KR20120131760A - Power generation system for increasing the efficiency - Google Patents

Power generation system for increasing the efficiency Download PDF

Info

Publication number
KR20120131760A
KR20120131760A KR1020110050163A KR20110050163A KR20120131760A KR 20120131760 A KR20120131760 A KR 20120131760A KR 1020110050163 A KR1020110050163 A KR 1020110050163A KR 20110050163 A KR20110050163 A KR 20110050163A KR 20120131760 A KR20120131760 A KR 20120131760A
Authority
KR
South Korea
Prior art keywords
pressure steam
turbine
steam
high pressure
low pressure
Prior art date
Application number
KR1020110050163A
Other languages
Korean (ko)
Inventor
이상호
정인경
신춘호
Original Assignee
한국남부발전 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국남부발전 주식회사 filed Critical 한국남부발전 주식회사
Priority to KR1020110050163A priority Critical patent/KR20120131760A/en
Publication of KR20120131760A publication Critical patent/KR20120131760A/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K11/00Plants characterised by the engines being structurally combined with boilers or condensers
    • F01K11/02Plants characterised by the engines being structurally combined with boilers or condensers the engines being turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K19/00Regenerating or otherwise treating steam exhausted from steam engine plant
    • F01K19/02Regenerating by compression
    • F01K19/04Regenerating by compression in combination with cooling or heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/12Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engines being mechanically coupled
    • F01K23/16Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engines being mechanically coupled all the engines being turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/31Application in turbines in steam turbines

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Turbines (AREA)

Abstract

PURPOSE: A power generation system is provided increase the efficiency of generating power with a reduced cost for pipes by reducing the temperature and pressure of high pressure steam. CONSTITUTION: A power generation system comprises a turbine unit(10), a water supply pump(40), a boiler(50), an auxiliary turbine(60), a low-pressure steam supply line(70), and a high pressure steam supply line(80). As to the boiler, the water from the water supply pump flows into a first pipeline, and is converted into main steam to be supplied to a high pressure steam turbine. The steam discharged from the high pressure steam turbine flows into a third pipeline, and is converted into reheat steam to be supplied to a fourth pipeline. The auxiliary turbine generates driving power by being supplied with the steam. The low-pressure steam supply line supplies low pressure steam to be used as a low pressure source for the auxiliary turbine. The high pressure steam supply line additionally supplies high pressure steam to be used as a high pressure steam source when the steam supplied from the low-pressure steam supply line is insufficient. [Reference numerals] (52) First to fifth superheaters; (54) Reheater; (60) Auxiliary turbine

Description

효율향상을 위한 발전 시스템{POWER GENERATION SYSTEM FOR INCREASING THE EFFICIENCY}POWER GENERATION SYSTEM FOR INCREASING THE EFFICIENCY

본 발명은 효율향상을 위한 발전 시스템에 관한 것으로서, 더욱 상세하게는, 보일러 급수펌프용 보조터빈의 고압증기원을 1차 ~ 3차 과열기로 변경하여 고압증기원의 온도와 압력을 낮추므로 배관비용을 낮추고, 발전소 효율을 증진하며, 운전유지비용을 절감하는 효율향상을 위한 발전 시스템에 관한 것이다.
The present invention relates to a power generation system for improving efficiency, and more particularly, the high-pressure steam source of the auxiliary turbine for the boiler feed water pump is changed to the first to third superheater to reduce the temperature and pressure of the high-pressure steam source, so the piping cost The present invention relates to a power generation system for improving the efficiency of lowering the efficiency, improving the power plant efficiency, and reducing the operation and maintenance cost.

일반적으로, 발전소는 열에너지 및 기계적 에너지를 전기적 에너지로 변환하는 설비를 갖추고 있으며, 물, 석탄이나 천연가스 또는 원자력 등의 에너지원을 이용하여 터빈을 회전시키고, 터빈과 연결된 발전기를 통하여 전기를 생산한다.In general, power plants have facilities for converting thermal and mechanical energy into electrical energy, and rotate the turbine using energy sources such as water, coal, natural gas or nuclear power, and generate electricity through a generator connected to the turbine. .

발전소는 이용되는 에너지원의 종류와 그에 따른 발전방식에 따라 수력발전소, 화력발전소, 원자력발전소, 복합발전소 등으로 구분된다. Power plants are divided into hydroelectric power plants, thermal power plants, nuclear power plants, and combined cycle power plants according to the type of energy source used and the power generation method.

화력발전소는 원동기의 종류에 따라서 보일러와 증기 터빈을 쓰는 기력발전소와, 디젤 기관 등의 내연기간을 쓰는 내연력발전소와, 가스터빈을 쓰는 가스터빈발전소와, 가스터빈과 증기터빈의 조합에 의한 콤바인드 사이클 발전소 등으로 분류된다.The thermal power plant combines a combination of a power plant using a boiler and a steam turbine, an internal combustion power plant using an internal combustion period such as a diesel engine, a gas turbine power plant using a gas turbine, and a combination of a gas turbine and a steam turbine, depending on the type of prime mover. De cycle power plants.

이 중 기력발전은 열효율이 높고 대출력에 적합하기 때문에, 사업용 화력발전 등에 가장 일반적으로 쓰이고 있다.Among them, the thermal power generation is most commonly used for business thermal power generation because of its high thermal efficiency and high power.

기존의 기력발전소는 통상적으로 1대의 보일러와 1대의 터빈을 이용하여 전력을 생산하도록 구성하였으며, 급수펌프를 통해 보일러에 유입된 물은 증기로 변환되어 관로를 통하여 터빈으로 공급된다.Conventional power plants are typically configured to produce power by using one boiler and one turbine, and the water introduced into the boiler through the feed water pump is converted into steam and supplied to the turbine through a pipeline.

터빈으로 공급된 증기에 의해 프로펠러를 회전하여 발전기에서 전력을 생산하고, 터빈에서 배출된 물은 관로를 거쳐 복수기에서 응축되고 다시 급수펌프를 통해 폐순환방식으로 순환하면서 전력을 생산하는 것이다.The propeller is rotated by steam supplied to the turbine to produce power in the generator, and the water discharged from the turbine is condensed in the condenser through a pipeline and circulated in a closed circulation through a feed water pump to produce power.

기력 발전소에는 보일러 급수용 펌프를 구동하기 위하여 터빈에 증기를 공급하고, 최종배기는 복수기에서 응축되어 보일러 용수로 재활용된다.In the power plant, steam is supplied to the turbine to drive the boiler feed pump, and the final exhaust is condensed in the condenser and recycled to the boiler water.

보조터빈의 구동원은 저압증기원과 고압증기원으로 분류되고, 저압증기원은 재열증기 스팀과 중압터빈 추기 스팀을 이용한다.The driving source of the auxiliary turbine is classified into low pressure steam source and high pressure steam source, and the low pressure steam source uses reheat steam and medium pressure turbine bleed steam.

이때, 저압증기원으로 보조터빈을 구동하다가 저압증기원이 부족한 경우, 고압증기원에서 추가증기를 공급하여 요구 출력을 내도록 한다.
At this time, while driving the auxiliary turbine to the low pressure steam source, if the low pressure steam source is insufficient, by supplying additional steam from the high pressure steam source to output the required output.

전술한 발명은 본 발명이 속하는 기술분야의 배경기술을 의미하며, 종래 기술을 의미하는 것은 아니다.
The above-mentioned invention means the background art of the technical field to which the present invention belongs, and does not mean the prior art.

그런데, 기존의 보조터빈용 고압증기원은 높은 압력과 온도를 갖는 메인스팀 배관에서 인출하여 사용하기 때문에 보조터빈과 공급배관 모두 고온, 고압을 견디는 높은 사양의 제품을 사용해야 하므로 재료비용이 증가하고, 설비공사비가 증가하는 문제점이 있다.However, since the existing high pressure steam source for the auxiliary turbine is drawn out from the main steam pipe having high pressure and temperature, the material cost increases because both the auxiliary turbine and the supply pipe must use a high specification product that withstands high temperature and high pressure. There is a problem that facility construction cost increases.

따라서, 이를 개선할 필요성이 요청된다.Therefore, there is a need to improve this.

본 발명은 상기와 같은 필요성에 의해 창출된 것으로서, 보일러 급수펌프용 보조터빈의 고압증기원을 1차 ~ 3차 과열기로 변경하여 고압증기원의 온도와 압력을 낮추므로 배관비용을 낮추고, 발전소 효율을 증진하며, 운전유지비용을 절감하는 효율향상을 위한 발전 시스템을 제공하는 것이 목적이다.
The present invention has been created by the necessity as described above, by changing the high pressure steam source of the auxiliary turbine for boiler feed water pump to the first to third superheater to lower the temperature and pressure of the high pressure steam source, lowering the piping cost, power plant efficiency The aim of the present invention is to provide a power generation system for improving efficiency, which reduces the cost of operation and maintenance.

상기한 목적을 달성하기 위하여 본 발명의 일 실시예에 따른 효율향상을 위한 발전 시스템은, 고압증기터빈, 중압증기터빈 및 저압증기터빈이 구비되는 터빈유닛; 상기 저압증기터빈에서 배출되는 증기를 복수기에서 응축하고, 응축된 물을 제6관로로 유입 받아 승압한 상태로 공급하는 급수펌프; 상기 급수펌프로부터의 물이 제1관로로 유입되어 고온,고압의 주증기로 전환되어 제2관로를 거쳐 상기 고압증기터빈으로 공급되고, 고압증기터빈에서 배출되는 증기가 제3관로로 재차 유입되어 재열증기로 전환하여 제4관로로 공급하는 보일러; 상기 급수펌프를 가동하도록 증기를 공급받아 구동력을 발생하는 보조터빈; 상기 보조터빈에 저압증기원으로 사용되도록 저압증기를 공급하는 저압증기 공급관로; 및 상기 저압증기 공급관로에서 공급되는 증기가 부족할 경우, 요구 출력을 내기 위해 고압증기원으로 사용되도록 고압증기를 추가로 공급하는 고압증기 공급관로를 포함하는 것을 특징으로 한다.In order to achieve the above object, a power generation system for improving efficiency according to an embodiment of the present invention includes a turbine unit having a high pressure steam turbine, a medium pressure steam turbine, and a low pressure steam turbine; A water supply pump condensing the steam discharged from the low pressure steam turbine in a condenser and supplying the condensed water to a sixth pipe to boost the pressure; Water from the feed water pump flows into the first pipe line, is converted into main steam of high temperature and high pressure, is supplied to the high pressure steam turbine through the second pipe line, and steam discharged from the high pressure steam turbine flows back into the third pipe line. A boiler converting the reheat steam into a fourth pipe; An auxiliary turbine receiving steam to operate the feed water pump and generating a driving force; A low pressure steam supply pipe for supplying low pressure steam to be used as a low pressure steam source to the auxiliary turbine; And a high pressure steam supply line for additionally supplying high pressure steam to be used as a high pressure steam source to produce a required output when the steam supplied from the low pressure steam supply line is insufficient.

또한, 상기 제6관로에는 상기 복수기에서 응축된 물의 공급압력을 높여 상기 급수펌프로 공급하기 위한 복수펌프가 더 구비되는 것을 특징으로 한다.The sixth conduit may further include a plurality of pumps for supplying the water supply pump to increase the supply pressure of the water condensed in the condenser.

또한, 상기 보일러는 상기 급수펌프와 상기 고압증기터빈 사이에 1차 내지 5차까지 배치되어 메인 열을 흡수하는 복수의 과열기; 및 상기 과열기의 일측에 배치되어 상기 고압증기터빈에서 배출되는 차거운 증기를 재열하여 온도를 높여주어 상기 중압증기터빈으로 공급하는 재열기를 포함하는 것을 특징으로 한다.In addition, the boiler comprises a plurality of superheaters disposed between the first to fifth order between the feed pump and the high-pressure steam turbine to absorb the main heat; And a reheater disposed at one side of the superheater to reheat the cold steam discharged from the high pressure steam turbine to increase the temperature to supply the medium pressure steam turbine.

또한, 상기 저압증기 공급관로는 상기 중압증기터빈과 상기 저압증기터빈으로 연결된 제5관로에서 추기(抽氣)된 저압증기를 보조터빈으로 공급하는 제1저압증기 공급관로; 및 상기 제3관로와 상기 제4관로에서 추기된 저압증기를 보조터빈으로 공급하는 제2저압증기 공급관로를 포함하는 것을 특징으로 한다.The low pressure steam supply pipe may include a first low pressure steam supply pipe for supplying low pressure steam extracted from a fifth pipe connected to the medium pressure steam turbine and the low pressure steam turbine to an auxiliary turbine; And a second low pressure steam supply pipe for supplying the low pressure steam extracted from the third pipe and the fourth pipe to the auxiliary turbine.

또한, 상기 고압증기 공급관로는 상기 복수의 과열기 중 주증기 온도가 낮은 1차 내지 3차 과열기에서 인출하여 상기 보조터빈으로 연결되어 공급되는 것을 특징으로 한다.In addition, the high-pressure steam supply pipe is characterized in that it is drawn from the primary to tertiary superheater with a low main steam temperature of the plurality of superheater is connected to the auxiliary turbine is supplied.

또한, 상기 고압증기 공급관로는 상기 복수의 과열기 중 주증기 온도가 낮은 3차 과열기에서 인출하여 상기 보조터빈으로 연결되어 공급되는 것을 특징으로 한다.In addition, the high-pressure steam supply pipe is characterized in that it is drawn from the third superheater having a low main steam temperature among the plurality of superheaters are connected to the auxiliary turbine is supplied.

또한, 상기 고압증기 공급관로에서 공급되는 고압증기의 온도범위는 400~500℃를 갖는 것을 특징으로 한다.
In addition, the high-temperature steam supplied from the high-pressure steam supply pipe is characterized in that it has a 400 ~ 500 ℃.

이상에서 설명한 바와 같이, 본 발명에 따른 효율향상을 위한 발전 시스템은, 보일러 급수펌프용 보조터빈의 고압증기원을 1차 ~ 3차 과열기로 변경하여 고압증기원의 온도와 압력을 낮추므로 배관비용을 낮추고, 발전소 효율을 증진하며, 운전유지비용을 절감할 수 있다.
As described above, the power generation system for improving the efficiency according to the present invention, by changing the high pressure steam source of the auxiliary turbine for boiler feed water pump to the first to third superheater to lower the temperature and pressure of the high pressure steam source, piping cost Lowering costs, increasing plant efficiency and reducing operating costs.

도 1은 본 발명의 일 실시예에 따른 효율향상을 위한 발전 시스템의 블럭 구성도,
도 2는 본 발명의 일 실시예에 따른 보조터빈의 배관 연결 구성도이다.
1 is a block diagram of a power generation system for improving efficiency according to an embodiment of the present invention;
2 is a configuration diagram of the pipe connection of the auxiliary turbine according to an embodiment of the present invention.

이하, 첨부된 도면들을 참조하여 본 발명의 일 실시예에 따른 효율향상을 위한 발전 시스템을 설명하도록 한다.Hereinafter, a power generation system for improving efficiency according to an embodiment of the present invention will be described with reference to the accompanying drawings.

이 과정에서 도면에 도시된 선들의 두께나 구성요소의 크기 등은 설명의 명료성과 편의상 과장되게 도시되어 있을 수 있다. 또한, 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례에 따라 달라질 수 있다. 그러므로, 이러한 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
In this process, the thicknesses of the lines and the sizes of the components shown in the drawings may be exaggerated for clarity and convenience of explanation. In addition, terms to be described below are terms defined in consideration of functions in the present invention, which may vary according to the intention or convention of a user or an operator. Therefore, definitions of these terms should be made based on the contents throughout the specification.

도 1은 본 발명의 일 실시예에 따른 효율향상을 위한 발전 시스템의 블럭 구성도, 도 2는 본 발명의 일 실시예에 따른 보조터빈의 배관 연결 구성도이다.
1 is a block diagram of a power generation system for improving efficiency according to an embodiment of the present invention, Figure 2 is a pipe connection configuration diagram of an auxiliary turbine according to an embodiment of the present invention.

도 1 내지 도 2를 참조하면, 본 발명의 일 실시예에 따른 효율향상을 위한 발전 시스템은, 터빈유닛(10), 급수펌프(40), 보일러(50), 보조터빈(60), 저압증기 공급관로(70) 및 고압증기 공급관로(80)를 포함한다.1 to 2, the power generation system for improving efficiency according to an embodiment of the present invention, the turbine unit 10, feed water pump 40, boiler 50, auxiliary turbine 60, low pressure steam It includes a supply pipe 70 and a high pressure steam supply pipe (80).

터빈유닛(10)은 고압의 증기가 유입되는 고압증기터빈(12), 중압의 증기가 유입되는 중압증기터빈(14), 및 저압의 증기가 유입되는 증압증기터빈(18)으로 이루어진다.The turbine unit 10 includes a high pressure steam turbine 12 into which high pressure steam is introduced, a medium pressure steam turbine 14 into which medium pressure steam is introduced, and a pressure steam turbine 18 into which low pressure steam is introduced.

터빈유닛(10)은 고압증기터빈(12), 중압증기터빈(14) 및 저압증기터빈(16)이 하나의 회전축으로 연결되어 구동하고, 이 회전축에는 발전기(19)가 연결되어 전력을 생산한다.The turbine unit 10 is driven by a high pressure steam turbine 12, a medium pressure steam turbine 14 and a low pressure steam turbine 16 is connected to one rotary shaft, the generator 19 is connected to produce a power. .

회전축에는 프로펠러가 구비되어 터빈유닛(10)에서 공급되는 고압, 중압, 저압 증기의 분사압력에 의해 프로펠러에 충격력을 가하므로 회전축이 회전하게 된다.The rotating shaft is provided with a propeller to apply a force to the propeller by the injection pressure of the high pressure, medium pressure, low pressure steam supplied from the turbine unit 10 so that the rotating shaft rotates.

중압증기터빈(14)과 저압증기터빈(16) 사이에는 제5관로(18)가 연결된다. A fifth conduit 18 is connected between the medium pressure steam turbine 14 and the low pressure steam turbine 16.

급수펌프(40)는 저압증기터빈(16)에서 배출되는 증기를 복수기(20)에서 응축하고, 응축된 물을 제6관로(22)로 유입 받아 승압한 상태로 공급한다.The water feed pump 40 condenses the steam discharged from the low pressure steam turbine 16 in the condenser 20 and supplies the condensed water to the sixth conduit 22 in a boosted state.

복수기(20)는 저압증기터빈(16)에서 나오는 저온, 저압의 증기를 응축하여 물로 복원하는 응축기에 해당하는 구성으로서, 제6관로(22)를 통하여 응축된 물을 급수펌프(40)로 공급한다.The condenser 20 corresponds to a condenser for condensing low temperature and low pressure steam from the low pressure steam turbine 16 and restoring it into water. The condenser 20 supplies water condensed through the sixth conduit 22 to the feed water pump 40. do.

제6관로(22)에는 복수기(20)에서 응축된 물의 공급압력을 높여 급수펌프(40)로 공급하기 위한 복수펌프(30)가 더 구비된다.The sixth conduit 22 is further provided with a plurality of pumps 30 for supplying the feed pressure of the water condensed in the condenser 20 to the feed water pump 40.

보일러(50)는 급수펌프(40)로부터의 물이 제1관로(42)로 유입되어 고온,고압의 주증기로 전환되어 제2관로(62)를 거쳐 고압증기터빈(12)으로 공급되고, 고압증기터빈(12)에서 배출되는 증기가 제3관로(64)를 거쳐 재차 유입되어 재열증기로 전환하여 제4관로(66)로 공급한다.Boiler 50 is the water from the water supply pump 40 flows into the first pipe line 42 is converted into the main steam of high temperature, high pressure is supplied to the high-pressure steam turbine 12 through the second pipe line 62, The steam discharged from the high-pressure steam turbine 12 is introduced again through the third pipe line 64, converted to reheat steam, and supplied to the fourth pipe 66.

보일러(50)는 1개 구비된 상태를 도시하였으나, 필요에 따라 2개 이상 구비될 수도 있다.Although the boiler 50 is provided with one state, two or more boilers may be provided as needed.

보일러(50)는 급수펌프(40)와 고압증기터빈(12) 사이에 1차 내지 5차까지 배치되어 메인 열을 흡수하는 복수의 과열기(52) 및 복수의 과열기(52)의 일측에 배치되어 고압증기터빈(12)에서 배출되는 차거운 증기를 재열하여 온도를 높여주어 중압증기터빈(14)으로 공급하는 재열기(54)를 포함한다.The boiler 50 is disposed between the water supply pump 40 and the high pressure steam turbine 12 from one to the fifth to one side of the plurality of superheaters 52 and the plurality of superheaters 52 that absorb the main heat. It includes a reheater 54 for reheating the cold steam discharged from the high-pressure steam turbine 12 to increase the temperature to supply to the medium-pressure steam turbine (14).

과열기(52)는 메인 히터(main heat) 또는 슈퍼 히터(super heat)라고 일컫는다.The superheater 52 is called main heat or super heat.

재열기(54, 再熱器, reheater)는 고압증기터빈(12)에서 팽창되어 제3관로(64)를 거쳐 배출되는 저온의 증기에 보일러(50)에서 발생하는 열기를 이용하여 추가적인 열기를 제공하여 온도를 높여준 후 제4관로(66)를 거쳐 압력과 온도를 높인 후, 중압증기터빈(14)으로 재공급한다.The reheater (54, er 器, reheater) is expanded in the high-pressure steam turbine 12 to provide additional heat by using the heat generated in the boiler 50 to the low temperature steam discharged through the third pipe (64). After raising the temperature to increase the pressure and temperature via the fourth pipe 66, and re-supplied to the medium-pressure steam turbine (14).

보조터빈(60)은 급수펌프(40)를 가동하도록 증기를 공급받아 구동력을 발생한다.The auxiliary turbine 60 is supplied with steam to operate the feed water pump 40 to generate a driving force.

즉, 급수펌프(40)는 보조터빈(60)의 구동력을 전달받아 구동하는 것이다.That is, the feed water pump 40 is driven by receiving the driving force of the auxiliary turbine (60).

보조터빈(60)에서 배출되는 증기는 제6관로(68)를 거쳐 복수기(20)로 공급된다.The steam discharged from the auxiliary turbine 60 is supplied to the condenser 20 through the sixth conduit 68.

저압증기 공급관로(70)는 보조터빈(60)에 저압증기원으로 사용되도록 저압증기를 공급한다.The low pressure steam supply line 70 supplies low pressure steam to the auxiliary turbine 60 to be used as a low pressure steam source.

저압증기 공급관로(70)는 중압증기터빈(14)과 저압증기터빈(16)으로 연결된 제5관로(18)에서 추기(抽氣)된 저압증기를 보조터빈(60)으로 공급하는 제1저압증기 공급관로(72) 및 제3관로(64)와 제4관로(66)에서 추기된 저압증기를 보조터빈(60)으로 공급하는 제2저압증기 공급관로(74)를 포함한다.The low pressure steam supply line 70 is a first low pressure supplying the low pressure steam extracted from the fifth pipe 18 connected to the medium pressure steam turbine 14 and the low pressure steam turbine 16 to the auxiliary turbine 60. And a second low pressure steam supply pipe 74 for supplying the low pressure steam extracted from the steam supply pipe 72 and the third pipe 64 and the fourth pipe 66 to the auxiliary turbine 60.

여기서, 추기(抽氣, Extract)라는 의미는 추출하여 뽑아낸다는 의미를 일컫는 것으로, 이동하는 증기를 관로로 분기하여 추출하여 내는 것을 말한다.In this case, the term extraction refers to extracting and extracting, and refers to extracting by branching moving steam into a pipeline.

고압증기 공급관로(80)는 저압증기 공급관로(70)에서 공급되는 증기가 부족할 경우, 요구 출력을 내기 위해 고압증기원으로 사용되도록 고압증기를 추가로 공급한다.The high pressure steam supply pipe 80 additionally supplies high pressure steam to be used as a high pressure steam source to produce a required output when the steam supplied from the low pressure steam supply pipe 70 is insufficient.

고압증기 공급관로(80)는 복수의 과열기(20) 중 주증기 온도가 낮은 1차 내지 3차 과열기에서 인출하여 보조터빈(60)으로 연결되어 공급된다.The high-pressure steam supply line 80 is drawn from the primary to tertiary superheaters having a low main steam temperature among the plurality of superheaters 20 and connected to the auxiliary turbine 60.

고압증기 공급관로(80)는 복수의 과열기(20) 중 주증기 온도가 낮은 3차 과열기에서 인출하여 보조터빈(60)으로 연결되는 공급되는 것이 가장 좋다.The high-pressure steam supply line 80 is most preferably supplied from the plurality of superheaters 20 to the secondary turbine 60 is drawn from the third superheater with a low main steam temperature.

고압증기 공급관로(80)에서 공급되는 고압증기의 온도범위는 400~500℃를 갖는다.The high pressure steam supplied from the high pressure steam supply pipe 80 has a temperature range of 400 ~ 500 ℃.

이때, 3차 과열기(52)에서 공급되는 온도범위는 455~465℃, 특히 460℃ 정도를 갖는 것이 바람직하다.
At this time, the temperature range supplied from the tertiary superheater 52 preferably has a temperature of about 455 to 465 ° C, particularly about 460 ° C.

이하, 첨부도면을 참조하여 본 발명의 일 실시예에 따른 효율향상을 위한 발전 시스템의 작용효과를 살펴보도록 한다.Hereinafter, with reference to the accompanying drawings to look at the effect of the power generation system for improving efficiency according to an embodiment of the present invention.

보일러(50)가 정상적으로 운전되는 상태를 살펴보면, 터빈유닛(10)의 저압증기터빈(16)으로부터 배출된 증기는 복수기(20)에서 응축되어 물로 전환되어 제6관로(22)를 거쳐 복수펌프(30)에서 재차 승압된 후, 급수펌프(40)로 공급된다.Looking at the state in which the boiler 50 is normally operated, the steam discharged from the low pressure steam turbine 16 of the turbine unit 10 is condensed in the condenser 20 is converted into water and the plurality of pumps through the sixth pipe (22) ( After being boosted again at 30, it is supplied to the feed water pump 40.

연이어, 급수펌프(40)는 보조터빈(60)의 구동력에 의해 구동력을 제공받는다.Subsequently, the feed water pump 40 is provided with a driving force by the driving force of the auxiliary turbine 60.

이때, 보조터빈(60)은 주로 저압증기원으로 구동하게 되고, 저압증기가 부족한 경우에만 고압증기원으로부터 고압증기를 공급받아 가동한다.At this time, the auxiliary turbine 60 is mainly driven by a low pressure steam source, and operates by receiving high pressure steam from the high pressure steam source only when low pressure steam is insufficient.

보조 터빈(60)의 저압증기원은 중압증기터빈(14)을 거쳐 제5관로(18)에서 추기하여 제1저압증기 공급관로(72)를 거쳐 보조터빈(60)으로 공급되는 중압증기터빈 의 추기 증기이다.The low pressure steam source of the auxiliary turbine 60 is extracted from the fifth pipe line 18 via the medium pressure steam turbine 14 and supplied to the auxiliary turbine 60 via the first low pressure steam supply line 72. Additional steam.

또한, 보조 터빈(60)의 다른 저압증기원은 고압증기터빈(12)에서 배출되는 Cold 저압증기를 제3관로(64)에서 추기하는 것과, 재열기(54)에서 재열된 Hot 저압증기를 제4관로(66)에서 각각 추기하여 제2저압증기 공급관로(74)를 거쳐 보조터빈(60)으로 공급되는 추기 증기이다.In addition, another low-pressure steam source of the auxiliary turbine 60 is to extract the cold low-pressure steam discharged from the high-pressure steam turbine 12 in the third conduit 64, and to remove the hot low-pressure steam reheated in the reheater 54 The additional steam in each of the four pipes (66) and supplied to the auxiliary turbine (60) via the second low pressure steam supply pipe (74).

이때, 저압증기 공급관로(70)에서 공급되는 증기가 부족할 경우, 요구 출력을 내도록 보일러(50)의 3차 과열기(52)의 출구에서 인출된 고압증기를 고압증기 공급관로(80)를 거쳐 보조터빈(60)으로 공급함으로써 고압증기원으로 사용된다.At this time, if the steam supplied from the low-pressure steam supply pipe 70 is insufficient, the high-pressure steam drawn out from the outlet of the tertiary superheater 52 of the boiler 50 through the high-pressure steam supply pipe 80 to produce the required output. By supplying it to the turbine 60, it is used as a high pressure steam source.

따라서, 보일러 급수펌프용 보조터빈의 고압증기원을 1차 ~ 3차 과열기로 변경하여 고압증기원의 온도와 압력을 낮추므로 배관비용을 낮추고, 발전소 효율을 증진하며, 운전유지비용을 절감할 수 있다.Therefore, by changing the high pressure steam source of the auxiliary turbine for the boiler feed water pump to the first to third superheaters, it lowers the temperature and pressure of the high pressure steam source, thereby lowering the piping cost, improving the power plant efficiency, and reducing the operation maintenance cost. have.

본 발명은 도면에 도시된 실시예를 참고로 하여 설명되었으나, 이는 예시적인 것에 불과하며, 당해 기술이 속하는 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims. I will understand.

따라서, 본 발명의 진정한 기술적 보호범위는 아래의 특허청구범위에 의해서 정하여져야 할 것이다.
Therefore, the true technical protection scope of the present invention will be defined by the claims below.

10 : 터빈유닛 12 : 고압증기터빈
14 : 중압증기터빈 16 : 저압증기터빈
20 : 복수기 22 : 제6관로
30 : 복수펌프 40 : 급수펌프
42 : 제1관로 50 : 보일러
52 : 과열기 54 : 재열기
60 : 보조터빈 62 : 제2관로
64 : 제3관로 66 : 제4관로
70 : 저압증기 공급관로 72 : 제1저압증기 공급관로
74 : 제2저압증기 공급관로 80 : 고압증기 공급관로
10 turbine unit 12 high pressure steam turbine
14: medium pressure steam turbine 16: low pressure steam turbine
20: Avenger 22: 6th Pipeline
30: multiple pump 40: feed water pump
42: first pipeline 50: boiler
52: superheater 54: reheater
60: auxiliary turbine 62: second pipeline
64: Route 3 66: Route 4
70: low pressure steam supply line 72: the first low pressure steam supply line
74: second low pressure steam supply line 80: high pressure steam supply line

Claims (7)

고압증기터빈, 중압증기터빈 및 저압증기터빈이 구비되는 터빈유닛;
상기 저압증기터빈에서 배출되는 증기를 복수기에서 응축하고, 응축된 물을 제6관로로 유입 받아 승압한 상태로 공급하는 급수펌프;
상기 급수펌프로부터의 물이 제1관로로 유입되어 고온,고압의 주증기로 전환되어 제2관로를 거쳐 상기 고압증기터빈으로 공급되고, 고압증기터빈에서 배출되는 증기가 제3관로로 재차 유입되어 재열증기로 전환하여 제4관로로 공급하는 보일러;
상기 급수펌프를 가동하도록 증기를 공급받아 구동력을 발생하는 보조터빈;
상기 보조터빈에 저압증기원으로 사용되도록 저압증기를 공급하는 저압증기 공급관로; 및
상기 저압증기 공급관로에서 공급되는 증기가 부족할 경우, 요구 출력을 내기 위해 고압증기원으로 사용되도록 고압증기를 추가로 공급하는 고압증기 공급관로;를
포함하는 것을 특징으로 하는 효율향상을 위한 발전 시스템.
A turbine unit having a high pressure steam turbine, a medium pressure steam turbine, and a low pressure steam turbine;
A water supply pump condensing the steam discharged from the low pressure steam turbine in a condenser and supplying the condensed water to a sixth pipe to boost the pressure;
Water from the feed water pump flows into the first pipe line, is converted into a main steam of high temperature and high pressure, is supplied to the high pressure steam turbine through the second pipe line, and steam discharged from the high pressure steam turbine is introduced again into the third pipe line. A boiler converting the reheat steam into a fourth pipe;
An auxiliary turbine receiving steam to operate the feed water pump and generating a driving force;
A low pressure steam supply pipe for supplying low pressure steam to be used as a low pressure steam source to the auxiliary turbine; And
When the steam supplied from the low pressure steam supply line is insufficient, the high pressure steam supply line for additionally supplying high pressure steam to be used as a high pressure steam source to produce the required output;
Power generation system for improving efficiency, characterized in that it comprises a.
제 1항에 있어서,
상기 제6관로에는 상기 복수기에서 응축된 물의 공급압력을 높여 상기 급수펌프로 공급하기 위한 복수펌프가 더 구비되는 것을 특징으로 하는 효율향상을 위한 발전 시스템.
The method of claim 1,
The sixth conduit further comprises a plurality of pumps for increasing the supply pressure of the water condensed in the condenser to supply to the feed water pump.
제 1항에 있어서, 상기 보일러는
상기 급수펌프와 상기 고압증기터빈 사이에 1차 내지 5차까지 배치되어 메인 열을 흡수하는 복수의 과열기; 및
상기 과열기의 일측에 배치되어 상기 고압증기터빈에서 배출되는 차거운 증기를 재열하여 온도를 높여주어 상기 중압증기터빈으로 공급하는 재열기를 포함하는 것을 특징으로 하는 효율향상을 위한 발전 시스템.
The method of claim 1, wherein the boiler
A plurality of superheaters disposed between the water supply pump and the high pressure steam turbine from first to fifth to absorb main heat; And
And a reheater disposed on one side of the superheater and reheating the cold steam discharged from the high pressure steam turbine to increase the temperature to supply the medium pressure steam turbine.
제 1항 또는 제 3항에 있어서, 상기 저압증기 공급관로는
상기 중압증기터빈과 상기 저압증기터빈으로 연결된 제5관로에서 추기(抽氣)된 저압증기를 보조터빈으로 공급하는 제1저압증기 공급관로; 및
상기 제3관로와 상기 제4관로에서 추기된 저압증기를 보조터빈으로 공급하는 제2저압증기 공급관로를 포함하는 것을 특징으로 하는 효율향상을 위한 발전 시스템.
According to claim 1 or 3, wherein the low pressure steam supply pipe
A first low pressure steam supply pipe for supplying the low pressure steam extracted from the fifth pipe connected to the medium pressure steam turbine and the low pressure steam turbine to an auxiliary turbine; And
And a second low pressure steam supply pipe for supplying the low pressure steam extracted from the third pipe and the fourth pipe to the auxiliary turbine.
제 3항에 있어서,
상기 고압증기 공급관로는 상기 복수의 과열기 중 주증기 온도가 낮은 1차 내지 3차 과열기에서 인출하여 상기 보조터빈으로 연결되어 공급되는 것을 특징으로 하는 효율향상을 위한 발전 시스템.
The method of claim 3,
The high-pressure steam supply pipe is a power generation system for improving efficiency, characterized in that the primary steam temperature of the plurality of superheater is drawn from the primary to tertiary superheater is connected to the auxiliary turbine.
제 3항에 있어서,
상기 고압증기 공급관로는 상기 복수의 과열기 중 주증기 온도가 낮은 3차 과열기에서 인출하여 상기 보조터빈으로 연결되어 공급되는 것을 특징으로 하는 효율향상을 위한 발전 시스템.
The method of claim 3,
The high pressure steam supply pipe is drawn out from the third superheater having a low main steam temperature among the plurality of superheaters and is connected to the auxiliary turbine and supplied.
제 5항 또는 제 6항에 있어서,
상기 고압증기 공급관로에서 공급되는 고압증기의 온도범위는 400~500℃를 갖는 것을 특징으로 하는 효율향상을 위한 발전 시스템.
The method according to claim 5 or 6,
Power system for improving efficiency, characterized in that the temperature range of the high-pressure steam supplied from the high-pressure steam supply pipe has a 400 ~ 500 ℃.
KR1020110050163A 2011-05-26 2011-05-26 Power generation system for increasing the efficiency KR20120131760A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110050163A KR20120131760A (en) 2011-05-26 2011-05-26 Power generation system for increasing the efficiency

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110050163A KR20120131760A (en) 2011-05-26 2011-05-26 Power generation system for increasing the efficiency

Publications (1)

Publication Number Publication Date
KR20120131760A true KR20120131760A (en) 2012-12-05

Family

ID=47515525

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110050163A KR20120131760A (en) 2011-05-26 2011-05-26 Power generation system for increasing the efficiency

Country Status (1)

Country Link
KR (1) KR20120131760A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106838863A (en) * 2016-11-29 2017-06-13 武汉都市环保工程技术股份有限公司 The method generated electricity using low-heat value gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106838863A (en) * 2016-11-29 2017-06-13 武汉都市环保工程技术股份有限公司 The method generated electricity using low-heat value gas

Similar Documents

Publication Publication Date Title
CN103452611B (en) Combined-cycle combined heat and power system
CN201461008U (en) Small steam turbine system of power plant and thermodynamic cycle system of power plant with the system
Ohji et al. Steam turbine cycles and cycle design optimization: the Rankine cycle, thermal power cycles, and IGCC power plants
CN203685319U (en) Double-turbine combined-cycle combined heat and power supplying system
CN103644004A (en) Double-turbine and combined cycle heat and power combined supply system
CN101899999A (en) Small turbine system in power plant and thermal cycle system in power plant containing same
Wołowicz et al. Feedwater repowering of 800 MW supercritical steam power plant.
CN109854315B (en) Heating system for gas-steam combined cycle unit steam extraction integration and operation method thereof
WO2011079613A1 (en) Feed water and drainage system for medium pressure heater in power plant
CN109855147A (en) A kind of combined cycle power plant and its operation method coupled based on heat supply with power peak regulation
CN201714431U (en) Regenerative steam-driven condensate pump system of power plant
CN106437875B (en) Fired power generating unit working medium bypassing circulation peak regulation system
CN203499735U (en) Combined cycle co-generation system
CN108678821A (en) A kind of steam turbine start and stop peak regulation heating system for realizing the decoupling of fired power generating unit thermoelectricity
CN113175367B (en) Master control system for improving peak regulation capacity and flexibility of unit and operation method
KR101315504B1 (en) Turbine generator control apparatus of steam generating plant
CN109869784A (en) It is a kind of to integrate the combined cycle power plant and its operation method that couple with accumulation of heat peak regulation for steam extraction
JP2015068314A (en) Fuel gas heating facility and combined cycle power generation plant
CN106194431A (en) Gas turbine presurized water reactor steam turbine combined cycle without separator
Ohji et al. Steam turbine cycles and cycle design optimization: the Rankine cycle, thermal power cycles, and integrated gasification-combined cycle power plants
CN101218426A (en) Gas and steam turbine installation and method for operating the same
CN201851174U (en) Heat regenerative type steam-driven induced draft fan system and heating power circulation system of power plant
CN109296413B (en) Bypass secondary reheating power generation device and method cooled by deep seawater
CN204283512U (en) A kind of cogeneration turbine
KR20120131760A (en) Power generation system for increasing the efficiency

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment