KR20120103959A - Method for preparing 5-aminovaleric acid using recombinant escherichia coli strains - Google Patents
Method for preparing 5-aminovaleric acid using recombinant escherichia coli strains Download PDFInfo
- Publication number
- KR20120103959A KR20120103959A KR1020110021963A KR20110021963A KR20120103959A KR 20120103959 A KR20120103959 A KR 20120103959A KR 1020110021963 A KR1020110021963 A KR 1020110021963A KR 20110021963 A KR20110021963 A KR 20110021963A KR 20120103959 A KR20120103959 A KR 20120103959A
- Authority
- KR
- South Korea
- Prior art keywords
- recombinant
- coli strain
- lysine
- enzyme
- preparing
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P13/00—Preparation of nitrogen-containing organic compounds
- C12P13/005—Amino acids other than alpha- or beta amino acids, e.g. gamma amino acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/70—Vectors or expression systems specially adapted for E. coli
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/52—Genes encoding for enzymes or proenzymes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0069—Oxidoreductases (1.) acting on single donors with incorporation of molecular oxygen, i.e. oxygenases (1.13)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/78—Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5)
- C12N9/80—Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5) acting on amide bonds in linear amides (3.5.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/40—Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y113/00—Oxidoreductases acting on single donors with incorporation of molecular oxygen (oxygenases) (1.13)
- C12Y113/12—Oxidoreductases acting on single donors with incorporation of molecular oxygen (oxygenases) (1.13) with incorporation of one atom of oxygen (internal monooxygenases or internal mixed function oxidases)(1.13.12)
- C12Y113/12002—Lysine 2-monooxygenase (1.13.12.2)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y305/00—Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5)
- C12Y305/01—Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5) in linear amides (3.5.1)
- C12Y305/0103—5-Aminopentanamidase (3.5.1.30)
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Plant Pathology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
본 발명은 재조합 대장균 균주를 이용한 라이신(lysine)으로부터 5-아미노발레르산(5-aminovaleric acid)의 제조 방법에 관한 것이다.
The present invention relates to a method for preparing 5-aminovaleric acid from lysine using a recombinant E. coli strain.
최근 전 세계적인 석유수급 불안과 석유자원 고갈에 대한 위기의식으로 최근에 산업 바이오 기술을 이용하여 바이오매스에서 유래한 대체 생산 방법이나 대체 화합물을 생산하기 위한 전 인류적인 노력이 바이오에너지, 바이오플라스틱, 바이오화합물 등의 다양한 분야에서 가시화되고 있다. 바이오매스를 활용하여 생산되는 바이오 플라스틱 시장의 경우 2002년 Natureworks사에 의해 상업화된 폴리유산 (Poly Lactic acid)이 연 14만 톤 규모로 생산되어 최근 시장이 급속히 확대되고 있다. PHA계 바이오플라스틱인 폴리-(3-하이드록시부틸레이트-코-3-하이드록시발레레이트{poly-(3-hydroxybutyrate-co-3-hydroxyvalarate)}(P(3HB-co-3HV))도 Metabolix와 ADM의 합작회사인 Telles에 의해 5만 톤 규모의 공장이 2010년 완공되어 제품이 시판되고 있다. 또한, 듀폰사가 생산하고 있는 바이오매스 기반의 1,3-프로판디올을 이용하여 PTT 고분자 제품이 현재 상용화되어 있다. 이외에도 숙신산 기반의 PBS 등도 활발히 개발되고 있다. 상기 예로 든 바이오매스 유래 고분자의 단점 중의 하나는 낮은 내열성을 들 수 있다. 높은 내열성을 보유한 고분자의 대표적인 예는 나일론이다. 나일론 6과 나일론 6,6이 나일론 시장의 대부분을 차지하고 있지만 최근 생분해성 특성과 내열성을 동시에 지닌 나일론 4에 대한 관심이 높아지고 있다.
In recent years, in response to the global oil supply instability and the crisis of depletion of petroleum resources, all human efforts to produce alternative production methods or alternative compounds derived from biomass using industrial biotechnology have recently been developed. It is visualized in various fields, such as a compound. The bioplastics market, which utilizes biomass, is produced in 140,000 tonnes of polylactic acid, commercialized by Natureworks in 2002, and is expanding rapidly. Poly- (3-hydroxybutyrate-co-3-hydroxyvalarate)} (P (3HB-co-3HV)), a PHA-based bioplastic, is also metabolix. The product is being marketed by the Telles, a joint venture between ADM and ADM, with a production capacity of 50,000 tonnes completed in 2010. In addition, PTT polymer products are manufactured using biomass-based 1,3-propanediol produced by DuPont. In addition, succinic acid-based PBS is being actively developed, and one of the disadvantages of the biomass-derived polymers mentioned above is low heat resistance, and a representative example of a polymer having high heat resistance is nylon. Nylon 6 and 6 dominate the nylon market, but there is a growing interest in nylon 4, which has both biodegradability and heat resistance.
나일론 4의 원료물질인 2-피롤리돈은 감마 부티로락톤(gamma butyrolactone)으로부터 생산될 수 있으며 4-아미노부틸산의 탈수 고리반응에 의해 생산될 수 있다. 4-아미노부틸산의 경우 감마-아미노부틸산(gamma-aminobutyric acid, GABA)이라고도 하는데, 체내에서는 신경전달물질 억제효과에 의한 저혈압 및 진통효과가 있다고 알려져, 현재 식품 및 의약품 소재로 활용되고 있다(Erlander et al., Neurochem Res. 16: 215-226, 1991). 이러한 GABA는 글루타메이트를 원료로 글루타메이트 디카르복실라아제(Glutamate decarboxylase)에 의해 제조될 수 있는데, 현재까지 다양한 글루타메이트 디카르복실라아제가 보고되어 있으며(Proc. Natl. Acad. Sci. USA, 87: 8491-8495, 1990; Protein Expression and Purification 8: 430-438, 1996; Biosci. Biotechnol. Biochem. 66(12): 2600-2605, 2002), 글루타메이트 디카르복실라아제를 이용하여 GABA를 생산하는 공정이 개발된바 있다. 나일론 4 이외에 최근에 나일론 5에 관한 관심 또한 높아지고 있다. 나일론 5의 모노머는 현재 라이신으로부터 유래된 다이아민인 카다베린(cadaverine)이 사용되고 있다.
2-pyrrolidone, a raw material of nylon 4, can be produced from gamma butyrolactone and can be produced by the dehydration ring reaction of 4-aminobutyl acid. 4-aminobutyric acid is also called gamma-aminobutyric acid (GABA), which is known to have hypotension and analgesic effects by neurotransmitter inhibitory effects, and is currently used as a food and pharmaceutical material ( Erlander et al., Neurochem Res. 16: 215-226, 1991). Such GABA can be prepared by glutamate decarboxylase based on glutamate, and various glutamate decarboxylases have been reported to date (Proc. Natl. Acad. Sci. USA, 87: 8491-8495, 1990; Protein Expression and Purification 8: 430-438, 1996; Biosci.Biotechnol.Biochem. 66 (12): 2600-2605, 2002), a process for producing GABA using glutamate decarboxylase This has been developed. In addition to nylon 4, interest in nylon 5 has also increased recently. The monomer of nylon 5 is currently used cadaverine, a diamine derived from lysine.
이에 본 발명자들은 라이신(lysine)으로부터 유래될 수 있는 나일론 5의 또 다른 모노머로서 5-아미노발레르산(5-aminovaleric acid)을 생산하는 공정을 개발하기 위하여 연구한 결과, 대장균에 L-lysine을 5-aminovaleramide로 전환하는 lysine 2-monooxygenase(DavB) 효소와 5-aminovaleramide를 5-aminovaleric acid로 전환하는 delta-aminovaleramidase(DavA) 효소를 증폭한 결과 라이신으로부터 5-아미노발레르산이 생산됨을 확인하여, 상기 재조합 균주는 5-아미노발레르산을 저가로 대량 생산하는데 유용하게 사용할 수 있음을 밝힘으로써 본 발명을 완성하였다.
Therefore, the present inventors have studied to develop a process for producing 5-aminovaleric acid as another monomer of nylon 5 which may be derived from lysine (lysine). As a result of amplifying the lysine 2-monooxygenase (DavB) enzyme converting to -aminovaleramide and the delta-aminovaleramidase (DavA) enzyme converting 5-aminovaleramide to 5-aminovaleric acid, it was confirmed that 5-aminovaleric acid is produced from lysine. The strain has completed the present invention by revealing that the strain can be usefully used to mass-produce 5-amino valeric acid at low cost.
본 발명의 목적은 lysine 2-monooxygenase(DavB) 효소 및 delta-aminovaleramidase(DavA) 효소를 코딩하는 유전자를 포함하는 재조합 벡터로 형질전환하여 제조된 5-아미노발레르산(5-aminovaleric acid) 생산용 재조합 대장균 균주를 제공하기 위한 것이다.An object of the present invention is a recombinant for producing 5-aminovaleric acid prepared by transformation with a recombinant vector comprising a gene encoding a lysine 2-monooxygenase (DavB) enzyme and a delta-aminovaleramidase (DavA) enzyme. To provide an E. coli strain.
본 발명의 또 다른 목적은 DavB 효소 및 DavA 효소를 코딩하는 유전자를 포함하는 재조합 벡터로 형질전환하여 제조된 재조합 대장균 균주를 이용하여 글루코스 및 라이신이 포함된 배지로부터 5-아미노발레르산을 생산하는 방법을 제공하기 위한 것이다.
Still another object of the present invention is a method for producing 5-amino valeric acid from a medium containing glucose and lysine using a recombinant E. coli strain prepared by transforming with a recombinant vector comprising a gene encoding a DavB enzyme and a DavA enzyme. It is to provide.
상기 목적을 달성하기 위하여, 본 발명은In order to achieve the above object,
1) lysine 2-monooxygenase(DavB) 효소 및 delta-aminovaleramidase(DavA) 효소를 코딩하는 유전자를 발현벡터 내로 삽입하여 재조합 벡터를 제조하는 단계; 및1) preparing a recombinant vector by inserting a gene encoding the lysine 2-monooxygenase (DavB) enzyme and delta-aminovaleramidase (DavA) enzyme into the expression vector; And
2) 단계 1)에서 제조한 재조합 벡터를 대장균 균주에 형질전환시켜 재조합 대장균 균주를 제조하는 단계를 포함하는 제조방법으로 제조된 5-아미노발레르산(5-aminovaleric acid) 생산용 재조합 대장균 균주를 제공한다.2) transforming the recombinant vector prepared in step 1) to E. coli strain to provide a recombinant E. coli strain for the production of 5-amino valeric acid (5-aminovaleric acid) produced by the manufacturing method comprising the step of producing a recombinant E. coli strain do.
아울러, 본 발명은 In addition,
1) DavB 효소 및 DavA 효소를 코딩하는 유전자를 발현벡터 내로 삽입하여 재조합 벡터를 제조하는 단계;1) preparing a recombinant vector by inserting a gene encoding DavB enzyme and DavA enzyme into an expression vector;
2) 단계 1)에서 제조한 재조합 벡터를 대장균 균주에 형질전환시켜 재조합 대장균 균주를 제조하는 단계;2) transforming the recombinant vector prepared in step 1) to E. coli strain to produce a recombinant E. coli strain;
3) 단계 2)의 재조합 대장균 균주를 글루코스(glucose) 및 라이신(lysine)을 포함하는 배지에 배양하는 단계; 및3) culturing the recombinant E. coli strain of step 2) in a medium containing glucose and lysine; And
4) 단계 3)의 배양액으로부터 5-아미노발레르산을 수득하는 단계를 포함하는 5-아미노발레르산 생산방법을 제공한다.
4) It provides a 5-amino valeric acid production method comprising the step of obtaining 5-amino valeric acid from the culture medium of step 3).
본 발명은 L-lysine을 5-aminovaleramide로 전환하는 lysine 2-monooxygenase(DavB) 효소와 5-aminovaleramide를 5-aminovaleric acid로 전환하는 delta-aminovaleramidase(DavA) 효소가 증폭된 재조합 대장균 균주에 관한 것으로, 상기 재조합 대장균 균주를 라이신이 함유된 배지에서 배양할 경우 5-아미노발레르산(5-aminovaleric acid)을 대량생산 할 수 있으므로 5-아미노발레르산 대량생산 산업화기술개발에 유용하게 이용될 수 있다.
The present invention relates to a recombinant E. coli strain amplified lysine 2-monooxygenase (DavB) enzyme for converting L-lysine to 5-aminovaleramide and delta-aminovaleramidase (DavA) enzyme for converting 5-aminovaleramide to 5-aminovaleric acid. When the recombinant Escherichia coli strain is cultured in a medium containing lysine, 5-amino valeric acid may be mass-produced, and thus, it may be useful for developing 5-amino valeric acid mass production industrialization technology.
이하, 본 발명을 상세히 설명한다.
Hereinafter, the present invention will be described in detail.
1) lysine 2-monooxygenase(DavB) 효소 및 delta-aminovaleramidase(DavA) 효소를 코딩하는 유전자를 발현벡터 내로 삽입하여 재조합 벡터를 제조하는 단계; 및1) preparing a recombinant vector by inserting a gene encoding the lysine 2-monooxygenase (DavB) enzyme and delta-aminovaleramidase (DavA) enzyme into the expression vector; And
2) 단계 1)에서 제조한 재조합 벡터를 대장균 균주에 형질전환시켜 재조합 대장균 균주를 제조하는 단계를 포함하는 제조방법으로 제조된 5-아미노발레르산(5-aminovaleric acid) 생산용 재조합 대장균 균주를 제공한다.2) transforming the recombinant vector prepared in step 1) to E. coli strain to provide a recombinant E. coli strain for the production of 5-amino valeric acid (5-aminovaleric acid) produced by the manufacturing method comprising the step of producing a recombinant E. coli strain do.
상기 DavB는 서열번호 1로 기재되는 염기서열을 갖는 것이 바람직하나 이에 한정하지 않는다.DavB preferably has a nucleotide sequence as set forth in SEQ ID NO: 1, but is not limited thereto.
상기 DavA는 서열번호 2로 기재되는 염기서열을 갖는 것이 바람직하나 이에 한정하지 않는다.DavA preferably has a nucleotide sequence represented by SEQ ID NO: 2, but is not limited thereto.
상기 대장균 균주는 모든 종류의 대장균 균주가 적용될 수 있으나, BL21 codon plus인 것이 보다 바람직하나 이에 한정하지 않는다.The E. coli strains may be applied to all kinds of E. coli strains, more preferably BL21 codon plus, but is not limited thereto.
또한, 본 발명은 In addition,
1) DavB 효소 및 DavA 효소를 코딩하는 유전자를 발현벡터 내로 삽입하여 재조합 벡터를 제조하는 단계;1) preparing a recombinant vector by inserting a gene encoding DavB enzyme and DavA enzyme into an expression vector;
2) 단계 1)에서 제조한 재조합 벡터를 대장균 균주에 형질전환시켜 재조합 대장균 균주를 제조하는 단계;2) transforming the recombinant vector prepared in step 1) to E. coli strain to produce a recombinant E. coli strain;
3) 단계 2)의 재조합 대장균 균주를 글루코스(glucose) 및 라이신(lysine)이 포함하는 배지에 배양하는 단계; 및3) culturing the recombinant E. coli strain of step 2) in a medium containing glucose and lysine; And
4) 단계 3)의 배양액으로부터 5-아미노발레르산을 수득하는 단계를 포함하는 5-아미노발레르산 생산방법을 제공한다.4) It provides a 5-amino valeric acid production method comprising the step of obtaining 5-amino valeric acid from the culture medium of step 3).
상기 단계 3)의 배지는 대장균 균주의 배양에 이용되는 어떠한 배지도 사용가능하나, LB배지가 보다 바람직하나 이에 한정하지 않는다.As the medium of step 3), any medium used for the culture of E. coli strains may be used, but the LB medium is more preferably but not limited thereto.
상기 단계 3)의 배양은 48 내지 96시간인 것이 바람직하고, 배양온도는 20 내지 40℃인 것이 바람직하고, 37℃인 것이 보다 바람직하나 이에 한정하지 않는다. The culture of step 3) is preferably 48 to 96 hours, the culture temperature is preferably 20 to 40 ℃, more preferably 37 ℃ but is not limited thereto.
상기 단계 4)의 5-아미노발레르산 수득은 배양액을 분무 건조하여 저농도의 5-아미노발레르산-함유 분말을 대량으로 얻을 수 있고, 배양액을 감압 증발기를 이용하여 농축한 후 동결건조를 진행하여 고농도의 5-아미노발레르산 수득도 가능하며, 또한 이온교환수지를 이용한 정제방법을 사용한 후 농축 및 건조 공정을 수행하여 고순도의 5-아미노발레르산의 수득할 수 있으나 이에 한정하지 않으며, 상기 5-아미노발레르산은 온도 및 pH의 변화에 크게 영향을 받지 않고, 공정 안정성이 있기 때문에 회수 공정상의 제한이 없다. The 5-amino valeric acid obtained in step 4) can be obtained by spray-drying the culture solution to obtain a large amount of low concentration of 5-amino valeric acid-containing powder. It is also possible to obtain a 5-amino valeric acid, and can also obtain a high purity of 5-amino valeric acid by using a purification method using an ion exchange resin followed by a concentration and drying process, but is not limited thereto. Valeric acid is not significantly affected by changes in temperature and pH, and there is no limitation in the recovery process because of its process stability.
본 발명의 구체적인 실시예에 있어서, 대장균 균주를 lysine 2-monooxygenase(DavB) 효소와 5-aminovaleramide를 5-aminovaleric acid로 전환하는 delta-aminovaleramidase(DavA) 효소를 코딩하는 유전자를 함유한 재조합 벡터로 형질전환하여 형질전환된 대장균 균주를 라이신이 포함된 배지에서 배양한 후 5-아미노발레르산 전환 생산능을 확인한 결과, 5-아미노발레르산의 유의적인 전환 생산능을 확인하였다(표 2 참조). In a specific embodiment of the present invention, the E. coli strain is transformed with a recombinant vector containing a gene encoding a lysine 2-monooxygenase (DavB) enzyme and a delta-aminovaleramidase (DavA) enzyme that converts 5-aminovaleramide to 5-aminovaleric acid. The transformed E. coli strains were cultured in a medium containing lysine, and then confirmed the ability to produce 5-amino valeric acid conversion.
따라서, 본 발명의 재조합 대장균 균주는 5-아미노발레르산을 저가로 대량 생산하는데 유용하게 사용될 수 있다.
Therefore, the recombinant E. coli strain of the present invention can be usefully used for mass production of 5-amino valeric acid at low cost.
이하, 본 발명을 실시예에 의해 상세히 설명한다.Hereinafter, the present invention will be described in detail by way of examples.
단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 의해 한정되는 것은 아니다.
However, the following examples are illustrative of the present invention, and the contents of the present invention are not limited by the following examples.
<< 실시예Example 1> 1> DavADavA 및 And DavBDavB 유전자 발현을 위한 발현 벡터의 제조 Preparation of Expression Vectors for Gene Expression
L-lysine을 5-aminovaleramide로 전환하는 lysine 2-monooxygenase(DavB) 효소와 5-aminovaleramide를 5-aminovaleric acid로 전환하는 delta-aminovaleramidase(DavA) 효소를 증폭한 재조합 E. coli BL21 codon plus를 배양하여 라이신으로부터 5-아미노발레르산(5-aminovaleric acid) 생산능을 확인하기 위하여, DavA, DavB 유전자를 발현하는 벡터를 제작하였다. By culturing the L-lysine 5-aminovaleramide lysine 2-monooxygenase ( DavB) enzyme and 5-aminovaleramide the 5-aminovaleric acid delta-aminovaleramidase ( DavA) recombinant E. coli BL21 codon plus amplified for the enzyme switches to switch to In order to confirm the 5-aminovaleric acid production ability from lysine, a vector expressing the DavA and DavB genes was constructed.
발현용 벡터 pZE12-MCS는 pTacLac(Lee et al. Appl . Microbiol . Biotechnol . 79, 633-641, 2008)의 MCS(Muti-cloning sites) 및 Ralstonia eutropha의 PHA 생합성 유전자 전사 터미네이터를 가지도록 변형시켰다. Expression vectors pZE12-MCS were derived from muti-cloning sites (MCS) and Ralstonia of pTacLac (Lee et al. Appl . Microbiol . Biotechnol . 79 , 633-641, 2008) . It was modified to have a PHA biosynthetic gene transcription terminator of eutropha .
구체적으로, Ralstonia eutropha의 PHA 생합성 유전자 전사 터미네이터 유전자 단편을 p619C1437-pct540로부터 하기 표 1에서 나타낸 서열번호 3 및 서열번호 4의 프라이머를 이용하여 PCR로 수득하고, 상기 수득한 유전자 단편을 주형으로 하여 하기 표 1에서 나타낸 서열번호 5 및 서열번호 4의 프라이머를 이용하여 PCR을 수행하여 RBS, pTacLac MCS 및 R. eutropha의 PHA 생합성 유전자 전사 터미네이터를 수득하였다. 상기 PCR 산물을 MfeI 및 AvrII를 처리하여 절단하고, EcoRI/AvrII로 절단된 pZE12-MCS에 삽입하여, pKE12-MCS를 제조하였다. 플라스미드 pZE12-MCS는 ESPRESSYS(www.expressys.com)로부터 구입하여 수용하였다. pKE12-MCS에 Pseudomonas putida의 DavA 유전자를 EcoRI/KpnI으로 삽입하여, pKE12DavA를 제조하였고, pKE12DavA에 Pseudomonas putida의 DavB 유전자를 KpnI/BamHI으로 삽입하여, pKE12DavAB를 제조하였다.
Specifically, Ralstonia PHA biosynthetic gene transcription terminator gene fragment of eutropha was obtained from p619C1437-pct540 by PCR using primers of SEQ ID NO: 3 and SEQ ID NO: 4 shown in Table 1 below, and the obtained gene fragment as a template was shown in Table 1 below. PCR was performed using primers of SEQ ID NO: 5 and SEQ ID NO: 4 to obtain PHA biosynthetic gene transcription terminators of RBS, pTacLac MCS and R. eutropha . The PCR product was digested with MfeI and AvrII and inserted into pZE12-MCS digested with EcoRI / AvrII to prepare pKE12-MCS. Plasmid pZE12-MCS was purchased from ESPRESSYS (www.expressys.com) and received. pKE12DavA was prepared by inserting the DavA gene of Pseudomonas putida as EcoRI / KpnI in pKE12-MCS, and inserting the DavB gene of Pseudomonas putida as KpnI / BamHI in pKE12DavA to prepare pKE12DavAB.
R. eutropha PHA biosynthesis genes transcription terminator
<< 실시예Example 2> 2> 5-5- 아미노발레르산Amino valeric acid (5-(5- aminovalericaminovaleric acidacid ) ) 생산능Production capacity 확인 Confirm
상기 <실시예 1>에서 제작한 E. coli BL21 codon plus(pKE12DavAB)를 이용하여 5-아미노발레르산 생산능을 확인하기 위하여, E. coli BL21 codon plus를 LB배지 및 글루코스 10 g/L와 라이신 10 g/L가 함유된 LB 및 MR 배지에서 배양하였다. MR 배지는(pH 6.9) 1리터당 다음과 같은 조성으로 구성되어 있다. 6.67 g KH2PO4, 4 g(NH4)2HPO4,0.8 g MgSO47H2O, 0.8g citric acid, 5 ml trace metal solution. Trace metal solution은 1리터당 다음과 같은 조성으로 구성되어 있다(0.5 M HCl), 10 g FeSO47H2O, 2 g CaCl2, 2.2gZnSO47H2O, 0.5 g MnSO44H2O, 1 g CuSO45H2O, 0.1 g(NH4)6Mo7O244H2O, 0.02 g Na2B4O710H2O.In order to confirm the 5-amino valeric acid production capacity using the E. coli BL21 codon plus (pKE12DavAB) prepared in Example 1, E. coli BL21 codon plus LB medium and glucose 10 g / L and lysine Cultured in LB and MR medium containing 10 g / L. MR medium (pH 6.9) consists of the following composition per liter: 6.67 g KH 2 PO 4 , 4 g (NH 4 ) 2 HPO 4 , 0.8 g MgSO 4 7H 2 O, 0.8 g citric acid, 5 ml trace metal solution. Trace metal solution consists of the following composition per liter (0.5 M HCl), 10 g FeSO 4 7H 2 O, 2 g CaCl 2 , 2.2 gZnSO 4 7H 2 O, 0.5 g MnSO 4 4H 2 O, 1 g CuSO 4 5H 2 O, 0.1 g (NH 4 ) 6 Mo 7 O 24 4H 2 O, 0.02 g Na 2 B 4 O 7 10H 2 O.
그 결과, 표 2에 나타낸 바와 같이, 라이신으로부터 5-아미노발레르산이 유의적으로 생산되는 것을 확인하였다.
As a result, as shown in Table 2, it was confirmed that 5-amino valeric acid is significantly produced from lysine.
<110> Korea research institute of chemical technology <120> Method for Preparing 5-aminovaleric acid using recombinant Escherichia coli strains <130> 11p-02-20 <160> 5 <170> KopatentIn 1.71 <210> 1 <211> 1683 <212> DNA <213> Pseudomonas putida <400> 1 atgaacaaga agaaccgcca ccccgccgac ggcaagaagc cgatcaccat tttcggcccg 60 gacttccctt ttgctttcga cgactggctg gaacacccgg caggcctggg cagcattccg 120 gctgagcgcc atggggaaga ggtggccatt gtcggtgccg gtatcgccgg cctggtagcg 180 gcctacgagc tgatgaagct gggcctcaag ccggtggtgt acgaggcttc caagctgggc 240 ggccggctgc gctcgcaagc cttcaatggc actgacggga tcgttgccga actgggtggc 300 atgcgcttcc cggtgtcgtc caccgccttc taccactacg tcgacaagct gggcctggaa 360 accaagccct tccccaaccc gctgaccccg gcttcgggca gcacggtgat cgacctggaa 420 ggccagacct actacgccga gaagcccacc gacctgccac aactgtttca tgaggtagcc 480 gacgcctggg ccgatgcgct ggagagcggt gcgcagttcg ccgatatcca gcaggccatc 540 cgcgaccgtg atgtaccgcg cctgaaggaa ctttggaaca agctggtgcc gctgtgggac 600 gaccgcacct tctacgactt cgtcgccacc tcgcgctctt ttgccaagct gagcttccag 660 caccgcgaag tgttcggcca ggtcggtttc ggcaccggcg gttgggactc ggacttcccc 720 aactcgatgc tggaaatctt ccgcgtggtg atgaccaact gcgacgacca ccagcacctg 780 gtggtcgggg gcgtggaaca agtgccacaa ggcatctggc gccacgtacc ggaacgctgc 840 gtgcattggc cagagggcac cagcctgagc acgctgcatg gcggcgcacc gcgtaccggt 900 gtcaagcgca ttgcccgcgc ctccgatggc cgcctggcgg tcaccgacaa ctggggcgat 960 acccgccact acagcgcagt actcgccacc tgccagacct ggttgctgac cacccagatc 1020 gactgcgaag aatcgctgtt ctcgcaaaag atgtggatgg ccctggaccg tacccgctac 1080 atgcagtcgt cgaaaacctt cgtcatggtc gaccgcccgt tctggaagga caaggacccg 1140 gaaaccggcc gtgacctgct gagcatgacc ctcaccgatc gcctcacccg cggcacttac 1200 ctgttcgaca acggcaacga caagcccggg gtgatctgcc tgtcatactc gtggatgagc 1260 gacgcgctga agatgctgcc gcacccggtg gagaagcgcg tacaactggc cctggatgcg 1320 ctgaagaaga tctacccgaa gaccgatatc gccggccaca tcatcggcga cccgatcacg 1380 gtttcctggg aggccgaccc gtacttcctc ggcgccttca aaggcgcgct tccgggccat 1440 taccgctaca accagcgcat gtacgcgcac ttcatgcagc aggacatgcc ggcagagcag 1500 cgcggtatct tcattgctgg tgacgacgtg tcatggaccc ccgcctgggt tgaaggcgcg 1560 gtgcagacgt cgctgaatgc agtgtggggt atcatgaacc actttggtgg ccacacccac 1620 cccgacaacc cgggcccggg cgatgtgttc aacgaaatcg gcccgatcgc cctggcggat 1680 tga 1683 <210> 2 <211> 795 <212> DNA <213> Pseudomonas putida <400> 2 atgcgcatcg ctctgtacca gggcgcaccc aagccactgg atgtgcccgg caacctgcaa 60 cggctgcgcc accaggcgca gctggcagcc gaacgcggcg cacagttgct ggtgtgcccg 120 gagatgttcc tgaccggcta caacatcggc ctggcccagg tcgagcgcct ggccgaggcc 180 gccgatggcc cggcagccat gaccgtggta gagatcgccc aggcgcaccg catcgccatt 240 gtctatggct acccggagcg cggtgacgac ggggcgatct acaacagcgt gcagttgatc 300 gatgcgcatg gccgcagcct gagcaattac cgcaagacgc acctgttcgg tgaactggac 360 cgctcgatgt tcagccctgg tgcggaccac ttcccggtgg tggaactgga aggctggaag 420 gttggcctgc tgatctgcta cgacatcgag ttcccggaga acgcccgacg cctagcgctg 480 gacggcgccg agctgatcct ggtgccgacg gcgaacatga cgccgtacga ctttacctgc 540 caggtgaccg tgagagcgag ggcacaggaa aaccagtgct acctggtata tgccaactac 600 tgcggtgcgg aagacgagat tgagtattgc gggcagagca gcatcatcgg cccggatggc 660 agcttgctgg ccatggccgg gcgggatgag tgccagttgt tggcagagct tgaacatgag 720 cgggtggtgc aggggcgcac ggcgtttccc tacctgaccg atttgcgcca ggagctgcac 780 ctgcgtaaag gctga 795 <210> 3 <211> 46 <212> DNA <213> Artificial Sequence <220> <223> forward primer for R. eutropha PHA biosynthesis genes transcription terminator <400> 3 gagtcgacct gcaggcatgc aagcttcctg ccggcctggt tcaacc 46 <210> 4 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> reverse primer for R. eutropha PHA biosynthesis genes transcription terminator <400> 4 cctagggcct cgcccccgcg agggcc 26 <210> 5 <211> 78 <212> DNA <213> Artificial Sequence <220> <223> forward primer for RBS and MCS for pKE12-MCS <400> 5 caattgatta aagaggagaa agaattcgag ctcggtaccc ggggatcctc tagagtcgac 60 ctgcaggcat gcaagctt 78 <110> Korea research institute of chemical technology <120> Method for Preparing 5-aminovaleric acid using recombinant Escherichia coli strains <130> 11p-02-20 <160> 5 <170> Kopatentin 1.71 <210> 1 <211> 1683 <212> DNA (213) Pseudomonas putida <400> 1 atgaacaaga agaaccgcca ccccgccgac ggcaagaagc cgatcaccat tttcggcccg 60 gacttccctt ttgctttcga cgactggctg gaacacccgg caggcctggg cagcattccg 120 gctgagcgcc atggggaaga ggtggccatt gtcggtgccg gtatcgccgg cctggtagcg 180 gcctacgagc tgatgaagct gggcctcaag ccggtggtgt acgaggcttc caagctgggc 240 ggccggctgc gctcgcaagc cttcaatggc actgacggga tcgttgccga actgggtggc 300 atgcgcttcc cggtgtcgtc caccgccttc taccactacg tcgacaagct gggcctggaa 360 accaagccct tccccaaccc gctgaccccg gcttcgggca gcacggtgat cgacctggaa 420 ggccagacct actacgccga gaagcccacc gacctgccac aactgtttca tgaggtagcc 480 gacgcctggg ccgatgcgct ggagagcggt gcgcagttcg ccgatatcca gcaggccatc 540 cgcgaccgtg atgtaccgcg cctgaaggaa ctttggaaca agctggtgcc gctgtgggac 600 gaccgcacct tctacgactt cgtcgccacc tcgcgctctt ttgccaagct gagcttccag 660 caccgcgaag tgttcggcca ggtcggtttc ggcaccggcg gttgggactc ggacttcccc 720 aactcgatgc tggaaatctt ccgcgtggtg atgaccaact gcgacgacca ccagcacctg 780 gtggtcgggg gcgtggaaca agtgccacaa ggcatctggc gccacgtacc ggaacgctgc 840 gtgcattggc cagagggcac cagcctgagc acgctgcatg gcggcgcacc gcgtaccggt 900 gtcaagcgca ttgcccgcgc ctccgatggc cgcctggcgg tcaccgacaa ctggggcgat 960 acccgccact acagcgcagt actcgccacc tgccagacct ggttgctgac cacccagatc 1020 gactgcgaag aatcgctgtt ctcgcaaaag atgtggatgg ccctggaccg tacccgctac 1080 atgcagtcgt cgaaaacctt cgtcatggtc gaccgcccgt tctggaagga caaggacccg 1140 gaaaccggcc gtgacctgct gagcatgacc ctcaccgatc gcctcacccg cggcacttac 1200 ctgttcgaca acggcaacga caagcccggg gtgatctgcc tgtcatactc gtggatgagc 1260 gacgcgctga agatgctgcc gcacccggtg gagaagcgcg tacaactggc cctggatgcg 1320 ctgaagaaga tctacccgaa gaccgatatc gccggccaca tcatcggcga cccgatcacg 1380 gtttcctggg aggccgaccc gtacttcctc ggcgccttca aaggcgcgct tccgggccat 1440 taccgctaca accagcgcat gtacgcgcac ttcatgcagc aggacatgcc ggcagagcag 1500 cgcggtatct tcattgctgg tgacgacgtg tcatggaccc ccgcctgggt tgaaggcgcg 1560 gtgcagacgt cgctgaatgc agtgtggggt atcatgaacc actttggtgg ccacacccac 1620 cccgacaacc cgggcccggg cgatgtgttc aacgaaatcg gcccgatcgc cctggcggat 1680 tga 1683 <210> 2 <211> 795 <212> DNA (213) Pseudomonas putida <400> 2 atgcgcatcg ctctgtacca gggcgcaccc aagccactgg atgtgcccgg caacctgcaa 60 cggctgcgcc accaggcgca gctggcagcc gaacgcggcg cacagttgct ggtgtgcccg 120 gagatgttcc tgaccggcta caacatcggc ctggcccagg tcgagcgcct ggccgaggcc 180 gccgatggcc cggcagccat gaccgtggta gagatcgccc aggcgcaccg catcgccatt 240 gtctatggct acccggagcg cggtgacgac ggggcgatct acaacagcgt gcagttgatc 300 gatgcgcatg gccgcagcct gagcaattac cgcaagacgc acctgttcgg tgaactggac 360 cgctcgatgt tcagccctgg tgcggaccac ttcccggtgg tggaactgga aggctggaag 420 gttggcctgc tgatctgcta cgacatcgag ttcccggaga acgcccgacg cctagcgctg 480 gacggcgccg agctgatcct ggtgccgacg gcgaacatga cgccgtacga ctttacctgc 540 caggtgaccg tgagagcgag ggcacaggaa aaccagtgct acctggtata tgccaactac 600 tgcggtgcgg aagacgagat tgagtattgc gggcagagca gcatcatcgg cccggatggc 660 agcttgctgg ccatggccgg gcgggatgag tgccagttgt tggcagagct tgaacatgag 720 cgggtggtgc aggggcgcac ggcgtttccc tacctgaccg atttgcgcca ggagctgcac 780 ctgcgtaaag gctga 795 <210> 3 <211> 46 <212> DNA <213> Artificial Sequence <220> <223> forward primer for R. eutropha PHA biosynthesis genes transcription terminator <400> 3 gagtcgacct gcaggcatgc aagcttcctg ccggcctggt tcaacc 46 <210> 4 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> reverse primer for R. eutropha PHA biosynthesis genes transcription terminator <400> 4 cctagggcct cgcccccgcg agggcc 26 <210> 5 <211> 78 <212> DNA <213> Artificial Sequence <220> <223> forward primer for RBS and MCS for pKE12-MCS <400> 5 caattgatta aagaggagaa agaattcgag ctcggtaccc ggggatcctc tagagtcgac 60 ctgcaggcat gcaagctt 78
Claims (5)
2) 단계 1)에서 제조한 재조합 벡터를 대장균 균주에 형질전환시켜 재조합 대장균 균주를 제조하는 단계를 포함하는 제조방법으로 제조된 5-아미노발레르산(5-aminovaleric acid) 생산용 재조합 대장균 균주.
1) preparing a recombinant vector by inserting a gene encoding the lysine 2-monooxygenase (DavB) enzyme and delta-aminovaleramidase (DavA) enzyme into the expression vector; And
2) Recombinant Escherichia coli strain for 5-aminovaleric acid production prepared by the manufacturing method comprising the step of transforming the recombinant vector prepared in step 1) to E. coli strain.
The recombinant E. coli strain for producing 5-amino valeric acid according to claim 1, wherein DavB has a nucleotide sequence as set forth in SEQ ID NO: 1.
The recombinant E. coli strain for producing 5-amino valeric acid according to claim 1, wherein DavA has a nucleotide sequence as set forth in SEQ ID NO: 2.
2) 단계 1)에서 제조한 재조합 벡터를 대장균 균주에 형질전환시켜 재조합 대장균 균주를 제조하는 단계;
3) 단계 2)의 재조합 대장균 균주를 글루코스(glucose) 및 라이신(lysine)이 포함하는 배지에 배양하는 단계; 및
4) 단계 3)의 배양액으로부터 5-아미노발레르산을 수득하는 단계를 포함하는 5-아미노발레르산 생산방법.
1) preparing a recombinant vector by inserting a gene encoding DavB enzyme and DavA enzyme into an expression vector;
2) transforming the recombinant vector prepared in step 1) to E. coli strain to produce a recombinant E. coli strain;
3) culturing the recombinant E. coli strain of step 2) in a medium containing glucose and lysine; And
4) A 5-amino valeric acid production method comprising the step of obtaining 5-amino valeric acid from the culture medium of step 3).
5. The method of claim 4, wherein the culturing of step 3) is performed at 30 to 40 ° C. for 48 to 96 hours.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020110021963A KR101292838B1 (en) | 2011-03-11 | 2011-03-11 | Method for Preparing 5-aminovaleric acid using recombinant Escherichia coli strains |
PCT/KR2012/001757 WO2012124946A2 (en) | 2011-03-11 | 2012-03-09 | Method for producing 5-aminovaleric acid using recombinant escherichia coli |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020110021963A KR101292838B1 (en) | 2011-03-11 | 2011-03-11 | Method for Preparing 5-aminovaleric acid using recombinant Escherichia coli strains |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20120103959A true KR20120103959A (en) | 2012-09-20 |
KR101292838B1 KR101292838B1 (en) | 2013-08-05 |
Family
ID=46831186
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020110021963A KR101292838B1 (en) | 2011-03-11 | 2011-03-11 | Method for Preparing 5-aminovaleric acid using recombinant Escherichia coli strains |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101292838B1 (en) |
WO (1) | WO2012124946A2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102597723B1 (en) | 2021-10-20 | 2023-11-03 | 홍익대학교세종캠퍼스산학협력단 | Method for converting from 5-aminovaleric acid to glutaric acid |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070134231A1 (en) * | 2005-12-13 | 2007-06-14 | Jani Dharmendra M | Method for prolonging activity of autodegradable enzymes and compositions thereof |
KR20110104492A (en) * | 2008-12-12 | 2011-09-22 | 메타볼릭스 인코포레이티드 | Green process and compositions for producing poly(5hv)and 5 carbon chemicals |
-
2011
- 2011-03-11 KR KR1020110021963A patent/KR101292838B1/en active IP Right Grant
-
2012
- 2012-03-09 WO PCT/KR2012/001757 patent/WO2012124946A2/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2012124946A3 (en) | 2012-12-13 |
WO2012124946A2 (en) | 2012-09-20 |
KR101292838B1 (en) | 2013-08-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DK1784496T3 (en) | BIOCHEMICAL SYNTHESIS OF 1,4-butanediamine | |
Yu et al. | Combinatorial optimization of CO2 transport and fixation to improve succinate production by promoter engineering | |
KR101198865B1 (en) | Method for Preparing GABA by mono sodium glutamtate using Lactobacillus strain or recombinant Lactobacillus strain | |
EP1781799B1 (en) | Biochemical synthesis of 1,4-butanediamine | |
KR101271160B1 (en) | Method for Preparing glutaric acid using recombinant microorganism | |
JP6951702B2 (en) | How to make Trehangerin | |
KR101292838B1 (en) | Method for Preparing 5-aminovaleric acid using recombinant Escherichia coli strains | |
Schwardmann et al. | Formamide-based production of amines by metabolically engineering Corynebacterium glutamicum | |
KR101290657B1 (en) | Method for Preparing gamma-aminobutyric acid using recombinant Escherichia coli strains | |
WO2018180568A1 (en) | Mutant type 2-deoxy-scyllo-inosose synthase | |
WO2015047202A2 (en) | Rhodobacter sphaeroides o.u.oo1 producing 5-aminolevulinic acid with a new metabolic pathway and 5-aminolevulinic acid production method | |
CN115261293B (en) | Genetically engineered bacterium for producing hydroxy adipic acid | |
TW201231654A (en) | The application of PHA synthetase gene phaT and its gene product from extreme halophilic archaea in bioplastic production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20160607 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20170717 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20180627 Year of fee payment: 6 |