after GCV was injected, all live mice were sacrificed. Afterwards, the livers were replaced with tumors in the control group. In contrast, the livers of rats injected with PRTs (Ad PEPCK Rib-TK) and PRT-miR181 (Ad PEPCK Rib-TK-miR181aT (2x)) showed little tumor formation and were very visible only under a microscope. Small tumors could be observed. This suggests that the efficacy of PRT (Ad PEPCK Rib-TK) and PRT-miR181 (Ad PEPCK Rib-TK-miR181aT (2x)) is excellent as a cancer treatment agent. Figure 13 shows liver tissue extracted from mice. 14 is a picture of the liver observed under a microscope. Liver injected with each virus was extracted, cut and wrapped with paraffin. Thereafter, the liver tissues were thinly sliced with paraffin and H & E stained on the slides. Dark blue represents liver cancer and red represents normal liver tissue. In the picture below, the control group has a lot of dark blue color, so hepatic cancer is widely distributed, and PRTs (Ad PEPCK Rib-TK) and PRT-miR181 (Ad PEPCK Rib-TK-miR181aT (2x)) are almost all stained red. It can be seen that there is little cancer tissue.

실시예Example 2. 정상 간 세포 특이 마이크로  2. Normal liver cell specific micro RNARNA 에 대한 표적 서열 (Target sequence for miRmiR -122-122 aTaT ) 를 함유한 Containing 라이보자임에Libozyme 의한 간암 세포 특이적인 활성 검증 Hepatocellular carcinoma specific activity verification

실시예Example 2-1. 정상 간 세포 특이 마이크로  2-1. Normal liver cell specific micro RNARNA 에 대한 표적 서열 (Target sequence for miRmiR -122-122 aTaT ) 를 함유한 Containing 라이보자임에Libozyme 의한 간암 세포 특이적인 리포터 유전자 발현 유도 검증 Hepatocellular Cell Specific Reporter Gene Expression Induction Verification

간암세포 특이적인 라이보자임 개발을 위하여 정상 간 조직에서는 발현이 되지만 간암세포(HCC)에선 발현 양이 감소되는 miR-122a에 대한 표적 염기서열(miR-122a-T, 서열번호 2) 을 3번 연속적으로 반복하여 삽입시킨 리포터 구조물과 음성 대조군으로서 mut 122aT를 삽입시킨 리포터 구조물을 제작하였고 이를 통하여 122aT의 유효성을 검증하였다.For the development of liver cancer cell-specific ribozymes, the target sequence (miR-122a-T, SEQ ID NO: 2) for miR-122a, which is expressed in normal liver tissue but decreased in expression in liver cancer cells (HCC) A reporter construct inserted continuously and a reporter construct in which mut 122aT was inserted as a negative control were constructed, and the validity of 122aT was verified.

리포터 유전자 (Renillar luciferase)의 3'-UTR에 miR-122aT 염기서열을 3번 삽입시킨 구조물을 (TK-R.luc-miR122aT/ TK-R.luc-Let 7a_대조군)를 제작한 후 마우스 간암세포에서 miR-122a 효과가 없음을 먼저 확인하였다 (도 15).Mouse liver cancer after constructing the construct (TK-R.luc-miR122aT / TK-R.luc-Let 7a_control), in which the miR-122aT sequence was inserted three times into the 3'-UTR of the reporter gene (Renillar luciferase) It was first confirmed that there was no miR-122a effect in the cells (FIG. 15).

또한, U6 프로모터, 7SL 프로모터 뒤에 인간 pre122a (hsa-pre-miR122a), 마우스 pre122a (mmu-pre-122a)를 각각 구축하고, 3'UTR에 122aT, 16T, MCS 부위를 갖는 리포터 유전자 (Renilla Luciferase)를 제작하였다(도 16). 도 17에서 확인할 수 있는 바와 같이, 마우스와 인간 HCC 세포주 (Hepa 1-6, HepG2)에서 miR-122를 함께 주입시에만 마이크로 RNA 효과가 나타남을 확인하였다. 따라서, 마우스와 인간 HCC 세포주에 miR-122a가 없음을 확인하였다. U6 프로모터를 갖는 인간, 마우스 pre-122 구조물을 사용하기로 하였다 (도 17).In addition, a human pre122a (hsa-pre-miR122a) and a mouse pre122a (mmu-pre-122a) were constructed after the U6 promoter and the 7SL promoter, respectively, and the reporter gene (Renilla Luciferase) having 122aT, 16T, and MCS sites in the 3'UTR was constructed. Was prepared (FIG. 16). As can be seen in FIG. 17, it was confirmed that the microRNA effect appeared only when injecting miR-122 together in mouse and human HCC cell lines (Hepa 1-6, HepG2). Thus, it was confirmed that miR-122a was absent in mouse and human HCC cell lines. A human, mouse pre-122 construct with the U6 promoter was chosen (FIG. 17).

대조군으로 사용하기 위한 변이체 122at 구조물 제작을 위해 아래와 같은 변이체 122at 시리즈를 제작하여 시험하였으며 이 결과를 토대로 리포터 유전자 (Renillar luciferase)의 3'-UTR에 Mut seedR 표적 부위 염기서열을 3번 삽입시킨 Mut-122at 구조물을 제작하였다. 또한 U6 프로모터 뒤에 Human Mut seedR pre 122a, 마우스 Mut seedR pre 122a를 각각 삽입하여 구조물 (U6-hsa-mut-pre122, U6-mmu-mut-pre122)를 제작하였다 (도 18).Mutant 122at series was prepared and tested to prepare variant 122at constructs for use as a control. Based on the results, Mut- inserting the Mut seedR target site sequence 3 times into the 3'-UTR of the reporter gene (Renillar luciferase) A 122at structure was produced. In addition, human Mut seedR pre 122a and mouse Mut seedR pre 122a were inserted after the U6 promoter to construct structures (U6-hsa-mut-pre122 and U6-mmu-mut-pre122) (FIG. 18).

이와 같이 제작된 구조물을 사용하여 인간, 마우스 HCC 세포주인 HepG2와 Hepa 1-6에서 리포터 분석을 수행하여 확인하였다 (도 19a 및 b).Using the structure thus constructed, it was confirmed by performing reporter analysis on human and mouse HCC cell lines HepG2 and Hepa 1-6 (FIGS. 19A and B).

도 19에서와 같이 리포터 구조물의 3'-UTR에 122aT가 삽입된 경우 miR-122a에 의해 리포터 유전자의 발현이 현저히 줄어드는 것을 확인할 수 있었으며 대조군인 16T가 삽입된 경우는 그렇지 않은 것을 확인하였다.As shown in FIG. 19, when 122aT was inserted into the 3'-UTR of the reporter construct, the expression of the reporter gene was significantly reduced by miR-122a, and when the control group 16T was inserted, it was confirmed that it was not.

이로써 정상 간 세포 특이적으로 발현되고 간암 세포에선 발현되지 않는 마이크로 RNA 에 대한 표적 서열을 스크리닝 및 검증하였으며, 이러한 표적 부위 (miR-122a 표적 부위, miR-122aT)를 삽입한 리포터 구조물을 이용하여 miR-122aT의 간암 특이적인 작용을 검증하였다.
This screened and validated target sequences for microRNAs that were specifically expressed in normal liver cells but not in liver cancer cells. The reporter construct inserting these target sites (miR-122a target site, miR-122aT) miR The liver cancer specific action of -122aT was verified.

실시예Example 2-2. 정상 간 세포 특이 마이크로  2-2. Normal liver cell specific micro RNARNA 에 대한 표적 서열 (Target sequence for miRmiR -122-122 aTaT ) 를 함유한 Containing 라이보자임에Libozyme 의한 간암 세포 특이적인  Caused by liver cancer cell specific 세포사Cell death 유도 검증 Induction verification

인간 TERT 표적화 T/S 라이보자임 (hTERT +21)과 마우스 TERT 표적화 T/S 라이보자임 (hTERT +67)의 3’-UTR 부위에 각각 miR-122aT 또는 mut miR-122aT 서열을 3번 연속적으로 반복하여 삽입시킨 구조물을 CMV 프로모터 하에 발현시킬 수 있는 발현 벡터를 제작하였다. T/S 라이보자임의 3' 엑손으로는 TK 유전자를 삽입하였다 (CMV hRib-TK-122T(3x), CMV hRib-TK-mut122T(3x), CMV mRib-TK-122T(3x), CMV mRib-TK-mut122T(3x)) (도 20).3 consecutive contiguous miR-122aT or mut miR-122aT sequences at the 3'-UTR site of human TERT targeting T / S ribozyme (hTERT +21) and mouse TERT targeting T / S ribozyme (hTERT +67), respectively An expression vector capable of expressing the inserted construct repeatedly under the CMV promoter was prepared. TK gene was inserted into 3 'exon of T / S ribozyme (CMV hRib-TK-122T (3x), CMV hRib-TK-mut122T (3x), CMV mRib-TK-122T (3x), CMV mRib- TK-mut122T (3x)) (FIG. 20).

또한 상기 hRibTK-122aT, hRibTK-mut122aT, mRibTK-122aT, mRibTK-mut122aT를 간세포 특이적으로 발현하는 PEPCK 프로모터 뒤에 삽입하여 아래와 같이 PEPCK-hRib-TK-122T, PEPCK-hRib-TK-mut122T, PEPCK-mRib-TK-122T, PEPCK-mRib-TK-mut122T를 각각 제작하였다 (도 21).In addition, the hRibTK-122aT, hRibTK-mut122aT, mRibTK-122aT, and mRibTK-mut122aT are inserted after the PEPCK promoter expressing hepatocyte-specific cells as follows. -TK-122T and PEPCK-mRib-TK-mut122T were produced respectively (FIG. 21).

간암 세포 특이적 발현벡터 발현을 확인하기 위해 마우스 세포 (mTERT+)인 Hepa 1-6와 NIH 3T3 cell에서 RT-PCR을 통해 mCRT(CMV mRib-TK-122T(3x))에서 트랜스-스플라이싱 생성물이 생성됨을 확인하였으며 시퀀싱을 하여 이를 확인하였다. 또한 인간 세포 (hTERT+)인 Huh7 세포에서 RT-PCR을 통해 hCRT-122at(CMV hRib-TK-122T(3x))에서 트랜스-스플라이싱 생성물이 생성됨을 확인하였으며 시퀀싱을 하여 이를 확인하였다 (도 22 및 23).Trans-splicing product in mCRT (CMV mRib-TK-122T (3x)) via RT-PCR in mouse cells (mTERT +) Hepa 1-6 and NIH 3T3 cells to confirm liver cancer cell specific expression Was generated and confirmed by sequencing. In addition, trans-splicing products were generated from hCRT-122at (CMV hRib-TK-122T (3x)) in human Huh7 cells, hTERT +, by RT-PCR and confirmed by sequencing And 23).

이로써 암세포 특이적인 T/S 활성을 검증하였으며 정확한 표적 부위에서 절단 및 접합이 일어남을 검증하였다.
As a result, the cancer cell-specific T / S activity was verified and the cleavage and conjugation occurred at the correct target site.

hTERT+이면서 miR122a+인 Huh7 cell에서 CMV mRib-TK-122T(3x)에 의한 선택적 세포사 유도 활성을 검증하기 위하여 CMV mRib-TK-mut 122T(3x)와 세포사 유도 활성을 상호 비교하였다 (Huh7 세포는 hTERT+ 세포지만 마우스 표적화 T/S 라이보자임에 의해 표적화 됨). hTERT IGS 부위(표적 부위)의 돌연변이 여부를 확인하기 위하여 시퀀싱 한 결과 표적 부위에 돌연변이는 일어나지 않았다.CMV mRib-TK-mut 122T (3x) and apoptosis-inducing activity were compared with each other to verify selective cell death-induced activity by CMV mRib-TK-122T (3x) in Huh7 cells, both hTERT + and miR122a + (Huh7 cells were hTERT + cells But targeted by mouse targeting T / S ribozyme). Sequencing to determine whether the hTERT IGS site (target site) was mutated did not cause mutation at the target site.

도 24 및 25에서와 같이 hTERT+이면서 miR122a+인 Huh7 cell에 CMV mRib-TK-122T(3x)를 형질주입 시 표적 부위를 갖지 않는 야생 (CMV-mRibTK)나 CMV mRib-TK-mut 122T(3x)에 비해 miR122a에 의한 TK의 발현이 억제되고 이로 인해 세포독성 유도가 억제됨(즉, 세포 생존률이 증가)을 확인하였다. 또한 AntimiR-122a (Anti 122a)를 처리했을 때 CMV mRib-TK-122T(3x)에 의한 TK 발현 억제가 복귀되는 것으로 보아 (즉, 세포 생존률이 감소됨) 이러한 TK 발현 억제 효과가 miR122a에 의한 것임을 재확인하였다.
When transfected with CMV mRib-TK-122T (3x) in Huh7 cells, which are hTERT + and miR122a +, as shown in FIGS. 24 and 25, in wild (CMV-mRibTK) or CMV mRib-TK-mut 122T (3x) that do not have target sites In contrast, it was confirmed that expression of TK by miR122a was inhibited and thereby cytotoxic induction was inhibited (ie, cell survival rate was increased). The antimiR-122a (Anti 122a) treatment also showed that the inhibition of TK expression by CMV mRib-TK-122T (3x) was restored (i.e., cell survival was reduced). It was.

마우스 HCC 세포인 Hepa 1-6 (mTERT+, miR122a-)에서 mmu-pre122a와 mmu-mut-pre122a를 각각 처리하여 CMV mRib-TK-122T(3x)에 의한 TK 유전자의 발현을 확인하였다. 우선 pre-122a가 없을 때는 CMV mRib-TK-122T(3x)에 의한 세포독성이 야생형 (즉, CMV-mRibTK)와 유사하게 증가되었다. 반면에 mmu-pre122a 처리 시 CMV mRib-TK-122T(3x)에 의한 TK 유전자 발현이 억제되어 세포사 유도 활성이 억제됨(즉, 세포 생존률이 증가됨)을 확인하였다 (도 26).Hepa 1-6 (mTERT +, miR122a-), mouse HCC cells, were treated with mmu-pre122a and mmu-mut-pre122a, respectively, to confirm the expression of the TK gene by CMV mRib-TK-122T (3x). First, in the absence of pre-122a, cytotoxicity by CMV mRib-TK-122T (3x) increased similarly to wild type (ie CMV-mRibTK). On the other hand, it was confirmed that mmK-pre122a treatment inhibited TK gene expression by CMV mRib-TK-122T (3x), thereby inhibiting cell death-inducing activity (ie, increasing cell survival) (FIG. 26).

이로써 정상 간 세포 특이적으로 발현되고 간암 세포에선 발현되지 않는 마이크로 RNA에 대한 표적 서열 (miR-122aT)를 삽입한 새로운 간암 특이적 트랜스-스플라이싱 라이보자임 벡터에 의해 대상 마이크로 RNA (miR-122a)가 없는 세포에서는 효율적으로 간암 세포 세포사를 유도하지만 대상 마이크로 RNA (miR-122a)가 있는 세포에서는 세포사가 감소되었다. 즉 miR-122aT 삽입된 트랜스-스플라이싱 라이보자임에 의해 간암 특이적으로 세포사를 유도시킬 수 있음을 검증하였다.
This results in a target microRNA (miR-) by a new liver cancer specific trans-splicing ribozyme vector inserted with a target sequence (miR-122aT) for micro RNA that is specifically expressed in normal liver cells but not in liver cancer cells. In cells without 122a), hepatocarcinoma cell death was efficiently induced, whereas in cells with target microRNA (miR-122a), cell death was reduced. That is, it was verified that cell death can be specifically induced by liver cancer by miR-122aT inserted trans-splicing ribozyme.

실시예Example 2-3.  2-3. 라이보자임에Libozyme 의한 동물모델에서의 항암 효능 Anticancer efficacy in animal models

1. 이종이식된 마우스에서 Mir-122aT가 함유된 간암 특이적 라이보자임에 의한 mTERT를 가진 암조직의 효율적인 감소1. Efficient reduction of cancer tissue with mTERT by liver cancer specific ribozyme containing Mir-122aT in xenografted mice

① mTERT를 가진 암조직의 효율적인 감소① Efficient reduction of cancer tissue with mTERT

Mir-122aT가 함유된 간암 특이적 라이보자임의 암세포 치료제로서의 가능성을 검증하기 위하여 Hepa1-6 세포 (간암)을 3×106 세포 양으로 비장 내로 이식된 종양 (동소 다발성 간암 모델)에 재조합체 아데노바이러스인 Ad-CMV mRib-TK-122T(3x), Ad-CMV mRib-TK-mut 122T(3x) (1×108 v.p.)를 i.v로 주입한 후 그 결과를 관찰하였다. 대조군은 PBS를 주입시켰다. 바이러스를 주입시킨 후 TK 유전자의 활성을 위하여 10일 동안 매일 GCV 50mg/kg 를 주입시켰다. 10일 후 그 결과는 종양 무게로 나타났다. PBS를 주입한 종양의 경우 무게가 증가하였지만 Ad-CMV mRib-TK-122T(3x), Ad-CMV mRib-TK-mut 122T(3x)를 주입한 종양은 무게가 현저히 감소하였다 (도 27).To demonstrate the potential of Mir-122aT-containing liver cancer-specific ribozyme as a cancer cell therapy, recombinant adenosine in tumors (isotopic multiple liver cancer model) in which Hepa1-6 cells (liver cancer) were transplanted into the spleen in an amount of 3 × 10 6 cells The results were observed after injecting the viruses Ad-CMV mRib-TK-122T (3x) and Ad-CMV mRib-TK-mut 122T (3x) (1 × 10 8 vp). The control group was injected with PBS. After injecting the virus, GCV 50mg / kg was injected daily for 10 days for the activity of the TK gene. After 10 days the result was tumor weight. Tumors injected with PBS increased weight, but tumors injected with Ad-CMV mRib-TK-122T (3x) and Ad-CMV mRib-TK-mut 122T (3x) significantly reduced weight (FIG. 27).

② 종양이 없는 쥐에서 라이보자임을 가진 아데노바이러스의 간에 대한 독성이 없음을 확인.② Confirm that there is no toxicity of liver of adenovirus with ribozyme in mice without tumor.

Ad-CMV mRib-TK-122T(3x)는 양성 대조군인 Ad-CMV mRib-TK-mut 122T(3x)와 비슷한 잠재력을 가지고 있다. 그러나 Ad-CMV mRib-TK-mut 122T(3x)의 지속적인 발현은 정상 세포에 독성을 나타내었다. 이것은 암치료제로서의 도구로 단점일 것이다. 이런 상황에서 Ad-CMV mRib-TK-122T(3x)가 정상 세포에 독성을 나타내는지 알아보는 실험을 진행하였다. 1.0×108 VP양의 Ad-CMV mRib-TK-122T(3x), Ad-CMV mRib-TK-mut 122T(3x), PBS를 종양이 없는 정상 쥐에 주입시켰다. 그 후 10일 동안 GCV를 투입해준 후 간의 모양과 간에서 나오는 효소의 정도를 측정하였다.Ad-CMV mRib-TK-122T (3x) has similar potential to the positive control Ad-CMV mRib-TK-mut 122T (3x). However, continuous expression of Ad-CMV mRib-TK-mut 122T (3x) was toxic to normal cells. This would be a disadvantage as a tool for cancer therapy. In this situation, experiments were conducted to determine whether Ad-CMV mRib-TK-122T (3x) is toxic to normal cells. Ad-CMV mRib-TK-122T (3x), Ad-CMV mRib-TK-mut 122T (3x), and PBS in 1.0 × 10 8 VP amounts were injected into normal mice without tumors. After 10 days of injecting GCV was measured the shape of the liver and enzymes from the liver.

그 결과, Ad-CMV mRib-TK-mut 122T(3x)를 주입한 쥐는 현저하게 간 세포가 죽거나 지나친 면역반응을 일으키는 것을 관찰하였다. 이것은 PT가 특이성 없게 정상세포에도 독성을 나타내기 때문이다. 이와 정반대로, 14일 동안 Ad-CMV mRib-TK-122T(3x)를 주입한 쥐는 PBS를 주입한 쥐와 거의 비슷한 변화를 보였다. 이것은 정상 간에서는 TK 유전자가 생성되지 않음을 시사하였다. 또한, GOT/GPT 양에도 PBS를 주입한 쥐와 비교하여 더 적은 수치를 관찰하였다. 그러나 Ad-CMV mRib-TK-mut 122T(3x)를 주입한 쥐에서는 14일후 GOT/GPT양이 증가함을 관찰하였다. 이것은 Ad-CMV mRib-TK-122T(3x) 바이러스가 1.0×108 VP의 양으로 매우 미미한 독성을 정상 간에서 보여주는 것을 알려주었다 (도 28).As a result, rats injected with Ad-CMV mRib-TK-mut 122T (3x) significantly observed liver cells die or caused excessive immune responses. This is because PT is toxic to normal cells without specificity. In contrast, mice injected with Ad-CMV mRib-TK-122T (3x) for 14 days showed almost the same changes as mice injected with PBS. This suggested that no TK gene was produced in normal livers. In addition, less GOT / GPT levels were observed compared to mice injected with PBS. However, rats injected with Ad-CMV mRib-TK-mut 122T (3x) increased GOT / GPT levels after 14 days. This indicated that Ad-CMV mRib-TK-122T (3x) virus showed very minimal toxicity in normal livers in the amount of 1.0 × 10 8 VP (FIG. 28).

③ 이종이식된 마우스 모델에서 Ad-CMV mRib-TK-122T(3x), Ad-CMV mRib-TK-mut 122T(3x), PBS를 주입한 간에 존재하는 종양 관찰.③ Observation of tumors present in the liver injected with Ad-CMV mRib-TK-122T (3x), Ad-CMV mRib-TK-mut 122T (3x), PBS in xenografted mouse models.

마지막으로 GCV를 투입한 다음날, 살아있는 쥐들을 모두 희생하였음. 그 후 간을 관찰해 보니 대조군 그룹의 간들은 대부분이 종양으로 대체되어 있었음. 그와는 반대로 Ad-CMV mRib-TK-122T(3x), Ad-CMV mRib-TK-mut 122T(3x)를 주입한 쥐의 간은 종양 형성을 거의 관찰 할 수 없었고, 현미경으로 관찰할 때만 매우 작은 종양을 관찰 할 수 있었음. 이것은 Ad-CMV mRib-TK-122T(3x), Ad-CMV mRib-TK-mut 122T(3x)의 효능이 암치료제로서 뛰어난 것을 시사하였다. 도 29는 마우스에서 적출해낸 간 조직을 제시한다. Finally, the day after GCV was injected, all live mice were sacrificed. Afterwards, the livers were replaced with tumors in the control group. In contrast, the livers of rats injected with Ad-CMV mRib-TK-122T (3x) and Ad-CMV mRib-TK-mut 122T (3x) showed little tumor formation and were very visible only under a microscope. A small tumor could be observed. This suggested that the efficacy of Ad-CMV mRib-TK-122T (3x) and Ad-CMV mRib-TK-mut 122T (3x) was excellent as a cancer treatment agent. 29 shows liver tissue extracted from mice.

본 발명자들은 표적 특이적 트랜스-스플라이싱 라이보자임을 개발하였으며 CMV, PEPCK 프로모터 하에 마이크로 RNA에 대한 표적 서열을 삽입한 새로운 라이보자임 발현할 수 있는 아데노바이러스 벡터를 제작하였다. 간암 동물 모델에서 라이보자임에 의한 효과적인 항암 효능을 검증하였으며 간독성 없이 항암 라이보자임의 생체내 내 전신 투여가 가능함을 관찰하였다.We have developed a target specific trans-splicing ribozyme and constructed a new ribozyme-expressable adenovirus vector inserted with the target sequence for microRNA under the CMV, PEPCK promoter. In the animal model of liver cancer, the effective anticancer efficacy by ribozyme was verified and it was observed that in vivo systemic administration of anticancer ribozyme was possible without hepatotoxicity.

<110> Industry-Academic Cooperation Foundation, Dankook University <120> Cancer gene therapeutic agent through regulation using microRNA <130> PA110268/KR <160> 17 <170> KopatentIn 1.71 <210> 1 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> mir181aT <400> 1 actcagcgac agcgttgaat gtt 23 <210> 2 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> mir122aT <400> 2 acaaacacca ttgtcacact cca 23 <210> 3 <211> 63 <212> DNA <213> Artificial Sequence <220> <223> scramble sequence <400> 3 actagtgaat cccccgggct gcaggaattc gatatcaagc ttatcgatac cgtcgacctc 60 gag 63 <210> 4 <211> 3124 <212> DNA <213> Artificial Sequence <220> <223> CMV-Rib-TK-mir181aT(2x) <400> 4 cgcgttacat aacttacggt aaatggcccg cctggctgac cgcccaacga cccccgccca 60 ttgacgtcaa taatgacgta tgttcccata gtaacgccaa tagggacttt ccattgacgt 120 caatgggtgg agtatttacg gtaaactgcc cacttggcag tacatcaagt gtatcatatg 180 ccaagtccgc cccctattga cgtcaatgac ggtaaatggc ccgcctggca ttatgcccag 240 tacatgacct tacgggactt tcctacttgg cagtacatct acgtattagt catcgctatt 300 accatggtga tgcggttttg gcagtacacc aatgggcgtg gatagcggtt tgactcacgg 360 ggatttccaa gtctccaccc cattgacgtc aatgggagtt tgttttggca ccaaaatcaa 420 cgggactttc caaaatgtcg taataacccc gccccgttga cgcaaatggg cggtaggcgt 480 gtacggtggg aggtctatat aagcagagct cgtttagtga accgtcagat cctcactctc 540 ttccgcatcg ctgtctgcga gggccagctg ttgggctcgc ggttgaggac aaactcttcg 600 cggtctttcc agtactcttg gatcggaaac ccgtcggcct ccgaacggta ctccgccacc 660 gagggacctg agccagtccg catcgaccgg atcggaaaac ctctcgagaa aggcgtctaa 720 ccagtcacag tcgcaaggta ggctgagcac cgtggcgggc ggcagcgggt ggcggtcggg 780 gttgtttctg gcggaggtgc tgctgatgat gtaattaaag taggcggtct tgagccggcg 840 gatggtcgag gtgaggtgtg gcaggcttga gatccagctg ttggggtgag tactccctct 900 caaaagcggg catgacttct gcgctaagat tgtcagtttc caaaaacgag gaggatttga 960 tattcacctg gcccgatctg gccatacact tgagtgacaa tgacatccac tttgcctttc 1020 tctccacagg tgtccactcc caggtccaag tttggaagat ccaaggccag cacgttcttc 1080 gcgccgcgct cgcacagcct ctgcagcact cgggccacca gctccttcag gcaggacacc 1140 tggcggaagg agggggcggc ggggggcggc cgtgcgtccc agggcacgca caccaggcac 1200 tgggccacca gcgcgcggaa agccgccggg tccccgcgct gcaccagccg ccagccctgg 1260 ggccccaggc gccgcacgaa cgtggccagc ggcagcacct cgcggtagtg gctgcgcagc 1320 agggagcgca cggctaggca gcggggagcg cgcggcatcg cgggggtggc cggggccagg 1380 gcttcccaag cttcgttttg cggcaggaaa agttatcagg catgcacctg gtagctagtc 1440 tttaaaccaa tagattgcat cggtttaaaa ggcaagaccg tcaaattgcg ggaaaggggt 1500 caacagccgt tcagtaccaa gtctcagggg aaactttgag atggccttgc aaagggtatg 1560 gtaataagct gacggacatg gtcctaacca cgcagccaag tcctaagtca acagatcttc 1620 tgttgatatg gatgcagttc acagactaaa tgtcggtcgg ggaagatgta ttcttctcat 1680 aagatatagt cggacctctc cttaatggga gctagcggat gaagtgatgc aacactggag 1740 ccgctgggaa ctaatttgta tgcgaaagta tattgattag ttttggagta ctcgcgaaaa 1800 cgcccaccat ggcttcgtac ccctgccatc aacacgcgtc tgcgttcgac caggctgcgc 1860 gttctcgcgg ccatagcaac cgacgtacgg cgttgcgccc tcgccggcag caagaagcca 1920 cggaagtccg cctggagcag aaaatgccca cgctactgcg ggtttatata gacggtcctc 1980 acgggatggg gaaaaccacc accacgcaac tgctggtggc cctgggttcg cgcgacgata 2040 tcgtctacgt acccgagccg atgacttact ggcaggtgct gggggcttcc gagacaatcg 2100 cgaacatcta caccacacaa caccgcctcg accagggtga gatatcggcc ggggacgcgg 2160 cggtggtaat gacaagcgcc cagataacaa tgggcatgcc ttatgccgtg accgacgccg 2220 ttctggctcc tcatgtcggg ggggaggctg ggagttcaca tgccccgccc ccggccctca 2280 ccctcatctt cgaccgccat cccatcgccg ccctcctgtg ctacccggcc gcgcgatacc 2340 ttatgggcag catgaccccc caggccgtgc tggcgttcgt ggccctcatc ccgccgacct 2400 tgcccggcac aaacatcgtg ttgggggccc ttccggagga cagacacatc gaccgcctgg 2460 ccaaacgcca gcgccccggc gagcggcttg acctggctat gctggccgcg attcgccgcg 2520 tttacgggct gcttgccaat acggtgcggt atctgcaggg cggcgggtcg tggtgggagg 2580 attggggaca gctttcgggg acggccgtgc cgccccaggg tgccgagccc cagagcaacg 2640 cgggcccacg accccatatc ggggacacgt tatttaccct gtttcgggcc cccgagttgc 2700 tggcccccaa cggcgacctg tataacgtgt ttgcctgggc cttggacgtc ttggccaaac 2760 gcctccgtcc catgcacgtc tttatcctgg attacgacca atcgcccgcc ggctgccggg 2820 acgccctgct gcaacttacc tccgggatgg tccagaccca cgtcaccacc ccaggctcca 2880 taccgacgat ctgcgacctg gcgcgcacgt ttgcccggga gatgggggag gctaactgat 2940 tcgaaactca gcgacagcgt tgaatgttcg atactcagcg acagcgttga atgttttcga 3000 aagatcccaa cgaaaagaga gaccacatgg tccttcttga gtttgtaaca gctgctggga 3060 ttacacatgg catggatgaa ctgtacaact gaggatcccc cgacctcgac ctctggctaa 3120 taaa 3124 <210> 5 <211> 3791 <212> DNA <213> Artificial Sequence <220> <223> PEPCK-Rib-TK-mir181aT(2x) <400> 5 aagtttattg tgttaggtca gttccaaacc gtgctgacca tggctatgat ccaaaggccg 60 gccccttacg tcagaggcga gcctccaggt ccagctgagg ggcagggctg tcctcccttc 120 tgtatactat ttaaagcgag gagggctagc taccaagcac ggttggcctt ccctctggga 180 acacaccctt ggccaacagg ggaaatccgg cgagacgctc tgagatcctg cgagaaggag 240 gtgcgtcctg ctgcctgccc cggcactctg gctccccagc tcaaggttca ggccttgccc 300 caggccgggc ctctgggtac ctgaggtctt ctcccgctct gtgcccttct cctcacctgg 360 ctgcaatgag tgggggagca cggggcttct gcatgctgaa ggcaccccac tcagccaggc 420 ccttcttctc ctccaggtcc cccacggccc ttcagatcta aggccagcac gttcttcgcg 480 ccgcgctcgc acagcctctg cagcactcgg gccaccagct ccttcaggca ggacacctgg 540 cggaaggagg gggcggcggg gggcggccgt gcgtcccagg gcacgcacac caggcactgg 600 gccaccagcg cgcggaaagc cgccgggtcc ccgcgctgca ccagccgcca gccctggggc 660 cccaggcgcc gcacgaacgt ggccagcggc agcacctcgc ggtagtggct gcgcagcagg 720 gagcgcacgg ctaggcagcg gggagcgcgc ggcatcgcgg gggtggccgg ggccagggct 780 tcccaagctt cgttttgcgg caggaaaagt tatcaggcat gcacctggta gctagtcttt 840 aaaccaatag attgcatcgg tttaaaaggc aagaccgtca aattgcggga aaggggtcaa 900 cagccgttca gtaccaagtc tcaggggaaa ctttgagatg gccttgcaaa gggtatggta 960 ataagctgac ggacatggtc ctaaccacgc agccaagtcc taagtcaaca gatcttctgt 1020 tgatatggat gcagttcaca gactaaatgt cggtcgggga agatgtattc ttctcataag 1080 atatagtcgg acctctcctt aatgggagct agcggatgaa gtgatgcaac actggagccg 1140 ctgggaacta atttgtatgc gaaagtatat tgattagttt tggagtactc gcgaaaacgc 1200 ccaccatggc ttcgtacccc tgccatcaac acgcgtctgc gttcgaccag gctgcgcgtt 1260 ctcgcggcca tagcaaccga cgtacggcgt tgcgccctcg ccggcagcaa gaagccacgg 1320 aagtccgcct ggagcagaaa atgcccacgc tactgcgggt ttatatagac ggtcctcacg 1380 ggatggggaa aaccaccacc acgcaactgc tggtggccct gggttcgcgc gacgatatcg 1440 tctacgtacc cgagccgatg acttactggc aggtgctggg ggcttccgag acaatcgcga 1500 acatctacac cacacaacac cgcctcgacc agggtgagat atcggccggg gacgcggcgg 1560 tggtaatgac aagcgcccag ataacaatgg gcatgcctta tgccgtgacc gacgccgttc 1620 tggctcctca tatcgggggg gaggctggga gctcacatgc cccgcccccg gccctcaccc 1680 tcatcttcga ccgccatccc atcgccgccc tcctgtgcta cccggccgcg cgatacctta 1740 tgggcagcat gaccccccag gccgtgctgg cgttcgtggc cctcatcccg ccgaccttgc 1800 ccggcacaaa catcgtgttg ggggcccttc cggaggacag acacatcgac cgcctggcca 1860 aacgccagcg ccccggcgag cggcttgacc tggctatgct ggccgcgatt cgccgcgttt 1920 acgggctgct tgccaatacg gtgcggtatc tgcagggcgg cgggtcgtgg tgggaggatt 1980 ggggacagct ttcggggacg gccgtgccgc cccagggtgc cgagccccag agcaacgcgg 2040 gcccacgacc ccatatcggg gacacgttat ttaccctgtt tcgggccccc gagttgctgg 2100 cccccaacgg cgacctgtat aacgtgtttg cctgggcctt ggacgtcttg gccaaacgcc 2160 tccgtcccat gcacgtcttt atcctggatt acgaccaatc gcccgccggc tgccgggacg 2220 ccctgctgca acttacctcc gggatggtcc agacccacgt caccacccca ggctccatac 2280 cgacgatctg cgacctggcg cgcacgtttg cccgggagat gggggaggct aactgaagcg 2340 gccgcactca gcgacagcgt tgaatgttcg atactcagcg acagcgttga atgttgcggc 2400 cgcgggtggc atccctgtga cccctcccca gtgcctctcc tggccctgga agttgccact 2460 ccagtgccca ccagccttgt cctaataaaa ttaagttgca tcattttgtc tgactaggtg 2520 tccttctata atattatggg gtggaggggg gtggtatgga gcaaggggca agttgggaag 2580 acaacctgta gggcctgcgg ggtctattgg gaaccaagct ggagtgcagt ggcacaatct 2640 tggctcactg caatctccgc ctcctgggtt caagcgattc tcctgcctca gcctcccgag 2700 ttgttgggat tccaggcatg catgaccagg ctcagctaat ttttgttttt ttggtagaga 2760 cggggtttca ccatattggc caggctggtc tccaactcct aatctcaggt gatctaccca 2820 ccttggcctc ccaaattgct gggattacag gcgtgaacca ctgctccctt ccctgtcctt 2880 ctgattttaa aataactata ccagcaggag gacgtccaga cacagcatag gctacctggc 2940 catgcccaac cggtgggaca tttgagttgc ttgcttggca ctgtcctctc atgcgttggg 3000 tccactcagt agatgcctgc aggctcagag gcacacagga gtttctgggc tcaccctgcc 3060 cccttccaac ccctcagttc ccatcctcca gcagctgttt gtgtgctgcc tctgaagtcc 3120 acactgaaca aacttcagcc tactcatgtc cctaaaatgg gcaaacattg caagcagcaa 3180 acagcaaaca cacagccctc cctgcctgct gaccttggag ctggggcaga ggtcagagac 3240 ctctctgggc ccatgccacc tccaacatcc actcgacccc ttggaatttc ggtggagagg 3300 agcagaggtt gtcctggcgt ggtttaggta gtgtgagagg gtccgggttc aaaaccactt 3360 gctgggtggg gagtcgtcag taagtggcta tgccccgacc ccgaagcctg tttccccatc 3420 tgtacaatgg aaatgataaa gacgcccatc tgatagggtt tttgtggcaa ataaacattt 3480 ggtttttttg ttttgttttg ttttgttttt tgagatggag gtttgctctg tcgcccaggc 3540 tggagtgcag tgacacaatc tcatctcacc acaaccttcc cctgcctcag cctcccaagt 3600 agctgggatt acaagcatgt gccaccacac ctggctaatt ttctattttt agtagagacg 3660 ggtttctcca tgttggtcag cctcagcctc ccaagtaact gggattacag gcctgtgcca 3720 ccacacccgg ctaatttttt ctatttttga cagggacggg gtttcaccat gttggtcagg 3780 ctggtctaga a 3791 <210> 6 <211> 3149 <212> DNA <213> Artificial Sequence <220> <223> CMV-hRib-TK-mir122aT(3x) <400> 6 cgcgttacat aacttacggt aaatggcccg cctggctgac cgcccaacga cccccgccca 60 ttgacgtcaa taatgacgta tgttcccata gtaacgccaa tagggacttt ccattgacgt 120 caatgggtgg agtatttacg gtaaactgcc cacttggcag tacatcaagt gtatcatatg 180 ccaagtccgc cccctattga cgtcaatgac ggtaaatggc ccgcctggca ttatgcccag 240 tacatgacct tacgggactt tcctacttgg cagtacatct acgtattagt catcgctatt 300 accatggtga tgcggttttg gcagtacacc aatgggcgtg gatagcggtt tgactcacgg 360 ggatttccaa gtctccaccc cattgacgtc aatgggagtt tgttttggca ccaaaatcaa 420 cgggactttc caaaatgtcg taataacccc gccccgttga cgcaaatggg cggtaggcgt 480 gtacggtggg aggtctatat aagcagagct cgtttagtga accgtcagat cctcactctc 540 ttccgcatcg ctgtctgcga gggccagctg ttgggctcgc ggttgaggac aaactcttcg 600 cggtctttcc agtactcttg gatcggaaac ccgtcggcct ccgaacggta ctccgccacc 660 gagggacctg agccagtccg catcgaccgg atcggaaaac ctctcgagaa aggcgtctaa 720 ccagtcacag tcgcaaggta ggctgagcac cgtggcgggc ggcagcgggt ggcggtcggg 780 gttgtttctg gcggaggtgc tgctgatgat gtaattaaag taggcggtct tgagccggcg 840 gatggtcgag gtgaggtgtg gcaggcttga gatccagctg ttggggtgag tactccctct 900 caaaagcggg catgacttct gcgctaagat tgtcagtttc caaaaacgag gaggatttga 960 tattcacctg gcccgatctg gccatacact tgagtgacaa tgacatccac tttgcctttc 1020 tctccacagg tgtccactcc caggtccaag tttggaagat ccaaggccag cacgttcttc 1080 gcgccgcgct cgcacagcct ctgcagcact cgggccacca gctccttcag gcaggacacc 1140 tggcggaagg agggggcggc ggggggcggc cgtgcgtccc agggcacgca caccaggcac 1200 tgggccacca gcgcgcggaa agccgccggg tccccgcgct gcaccagccg ccagccctgg 1260 ggccccaggc gccgcacgaa cgtggccagc ggcagcacct cgcggtagtg gctgcgcagc 1320 agggagcgca cggctaggca gcggggagcg cgcggcatcg cgggggtggc cggggccagg 1380 gcttcccaag cttcgttttg cggcaggaaa agttatcagg catgcacctg gtagctagtc 1440 tttaaaccaa tagattgcat cggtttaaaa ggcaagaccg tcaaattgcg ggaaaggggt 1500 caacagccgt tcagtaccaa gtctcagggg aaactttgag atggccttgc aaagggtatg 1560 gtaataagct gacggacatg gtcctaacca cgcagccaag tcctaagtca acagatcttc 1620 tgttgatatg gatgcagttc acagactaaa tgtcggtcgg ggaagatgta ttcttctcat 1680 aagatatagt cggacctctc cttaatggga gctagcggat gaagtgatgc aacactggag 1740 ccgctgggaa ctaatttgta tgcgaaagta tattgattag ttttggagta ctcgaaaacg 1800 cccaccatgg cttcgtaccc ctgccatcaa cacgcgtctg cgttcgacca ggctgcgcgt 1860 tctcgcggcc atagcaaccg acgtacggcg ttgcgccctc gccggcagca agaagccacg 1920 gaagtccgcc tggagcagaa aatgcccacg ctactgcggg tttatataga cggtcctcac 1980 gggatgggga aaaccaccac cacgcaactg ctggtggccc tgggttcgcg cgacgatatc 2040 gtctacgtac ccgagccgat gacttactgg caggtgctgg gggcttccga gacaatcgcg 2100 aacatctaca ccacacaaca ccgcctcgac cagggtgaga tatcggccgg ggacgcggcg 2160 gtggtaatga caagcgccca gataacaatg ggcatgcctt atgccgtgac cgacgccgtt 2220 ctggctcctc atgtcggggg ggaggctggg agttcacatg ccccgccccc ggccctcacc 2280 ctcatcttcg accgccatcc catcgccgcc ctcctgtgct acccggccgc gcgatacctt 2340 atgggcagca tgacccccca ggccgtgctg gcgttcgtgg ccctcatccc gccgaccttg 2400 cccggcacaa acatcgtgtt gggggccctt ccggaggaca gacacatcga ccgcctggcc 2460 aaacgccagc gccccggcga gcggcttgac ctggctatgc tggccgcgat tcgccgcgtt 2520 tacgggctgc ttgccaatac ggtgcggtat ctgcagggcg gcgggtcgtg gtgggaggat 2580 tggggacagc tttcggggac ggccgtgccg ccccagggtg ccgagcccca gagcaacgcg 2640 ggcccacgac cccatatcgg ggacacgtta tttaccctgt ttcgggcccc cgagttgctg 2700 gcccccaacg gcgacctgta taacgtgttt gcctgggcct tggacgtctt ggccaaacgc 2760 ctccgtccca tgcacgtctt tatcctggat tacgaccaat cgcccgccgg ctgccgggac 2820 gccctgctgc aacttacctc cgggatggtc cagacccacg tcaccacccc aggctccata 2880 ccgacgatct gcgacctggc gcgcacgttt gcccgggaga tgggggaggc taactgattc 2940 gaaacaaaca ccattgtcac actccacgat acaaacacca ttgtcacact ccacgataca 3000 aacaccattg tcacactcca ttcgaaagat cccaacgaaa agagagacca catggtcctt 3060 cttgagtttg taacagctgc tgggattaca catggcatgg atgaactgta caactgagga 3120 tcccccgacc tcgacctctg gctaataaa 3149 <210> 7 <211> 3822 <212> DNA <213> Artificial Sequence <220> <223> PEPCK-hRib-TK-mir122aT(3x) <400> 7 aagtttattg tgttaggtca gttccaaacc gtgctgacca tggctatgat ccaaaggccg 60 gccccttacg tcagaggcga gcctccaggt ccagctgagg ggcagggctg tcctcccttc 120 tgtatactat ttaaagcgag gagggctagc taccaagcac ggttggcctt ccctctggga 180 acacaccctt ggccaacagg ggaaatccgg cgagacgctc tgagatcctg cgagaaggag 240 gtgcgtcctg ctgcctgccc cggcactctg gctccccagc tcaaggttca ggccttgccc 300 caggccgggc ctctgggtac ctgaggtctt ctcccgctct gtgcccttct cctcacctgg 360 ctgcaatgag tgggggagca cggggcttct gcatgctgaa ggcaccccac tcagccaggc 420 ccttcttctc ctccaggbam htcccccacg gcccttcaga tctaaggcca gcacgttctt 480 cgcgccgcgc tcgcacagcc tctgcagcac tcgggccacc agctccttca ggcaggacac 540 ctggcggaag gagggggcgg cggggggcgg ccgtgcgtcc cagggcacgc acaccaggca 600 ctgggccacc agcgcgcgga aagccgccgg gtccccgcgc tgcaccagcc gccagccctg 660 gggccccagg cgccgcacga acgtggccag cggcagcacc tcgcggtagt ggctgcgcag 720 cagggagcgc acggctaggc agcggggagc gcgcggcatc gcgggggtgg ccggggccag 780 ggcttcccaa gcttcgtttt gcggcaggaa aagttatcag gcatgcacct ggtagctagt 840 ctttaaacca atagattgca tcggtttaaa aggcaagacc gtcaaattgc gggaaagggg 900 tcaacagccg ttcagtacca agtctcaggg gaaactttga gatggccttg caaagggtat 960 ggtaataagc tgacggacat ggtcctaacc acgcagccaa gtcctaagtc aacagatctt 1020 ctgttgatat ggatgcagtt cacagactaa atgtcggtcg gggaagatgt attcttctca 1080 taagatatag tcggacctct ccttaatggg agctagcgga tgaagtgatg caacactgga 1140 gccgctggga actaatttgt atgcgaaagt atattgatta gttttggagt actcgcgaaa 1200 acgcccacca tggcttcgta cccctgccat caacacgcgt ctgcgttcga ccaggctgcg 1260 cgttctcgcg gccatagcaa ccgacgtacg gcgttgcgcc ctcgccggca gcaagaagcc 1320 acggaagtcc gcctggagca gaaaatgccc acgctactgc gggtttatat agacggtcct 1380 cacgggatgg ggaaaaccac caccacgcaa ctgctggtgg ccctgggttc gcgcgacgat 1440 atcgtctacg tacccgagcc gatgacttac tggcaggtgc tgggggcttc cgagacaatc 1500 gcgaacatct acaccacaca acaccgcctc gaccagggtg agatatcggc cggggacgcg 1560 gcggtggtaa tgacaagcgc ccagataaca atgggcatgc cttatgccgt gaccgacgcc 1620 gttctggctc ctcatatcgg gggggaggct gggagctcac atgccccgcc cccggccctc 1680 accctcatct tcgaccgcca tcccatcgcc gccctcctgt gctacccggc cgcgcgatac 1740 cttatgggca gcatgacccc ccaggccgtg ctggcgttcg tggccctcat cccgccgacc 1800 ttgcccggca caaacatcgt gttgggggcc cttccggagg acagacacat cgaccgcctg 1860 gccaaacgcc agcgccccgg cgagcggctt gacctggcta tgctggccgc gattcgccgc 1920 gtttacgggc tgcttgccaa tacggtgcgg tatctgcagg gcggcgggtc gtggtgggag 1980 gattggggac agctttcggg gacggccgtg ccgccccagg gtgccgagcc ccagagcaac 2040 gcgggcccac gaccccatat cggggacacg ttatttaccc tgtttcgggc ccccgagttg 2100 ctggccccca acggcgacct gtataacgtg tttgcctggg ccttggacgt cttggccaaa 2160 cgcctccgtc ccatgcacgt ctttatcctg gattacgacc aatcgcccgc cggctgccgg 2220 gacgccctgc tgcaacttac ctccgggatg gtccagaccc acgtcaccac cccaggctcc 2280 ataccgacga tctgcgacct ggcgcgcacg tttgcccggg agatggggga ggctaactga 2340 agcggccgca caaacaccat tgtcacactc cacgatacaa acaccattgt cacactccac 2400 gatacaaaca ccattgtcac actccagcgg ccgcgggtgg catccctgtg acccctcccc 2460 agtgcctctc ctggccctgg aagttgccac tccagtgccc accagccttg tcctaataaa 2520 attaagttgc atcattttgt ctgactaggt gtccttctat aatattatgg ggtggagggg 2580 ggtggtatgg agcaaggggc aagttgggaa gacaacctgt agggcctgcg gggtctattg 2640 ggaaccaagc tggagtgcag tggcacaatc ttggctcact gcaatctccg cctcctgggt 2700 tcaagcgatt ctcctgcctc agcctcccga gttgttggga ttccaggcat gcatgaccag 2760 gctcagctaa tttttgtttt tttggtagag acggggtttc accatattgg ccaggctggt 2820 ctccaactcc taatctcagg tgatctaccc accttggcct cccaaattgc tgggattaca 2880 ggcgtgaacc actgctccct tccctgtcct tctgatttta aaataactat accagcagga 2940 ggacgtccag acacagcata ggctacctgg ccatgcccaa ccggtgggac atttgagttg 3000 cttgcttggc actgtcctct catgcgttgg gtccactcag tagatgcctg caggctcaga 3060 ggcacacagg agtttctggg ctcaccctgc ccccttccaa cccctcagtt cccatcctcc 3120 agcagctgtt tgtgtgctgc ctctgaagtc cacactgaac aaacttcagc ctactcatgt 3180 ccctaaaatg ggcaaacatt gcaagcagca aacagcaaac acacagccct ccctgcctgc 3240 tgaccttgga gctggggcag aggtcagaga cctctctggg cccatgccac ctccaacatc 3300 cactcgaccc cttggaattt cggtggagag gagcagaggt tgtcctggcg tggtttaggt 3360 agtgtgagag ggtccgggtt caaaaccact tgctgggtgg ggagtcgtca gtaagtggct 3420 atgccccgac cccgaagcct gtttccccat ctgtacaatg gaaatgataa agacgcccat 3480 ctgatagggt ttttgtggca aataaacatt tggttttttt gttttgtttt gttttgtttt 3540 ttgagatgga ggtttgctct gtcgcccagg ctggagtgca gtgacacaat ctcatctcac 3600 cacaaccttc ccctgcctca gcctcccaag tagctgggat tacaagcatg tgccaccaca 3660 cctggctaat tttctatttt tagtagagac gggtttctcc atgttggtca gcctcagcct 3720 cccaagtaac tgggattaca ggcctgtgcc accacacccg gctaattttt tctatttttg 3780 acagggacgg ggtttcacca tgttggtcag gctggtctag aa 3822 <210> 8 <211> 2924 <212> DNA <213> Artificial Sequence <220> <223> CMV-mRib-TK-mir122aT(3x) <400> 8 cgcgttacat aacttacggt aaatggcccg cctggctgac cgcccaacga cccccgccca 60 ttgacgtcaa taatgacgta tgttcccata gtaacgccaa tagggacttt ccattgacgt 120 caatgggtgg agtatttacg gtaaactgcc cacttggcag tacatcaagt gtatcatatg 180 ccaagtccgc cccctattga cgtcaatgac ggtaaatggc ccgcctggca ttatgcccag 240 tacatgacct tacgggactt tcctacttgg cagtacatct acgtattagt catcgctatt 300 accatggtga tgcggttttg gcagtacacc aatgggcgtg gatagcggtt tgactcacgg 360 ggatttccaa gtctccaccc cattgacgtc aatgggagtt tgttttggca ccaaaatcaa 420 cgggactttc caaaatgtcg taataacccc gccccgttga cgcaaatggg cggtaggcgt 480 gtacggtggg aggtctatat aagcagagct cgtttagtga accgtcagat cctcactctc 540 ttccgcatcg ctgtctgcga gggccagctg ttgggctcgc ggttgaggac aaactcttcg 600 cggtctttcc agtactcttg gatcggaaac ccgtcggcct ccgaacggta ctccgccacc 660 gagggacctg agccagtccg catcgaccgg atcggaaaac ctctcgagaa aggcgtctaa 720 ccagtcacag tcgcaaggta ggctgagcac cgtggcgggc ggcagcgggt ggcggtcggg 780 gttgtttctg gcggaggtgc tgctgatgat gtaattaaag taggcggtct tgagccggcg 840 gatggtcgag gtgaggtgtg gcaggcttga gatccagctg ttggggtgag tactccctct 900 caaaagcggg catgacttct gcgctaagat tgtcagtttc caaaaacgag gaggatttga 960 tattcacctg gcccgatctg gccatacact tgagtgacaa tgacatccac tttgcctttc 1020 tctccacagg tgtccactcc caggtccaag tttggaagat cctctagagt gcggtagatc 1080 ttcgggtccc cgggttgcac aagccgcctg ccctcgggcc ccaggcgccg cacaaaggtt 1140 gccagcggcc acacctcccg gtatcggcgc tagagccgag cggagagaaa agttatcagg 1200 catgcacctg gtagctagtc tttaaaccaa tagattgcat cggtttaaaa ggcaagaccg 1260 tcaaattgcg ggaaaggggt caacagccgt tcagtaccaa gtctcagggg aaactttgag 1320 atggccttgc aaagggtatg gtaataagct gacggacatg gtcctaacca cgcagccaag 1380 tcctaagtca acagatcttc tgttgatatg gatgcagttc acagactaaa tgtcggtcgg 1440 ggaagatgta ttcttctcat aagatatagt cggacctctc cttaatggga gctagcggat 1500 gaagtgatgc aacactggag ccgctgggaa ctaatttgta tgcgaaagta tattgattag 1560 ttttggagta ctcgcgcggc cgccgcttcg tacccctgcc atcaacacgc gtctgcgttc 1620 gaccaggctg cgcgttctcg cggccatagc aaccgacgta cggcgttgcg ccctcgccgg 1680 cagcaagaag ccacggaagt ccgcctggag cagaaaatgc ccacgctact gcgggtttat 1740 atagacggtc ctcacgggat ggggaaaacc accaccacgc aactgctggt ggccctgggt 1800 tcgcgcgacg atatcgtcta cgtacccgag ccgatgactt actggcaggt gctgggggct 1860 tccgagacaa tcgcgaacat ctacaccaca caacaccgcc tcgaccaggg tgagatatcg 1920 gccggggacg cggcggtggt aatgacaagc gcccagataa caatgggcat gccttatgcc 1980 gtgaccgacg ccgttctggc tcctcatgtc gggggggagg ctgggagttc acatgccccg 2040 cccccggccc tcaccctcat cttcgaccgc catcccatcg ccgccctcct gtgctacccg 2100 gccgcgcgat accttatggg cagcatgacc ccccaggccg tgctggcgtt cgtggccctc 2160 atcccgccga ccttgcccgg cacaaacatc gtgttggggg cccttccgga ggacagacac 2220 atcgaccgcc tggccaaacg ccagcgcccc ggcgagcggc ttgacctggc tatgctggcc 2280 gcgattcgcc gcgtttacgg gctgcttgcc aatacggtgc ggtatctgca gggcggcggg 2340 tcgtggtggg aggattgggg acagctttcg gggacggccg tgccgcccca gggtgccgag 2400 ccccagagca acgcgggccc acgaccccat atcggggaca cgttatttac cctgtttcgg 2460 gcccccgagt tgctggcccc caacggcgac ctgtataacg tgtttgcctg ggccttggac 2520 gtcttggcca aacgcctccg tcccatgcac gtctttatcc tggattacga ccaatcgccc 2580 gccggctgcc gggacgccct gctgcaactt acctccggga tggtccagac ccacgtcacc 2640 accccaggct ccataccgac gatctgcgac ctggcgcgca cgtttgcccg ggagatgggg 2700 gaggctaact gattcgaaac aaacaccatt gtcacactcc acgatacaaa caccattgtc 2760 acactccacg atacaaacac cattgtcaca ctccattcga aagatcccaa cgaaaagaga 2820 gaccacatgg tccttcttga gtttgtaaca gctgctggga ttacacatgg catggatgaa 2880 ctgtacaact gaggatcccc cgacctcgac ctctggctaa taaa 2924 <210> 9 <211> 3585 <212> DNA <213> Artificial Sequence <220> <223> PEPCK-mRib-TK-mir122aT(3x) <400> 9 aagtttattg tgttaggtca gttccaaacc gtgctgacca tggctatgat ccaaaggccg 60 gccccttacg tcagaggcga gcctccaggt ccagctgagg ggcagggctg tcctcccttc 120 tgtatactat ttaaagcgag gagggctagc taccaagcac ggttggcctt ccctctggga 180 acacaccctt ggccaacagg ggaaatccgg cgagacgctc tgagatcctg cgagaaggag 240 gtgcgtcctg ctgcctgccc cggcactctg gctccccagc tcaaggttca ggccttgccc 300 caggccgggc ctctgggtac ctgaggtctt ctcccgctct gtgcccttct cctcacctgg 360 ctgcaatgag tgggggagca cggggcttct gcatgctgaa ggcaccccac tcagccaggc 420 ccttcttctc ctccaggtcc cccacggccc ttcagatccg tgcggtagat cttcgggtcc 480 ccgggttgca caagccgcct gccctcgggc cccaggcgcc gcacaaaggt tgccagcggc 540 cacacctccc ggtatcggcg ctagagccga gcggagagaa aagttatcag gcatgcacct 600 ggtagctagt ctttaaacca atagattgca tcggtttaaa aggcaagacc gtcaaattgc 660 gggaaagggg tcaacagccg ttcagtacca agtctcaggg gaaactttga gatggccttg 720 caaagggtat ggtaataagc tgacggacat ggtcctaacc acgcagccaa gtcctaagtc 780 aacagatctt ctgttgatat ggatgcagtt cacagactaa atgtcggtcg gggaagatgt 840 attcttctca taagatatag tcggacctct ccttaatggg agctagcgga tgaagtgatg 900 caacactgga gccgctggga actaatttgt atgcgaaagt atattgatta gttttggagt 960 actcgcgcgg ccgccgcttc gtacccctgc catcaacacg cgtctgcgtt cgaccaggct 1020 gcgcgttctc gcggccatag caaccgacgt acggcgttgc gccctcgccg gcagcaagaa 1080 gccacggaag tccgcctgga gcagaaaatg cccacgctac tgcgggttta tatagacggt 1140 cctcacggga tggggaaaac caccaccacg caactgctgg tggccctggg ttcgcgcgac 1200 gatatcgtct acgtacccga gccgatgact tactggcagg tgctgggggc ttccgagaca 1260 atcgcgaaca tctacaccac acaacaccgc ctcgaccagg gtgagatatc ggccggggac 1320 gcggcggtgg taatgacaag cgcccagata acaatgggca tgccttatgc cgtgaccgac 1380 gccgttctgg ctcctcatgt cgggggggag gctgggagtt cacatgcccc gcccccggcc 1440 ctcaccctca tcttcgaccg ccatcccatc gccgccctcc tgtgctaccc ggccgcgcga 1500 taccttatgg gcagcatgac cccccaggcc gtgctggcgt tcgtggccct catcccgccg 1560 accttgcccg gcacaaacat cgtgttgggg gcccttccgg aggacagaca catcgaccgc 1620 ctggccaaac gccagcgccc cggcgagcgg cttgacctgg ctatgctggc cgcgattcgc 1680 cgcgtttacg ggctgcttgc caatacggtg cggtatctgc agggcggcgg gtcgtggtgg 1740 gaggattggg gacagctttc ggggacggcc gtgccgcccc agggtgccga gccccagagc 1800 aacgcgggcc cacgacccca tatcggggac acgttattta ccctgtttcg ggcccccgag 1860 ttgctggccc ccaacggcga cctgtataac gtgtttgcct gggccttgga cgtcttggcc 1920 aaacgcctcc gtcccatgca cgtctttatc ctggattacg accaatcgcc cgccggctgc 1980 cgggacgccc tgctgcaact tacctccggg atggtccaga cccacgtcac caccccaggc 2040 tccataccga cgatctgcga cctggcgcgc acgtttgccc gggagatggg ggaggctaac 2100 tgaagcggcc gcacaaacac cattgtcaca ctccacgata caaacaccat tgtcacactc 2160 cacgatacaa acaccattgt cacactccag cggccgcggg tggcatccct gtgacccctc 2220 cccagtgcct ctcctggccc tggaagttgc cactccagtg cccaccagcc ttgtcctaat 2280 aaaattaagt tgcatcattt tgtctgacta ggtgtccttc tataatatta tggggtggag 2340 gggggtggta tggagcaagg ggcaagttgg gaagacaacc tgtagggcct gcggggtcta 2400 ttgggaacca agctggagtg cagtggcaca atcttggctc actgcaatct ccgcctcctg 2460 ggttcaagcg attctcctgc ctcagcctcc cgagttgttg ggattccagg catgcatgac 2520 caggctcagc taatttttgt ttttttggta gagacggggt ttcaccatat tggccaggct 2580 ggtctccaac tcctaatctc aggtgatcta cccaccttgg cctcccaaat tgctgggatt 2640 acaggcgtga accactgctc ccttccctgt ccttctgatt ttaaaataac tataccagca 2700 ggaggacgtc cagacacagc ataggctacc tggccatgcc caaccggtgg gacatttgag 2760 ttgcttgctt ggcactgtcc tctcatgcgt tgggtccact cagtagatgc ctgcaggctc 2820 agaggcacac aggagtttct gggctcaccc tgcccccttc caacccctca gttcccatcc 2880 tccagcagct gtttgtgtgc tgcctctgaa gtccacactg aacaaacttc agcctactca 2940 tgtccctaaa atgggcaaac attgcaagca gcaaacagca aacacacagc cctccctgcc 3000 tgctgacctt ggagctgggg cagaggtcag agacctctct gggcccatgc cacctccaac 3060 atccactcga ccccttggaa tttcggtgga gaggagcaga ggttgtcctg gcgtggttta 3120 ggtagtgtga gagggtccgg gttcaaaacc acttgctggg tggggagtcg tcagtaagtg 3180 gctatgcccc gaccccgaag cctgtttccc catctgtaca atggaaatga taaagacgcc 3240 catctgatag ggtttttgtg gcaaataaac atttggtttt tttgttttgt tttgttttgt 3300 tttttgagat ggaggtttgc tctgtcgccc aggctggagt gcagtgacac aatctcatct 3360 caccacaacc ttcccctgcc tcagcctccc aagtagctgg gattacaagc atgtgccacc 3420 acacctggct aattttctat ttttagtaga gacgggtttc tccatgttgg tcagcctcag 3480 cctcccaagt aactgggatt acaggcctgt gccaccacac ccggctaatt ttttctattt 3540 ttgacaggga cggggtttca ccatgttggt caggctggtc tagaa 3585 <210> 10 <211> 1062 <212> DNA <213> Artificial Sequence <220> <223> CMV promoter <400> 10 cgcgttacat aacttacggt aaatggcccg cctggctgac cgcccaacga cccccgccca 60 ttgacgtcaa taatgacgta tgttcccata gtaacgccaa tagggacttt ccattgacgt 120 caatgggtgg agtatttacg gtaaactgcc cacttggcag tacatcaagt gtatcatatg 180 ccaagtccgc cccctattga cgtcaatgac ggtaaatggc ccgcctggca ttatgcccag 240 tacatgacct tacgggactt tcctacttgg cagtacatct acgtattagt catcgctatt 300 accatggtga tgcggttttg gcagtacacc aatgggcgtg gatagcggtt tgactcacgg 360 ggatttccaa gtctccaccc cattgacgtc aatgggagtt tgttttggca ccaaaatcaa 420 cgggactttc caaaatgtcg taataacccc gccccgttga cgcaaatggg cggtaggcgt 480 gtacggtggg aggtctatat aagcagagct cgtttagtga accgtcagat cctcactctc 540 ttccgcatcg ctgtctgcga gggccagctg ttgggctcgc ggttgaggac aaactcttcg 600 cggtctttcc agtactcttg gatcggaaac ccgtcggcct ccgaacggta ctccgccacc 660 gagggacctg agccagtccg catcgaccgg atcggaaaac ctctcgagaa aggcgtctaa 720 ccagtcacag tcgcaaggta ggctgagcac cgtggcgggc ggcagcgggt ggcggtcggg 780 gttgtttctg gcggaggtgc tgctgatgat gtaattaaag taggcggtct tgagccggcg 840 gatggtcgag gtgaggtgtg gcaggcttga gatccagctg ttggggtgag tactccctct 900 caaaagcggg catgacttct gcgctaagat tgtcagtttc caaaaacgag gaggatttga 960 tattcacctg gcccgatctg gccatacact tgagtgacaa tgacatccac tttgcctttc 1020 tctccacagg tgtccactcc caggtccaag tttggaagat cc 1062 <210> 11 <211> 227 <212> DNA <213> Artificial Sequence <220> <223> PEPCK promoter <400> 11 aagtttattg tgttaggtca gttccaaacc gtgctgacca tggctatgat ccaaaggccg 60 gccccttacg tcagaggcga gcctccaggt ccagctgagg ggcagggctg tcctcccttc 120 tgtatactat ttaaagcgag gagggctagc taccaagcac ggttggcctt ccctctggga 180 acacaccctt ggccaacagg ggaaatccgg cgagacgctc tgagatc 227 <210> 12 <211> 746 <212> DNA <213> Artificial Sequence <220> <223> hTERT targeting ribozyme <400> 12 aaggccagca cgttcttcgc gccgcgctcg cacagcctct gcagcactcg ggccaccagc 60 tccttcaggc aggacacctg gcggaaggag ggggcggcgg ggggcggccg tgcgtcccag 120 ggcacgcaca ccaggcactg ggccaccagc gcgcggaaag ccgccgggtc cccgcgctgc 180 accagccgcc agccctgggg ccccaggcgc cgcacgaacg tggccagcgg cagcacctcg 240 cggtagtggc tgcgcagcag ggagcgcacg gctaggcagc ggggagcgcg cggcatcgcg 300 ggggtggccg gggccagggc ttcccaagct tcgttttgcg gcaggaaaag ttatcaggca 360 tgcacctggt agctagtctt taaaccaata gattgcatcg gtttaaaagg caagaccgtc 420 aaattgcggg aaaggggtca acagccgttc agtaccaagt ctcaggggaa actttgagat 480 ggccttgcaa agggtatggt aataagctga cggacatggt cctaaccacg cagccaagtc 540 ctaagtcaac agatcttctg ttgatatgga tgcagttcac agactaaatg tcggtcgggg 600 aagatgtatt cttctcataa gatatagtcg gacctctcct taatgggagc tagcggatga 660 agtgatgcaa cactggagcc gctgggaact aatttgtatg cgaaagtata ttgattagtt 720 ttggagtact cgcgaaaacg cccacc 746 <210> 13 <211> 1131 <212> DNA <213> Artificial Sequence <220> <223> tk gene <400> 13 atggcttcgt acccctgcca tcaacacgcg tctgcgttcg accaggctgc gcgttctcgc 60 ggccatagca accgacgtac ggcgttgcgc cctcgccggc agcaagaagc cacggaagtc 120 cgcctggagc agaaaatgcc cacgctactg cgggtttata tagacggtcc tcacgggatg 180 gggaaaacca ccaccacgca actgctggtg gccctgggtt cgcgcgacga tatcgtctac 240 gtacccgagc cgatgactta ctggcaggtg ctgggggctt ccgagacaat cgcgaacatc 300 tacaccacac aacaccgcct cgaccagggt gagatatcgg ccggggacgc ggcggtggta 360 atgacaagcg cccagataac aatgggcatg ccttatgccg tgaccgacgc cgttctggct 420 cctcatgtcg ggggggaggc tgggagttca catgccccgc ccccggccct caccctcatc 480 ttcgaccgcc atcccatcgc cgccctcctg tgctacccgg ccgcgcgata ccttatgggc 540 agcatgaccc cccaggccgt gctggcgttc gtggccctca tcccgccgac cttgcccggc 600 acaaacatcg tgttgggggc ccttccggag gacagacaca tcgaccgcct ggccaaacgc 660 cagcgccccg gcgagcggct tgacctggct atgctggccg cgattcgccg cgtttacggg 720 ctgcttgcca atacggtgcg gtatctgcag ggcggcgggt cgtggtggga ggattgggga 780 cagctttcgg ggacggccgt gccgccccag ggtgccgagc cccagagcaa cgcgggccca 840 cgaccccata tcggggacac gttatttacc ctgtttcggg cccccgagtt gctggccccc 900 aacggcgacc tgtataacgt gtttgcctgg gccttggacg tcttggccaa acgcctccgt 960 cccatgcacg tctttatcct ggattacgac caatcgcccg ccggctgccg ggacgccctg 1020 ctgcaactta cctccgggat ggtccagacc cacgtcacca ccccaggctc cataccgacg 1080 atctgcgacc tggcgcgcac gtttgcccgg gagatggggg aggctaactg a 1131 <210> 14 <211> 1653 <212> DNA <213> Artificial Sequence <220> <223> firefly luciferase <400> 14 atggaagacg ccaaaaacat aaagaaaggc ccggcgccat tctatcctct agaggatgga 60 accgctggag agcaactgca taaggctatg aagagatacg ccctggttcc tggaacaatt 120 gcttttacag atgcacatat cgaggtgaac atcacgtacg cggaatactt cgaaatgtcc 180 gttcggttgg cagaagctat gaaacgatat gggctgaata caaatcacag aatcgtcgta 240 tgcagtgaaa actctcttca attctttatg ccggtgttgg gcgcgttatt tatcggagtt 300 gcagttgcgc ccgcgaacga catttataat gaacgtgaat tgctcaacag tatgaacatt 360 tcgcagccta ccgtagtgtt tgtttccaaa aaggggttgc aaaaaatttt gaacgtgcaa 420 aaaaaattac caataatcca gaaaattatt atcatggatt ctaaaacgga ttaccaggga 480 tttcagtcga tgtacacgtt cgtcacatct catctacctc ccggttttaa tgaatacgat 540 tttgtaccag agtcctttga tcgtgacaaa acaattgcac tgataatgaa ttcctctgga 600 tctactgggt tacctaaggg tgtggccctt ccgcatagaa ctgcctgcgt cagattctcg 660 catgccagag atcctatttt tggcaatcaa atcattccgg atactgcgat tttaagtgtt 720 gttccattcc atcacggttt tggaatgttt actacactcg gatatttgat atgtggattt 780 cgagtcgtct taatgtatag atttgaagaa gagctgtttt tacgatccct tcaggattac 840 aaaattcaaa gtgcgttgct agtaccaacc ctattttcat tcttcgccaa aagcactctg 900 attgacaaat acgatttatc taatttacac gaaattgctt ctgggggcgc acctctttcg 960 aaagaagtcg gggaagcggt tgcaaaacgc ttccatcttc cagggatacg acaaggatat 1020 gggctcactg agactacatc agctattctg attacacccg agggggatga taaaccgggc 1080 gcggtcggta aagttgttcc attttttgaa gcgaaggttg tggatctgga taccgggaaa 1140 acgctgggcg ttaatcagag aggcgaatta tgtgtcagag gacctatgat tatgtccggt 1200 tatgtaaaca atccggaagc gaccaacgcc ttgattgaca aggatggatg gctacattct 1260 ggagacatag cttactggga cgaagacgaa cacttcttca tagttgaccg cttgaagtct 1320 ttaattaaat acaaaggata tcaggtggcc cccgctgaat tggaatcgat attgttacaa 1380 caccccaaca tcttcgacgc gggcgtggca ggtcttcccg acgatgacgc cggtgaactt 1440 cccgccgccg ttgttgtttt ggagcacgga aagacgatga cggaaaaaga gatcgtggat 1500 tacgtggcca gtcaagtaac aaccgcgaaa aagttgcgcg gaggagttgt gtttgtggac 1560 gaagtaccga aaggtcttac cggaaaactc gacgcaagaa aaatcagaga gatcctcata 1620 aaggccaaga agggcggaaa gtccaaattg taa 1653 <210> 15 <211> 936 <212> DNA <213> Artificial Sequence <220> <223> renillar luciferase <400> 15 atgacttcga aagtttatga tccagaacaa aggaaacgga tgataactgg tccgcagtgg 60 tgggccagat gtaaacaaat gaatgttctt gattcattta ttaattatta tgattcagaa 120 aaacatgcag aaaatgctgt tattttttta catggtaacg cggcctcttc ttatttatgg 180 cgacatgttg tgccacatat tgagccagta gcgcggtgta ttataccaga ccttattggt 240 atgggcaaat caggcaaatc tggtaatggt tcttataggt tacttgatca ttacaaatat 300 cttactgcat ggtttgaact tcttaattta ccaaagaaga tcatttttgt cggccatgat 360 tggggtgctt gtttggcatt tcattatagc tatgagcatc aagataagat caaagcaata 420 gttcacgctg aaagtgtagt agatgtgatt gaatcatggg atgaatggcc tgatattgaa 480 gaagatattg cgttgatcaa atctgaagaa ggagaaaaaa tggttttgga gaataacttc 540 ttcgtggaaa ccatgttgcc atcaaaaatc atgagaaagt tagaaccaga agaatttgca 600 gcatatcttg aaccattcaa agagaaaggt gaagttcgtc gtccaacatt atcatggcct 660 cgtgaaatcc cgttagtaaa aggtggtaaa cctgacgttg tacaaattgt taggaattat 720 aatgcttatc tacgtgcaag tgatgattta ccaaaaatgt ttattgaatc ggacccagga 780 ttcttttcca atgctattgt tgaaggtgcc aagaagtttc ctaatactga atttgtcaaa 840 gtaaaaggtc ttcatttttc gcaagaagat gcacctgatg aaatgggaaa atatatcaaa 900 tcgttcgttg agcgagttct caaaaatgaa caataa 936 <210> 16 <211> 506 <212> DNA <213> Artificial Sequence <220> <223> mTERT targeting ribozyme <400> 16 gtgcggtaga tcttcgggtc cccgggttgc acaagccgcc tgccctcggg ccccaggcgc 60 cgcacaaagg ttgccagcgg ccacacctcc cggtatcggc gctagagccg agcggagaga 120 aaagttatca ggcatgcacc tggtagctag tctttaaacc aatagattgc atcggtttaa 180 aaggcaagac cgtcaaattg cgggaaaggg gtcaacagcc gttcagtacc aagtctcagg 240 ggaaactttg agatggcctt gcaaagggta tggtaataag ctgacggaca tggtcctaac 300 cacgcagcca agtcctaagt caacagatct tctgttgata tggatgcagt tcacagacta 360 aatgtcggtc ggggaagatg tattcttctc ataagatata gtcggacctc tccttaatgg 420 gagctagcgg atgaagtgat gcaacactgg agccgctggg aactaatttg tatgcgaaag 480 tatattgatt agttttggag tactcg 506 <210> 17 <211> 1138 <212> DNA <213> Artificial Sequence <220> <223> tk gene <400> 17 cgcggccgcc gcttcgtacc cctgccatca acacgcgtct gcgttcgacc aggctgcgcg 60 ttctcgcggc catagcaacc gacgtacggc gttgcgccct cgccggcagc aagaagccac 120 ggaagtccgc ctggagcaga aaatgcccac gctactgcgg gtttatatag acggtcctca 180 cgggatgggg aaaaccacca ccacgcaact gctggtggcc ctgggttcgc gcgacgatat 240 cgtctacgta cccgagccga tgacttactg gcaggtgctg ggggcttccg agacaatcgc 300 gaacatctac accacacaac accgcctcga ccagggtgag atatcggccg gggacgcggc 360 ggtggtaatg acaagcgccc agataacaat gggcatgcct tatgccgtga ccgacgccgt 420 tctggctcct catgtcgggg gggaggctgg gagttcacat gccccgcccc cggccctcac 480 cctcatcttc gaccgccatc ccatcgccgc cctcctgtgc tacccggccg cgcgatacct 540 tatgggcagc atgacccccc aggccgtgct ggcgttcgtg gccctcatcc cgccgacctt 600 gcccggcaca aacatcgtgt tgggggccct tccggaggac agacacatcg accgcctggc 660 caaacgccag cgccccggcg agcggcttga cctggctatg ctggccgcga ttcgccgcgt 720 ttacgggctg cttgccaata cggtgcggta tctgcagggc ggcgggtcgt ggtgggagga 780 ttggggacag ctttcgggga cggccgtgcc gccccagggt gccgagcccc agagcaacgc 840 gggcccacga ccccatatcg gggacacgtt atttaccctg tttcgggccc ccgagttgct 900 ggcccccaac ggcgacctgt ataacgtgtt tgcctgggcc ttggacgtct tggccaaacg 960 cctccgtccc atgcacgtct ttatcctgga ttacgaccaa tcgcccgccg gctgccggga 1020 cgccctgctg caacttacct ccgggatggt ccagacccac gtcaccaccc caggctccat 1080 accgacgatc tgcgacctgg cgcgcacgtt tgcccgggag atgggggagg ctaactga 1138 <110> Industry-Academic Cooperation Foundation, Dankook University <120> Cancer gene therapeutic agent through regulation using microRNA <130> PA110268 / KR <160> 17 <170> Kopatentin 1.71 <210> 1 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> mir181aT <400> 1 actcagcgac agcgttgaat gtt 23 <210> 2 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> mir122aT <400> 2 acaaacacca ttgtcacact cca 23 <210> 3 <211> 63 <212> DNA <213> Artificial Sequence <220> <223> scramble sequence <400> 3 actagtgaat cccccgggct gcaggaattc gatatcaagc ttatcgatac cgtcgacctc 60 gag 63 <210> 4 <211> 3124 <212> DNA <213> Artificial Sequence <220> <223> CMV-Rib-TK-mir181aT (2x) <400> 4 cgcgttacat aacttacggt aaatggcccg cctggctgac cgcccaacga cccccgccca 60 ttgacgtcaa taatgacgta tgttcccata gtaacgccaa tagggacttt ccattgacgt 120 caatgggtgg agtatttacg gtaaactgcc cacttggcag tacatcaagt gtatcatatg 180 ccaagtccgc cccctattga cgtcaatgac ggtaaatggc ccgcctggca ttatgcccag 240 tacatgacct tacgggactt tcctacttgg cagtacatct acgtattagt catcgctatt 300 accatggtga tgcggttttg gcagtacacc aatgggcgtg gatagcggtt tgactcacgg 360 ggatttccaa gtctccaccc cattgacgtc aatgggagtt tgttttggca ccaaaatcaa 420 cgggactttc caaaatgtcg taataacccc gccccgttga cgcaaatggg cggtaggcgt 480 gtacggtggg aggtctatat aagcagagct cgtttagtga accgtcagat cctcactctc 540 ttccgcatcg ctgtctgcga gggccagctg ttgggctcgc ggttgaggac aaactcttcg 600 cggtctttcc agtactcttg gatcggaaac ccgtcggcct ccgaacggta ctccgccacc 660 gagggacctg agccagtccg catcgaccgg atcggaaaac ctctcgagaa aggcgtctaa 720 ccagtcacag tcgcaaggta ggctgagcac cgtggcgggc ggcagcgggt ggcggtcggg 780 gttgtttctg gcggaggtgc tgctgatgat gtaattaaag taggcggtct tgagccggcg 840 gatggtcgag gtgaggtgtg gcaggcttga gatccagctg ttggggtgag tactccctct 900 caaaagcggg catgacttct gcgctaagat tgtcagtttc caaaaacgag gaggatttga 960 tattcacctg gcccgatctg gccatacact tgagtgacaa tgacatccac tttgcctttc 1020 tctccacagg tgtccactcc caggtccaag tttggaagat ccaaggccag cacgttcttc 1080 gcgccgcgct cgcacagcct ctgcagcact cgggccacca gctccttcag gcaggacacc 1140 tggcggaagg agggggcggc ggggggcggc cgtgcgtccc agggcacgca caccaggcac 1200 tgggccacca gcgcgcggaa agccgccggg tccccgcgct gcaccagccg ccagccctgg 1260 ggccccaggc gccgcacgaa cgtggccagc ggcagcacct cgcggtagtg gctgcgcagc 1320 agggagcgca cggctaggca gcggggagcg cgcggcatcg cgggggtggc cggggccagg 1380 gcttcccaag cttcgttttg cggcaggaaa agttatcagg catgcacctg gtagctagtc 1440 tttaaaccaa tagattgcat cggtttaaaa ggcaagaccg tcaaattgcg ggaaaggggt 1500 caacagccgt tcagtaccaa gtctcagggg aaactttgag atggccttgc aaagggtatg 1560 gtaataagct gacggacatg gtcctaacca cgcagccaag tcctaagtca acagatcttc 1620 tgttgatatg gatgcagttc acagactaaa tgtcggtcgg ggaagatgta ttcttctcat 1680 aagatatagt cggacctctc cttaatggga gctagcggat gaagtgatgc aacactggag 1740 ccgctgggaa ctaatttgta tgcgaaagta tattgattag ttttggagta ctcgcgaaaa 1800 cgcccaccat ggcttcgtac ccctgccatc aacacgcgtc tgcgttcgac caggctgcgc 1860 gttctcgcgg ccatagcaac cgacgtacgg cgttgcgccc tcgccggcag caagaagcca 1920 cggaagtccg cctggagcag aaaatgccca cgctactgcg ggtttatata gacggtcctc 1980 acgggatggg gaaaaccacc accacgcaac tgctggtggc cctgggttcg cgcgacgata 2040 tcgtctacgt acccgagccg atgacttact ggcaggtgct gggggcttcc gagacaatcg 2100 cgaacatcta caccacacaa caccgcctcg accagggtga gatatcggcc ggggacgcgg 2160 cggtggtaat gacaagcgcc cagataacaa tgggcatgcc ttatgccgtg accgacgccg 2220 ttctggctcc tcatgtcggg ggggaggctg ggagttcaca tgccccgccc ccggccctca 2280 ccctcatctt cgaccgccat cccatcgccg ccctcctgtg ctacccggcc gcgcgatacc 2340 ttatgggcag catgaccccc caggccgtgc tggcgttcgt ggccctcatc ccgccgacct 2400 tgcccggcac aaacatcgtg ttgggggccc ttccggagga cagacacatc gaccgcctgg 2460 ccaaacgcca gcgccccggc gagcggcttg acctggctat gctggccgcg attcgccgcg 2520 tttacgggct gcttgccaat acggtgcggt atctgcaggg cggcgggtcg tggtgggagg 2580 attggggaca gctttcgggg acggccgtgc cgccccaggg tgccgagccc cagagcaacg 2640 cgggcccacg accccatatc ggggacacgt tatttaccct gtttcgggcc cccgagttgc 2700 tggcccccaa cggcgacctg tataacgtgt ttgcctgggc cttggacgtc ttggccaaac 2760 gcctccgtcc catgcacgtc tttatcctgg attacgacca atcgcccgcc ggctgccggg 2820 acgccctgct gcaacttacc tccgggatgg tccagaccca cgtcaccacc ccaggctcca 2880 taccgacgat ctgcgacctg gcgcgcacgt ttgcccggga gatgggggag gctaactgat 2940 tcgaaactca gcgacagcgt tgaatgttcg atactcagcg acagcgttga atgttttcga 3000 aagatcccaa cgaaaagaga gaccacatgg tccttcttga gtttgtaaca gctgctggga 3060 ttacacatgg catggatgaa ctgtacaact gaggatcccc cgacctcgac ctctggctaa 3120 taaa 3124 <210> 5 <211> 3791 <212> DNA <213> Artificial Sequence <220> <223> PEPCK-Rib-TK-mir181aT (2x) <400> 5 aagtttattg tgttaggtca gttccaaacc gtgctgacca tggctatgat ccaaaggccg 60 gccccttacg tcagaggcga gcctccaggt ccagctgagg ggcagggctg tcctcccttc 120 tgtatactat ttaaagcgag gagggctagc taccaagcac ggttggcctt ccctctggga 180 acacaccctt ggccaacagg ggaaatccgg cgagacgctc tgagatcctg cgagaaggag 240 gtgcgtcctg ctgcctgccc cggcactctg gctccccagc tcaaggttca ggccttgccc 300 caggccgggc ctctgggtac ctgaggtctt ctcccgctct gtgcccttct cctcacctgg 360 ctgcaatgag tgggggagca cggggcttct gcatgctgaa ggcaccccac tcagccaggc 420 ccttcttctc ctccaggtcc cccacggccc ttcagatcta aggccagcac gttcttcgcg 480 ccgcgctcgc acagcctctg cagcactcgg gccaccagct ccttcaggca ggacacctgg 540 cggaaggagg gggcggcggg gggcggccgt gcgtcccagg gcacgcacac caggcactgg 600 gccaccagcg cgcggaaagc cgccgggtcc ccgcgctgca ccagccgcca gccctggggc 660 cccaggcgcc gcacgaacgt ggccagcggc agcacctcgc ggtagtggct gcgcagcagg 720 gagcgcacgg ctaggcagcg gggagcgcgc ggcatcgcgg gggtggccgg ggccagggct 780 tcccaagctt cgttttgcgg caggaaaagt tatcaggcat gcacctggta gctagtcttt 840 aaaccaatag attgcatcgg tttaaaaggc aagaccgtca aattgcggga aaggggtcaa 900 cagccgttca gtaccaagtc tcaggggaaa ctttgagatg gccttgcaaa gggtatggta 960 ataagctgac ggacatggtc ctaaccacgc agccaagtcc taagtcaaca gatcttctgt 1020 tgatatggat gcagttcaca gactaaatgt cggtcgggga agatgtattc ttctcataag 1080 atatagtcgg acctctcctt aatgggagct agcggatgaa gtgatgcaac actggagccg 1140 ctgggaacta atttgtatgc gaaagtatat tgattagttt tggagtactc gcgaaaacgc 1200 ccaccatggc ttcgtacccc tgccatcaac acgcgtctgc gttcgaccag gctgcgcgtt 1260 ctcgcggcca tagcaaccga cgtacggcgt tgcgccctcg ccggcagcaa gaagccacgg 1320 aagtccgcct ggagcagaaa atgcccacgc tactgcgggt ttatatagac ggtcctcacg 1380 ggatggggaa aaccaccacc acgcaactgc tggtggccct gggttcgcgc gacgatatcg 1440 tctacgtacc cgagccgatg acttactggc aggtgctggg ggcttccgag acaatcgcga 1500 acatctacac cacacaacac cgcctcgacc agggtgagat atcggccggg gacgcggcgg 1560 tggtaatgac aagcgcccag ataacaatgg gcatgcctta tgccgtgacc gacgccgttc 1620 tggctcctca tatcgggggg gaggctggga gctcacatgc cccgcccccg gccctcaccc 1680 tcatcttcga ccgccatccc atcgccgccc tcctgtgcta cccggccgcg cgatacctta 1740 tgggcagcat gaccccccag gccgtgctgg cgttcgtggc cctcatcccg ccgaccttgc 1800 ccggcacaaa catcgtgttg ggggcccttc cggaggacag acacatcgac cgcctggcca 1860 aacgccagcg ccccggcgag cggcttgacc tggctatgct ggccgcgatt cgccgcgttt 1920 acgggctgct tgccaatacg gtgcggtatc tgcagggcgg cgggtcgtgg tgggaggatt 1980 ggggacagct ttcggggacg gccgtgccgc cccagggtgc cgagccccag agcaacgcgg 2040 gcccacgacc ccatatcggg gacacgttat ttaccctgtt tcgggccccc gagttgctgg 2100 cccccaacgg cgacctgtat aacgtgtttg cctgggcctt ggacgtcttg gccaaacgcc 2160 tccgtcccat gcacgtcttt atcctggatt acgaccaatc gcccgccggc tgccgggacg 2220 ccctgctgca acttacctcc gggatggtcc agacccacgt caccacccca ggctccatac 2280 cgacgatctg cgacctggcg cgcacgtttg cccgggagat gggggaggct aactgaagcg 2340 gccgcactca gcgacagcgt tgaatgttcg atactcagcg acagcgttga atgttgcggc 2400 cgcgggtggc atccctgtga cccctcccca gtgcctctcc tggccctgga agttgccact 2460 ccagtgccca ccagccttgt cctaataaaa ttaagttgca tcattttgtc tgactaggtg 2520 tccttctata atattatggg gtggaggggg gtggtatgga gcaaggggca agttgggaag 2580 acaacctgta gggcctgcgg ggtctattgg gaaccaagct ggagtgcagt ggcacaatct 2640 tggctcactg caatctccgc ctcctgggtt caagcgattc tcctgcctca gcctcccgag 2700 ttgttgggat tccaggcatg catgaccagg ctcagctaat ttttgttttt ttggtagaga 2760 cggggtttca ccatattggc caggctggtc tccaactcct aatctcaggt gatctaccca 2820 ccttggcctc ccaaattgct gggattacag gcgtgaacca ctgctccctt ccctgtcctt 2880 ctgattttaa aataactata ccagcaggag gacgtccaga cacagcatag gctacctggc 2940 catgcccaac cggtgggaca tttgagttgc ttgcttggca ctgtcctctc atgcgttggg 3000 tccactcagt agatgcctgc aggctcagag gcacacagga gtttctgggc tcaccctgcc 3060 cccttccaac ccctcagttc ccatcctcca gcagctgttt gtgtgctgcc tctgaagtcc 3120 acactgaaca aacttcagcc tactcatgtc cctaaaatgg gcaaacattg caagcagcaa 3180 acagcaaaca cacagccctc cctgcctgct gaccttggag ctggggcaga ggtcagagac 3240 ctctctgggc ccatgccacc tccaacatcc actcgacccc ttggaatttc ggtggagagg 3300 agcagaggtt gtcctggcgt ggtttaggta gtgtgagagg gtccgggttc aaaaccactt 3360 gctgggtggg gagtcgtcag taagtggcta tgccccgacc ccgaagcctg tttccccatc 3420 tgtacaatgg aaatgataaa gacgcccatc tgatagggtt tttgtggcaa ataaacattt 3480 ggtttttttg ttttgttttg ttttgttttt tgagatggag gtttgctctg tcgcccaggc 3540 tggagtgcag tgacacaatc tcatctcacc acaaccttcc cctgcctcag cctcccaagt 3600 agctgggatt acaagcatgt gccaccacac ctggctaatt ttctattttt agtagagacg 3660 ggtttctcca tgttggtcag cctcagcctc ccaagtaact gggattacag gcctgtgcca 3720 ccacacccgg ctaatttttt ctatttttga cagggacggg gtttcaccat gttggtcagg 3780 ctggtctaga a 3791 <210> 6 <211> 3149 <212> DNA <213> Artificial Sequence <220> <223> CMV-hRib-TK-mir122aT (3x) <400> 6 cgcgttacat aacttacggt aaatggcccg cctggctgac cgcccaacga cccccgccca 60 ttgacgtcaa taatgacgta tgttcccata gtaacgccaa tagggacttt ccattgacgt 120 caatgggtgg agtatttacg gtaaactgcc cacttggcag tacatcaagt gtatcatatg 180 ccaagtccgc cccctattga cgtcaatgac ggtaaatggc ccgcctggca ttatgcccag 240 tacatgacct tacgggactt tcctacttgg cagtacatct acgtattagt catcgctatt 300 accatggtga tgcggttttg gcagtacacc aatgggcgtg gatagcggtt tgactcacgg 360 ggatttccaa gtctccaccc cattgacgtc aatgggagtt tgttttggca ccaaaatcaa 420 cgggactttc caaaatgtcg taataacccc gccccgttga cgcaaatggg cggtaggcgt 480 gtacggtggg aggtctatat aagcagagct cgtttagtga accgtcagat cctcactctc 540 ttccgcatcg ctgtctgcga gggccagctg ttgggctcgc ggttgaggac aaactcttcg 600 cggtctttcc agtactcttg gatcggaaac ccgtcggcct ccgaacggta ctccgccacc 660 gagggacctg agccagtccg catcgaccgg atcggaaaac ctctcgagaa aggcgtctaa 720 ccagtcacag tcgcaaggta ggctgagcac cgtggcgggc ggcagcgggt ggcggtcggg 780 gttgtttctg gcggaggtgc tgctgatgat gtaattaaag taggcggtct tgagccggcg 840 gatggtcgag gtgaggtgtg gcaggcttga gatccagctg ttggggtgag tactccctct 900 caaaagcggg catgacttct gcgctaagat tgtcagtttc caaaaacgag gaggatttga 960 tattcacctg gcccgatctg gccatacact tgagtgacaa tgacatccac tttgcctttc 1020 tctccacagg tgtccactcc caggtccaag tttggaagat ccaaggccag cacgttcttc 1080 gcgccgcgct cgcacagcct ctgcagcact cgggccacca gctccttcag gcaggacacc 1140 tggcggaagg agggggcggc ggggggcggc cgtgcgtccc agggcacgca caccaggcac 1200 tgggccacca gcgcgcggaa agccgccggg tccccgcgct gcaccagccg ccagccctgg 1260 ggccccaggc gccgcacgaa cgtggccagc ggcagcacct cgcggtagtg gctgcgcagc 1320 agggagcgca cggctaggca gcggggagcg cgcggcatcg cgggggtggc cggggccagg 1380 gcttcccaag cttcgttttg cggcaggaaa agttatcagg catgcacctg gtagctagtc 1440 tttaaaccaa tagattgcat cggtttaaaa ggcaagaccg tcaaattgcg ggaaaggggt 1500 caacagccgt tcagtaccaa gtctcagggg aaactttgag atggccttgc aaagggtatg 1560 gtaataagct gacggacatg gtcctaacca cgcagccaag tcctaagtca acagatcttc 1620 tgttgatatg gatgcagttc acagactaaa tgtcggtcgg ggaagatgta ttcttctcat 1680 aagatatagt cggacctctc cttaatggga gctagcggat gaagtgatgc aacactggag 1740 ccgctgggaa ctaatttgta tgcgaaagta tattgattag ttttggagta ctcgaaaacg 1800 cccaccatgg cttcgtaccc ctgccatcaa cacgcgtctg cgttcgacca ggctgcgcgt 1860 tctcgcggcc atagcaaccg acgtacggcg ttgcgccctc gccggcagca agaagccacg 1920 gaagtccgcc tggagcagaa aatgcccacg ctactgcggg tttatataga cggtcctcac 1980 gggatgggga aaaccaccac cacgcaactg ctggtggccc tgggttcgcg cgacgatatc 2040 gtctacgtac ccgagccgat gacttactgg caggtgctgg gggcttccga gacaatcgcg 2100 aacatctaca ccacacaaca ccgcctcgac cagggtgaga tatcggccgg ggacgcggcg 2160 gtggtaatga caagcgccca gataacaatg ggcatgcctt atgccgtgac cgacgccgtt 2220 ctggctcctc atgtcggggg ggaggctggg agttcacatg ccccgccccc ggccctcacc 2280 ctcatcttcg accgccatcc catcgccgcc ctcctgtgct acccggccgc gcgatacctt 2340 atgggcagca tgacccccca ggccgtgctg gcgttcgtgg ccctcatccc gccgaccttg 2400 cccggcacaa acatcgtgtt gggggccctt ccggaggaca gacacatcga ccgcctggcc 2460 aaacgccagc gccccggcga gcggcttgac ctggctatgc tggccgcgat tcgccgcgtt 2520 tacgggctgc ttgccaatac ggtgcggtat ctgcagggcg gcgggtcgtg gtgggaggat 2580 tggggacagc tttcggggac ggccgtgccg ccccagggtg ccgagcccca gagcaacgcg 2640 ggcccacgac cccatatcgg ggacacgtta tttaccctgt ttcgggcccc cgagttgctg 2700 gcccccaacg gcgacctgta taacgtgttt gcctgggcct tggacgtctt ggccaaacgc 2760 ctccgtccca tgcacgtctt tatcctggat tacgaccaat cgcccgccgg ctgccgggac 2820 gccctgctgc aacttacctc cgggatggtc cagacccacg tcaccacccc aggctccata 2880 ccgacgatct gcgacctggc gcgcacgttt gcccgggaga tgggggaggc taactgattc 2940 gaaacaaaca ccattgtcac actccacgat acaaacacca ttgtcacact ccacgataca 3000 aacaccattg tcacactcca ttcgaaagat cccaacgaaa agagagacca catggtcctt 3060 cttgagtttg taacagctgc tgggattaca catggcatgg atgaactgta caactgagga 3120 tcccccgacc tcgacctctg gctaataaa 3149 <210> 7 <211> 3822 <212> DNA <213> Artificial Sequence <220> <223> PEPCK-hRib-TK-mir122aT (3x) <400> 7 aagtttattg tgttaggtca gttccaaacc gtgctgacca tggctatgat ccaaaggccg 60 gccccttacg tcagaggcga gcctccaggt ccagctgagg ggcagggctg tcctcccttc 120 tgtatactat ttaaagcgag gagggctagc taccaagcac ggttggcctt ccctctggga 180 acacaccctt ggccaacagg ggaaatccgg cgagacgctc tgagatcctg cgagaaggag 240 gtgcgtcctg ctgcctgccc cggcactctg gctccccagc tcaaggttca ggccttgccc 300 caggccgggc ctctgggtac ctgaggtctt ctcccgctct gtgcccttct cctcacctgg 360 ctgcaatgag tgggggagca cggggcttct gcatgctgaa ggcaccccac tcagccaggc 420 ccttcttctc ctccaggbam htcccccacg gcccttcaga tctaaggcca gcacgttctt 480 cgcgccgcgc tcgcacagcc tctgcagcac tcgggccacc agctccttca ggcaggacac 540 ctggcggaag gagggggcgg cggggggcgg ccgtgcgtcc cagggcacgc acaccaggca 600 ctgggccacc agcgcgcgga aagccgccgg gtccccgcgc tgcaccagcc gccagccctg 660 gggccccagg cgccgcacga acgtggccag cggcagcacc tcgcggtagt ggctgcgcag 720 cagggagcgc acggctaggc agcggggagc gcgcggcatc gcgggggtgg ccggggccag 780 ggcttcccaa gcttcgtttt gcggcaggaa aagttatcag gcatgcacct ggtagctagt 840 ctttaaacca atagattgca tcggtttaaa aggcaagacc gtcaaattgc gggaaagggg 900 tcaacagccg ttcagtacca agtctcaggg gaaactttga gatggccttg caaagggtat 960 ggtaataagc tgacggacat ggtcctaacc acgcagccaa gtcctaagtc aacagatctt 1020 ctgttgatat ggatgcagtt cacagactaa atgtcggtcg gggaagatgt attcttctca 1080 taagatatag tcggacctct ccttaatggg agctagcgga tgaagtgatg caacactgga 1140 gccgctggga actaatttgt atgcgaaagt atattgatta gttttggagt actcgcgaaa 1200 acgcccacca tggcttcgta cccctgccat caacacgcgt ctgcgttcga ccaggctgcg 1260 cgttctcgcg gccatagcaa ccgacgtacg gcgttgcgcc ctcgccggca gcaagaagcc 1320 acggaagtcc gcctggagca gaaaatgccc acgctactgc gggtttatat agacggtcct 1380 cacgggatgg ggaaaaccac caccacgcaa ctgctggtgg ccctgggttc gcgcgacgat 1440 atcgtctacg tacccgagcc gatgacttac tggcaggtgc tgggggcttc cgagacaatc 1500 gcgaacatct acaccacaca acaccgcctc gaccagggtg agatatcggc cggggacgcg 1560 gcggtggtaa tgacaagcgc ccagataaca atgggcatgc cttatgccgt gaccgacgcc 1620 gttctggctc ctcatatcgg gggggaggct gggagctcac atgccccgcc cccggccctc 1680 accctcatct tcgaccgcca tcccatcgcc gccctcctgt gctacccggc cgcgcgatac 1740 cttatgggca gcatgacccc ccaggccgtg ctggcgttcg tggccctcat cccgccgacc 1800 ttgcccggca caaacatcgt gttgggggcc cttccggagg acagacacat cgaccgcctg 1860 gccaaacgcc agcgccccgg cgagcggctt gacctggcta tgctggccgc gattcgccgc 1920 gtttacgggc tgcttgccaa tacggtgcgg tatctgcagg gcggcgggtc gtggtgggag 1980 gattggggac agctttcggg gacggccgtg ccgccccagg gtgccgagcc ccagagcaac 2040 gcgggcccac gaccccatat cggggacacg ttatttaccc tgtttcgggc ccccgagttg 2100 ctggccccca acggcgacct gtataacgtg tttgcctggg ccttggacgt cttggccaaa 2160 cgcctccgtc ccatgcacgt ctttatcctg gattacgacc aatcgcccgc cggctgccgg 2220 gacgccctgc tgcaacttac ctccgggatg gtccagaccc acgtcaccac cccaggctcc 2280 ataccgacga tctgcgacct ggcgcgcacg tttgcccggg agatggggga ggctaactga 2340 agcggccgca caaacaccat tgtcacactc cacgatacaa acaccattgt cacactccac 2400 gatacaaaca ccattgtcac actccagcgg ccgcgggtgg catccctgtg acccctcccc 2460 agtgcctctc ctggccctgg aagttgccac tccagtgccc accagccttg tcctaataaa 2520 attaagttgc atcattttgt ctgactaggt gtccttctat aatattatgg ggtggagggg 2580 ggtggtatgg agcaaggggc aagttgggaa gacaacctgt agggcctgcg gggtctattg 2640 ggaaccaagc tggagtgcag tggcacaatc ttggctcact gcaatctccg cctcctgggt 2700 tcaagcgatt ctcctgcctc agcctcccga gttgttggga ttccaggcat gcatgaccag 2760 gctcagctaa tttttgtttt tttggtagag acggggtttc accatattgg ccaggctggt 2820 ctccaactcc taatctcagg tgatctaccc accttggcct cccaaattgc tgggattaca 2880 ggcgtgaacc actgctccct tccctgtcct tctgatttta aaataactat accagcagga 2940 ggacgtccag acacagcata ggctacctgg ccatgcccaa ccggtgggac atttgagttg 3000 cttgcttggc actgtcctct catgcgttgg gtccactcag tagatgcctg caggctcaga 3060 ggcacacagg agtttctggg ctcaccctgc ccccttccaa cccctcagtt cccatcctcc 3120 agcagctgtt tgtgtgctgc ctctgaagtc cacactgaac aaacttcagc ctactcatgt 3180 ccctaaaatg ggcaaacatt gcaagcagca aacagcaaac acacagccct ccctgcctgc 3240 tgaccttgga gctggggcag aggtcagaga cctctctggg cccatgccac ctccaacatc 3300 cactcgaccc cttggaattt cggtggagag gagcagaggt tgtcctggcg tggtttaggt 3360 agtgtgagag ggtccgggtt caaaaccact tgctgggtgg ggagtcgtca gtaagtggct 3420 atgccccgac cccgaagcct gtttccccat ctgtacaatg gaaatgataa agacgcccat 3480 ctgatagggt ttttgtggca aataaacatt tggttttttt gttttgtttt gttttgtttt 3540 ttgagatgga ggtttgctct gtcgcccagg ctggagtgca gtgacacaat ctcatctcac 3600 cacaaccttc ccctgcctca gcctcccaag tagctgggat tacaagcatg tgccaccaca 3660 cctggctaat tttctatttt tagtagagac gggtttctcc atgttggtca gcctcagcct 3720 cccaagtaac tgggattaca ggcctgtgcc accacacccg gctaattttt tctatttttg 3780 acagggacgg ggtttcacca tgttggtcag gctggtctag aa 3822 <210> 8 <211> 2924 <212> DNA <213> Artificial Sequence <220> CMV-mRib-TK-mir122aT (3x) <400> 8 cgcgttacat aacttacggt aaatggcccg cctggctgac cgcccaacga cccccgccca 60 ttgacgtcaa taatgacgta tgttcccata gtaacgccaa tagggacttt ccattgacgt 120 caatgggtgg agtatttacg gtaaactgcc cacttggcag tacatcaagt gtatcatatg 180 ccaagtccgc cccctattga cgtcaatgac ggtaaatggc ccgcctggca ttatgcccag 240 tacatgacct tacgggactt tcctacttgg cagtacatct acgtattagt catcgctatt 300 accatggtga tgcggttttg gcagtacacc aatgggcgtg gatagcggtt tgactcacgg 360 ggatttccaa gtctccaccc cattgacgtc aatgggagtt tgttttggca ccaaaatcaa 420 cgggactttc caaaatgtcg taataacccc gccccgttga cgcaaatggg cggtaggcgt 480 gtacggtggg aggtctatat aagcagagct cgtttagtga accgtcagat cctcactctc 540 ttccgcatcg ctgtctgcga gggccagctg ttgggctcgc ggttgaggac aaactcttcg 600 cggtctttcc agtactcttg gatcggaaac ccgtcggcct ccgaacggta ctccgccacc 660 gagggacctg agccagtccg catcgaccgg atcggaaaac ctctcgagaa aggcgtctaa 720 ccagtcacag tcgcaaggta ggctgagcac cgtggcgggc ggcagcgggt ggcggtcggg 780 gttgtttctg gcggaggtgc tgctgatgat gtaattaaag taggcggtct tgagccggcg 840 gatggtcgag gtgaggtgtg gcaggcttga gatccagctg ttggggtgag tactccctct 900 caaaagcggg catgacttct gcgctaagat tgtcagtttc caaaaacgag gaggatttga 960 tattcacctg gcccgatctg gccatacact tgagtgacaa tgacatccac tttgcctttc 1020 tctccacagg tgtccactcc caggtccaag tttggaagat cctctagagt gcggtagatc 1080 ttcgggtccc cgggttgcac aagccgcctg ccctcgggcc ccaggcgccg cacaaaggtt 1140 gccagcggcc acacctcccg gtatcggcgc tagagccgag cggagagaaa agttatcagg 1200 catgcacctg gtagctagtc tttaaaccaa tagattgcat cggtttaaaa ggcaagaccg 1260 tcaaattgcg ggaaaggggt caacagccgt tcagtaccaa gtctcagggg aaactttgag 1320 atggccttgc aaagggtatg gtaataagct gacggacatg gtcctaacca cgcagccaag 1380 tcctaagtca acagatcttc tgttgatatg gatgcagttc acagactaaa tgtcggtcgg 1440 ggaagatgta ttcttctcat aagatatagt cggacctctc cttaatggga gctagcggat 1500 gaagtgatgc aacactggag ccgctgggaa ctaatttgta tgcgaaagta tattgattag 1560 ttttggagta ctcgcgcggc cgccgcttcg tacccctgcc atcaacacgc gtctgcgttc 1620 gaccaggctg cgcgttctcg cggccatagc aaccgacgta cggcgttgcg ccctcgccgg 1680 cagcaagaag ccacggaagt ccgcctggag cagaaaatgc ccacgctact gcgggtttat 1740 atagacggtc ctcacgggat ggggaaaacc accaccacgc aactgctggt ggccctgggt 1800 tcgcgcgacg atatcgtcta cgtacccgag ccgatgactt actggcaggt gctgggggct 1860 tccgagacaa tcgcgaacat ctacaccaca caacaccgcc tcgaccaggg tgagatatcg 1920 gccggggacg cggcggtggt aatgacaagc gcccagataa caatgggcat gccttatgcc 1980 gtgaccgacg ccgttctggc tcctcatgtc gggggggagg ctgggagttc acatgccccg 2040 cccccggccc tcaccctcat cttcgaccgc catcccatcg ccgccctcct gtgctacccg 2100 gccgcgcgat accttatggg cagcatgacc ccccaggccg tgctggcgtt cgtggccctc 2160 atcccgccga ccttgcccgg cacaaacatc gtgttggggg cccttccgga ggacagacac 2220 atcgaccgcc tggccaaacg ccagcgcccc ggcgagcggc ttgacctggc tatgctggcc 2280 gcgattcgcc gcgtttacgg gctgcttgcc aatacggtgc ggtatctgca gggcggcggg 2340 tcgtggtggg aggattgggg acagctttcg gggacggccg tgccgcccca gggtgccgag 2400 ccccagagca acgcgggccc acgaccccat atcggggaca cgttatttac cctgtttcgg 2460 gcccccgagt tgctggcccc caacggcgac ctgtataacg tgtttgcctg ggccttggac 2520 gtcttggcca aacgcctccg tcccatgcac gtctttatcc tggattacga ccaatcgccc 2580 gccggctgcc gggacgccct gctgcaactt acctccggga tggtccagac ccacgtcacc 2640 accccaggct ccataccgac gatctgcgac ctggcgcgca cgtttgcccg ggagatgggg 2700 gaggctaact gattcgaaac aaacaccatt gtcacactcc acgatacaaa caccattgtc 2760 acactccacg atacaaacac cattgtcaca ctccattcga aagatcccaa cgaaaagaga 2820 gaccacatgg tccttcttga gtttgtaaca gctgctggga ttacacatgg catggatgaa 2880 ctgtacaact gaggatcccc cgacctcgac ctctggctaa taaa 2924 <210> 9 <211> 3585 <212> DNA <213> Artificial Sequence <220> <223> PEPCK-mRib-TK-mir122aT (3x) <400> 9 aagtttattg tgttaggtca gttccaaacc gtgctgacca tggctatgat ccaaaggccg 60 gccccttacg tcagaggcga gcctccaggt ccagctgagg ggcagggctg tcctcccttc 120 tgtatactat ttaaagcgag gagggctagc taccaagcac ggttggcctt ccctctggga 180 acacaccctt ggccaacagg ggaaatccgg cgagacgctc tgagatcctg cgagaaggag 240 gtgcgtcctg ctgcctgccc cggcactctg gctccccagc tcaaggttca ggccttgccc 300 caggccgggc ctctgggtac ctgaggtctt ctcccgctct gtgcccttct cctcacctgg 360 ctgcaatgag tgggggagca cggggcttct gcatgctgaa ggcaccccac tcagccaggc 420 ccttcttctc ctccaggtcc cccacggccc ttcagatccg tgcggtagat cttcgggtcc 480 ccgggttgca caagccgcct gccctcgggc cccaggcgcc gcacaaaggt tgccagcggc 540 cacacctccc ggtatcggcg ctagagccga gcggagagaa aagttatcag gcatgcacct 600 ggtagctagt ctttaaacca atagattgca tcggtttaaa aggcaagacc gtcaaattgc 660 gggaaagggg tcaacagccg ttcagtacca agtctcaggg gaaactttga gatggccttg 720 caaagggtat ggtaataagc tgacggacat ggtcctaacc acgcagccaa gtcctaagtc 780 aacagatctt ctgttgatat ggatgcagtt cacagactaa atgtcggtcg gggaagatgt 840 attcttctca taagatatag tcggacctct ccttaatggg agctagcgga tgaagtgatg 900 caacactgga gccgctggga actaatttgt atgcgaaagt atattgatta gttttggagt 960 actcgcgcgg ccgccgcttc gtacccctgc catcaacacg cgtctgcgtt cgaccaggct 1020 gcgcgttctc gcggccatag caaccgacgt acggcgttgc gccctcgccg gcagcaagaa 1080 gccacggaag tccgcctgga gcagaaaatg cccacgctac tgcgggttta tatagacggt 1140 cctcacggga tggggaaaac caccaccacg caactgctgg tggccctggg ttcgcgcgac 1200 gatatcgtct acgtacccga gccgatgact tactggcagg tgctgggggc ttccgagaca 1260 atcgcgaaca tctacaccac acaacaccgc ctcgaccagg gtgagatatc ggccggggac 1320 gcggcggtgg taatgacaag cgcccagata acaatgggca tgccttatgc cgtgaccgac 1380 gccgttctgg ctcctcatgt cgggggggag gctgggagtt cacatgcccc gcccccggcc 1440 ctcaccctca tcttcgaccg ccatcccatc gccgccctcc tgtgctaccc ggccgcgcga 1500 taccttatgg gcagcatgac cccccaggcc gtgctggcgt tcgtggccct catcccgccg 1560 accttgcccg gcacaaacat cgtgttgggg gcccttccgg aggacagaca catcgaccgc 1620 ctggccaaac gccagcgccc cggcgagcgg cttgacctgg ctatgctggc cgcgattcgc 1680 cgcgtttacg ggctgcttgc caatacggtg cggtatctgc agggcggcgg gtcgtggtgg 1740 gaggattggg gacagctttc ggggacggcc gtgccgcccc agggtgccga gccccagagc 1800 aacgcgggcc cacgacccca tatcggggac acgttattta ccctgtttcg ggcccccgag 1860 ttgctggccc ccaacggcga cctgtataac gtgtttgcct gggccttgga cgtcttggcc 1920 aaacgcctcc gtcccatgca cgtctttatc ctggattacg accaatcgcc cgccggctgc 1980 cgggacgccc tgctgcaact tacctccggg atggtccaga cccacgtcac caccccaggc 2040 tccataccga cgatctgcga cctggcgcgc acgtttgccc gggagatggg ggaggctaac 2100 tgaagcggcc gcacaaacac cattgtcaca ctccacgata caaacaccat tgtcacactc 2160 cacgatacaa acaccattgt cacactccag cggccgcggg tggcatccct gtgacccctc 2220 cccagtgcct ctcctggccc tggaagttgc cactccagtg cccaccagcc ttgtcctaat 2280 aaaattaagt tgcatcattt tgtctgacta ggtgtccttc tataatatta tggggtggag 2340 gggggtggta tggagcaagg ggcaagttgg gaagacaacc tgtagggcct gcggggtcta 2400 ttgggaacca agctggagtg cagtggcaca atcttggctc actgcaatct ccgcctcctg 2460 ggttcaagcg attctcctgc ctcagcctcc cgagttgttg ggattccagg catgcatgac 2520 caggctcagc taatttttgt ttttttggta gagacggggt ttcaccatat tggccaggct 2580 ggtctccaac tcctaatctc aggtgatcta cccaccttgg cctcccaaat tgctgggatt 2640 acaggcgtga accactgctc ccttccctgt ccttctgatt ttaaaataac tataccagca 2700 ggaggacgtc cagacacagc ataggctacc tggccatgcc caaccggtgg gacatttgag 2760 ttgcttgctt ggcactgtcc tctcatgcgt tgggtccact cagtagatgc ctgcaggctc 2820 agaggcacac aggagtttct gggctcaccc tgcccccttc caacccctca gttcccatcc 2880 tccagcagct gtttgtgtgc tgcctctgaa gtccacactg aacaaacttc agcctactca 2940 tgtccctaaa atgggcaaac attgcaagca gcaaacagca aacacacagc cctccctgcc 3000 tgctgacctt ggagctgggg cagaggtcag agacctctct gggcccatgc cacctccaac 3060 atccactcga ccccttggaa tttcggtgga gaggagcaga ggttgtcctg gcgtggttta 3120 ggtagtgtga gagggtccgg gttcaaaacc acttgctggg tggggagtcg tcagtaagtg 3180 gctatgcccc gaccccgaag cctgtttccc catctgtaca atggaaatga taaagacgcc 3240 catctgatag ggtttttgtg gcaaataaac atttggtttt tttgttttgt tttgttttgt 3300 tttttgagat ggaggtttgc tctgtcgccc aggctggagt gcagtgacac aatctcatct 3360 caccacaacc ttcccctgcc tcagcctccc aagtagctgg gattacaagc atgtgccacc 3420 acacctggct aattttctat ttttagtaga gacgggtttc tccatgttgg tcagcctcag 3480 cctcccaagt aactgggatt acaggcctgt gccaccacac ccggctaatt ttttctattt 3540 ttgacaggga cggggtttca ccatgttggt caggctggtc tagaa 3585 <210> 10 <211> 1062 <212> DNA <213> Artificial Sequence <220> <223> CMV promoter <400> 10 cgcgttacat aacttacggt aaatggcccg cctggctgac cgcccaacga cccccgccca 60 ttgacgtcaa taatgacgta tgttcccata gtaacgccaa tagggacttt ccattgacgt 120 caatgggtgg agtatttacg gtaaactgcc cacttggcag tacatcaagt gtatcatatg 180 ccaagtccgc cccctattga cgtcaatgac ggtaaatggc ccgcctggca ttatgcccag 240 tacatgacct tacgggactt tcctacttgg cagtacatct acgtattagt catcgctatt 300 accatggtga tgcggttttg gcagtacacc aatgggcgtg gatagcggtt tgactcacgg 360 ggatttccaa gtctccaccc cattgacgtc aatgggagtt tgttttggca ccaaaatcaa 420 cgggactttc caaaatgtcg taataacccc gccccgttga cgcaaatggg cggtaggcgt 480 gtacggtggg aggtctatat aagcagagct cgtttagtga accgtcagat cctcactctc 540 ttccgcatcg ctgtctgcga gggccagctg ttgggctcgc ggttgaggac aaactcttcg 600 cggtctttcc agtactcttg gatcggaaac ccgtcggcct ccgaacggta ctccgccacc 660 gagggacctg agccagtccg catcgaccgg atcggaaaac ctctcgagaa aggcgtctaa 720 ccagtcacag tcgcaaggta ggctgagcac cgtggcgggc ggcagcgggt ggcggtcggg 780 gttgtttctg gcggaggtgc tgctgatgat gtaattaaag taggcggtct tgagccggcg 840 gatggtcgag gtgaggtgtg gcaggcttga gatccagctg ttggggtgag tactccctct 900 caaaagcggg catgacttct gcgctaagat tgtcagtttc caaaaacgag gaggatttga 960 tattcacctg gcccgatctg gccatacact tgagtgacaa tgacatccac tttgcctttc 1020 tctccacagg tgtccactcc caggtccaag tttggaagat cc 1062 <210> 11 <211> 227 <212> DNA <213> Artificial Sequence <220> <223> PEPCK promoter <400> 11 aagtttattg tgttaggtca gttccaaacc gtgctgacca tggctatgat ccaaaggccg 60 gccccttacg tcagaggcga gcctccaggt ccagctgagg ggcagggctg tcctcccttc 120 tgtatactat ttaaagcgag gagggctagc taccaagcac ggttggcctt ccctctggga 180 acacaccctt ggccaacagg ggaaatccgg cgagacgctc tgagatc 227 <210> 12 <211> 746 <212> DNA <213> Artificial Sequence <220> <223> hTERT targeting ribozyme <400> 12 aaggccagca cgttcttcgc gccgcgctcg cacagcctct gcagcactcg ggccaccagc 60 tccttcaggc aggacacctg gcggaaggag ggggcggcgg ggggcggccg tgcgtcccag 120 ggcacgcaca ccaggcactg ggccaccagc gcgcggaaag ccgccgggtc cccgcgctgc 180 accagccgcc agccctgggg ccccaggcgc cgcacgaacg tggccagcgg cagcacctcg 240 cggtagtggc tgcgcagcag ggagcgcacg gctaggcagc ggggagcgcg cggcatcgcg 300 ggggtggccg gggccagggc ttcccaagct tcgttttgcg gcaggaaaag ttatcaggca 360 tgcacctggt agctagtctt taaaccaata gattgcatcg gtttaaaagg caagaccgtc 420 aaattgcggg aaaggggtca acagccgttc agtaccaagt ctcaggggaa actttgagat 480 ggccttgcaa agggtatggt aataagctga cggacatggt cctaaccacg cagccaagtc 540 ctaagtcaac agatcttctg ttgatatgga tgcagttcac agactaaatg tcggtcgggg 600 aagatgtatt cttctcataa gatatagtcg gacctctcct taatgggagc tagcggatga 660 agtgatgcaa cactggagcc gctgggaact aatttgtatg cgaaagtata ttgattagtt 720 ttggagtact cgcgaaaacg cccacc 746 <210> 13 <211> 1131 <212> DNA <213> Artificial Sequence <220> <223> tk gene <400> 13 atggcttcgt acccctgcca tcaacacgcg tctgcgttcg accaggctgc gcgttctcgc 60 ggccatagca accgacgtac ggcgttgcgc cctcgccggc agcaagaagc cacggaagtc 120 cgcctggagc agaaaatgcc cacgctactg cgggtttata tagacggtcc tcacgggatg 180 gggaaaacca ccaccacgca actgctggtg gccctgggtt cgcgcgacga tatcgtctac 240 gtacccgagc cgatgactta ctggcaggtg ctgggggctt ccgagacaat cgcgaacatc 300 tacaccacac aacaccgcct cgaccagggt gagatatcgg ccggggacgc ggcggtggta 360 atgacaagcg cccagataac aatgggcatg ccttatgccg tgaccgacgc cgttctggct 420 cctcatgtcg ggggggaggc tgggagttca catgccccgc ccccggccct caccctcatc 480 ttcgaccgcc atcccatcgc cgccctcctg tgctacccgg ccgcgcgata ccttatgggc 540 agcatgaccc cccaggccgt gctggcgttc gtggccctca tcccgccgac cttgcccggc 600 acaaacatcg tgttgggggc ccttccggag gacagacaca tcgaccgcct ggccaaacgc 660 cagcgccccg gcgagcggct tgacctggct atgctggccg cgattcgccg cgtttacggg 720 ctgcttgcca atacggtgcg gtatctgcag ggcggcgggt cgtggtggga ggattgggga 780 cagctttcgg ggacggccgt gccgccccag ggtgccgagc cccagagcaa cgcgggccca 840 cgaccccata tcggggacac gttatttacc ctgtttcggg cccccgagtt gctggccccc 900 aacggcgacc tgtataacgt gtttgcctgg gccttggacg tcttggccaa acgcctccgt 960 cccatgcacg tctttatcct ggattacgac caatcgcccg ccggctgccg ggacgccctg 1020 ctgcaactta cctccgggat ggtccagacc cacgtcacca ccccaggctc cataccgacg 1080 atctgcgacc tggcgcgcac gtttgcccgg gagatggggg aggctaactg a 1131 <210> 14 <211> 1653 <212> DNA <213> Artificial Sequence <220> <223> firefly luciferase <400> 14 atggaagacg ccaaaaacat aaagaaaggc ccggcgccat tctatcctct agaggatgga 60 accgctggag agcaactgca taaggctatg aagagatacg ccctggttcc tggaacaatt 120 gcttttacag atgcacatat cgaggtgaac atcacgtacg cggaatactt cgaaatgtcc 180 gttcggttgg cagaagctat gaaacgatat gggctgaata caaatcacag aatcgtcgta 240 tgcagtgaaa actctcttca attctttatg ccggtgttgg gcgcgttatt tatcggagtt 300 gcagttgcgc ccgcgaacga catttataat gaacgtgaat tgctcaacag tatgaacatt 360 tcgcagccta ccgtagtgtt tgtttccaaa aaggggttgc aaaaaatttt gaacgtgcaa 420 aaaaaattac caataatcca gaaaattatt atcatggatt ctaaaacgga ttaccaggga 480 tttcagtcga tgtacacgtt cgtcacatct catctacctc ccggttttaa tgaatacgat 540 tttgtaccag agtcctttga tcgtgacaaa acaattgcac tgataatgaa ttcctctgga 600 tctactgggt tacctaaggg tgtggccctt ccgcatagaa ctgcctgcgt cagattctcg 660 catgccagag atcctatttt tggcaatcaa atcattccgg atactgcgat tttaagtgtt 720 gttccattcc atcacggttt tggaatgttt actacactcg gatatttgat atgtggattt 780 cgagtcgtct taatgtatag atttgaagaa gagctgtttt tacgatccct tcaggattac 840 aaaattcaaa gtgcgttgct agtaccaacc ctattttcat tcttcgccaa aagcactctg 900 attgacaaat acgatttatc taatttacac gaaattgctt ctgggggcgc acctctttcg 960 aaagaagtcg gggaagcggt tgcaaaacgc ttccatcttc cagggatacg acaaggatat 1020 gggctcactg agactacatc agctattctg attacacccg agggggatga taaaccgggc 1080 gcggtcggta aagttgttcc attttttgaa gcgaaggttg tggatctgga taccgggaaa 1140 acgctgggcg ttaatcagag aggcgaatta tgtgtcagag gacctatgat tatgtccggt 1200 tatgtaaaca atccggaagc gaccaacgcc ttgattgaca aggatggatg gctacattct 1260 ggagacatag cttactggga cgaagacgaa cacttcttca tagttgaccg cttgaagtct 1320 ttaattaaat acaaaggata tcaggtggcc cccgctgaat tggaatcgat attgttacaa 1380 caccccaaca tcttcgacgc gggcgtggca ggtcttcccg acgatgacgc cggtgaactt 1440 cccgccgccg ttgttgtttt ggagcacgga aagacgatga cggaaaaaga gatcgtggat 1500 tacgtggcca gtcaagtaac aaccgcgaaa aagttgcgcg gaggagttgt gtttgtggac 1560 gaagtaccga aaggtcttac cggaaaactc gacgcaagaa aaatcagaga gatcctcata 1620 aaggccaaga agggcggaaa gtccaaattg taa 1653 <210> 15 <211> 936 <212> DNA <213> Artificial Sequence <220> <223> renillar luciferase <400> 15 atgacttcga aagtttatga tccagaacaa aggaaacgga tgataactgg tccgcagtgg 60 tgggccagat gtaaacaaat gaatgttctt gattcattta ttaattatta tgattcagaa 120 aaacatgcag aaaatgctgt tattttttta catggtaacg cggcctcttc ttatttatgg 180 cgacatgttg tgccacatat tgagccagta gcgcggtgta ttataccaga ccttattggt 240 atgggcaaat caggcaaatc tggtaatggt tcttataggt tacttgatca ttacaaatat 300 cttactgcat ggtttgaact tcttaattta ccaaagaaga tcatttttgt cggccatgat 360 tggggtgctt gtttggcatt tcattatagc tatgagcatc aagataagat caaagcaata 420 gttcacgctg aaagtgtagt agatgtgatt gaatcatggg atgaatggcc tgatattgaa 480 gaagatattg cgttgatcaa atctgaagaa ggagaaaaaa tggttttgga gaataacttc 540 ttcgtggaaa ccatgttgcc atcaaaaatc atgagaaagt tagaaccaga agaatttgca 600 gcatatcttg aaccattcaa agagaaaggt gaagttcgtc gtccaacatt atcatggcct 660 cgtgaaatcc cgttagtaaa aggtggtaaa cctgacgttg tacaaattgt taggaattat 720 aatgcttatc tacgtgcaag tgatgattta ccaaaaatgt ttattgaatc ggacccagga 780 ttcttttcca atgctattgt tgaaggtgcc aagaagtttc ctaatactga atttgtcaaa 840 gtaaaaggtc ttcatttttc gcaagaagat gcacctgatg aaatgggaaa atatatcaaa 900 tcgttcgttg agcgagttct caaaaatgaa caataa 936 <210> 16 <211> 506 <212> DNA <213> Artificial Sequence <220> <223> mTERT targeting ribozyme <400> 16 gtgcggtaga tcttcgggtc cccgggttgc acaagccgcc tgccctcggg ccccaggcgc 60 cgcacaaagg ttgccagcgg ccacacctcc cggtatcggc gctagagccg agcggagaga 120 aaagttatca ggcatgcacc tggtagctag tctttaaacc aatagattgc atcggtttaa 180 aaggcaagac cgtcaaattg cgggaaaggg gtcaacagcc gttcagtacc aagtctcagg 240 ggaaactttg agatggcctt gcaaagggta tggtaataag ctgacggaca tggtcctaac 300 cacgcagcca agtcctaagt caacagatct tctgttgata tggatgcagt tcacagacta 360 aatgtcggtc ggggaagatg tattcttctc ataagatata gtcggacctc tccttaatgg 420 gagctagcgg atgaagtgat gcaacactgg agccgctggg aactaatttg tatgcgaaag 480 tatattgatt agttttggag tactcg 506 <210> 17 <211> 1138 <212> DNA <213> Artificial Sequence <220> <223> tk gene <400> 17 cgcggccgcc gcttcgtacc cctgccatca acacgcgtct gcgttcgacc aggctgcgcg 60 ttctcgcggc catagcaacc gacgtacggc gttgcgccct cgccggcagc aagaagccac 120 ggaagtccgc ctggagcaga aaatgcccac gctactgcgg gtttatatag acggtcctca 180 cgggatgggg aaaaccacca ccacgcaact gctggtggcc ctgggttcgc gcgacgatat 240 cgtctacgta cccgagccga tgacttactg gcaggtgctg ggggcttccg agacaatcgc 300 gaacatctac accacacaac accgcctcga ccagggtgag atatcggccg gggacgcggc 360 ggtggtaatg acaagcgccc agataacaat gggcatgcct tatgccgtga ccgacgccgt 420 tctggctcct catgtcgggg gggaggctgg gagttcacat gccccgcccc cggccctcac 480 cctcatcttc gaccgccatc ccatcgccgc cctcctgtgc tacccggccg cgcgatacct 540 tatgggcagc atgacccccc aggccgtgct ggcgttcgtg gccctcatcc cgccgacctt 600 gcccggcaca aacatcgtgt tgggggccct tccggaggac agacacatcg accgcctggc 660 caaacgccag cgccccggcg agcggcttga cctggctatg ctggccgcga ttcgccgcgt 720 ttacgggctg cttgccaata cggtgcggta tctgcagggc ggcgggtcgt ggtgggagga 780 ttggggacag ctttcgggga cggccgtgcc gccccagggt gccgagcccc agagcaacgc 840 gggcccacga ccccatatcg gggacacgtt atttaccctg tttcgggccc ccgagttgct 900 ggcccccaac ggcgacctgt ataacgtgtt tgcctgggcc ttggacgtct tggccaaacg 960 cctccgtccc atgcacgtct ttatcctgga ttacgaccaa tcgcccgccg gctgccggga 1020 cgccctgctg caacttacct ccgggatggt ccagacccac gtcaccaccc caggctccat 1080 accgacgatc tgcgacctgg cgcgcacgtt tgcccgggag atgggggagg ctaactga 1138

Claims (25)

프로모터;
상기 프로모터와 작동 가능하게 연결된, 암 특이 유전자에 작용하는 트랜스-스플라이싱 라이보자임 코딩 DNA; 및
상기 라이보자임의 3' UTR 대응 부위에 포함된, 마이크로RNA 표적 서열 코딩 DNA를 포함하고,
상기 마이크로RNA는 암세포에서 발현되지 않는 것인 발현벡터.
Promoter;
A trans-splicing ribozyme coding DNA that acts on a cancer specific gene, operably linked to said promoter; And
A microRNA target sequence coding DNA contained in the 3 ′ UTR corresponding site of the ribozyme,
The microRNA is not expressed in cancer cells.
제1항에 있어서, 상기 발현벡터는
상기 라이보자임의 3'측 엑손 대응 부위에 연결된, 치료 유전자 또는 리포터 유전자를 추가로 포함하는 발현벡터.
The method of claim 1, wherein the expression vector
An expression vector further comprising a therapeutic gene or a reporter gene linked to the 3'-side exon corresponding site of the ribozyme.
제1항에 있어서, 상기 암 특이 유전자는 hTERT(human Telomerase Reverse Transcriptase)인 것인 발현벡터.The expression vector of claim 1, wherein the cancer specific gene is hTERT (human Telomerase Reverse Transcriptase). 제1항에 있어서, 상기 라이보자임은 hTERT(human Telomerase Reverse Transcriptase)mRNA를 특이적으로 표적하는 트랜스-스플라이싱 그룹 I 인트론 라이보자임인 것인 발현벡터.The expression vector of claim 1, wherein the ribozyme is a trans-splicing group I intron ribozyme that specifically targets a human Telomerase Reverse Transcriptase (hTERT) mRNA. 제2항에 있어서, 상기 치료 유전자는 HSV-tk(Herpes simplex virus-thymidine kinase) 유전자인 발현벡터.The expression vector of claim 2, wherein the therapeutic gene is a Herpes simplex virus-thymidine kinase (HSV-tk) gene. 제2항에 있어서, 상기 리포터 유전자는 반딧불이(firefly) 루시페라제 유전자 또는 레닐라(Renillar) 루시페라제인 발현벡터.The expression vector of claim 2, wherein the reporter gene is a firefly luciferase gene or a renillar luciferase. 제1항에 있어서, 상기 프로모터는 암 세포 특이적으로 활성화되는 프로모터인 발현벡터.The expression vector of claim 1, wherein the promoter is a promoter that is specifically activated for cancer cells. 제1항에 있어서, 상기 프로모터는 PEPCK(phosphoenolpyruvate carboxykinase) 유전자의 프로모터인 발현벡터.The expression vector of claim 1, wherein the promoter is a promoter of a phosphoenolpyruvate carboxykinase (PEPCK) gene. 제1항에 있어서, 상기 마이크로RNA 표적 서열은 마이크로RNA의 안티센스 서열인 발현벡터.The expression vector of claim 1, wherein the microRNA target sequence is an antisense sequence of the microRNA. 제1항에 있어서, 상기 마이크로RNA 표적 서열 코딩 DNA는 1개 이상 포함되는 것인 발현벡터. The expression vector of claim 1, wherein the microRNA target sequence coding DNA is included in at least one. 제1항에 있어서, 상기 발현벡터는 서열번호 4 내지 서열번호 9에서 선택된 염기서열을 포함하는 것인 발현벡터.The expression vector according to claim 1, wherein the expression vector comprises a nucleotide sequence selected from SEQ ID NO: 4 to SEQ ID NO: 9. 제1항에 있어서, 상기 프로모터는 서열번호 10 또는 서열번호 11로 표시되는 염기서열을 갖는 것인 발현벡터.According to claim 1, wherein the promoter is an expression vector having a nucleotide sequence represented by SEQ ID NO: 10 or SEQ ID NO: 11. 제1항에 있어서, 상기 라이보자임 코딩 DNA는 서열번호 12 또는 서열번호 16으로 표시되는 염기서열을 갖는 것인 발현벡터.The expression vector according to claim 1, wherein the ribozyme coding DNA has a nucleotide sequence represented by SEQ ID NO: 12 or SEQ ID NO: 16. 제2항에 있어서, 상기 치료 유전자는 서열번호 13 또는 서열번호 17로 표시되는 염기서열을 갖는 것인 발현벡터.According to claim 2, wherein the therapeutic gene is an expression vector having a nucleotide sequence represented by SEQ ID NO: 13 or SEQ ID NO: 17. 제2항에 있어서, 상기 리포터 유전자는 서열번호 14 또는 서열번호 15로 표시되는 염기서열을 갖는 것인 발현벡터.The expression vector according to claim 2, wherein the reporter gene has a nucleotide sequence represented by SEQ ID NO: 14 or SEQ ID NO: 15. 제1항에 있어서, 상기 마이크로RNA 표적 서열 코딩 DNA는 서열번호 1 또는 서열번호 2로 표시되는 염기서열을 갖는 것인 발현벡터.The expression vector according to claim 1, wherein the microRNA target sequence coding DNA has a nucleotide sequence represented by SEQ ID NO: 1 or SEQ ID NO: 2. 제2항에 있어서, 상기 라이보자임은 암 특이 유전자의 mRNA를 인지하여 트랜스-스플라이싱 반응을 수행함으로써 상기 치료 유전자 또는 리포터 유전자를 상기 암 특이 유전자에 연결하는 작용을 하는 것인 발현벡터.The expression vector according to claim 2, wherein the ribozyme functions to link the therapeutic gene or the reporter gene to the cancer specific gene by performing a trans-splicing reaction by recognizing the mRNA of the cancer specific gene. 제1항 또는 제2항에 있어서, 상기 라이보자임은 암 특이 유전자의 mRNA를 인지하여 트랜스-스플라이싱 반응을 수행함으로써 상기 암 특이 유전자를 불활성화시키는 작용을 하는 것인 발현벡터.The expression vector according to claim 1 or 2, wherein the ribozyme acts to inactivate the cancer specific gene by recognizing the mRNA of the cancer specific gene and performing a trans-splicing reaction. 제1항 내지 제18항 중 어느 한 항에 따른 발현벡터를 유효성분으로 포함하는 항암용 약학 조성물.An anticancer pharmaceutical composition comprising the expression vector according to any one of claims 1 to 18 as an active ingredient. 제19항에 있어서, 상기 항암용 약학 조성물은 암세포가 아닌 세포에서는 세포독성을 갖지 않는 것인 조성물.The composition of claim 19, wherein the anticancer pharmaceutical composition does not have cytotoxicity in cells other than cancer cells. 제20항에 있어서, 암세포가 아닌 세포에서는 세포 내 마이크로RNA가 마이크로RNA 표적 서열과 결합하여, 암 특이 유전자에 작용하는 트랜스-스플라이싱 라이보자임이 불활성화되는 것인 조성물.The composition of claim 20, wherein in cells other than cancer cells, intracellular microRNA binds to the microRNA target sequence such that trans-splicing ribozymes that act on cancer specific genes are inactivated. 제2항에 따른 발현벡터를 유효성분으로 포함하는 암 진단용 조성물.Cancer diagnostic composition comprising the expression vector according to claim 2 as an active ingredient. 제2항에 따른 발현벡터를 암 세포에 도입하는 단계; 및
암 세포에서 리포터 단백질을 검출하는 단계를 포함하는 암의 진단을 위한 정보제공방법.
Introducing the expression vector according to claim 2 into cancer cells; And
An information providing method for diagnosing cancer, the method comprising detecting a reporter protein in cancer cells.
암 특이 유전자에 작용하는 트랜스-스플라이싱 라이보자임 코딩 DNA를 프로모터와 작동 가능하게 연결하는 단계; 및
상기 라이보자임의 3'UTR 대응 부위에 마이크로RNA 표적 서열 코딩 DNA를 포함시키는 단계를 포함하고,
상기 마이크로RNA는 암세포에서 발현되지 않는 것인, 암 치료용 발현벡터 제조방법.
Operatively linking a trans-splicing ribozyme coding DNA that acts on a cancer specific gene with a promoter; And
Including the microRNA target sequence coding DNA in the 3′UTR corresponding site of the ribozyme,
The microRNA is not expressed in cancer cells, cancer expression expression vector manufacturing method.
제24항에 있어서,
상기 라이보자임의 3'측 엑손 대응 부위에 치료 유전자 또는 리포터 유전자를 연결하는 단계를 추가로 포함하는 방법.
25. The method of claim 24,
Linking a therapeutic or reporter gene to the 3'-side exon corresponding site of the ribozyme.
KR20110050324A 2011-05-26 2011-05-26 Cancer gene therapeutic agent through regulation using microRNA KR101478869B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20110050324A KR101478869B1 (en) 2011-05-26 2011-05-26 Cancer gene therapeutic agent through regulation using microRNA

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20110050324A KR101478869B1 (en) 2011-05-26 2011-05-26 Cancer gene therapeutic agent through regulation using microRNA

Publications (2)

Publication Number Publication Date
KR20120132594A true KR20120132594A (en) 2012-12-06
KR101478869B1 KR101478869B1 (en) 2015-01-06

Family

ID=47516133

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20110050324A KR101478869B1 (en) 2011-05-26 2011-05-26 Cancer gene therapeutic agent through regulation using microRNA

Country Status (1)

Country Link
KR (1) KR101478869B1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160038674A (en) * 2014-09-29 2016-04-07 단국대학교 산학협력단 Tumor-targeting trans-splicing ribozyme and use thereof
WO2016052851A1 (en) * 2014-09-29 2016-04-07 단국대학교 산학협력단 Cancer specific-splicing ribozyme and use thereof
WO2016126071A1 (en) * 2015-02-02 2016-08-11 단국대학교 산학협력단 Ctla-4-targeting trans-splicing ribozyme for delivery of chimeric antigen receptor, and use thereof
KR20160101806A (en) * 2015-02-17 2016-08-26 단국대학교 산학협력단 DNA structure for selective expression of the therapeutic gene
CN111607610A (en) * 2019-02-22 2020-09-01 尔知诺米斯股份有限公司 Cancer-specific trans-splicing ribozymes and uses thereof
EP3733213A1 (en) * 2019-02-22 2020-11-04 Rznomics Inc. Tumor-targeting trans-splicing ribozyme and use thereof
KR20230073600A (en) 2021-11-19 2023-05-26 연세대학교 산학협력단 Splicing modulation by exon island containing the exon definition of microexon

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101034811B1 (en) * 2008-08-25 2011-05-16 단국대학교 산학협력단 Recombinant adenovirus comprising tissu-specific promoter and tumor-targeting trans-splicing ribozyme and uses thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160038674A (en) * 2014-09-29 2016-04-07 단국대학교 산학협력단 Tumor-targeting trans-splicing ribozyme and use thereof
WO2016052851A1 (en) * 2014-09-29 2016-04-07 단국대학교 산학협력단 Cancer specific-splicing ribozyme and use thereof
WO2016126071A1 (en) * 2015-02-02 2016-08-11 단국대학교 산학협력단 Ctla-4-targeting trans-splicing ribozyme for delivery of chimeric antigen receptor, and use thereof
US10557140B2 (en) 2015-02-02 2020-02-11 Industry-Academic Cooperation Foundation, Dankook University CTLA-4-targeting trans-splicing ribozyme for delivery of chimeric antigen receptor, and use thereof
KR20160101806A (en) * 2015-02-17 2016-08-26 단국대학교 산학협력단 DNA structure for selective expression of the therapeutic gene
CN111607610A (en) * 2019-02-22 2020-09-01 尔知诺米斯股份有限公司 Cancer-specific trans-splicing ribozymes and uses thereof
JP2020146033A (en) * 2019-02-22 2020-09-17 アールズィーノミクス・インコーポレイテッド Cancer specific trans-splicing ribozymes and uses thereof
EP3733213A1 (en) * 2019-02-22 2020-11-04 Rznomics Inc. Tumor-targeting trans-splicing ribozyme and use thereof
KR20230073600A (en) 2021-11-19 2023-05-26 연세대학교 산학협력단 Splicing modulation by exon island containing the exon definition of microexon

Also Published As

Publication number Publication date
KR101478869B1 (en) 2015-01-06

Similar Documents

Publication Publication Date Title
KR101478869B1 (en) Cancer gene therapeutic agent through regulation using microRNA
ES2942210T3 (en) Non-integrative DNA vectors for genetic modification of cells
US10280420B2 (en) Cancer specific-splicing ribozyme and use thereof
JP6396891B2 (en) Genetically modified Coxsackie virus
KR101429696B1 (en) Recombinant adenovirus with enhanced safety and anti-cancer activity and use thereof
KR20160079901A (en) Mitogen-activated protein kinase-dependent recombinant vaccinia virus (md-rvv) and use thereof
WO2010024483A1 (en) Recombinant adenovirus comprising tissue-specific promoter and tumor-targeting trans-splicing ribozyme and uses thereof
CA3036710A1 (en) Cell-specific expression of modrna
KR101500804B1 (en) Trans-splicing enzymatic nucleic acid molecule specific to splicing variant of AIMP2 gene, and pharmaceutical composition for treating lung cancer and composition for diagnosing lung cancer using the same
JP7053697B2 (en) Cancer-specific trans-splicing ribozymes and their uses
JP5645044B2 (en) Novel Ad vector containing gene expression control mechanism
AU783128B2 (en) TCF responsive element
JP5283219B2 (en) Vector-produced tumor target cells
CN116670172A (en) Cancer-specific trans-splicing ribozymes expressing immune checkpoint inhibitors and uses thereof
KR102471898B1 (en) Tumor-targeting trans-splicing ribozyme expressing immune checkpoint inhibitor and use thereof
KR101673071B1 (en) DNA structure for selective expression of the therapeutic gene
EP4286518A1 (en) Cancer-specific trans-splicing ribozyme expressing immune checkpoint inhibitor, and use thereor
JP6153205B2 (en) VA gene disrupted adenovirus vector and precursor vector for preparing the same
RU2447150C1 (en) Agent for gene therapy of malignant growths
Yang et al. Targeting eradication of malignant cells derived from human bone marrow mesenchymal stromal cells
KR101153844B1 (en) trans―splicing group I ribozyme specific for Kras G12V RNA
JP5400764B2 (en) Mesothelioma-specific promoter and uses thereof
JP5812361B2 (en) Novel Ad vector containing gene expression control mechanism
JP2004500887A5 (en)

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20171011

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20181108

Year of fee payment: 5