KR20120079809A - Method for manufacturing perovskite-typed composite oxide powder - Google Patents

Method for manufacturing perovskite-typed composite oxide powder Download PDF

Info

Publication number
KR20120079809A
KR20120079809A KR1020110144406A KR20110144406A KR20120079809A KR 20120079809 A KR20120079809 A KR 20120079809A KR 1020110144406 A KR1020110144406 A KR 1020110144406A KR 20110144406 A KR20110144406 A KR 20110144406A KR 20120079809 A KR20120079809 A KR 20120079809A
Authority
KR
South Korea
Prior art keywords
powder
perovskite
tio
surface area
specific surface
Prior art date
Application number
KR1020110144406A
Other languages
Korean (ko)
Other versions
KR101375601B1 (en
Inventor
신이치 카토
Original Assignee
가부시키가이샤 무라타 세이사쿠쇼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 무라타 세이사쿠쇼 filed Critical 가부시키가이샤 무라타 세이사쿠쇼
Publication of KR20120079809A publication Critical patent/KR20120079809A/en
Application granted granted Critical
Publication of KR101375601B1 publication Critical patent/KR101375601B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE: A manufacturing method of perovskite-type composite oxide powder is provide to improve crystalline and surface area by using titanium dioxide powder having pore volume a fixed specific surface area. CONSTITUTION: A manufacturing method of titanate barium based perovskite-type composite oxide powder which is represented by a general formula of ABO3 comprises the following step: reacting BaOH with a solution including titanium dioxide powder. The titanium dioxide powder has a specific surface area of 250m^2/g or greater and a pore volume of 0.38mL/g or greater. A part of the Ba which consists the A site is substituted with Sr and/or Ca. The manufacturing method of the perovskite-type complex oxide additionally includes the following step of heat treating the perovskite-type complex oxide which is created in the reaction process.

Description

페로브스카이트형 복합 산화물 분말의 제조방법{METHOD FOR MANUFACTURING PEROVSKITE-TYPED COMPOSITE OXIDE POWDER}Manufacturing method of perovskite type composite oxide powder {METHOD FOR MANUFACTURING PEROVSKITE-TYPED COMPOSITE OXIDE POWDER}

본 발명은 일반식 ABO3으로 표시되는 페로브스카이트형 복합 산화물의 제조방법에 관한 것으로서, 상세하게는 세라믹 전자부품용의 세라믹 원료로서 적합하게 사용하는 것이 가능한 티탄산바륨계의 페로브스카이트형 복합 산화물의 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a perovskite-type composite oxide represented by general formula ABO 3, and in particular, a barium titanate-based perovskite-type composite oxide that can be suitably used as a ceramic raw material for ceramic electronic components. It relates to a manufacturing method of.

미립이며 결정성이 뛰어난 티탄산바륨 등의 페로브스카이트형 복합 산화물을 경제적으로 제조하기 위한 방법으로서, 예를 들면 이하에 설명하는 바와 같은 고액(固液) 반응을 사용한 페로브스카이트형 복합 산화물의 방법이 제안되어 있다(특허문헌 1 참조).As a method for economically producing a perovskite-type composite oxide such as barium titanate having fine crystallinity and excellent crystallinity, for example, a method of a perovskite-type composite oxide using a solid-liquid reaction as described below. This is proposed (refer patent document 1).

이 방법은 A사이트 성분을 구성하는 원소의 결정수(結晶水)를 포함하는 수산화물과, 250m2/g이상의 비표면적을 가지는 산화티탄 분말을 혼합하는 혼합 처리 공정을 구비하고, 이 혼합 처리 공정은 가열 처리를 행함으로써 결정수의 수분만으로 A사이트 성분의 용해한 용해액을 생성시키는 용해액 생성 공정과, 산화티탄 분말과 용해액을 반응시켜 반응 합성물을 생성시키는 반응 공정을 포함하는 동시에, 용해액 생성 공정과 반응 공정이 연속적으로 진행되도록 한 복합 산화물 분말의 제조방법이다.This method comprises a mixing treatment step of mixing a hydroxide containing crystallized water of the elements constituting the A-site component with a titanium oxide powder having a specific surface area of 250 m 2 / g or more. A dissolution solution generation step of producing a dissolved solution of the A-site component with only the water of the crystal water by heat treatment; and a reaction step of reacting the titanium oxide powder with the solution to generate a reaction compound, while producing a dissolved solution. It is a manufacturing method of the complex oxide powder which made process and reaction process progress continuously.

또한 특허문헌 1에는 상술과 같이 하여 얻어지는 복합 산화물을 하소하는 것이 개시되어 있다.In addition, Patent Document 1 discloses calcination of the composite oxide obtained as described above.

그리고, 이 특허문헌 1의 발명의 방법에 의하면, 이상(異相)이 적고 초미립이면서, 결정성이 뛰어난 복합 산화물이 얻어지고, 이것을 하소 처리함으로써, 입방정계 복합 산화물로부터 결정계가 전이하여, 결정성이 뛰어난 정방정계의 복합 산화물을 제조할 수 있다고 되어 있다.And according to the method of this invention of patent document 1, the composite oxide which has few abnormalities and is very fine and excellent in crystallinity is obtained, and by calcining this, a crystal system transfers from a cubic crystal oxide, and crystallinity is carried out. It is said that this excellent tetragonal composite oxide can be manufactured.

그런데, 선행 기술과 같은 고액 반응에 의해 미립의 티탄산바륨(BaTiO3)계의 페로브스카이트형 복합 산화물 분말을 얻기 위해서는, 반응을 충분히 진행시키는 견지에서, 수산화바륨(Ba(OH)2)이 산화티탄(TiO2) 내부에 확산하는 거리를 작게 하는 것이 필요하다. 그 때문에, 특허문헌 1의 방법에서는, 원료가 되는 산화티탄 분말로서 비표면적(SSA)이 250m2/g이상인 산화티탄 분말(즉, 비표면적 상당 지름으로 6nm이하의 산화티탄 분말)을 사용하도록 하고 있다.By the way, in order to obtain particulate barium titanate (BaTiO 3 ) -based perovskite-type composite oxide powder by solid-liquid reaction as in the prior art, barium hydroxide (Ba (OH) 2 ) is oxidized in view of sufficiently advancing the reaction. it is necessary to reduce the distance which diffusion within the titanium (TiO 2). Therefore, in the method of Patent Document 1, titanium oxide powder having a specific surface area (SSA) of 250 m 2 / g or more (that is, titanium oxide powder having a specific surface area equivalent diameter or less) is used as the titanium oxide powder as a raw material. have.

그러나 상술과 같은 미세한 산화티탄 1차 입자가 강력하게 응집하고 있을 경우, 통상의 교반에서는 미소한 응집체를 개개의 1차 입자에까지 분산하는 것은 곤란하고, 액 중에서는 응집 입자로서 존재하게 된다.However, when the fine titanium oxide primary particles as described above are strongly aggregated, it is difficult to disperse the fine aggregates to the individual primary particles under normal agitation, and they exist as aggregated particles in the liquid.

그 때문에, 산화티탄(TiO2)과, 수산화바륨(Ba(OH)2)을 충분히 반응시키기 위해서는, 수산화바륨은 산화티탄 응집체의 내부에까지 확산할 필요가 있는데, 산화티탄 분말의 조밀한 응집체가 존재할 경우에는, 산화티탄 응집체의 내부에까지 수산화바륨을 확산시키는 것이 곤란하고, 결과적으로 산화티탄 분말 원료와 수산화바륨의 반응이 불충분해져 버리는 문제점이 있다.Therefore, in order to sufficiently react titanium oxide (TiO 2 ) and barium hydroxide (Ba (OH) 2 ), it is necessary to diffuse barium hydroxide even inside the titanium oxide agglomerate, but a dense agglomerate of titanium oxide powder exists. In this case, it is difficult to diffuse the barium hydroxide even inside the titanium oxide aggregate, resulting in insufficient reaction between the titanium oxide powder raw material and the barium hydroxide.

또한 최근 적층 세라믹 콘덴서에 있어서, 용량 형성용의 내부전극간에 개재하는 유전체층으로서의 세라믹층의 두께(소자 두께)가 1㎛미만인 영역의 것이 실용화되기에 이르고 있고, 미립이며 c/a축 비가 크고 결정성이 높은 티탄산바륨 분말에 대한 요구가 커지고 있는데, 상술의 특허문헌 1의 기술에서는 반드시 상기의 요구에 따를 수 없어지고 있는 것이 실정이다.In recent years, multilayer ceramic capacitors have been put into practical use in areas where the thickness (element thickness) of the ceramic layer as the dielectric layer interposed between the internal electrodes for capacitance formation is less than 1 µm. There is an increasing demand for this high barium titanate powder, but it is a fact that the above-described technique of Patent Document 1 cannot necessarily meet the above requirements.

일본국 특허 제4200427호 공보Japanese Patent No. 4200427

본 발명은 상기 과제를 해결하는 것으로서, 예를 들면 유전체층의 적층수가 많고, 박층화된 적층 세라믹 콘덴서에 있어서의 유전체층의 구성 재료 등으로서 적합하게 사용하는 것이 가능한 미세하고, 표면적이 크며, 결정성이 높은 티탄산바륨계의 페로브스카이트형 복합 산화물을 효율적으로 제조하기 위한 방법을 제공하는 것을 목적으로 한다.MEANS TO SOLVE THE PROBLEM This invention solves the said subject, For example, there are many dielectric layers laminated | stacked, and it is fine, surface area, and crystallinity which can be used suitably as a constituent material of dielectric layers in a multilayer ceramic capacitor thinned, etc. An object of the present invention is to provide a method for efficiently producing a high barium titanate-based perovskite complex oxide.

상기 과제를 해결하기 위해, 발명자는 고액 반응에 의해 미립의 티탄산바륨(BaTiO3)계의 페로브스카이트형 복합 산화물 분말을 제조하는 것에 관하여, 다양한 검토를 행하고, 종래는 원료인 산화티탄 분말의 비표면적에 의해 반응성을 평가하여, 적절한 비표면적을 가지는 TiO2 분말을 선택함으로써, 필요한 반응성을 확보할 수 있다고 생각해 왔는데, 산화티탄 분말을 구성하는 입자(TiO2 1차 입자)끼리의 패킹이 조밀한 경우에는, TiO2 1차 입자가 응집한 응집체의 내부에의 Ba2 +의 확산이 방해되어, 반응이 불균일해지는 경향이 있는 것을 알 수 있었다.In order to solve the above problems, the inventors concerning the for producing a perovskite-type composite oxide powder of barium titanate (BaTiO 3) based on the particulate by the solid-liquid reaction, subjected to a variety of reviews, conventionally, the raw material ratio of the titanium oxide powder It is thought that the reactivity can be secured by selecting the TiO 2 powder having an appropriate specific surface area by evaluating the reactivity based on the surface area, and the packing between the particles (TiO 2 primary particles) constituting the titanium oxide powder is dense. case, the diffusion of Ba 2 + of the interior of the TiO 2 agglomerates the primary particles are aggregated is interference, it was found that the reaction tends to be uneven.

또한 TiO2 1차 입자의 패킹의 정도는 원료가 되는 산화티탄 분말의 세공(細孔) 지름 분포로부터 아는 것이 가능하고, 이 세공 지름 분포는 세공 용적(BJH법)으로 조사할 수 있는 것을 알 수 있었다. 또한 BJH법에 의해 세공 용적을 구하면, 통상은 지름이 1~수십nm 정도의 세공의 용적이 구해지게 된다고 되어 있다.The degree of packing of the TiO 2 primary particles can be known from the pore diameter distribution of the titanium oxide powder as a raw material, and the pore diameter distribution can be investigated by the pore volume (BJH method). there was. In addition, when pore volume is calculated | required by BJH method, it is supposed that the volume of the pore about 1 to several tens of diameters is usually calculated | required.

그리고, 이러한 지견에 근거해 더욱 실험, 검토를 계속하여 본 발명을 완성하기에 이르렀다.Based on these findings, further experiments and studies continued to complete the present invention.

즉, 본 발명의 페로브스카이트형 복합 산화물의 제조방법은,That is, the manufacturing method of the perovskite complex oxide of the present invention,

일반식 ABO3으로 표시되는 티탄산바륨계의 페로브스카이트형 복합 산화물의 제조방법으로서,As a method for producing a barium titanate-based perovskite-type composite oxide represented by general formula ABO 3 ,

적어도 산화티탄 분말을 포함하는 용액에 수산화바륨을 첨가하여 반응시키는 반응 공정을 구비하고 있는 동시에,A reaction step of adding and reacting barium hydroxide to a solution containing at least titanium oxide powder;

상기 산화티탄 분말로서, 세공 용적이 0.38mL/g이상이며 비표면적이 250m2/g이상인 산화티탄 분말을 사용하는 것을 특징으로 하고 있다.The titanium oxide powder is characterized in that a titanium oxide powder having a pore volume of 0.38 mL / g or more and a specific surface area of 250 m 2 / g or more is used.

또한 본 발명에 의해 제조되는 페로브스카이트형 복합 산화물은 A사이트를 구성하는 Ba의 일부가 Sr 및/또는 Ca에 의해 치환되어 있어도 된다.In the perovskite complex oxide produced by the present invention, part of Ba constituting the A site may be substituted with Sr and / or Ca.

또한 본 발명의 페로브스카이트형 복합 산화물의 제조방법에 있어서는, 상기 반응 공정에서 생성된 페로브스카이트형 복합 산화물을 열처리하는 공정을 더 구비하고 있는 것이 바람직하다.Moreover, in the manufacturing method of the perovskite complex oxide of this invention, it is preferable to further provide the process of heat-processing the perovskite complex oxide produced | generated at the said reaction process.

본 발명의 일반식 ABO3으로 표시되는 페로브스카이트형 복합 산화물의 제조방법은, 적어도 산화티탄 분말을 포함하는 용액에 수산화바륨을 첨가하고, 반응시키는 반응 공정을 구비하고 있는 동시에, 상술한 산화티탄 분말로서, 세공 용적이 0.38mL/g이상이면서, 비표면적이 250m2/g이상인 산화티탄 분말을 사용하도록 하고 있으므로, 종래의 고액 반응에 의해 얻어지는 페로브스카이트형 복합 산화물보다도 비표면적이 큰 미세한 페로브스카이트형 복합 산화물을 얻을 수 있다.The method for producing a perovskite-type composite oxide represented by general formula ABO 3 of the present invention includes a reaction step of adding and reacting barium hydroxide to a solution containing at least titanium oxide powder, and at the same time, the titanium oxide described above. As the powder, a titanium oxide powder having a pore volume of 0.38 mL / g or more and a specific surface area of 250 m 2 / g or more is used, so that a fine powder having a specific surface having a larger specific surface area than that of a perovskite composite oxide obtained by a conventional liquid-liquid reaction is obtained. It is possible to obtain a lobedite complex oxide.

즉, 세공 용적이 0.38mL/g이상이며, 비표면적이 250m2/g이상인 산화티탄 분말을 사용한 경우, 단지 비표면적(SSA)에만 착안하여 선정한 산화티탄을 사용하는 경우에 비해, 보다 큰 비표면적을 가지는 페로브스카이트형 복합 산화물을, 특히 복잡한 제조 공정을 필요로 하지 않고 효율적으로 제조하는 것이 가능해진다.That is, when a titanium oxide powder having a pore volume of 0.38 mL / g or more and a specific surface area of 250 m 2 / g or more is used, a larger specific surface area is compared with using a titanium oxide selected by focusing only on the specific surface area (SSA). It is possible to efficiently produce a perovskite-type composite oxide having a compound without requiring a particularly complicated manufacturing process.

또한 본 발명에 있어서, 산화티탄 분말에 대하여 규정되어 있는 세공 용적은 BJH법에 의해 구해지는 값이며, 비표면적은 BET법에 의해 구해지는 값이다.In addition, in this invention, the pore volume prescribed | regulated with respect to a titanium oxide powder is a value calculated | required by the BJH method, and a specific surface area is a value calculated | required by the BET method.

또한 본 발명에 의하면, A사이트를 구성하는 Ba의 일부를 Sr 및/또는 Ca에 의해 치환한 조성의 페로브스카이트형 복합 산화물을 제조하는 것도 가능하고, 그 경우에는, 특성을 조정하여 소망하는 특성을 가지는 페로브스카이트형 복합 산화물을 효율적으로 제조할 수 있다.Moreover, according to this invention, it is also possible to manufacture the perovskite type | mold composite oxide of the composition which substituted a part of Ba which comprises A site with Sr and / or Ca, In that case, a characteristic is adjusted by adjusting a characteristic. The perovskite-type composite oxide having a compound can be efficiently produced.

또한 Ba와 치환하는 Sr 및/또는 Ca의 성분 원료는 산화티탄 슬러리에 포함시켜 두는 것도 가능하고, 또한 반응 공정의 직전에 수산화바륨보다도 먼저 혹은 동시에 산화티탄 슬러리에 첨가하는 것도 가능하다.In addition, the component raw material of Sr and / or Ca substituted with Ba may be included in the titanium oxide slurry, and may be added to the titanium oxide slurry prior to or simultaneously with barium hydroxide immediately before the reaction step.

또한 수산화바륨으로서, 수화수를 포함하지 않는 수산화바륨을 사용함으로써, 산화티탄 분말 등이 분산된 슬러리에 고형의 수산화바륨을 직접 첨가하는 것이 가능해지기 때문에 제조 프로세스를 간략화할 수 있다. 또한 수화수를 포함하지 않는 수산화바륨을 고형인 채로 산화티탄 슬러리에 첨가하도록 한 경우, 그 용해열에 의해 온도 상승이 일어나, 합성 반응을 촉진시키는 것이 가능해진다.In addition, by using barium hydroxide not containing hydrated water as barium hydroxide, it is possible to directly add solid barium hydroxide to a slurry in which titanium oxide powder or the like is dispersed, thereby simplifying the manufacturing process. In addition, when barium hydroxide containing no hydrated water is added to the titanium oxide slurry while being solid, the temperature rises due to the heat of dissolution, thereby facilitating the synthesis reaction.

또한 본 발명에 있어서, 반응 공정에서 생성한 페로브스카이트형 복합 산화물을 열처리함으로써, c/a축 비를 높여 결정성이 높은 페로브스카이트형 복합 산화물을 얻을 수 있다.In addition, in the present invention, the perovskite-type composite oxide having high crystallinity can be obtained by increasing the c / a axis ratio by heat-treating the perovskite-type composite oxide produced in the reaction step.

예를 들면, 800~1000℃의 온도로 열 처리함으로써, c/a축 비가 큰(1을 넘는) 정방정의 페로브스카이트형 복합 산화물이 얻어진다. 또한 본 발명에 있어서는, 세공 용적이 0.38mL/g이상이며, 비표면적이 250m2/g이상인 산화티탄 분말을 사용하도록 하고 있으므로, 입성장하고, 결정성이 향상하는 공정인 열처리 공정을 거친 후에 있어서도, 충분히 미세하고 비표면적이 크면서, c/a축 비가 크고 결정성이 높은 페로브스카이트형 복합 산화물을 얻을 수 있다.For example, a tetragonal perovskite-type composite oxide having a large c / a-axis ratio (greater than 1) is obtained by heat treatment at a temperature of 800 to 1000 ° C. In the present invention, since the titanium oxide powder having a pore volume of 0.38 mL / g or more and a specific surface area of 250 m 2 / g or more is used, even after a heat treatment step that is a step of growing grains and improving crystallinity, It is possible to obtain a perovskite-type composite oxide having sufficiently fine and large specific surface area and high c / a axis ratio and high crystallinity.

도 1은 본 발명의 한 실시예(실시예 1)에 있어서 Ti 원료로서 사용한 산화티탄(TiO2) 분말의 비표면적과, 반응을 행하게 함으로써 얻은 BaTiO3 분말의 비표면적의 관계를 나타내는 도면이다.
도 2는 본 발명의 한 실시예(실시예 1)에 있어서 Ti 원료로서 사용한 산화티탄(TiO2) 분말의 세공 용적과, 반응을 행하게 함으로써 얻은 BaTiO3 분말의 비표면적의 관계를 나타내는 도면이다.
도 3은 표 1의 No.2 및 No.7의 산화티탄(TiO2) 분말을 사용하여 제작한 BaTiO3 분말을 하소한 후의 BaTiO3 분말의 비표면적과, 결정의 c/a축 비의 관계를 나타내는 도면이다.
1 is a view showing the relationship between the specific surface area of the BaTiO 3 powder obtained by perform a specific surface area and the reaction of titanium (TiO 2) oxide powder used as the Ti raw material according to an embodiment of the present invention (Example 1).
FIG. 2 is a diagram showing the relationship between the pore volume of the titanium oxide (TiO 2 ) powder used as the Ti raw material and the specific surface area of the BaTiO 3 powder obtained by causing the reaction in one embodiment (Example 1) of the present invention.
Figure 3 is a table 1 of the titanium oxide of the No.2 and No.7 (TiO 2) the relationship of c / a axial ratio of the BaTiO 3 powder, the specific surface area after calcination of the BaTiO 3 powder produced by using the powder and crystal It is a figure which shows.

이하에 본 발명의 실시예를 나타내어, 본 발명의 특징으로 하는 바를 더욱 상세하게 설명한다.Examples of the present invention are shown below to describe the features of the present invention in more detail.

<실시예 1>&Lt; Example 1 >

표 1에 나타내는 바와 같은 비표면적 및 세공 용적을 가지는 No.1~No.9의 아나타제형의 산화티탄(TiO2) 분말을 준비하였다. 또한 각 산화티탄(TiO2) 분말의 비표면적은 BET법, 세공 용적은 BJH법에 의해 측정함으로써 얻은 값이다.Anatase-type titanium oxide (TiO 2 ) powders No. 1 to No. 9 having specific surface areas and pore volumes as shown in Table 1 were prepared. Each of titanium oxide addition (TiO 2) a specific surface area of the powder is a BET method and a pore volume is a value obtained by measuring by the BJH method.

그리고 나서, 표 1의 No.1~No.9의 각 TiO2 분말 7.40kg과, 순수 19.4L(리터)를 반응기에 투입하고, 교반기로 교반하여 슬러리를 제작하였다.Then, 7.40 kg of TiO 2 powders No. 1 to No. 9 in Table 1 and 19.4 L (liter) of pure water were added to the reactor, followed by stirring with a stirrer to prepare a slurry.

다음으로, 이 슬러리를 70℃(50℃이상인 것이 바람직하다)까지 가열하여, 소정의 Ba/Ti비가 되도록, 수화수를 가지지 않는 수산화바륨(Ba(OH)2)을 고형인 채로 첨가한 후, 온도가 80℃이상으로 유지되도록, 가열, 교반하면서 1시간 반응시킴으로써, 티탄산바륨(BaTiO3)을 합성하고, 얻어진 슬러리를 건조하여 BaTiO3 분말(페로브스카이트형 복합 산화물 분말)을 얻었다.Next, after heating this slurry to 70 degreeC (preferably 50 degreeC or more), and adding a barium hydroxide (Ba (OH) 2 ) which does not have hydration water so that it may become a predetermined Ba / Ti ratio, Barium titanate (BaTiO 3 ) was synthesized by heating and stirring for 1 hour to maintain the temperature at 80 ° C. or higher, and the resulting slurry was dried to obtain BaTiO 3 powder (perovskite-type composite oxide powder).

그리고 나서, 얻어진 BaTiO3 분말의 비표면적을 BET법으로 측정하였다. 그 결과를 표 1에 나타낸다.Then, the specific surface area of the obtained BaTiO 3 powder was measured by the BET method. The results are shown in Table 1.

또한 얻어진 BaTiO3 분말의 X선 회절을 행하여 Ba(OH)2의 잔류 상황을 조사하였다. 그 결과에 대해서도 표 1에 함께 나타낸다.Further, X-ray diffraction of the obtained BaTiO 3 powder was performed to investigate the residual state of Ba (OH) 2 . The results are also shown in Table 1 together.

Figure pat00001
Figure pat00001

또한 원료로서 사용한 TiO2 분말의 비표면적(SSA)과, 상술과 같이 하여 반응을 행하게 함으로써 제작(합성)한 BaTiO3 분말의 비표면적(SSA)의 관계를 도 1에 나타내는 동시에, 원료로서 사용한 TiO2 분말의 세공 용적과, 제작(합성)한 BaTiO3 분말의 비표면적의 관계를 도 2에 나타낸다. 도 1 및 도 2에 있어서, 플롯한 데이터의 근방에 붙인 1~9의 번호는 표 1의 No.1~9의 TiO2 분말을 나타내는 번호이다.In addition, the relationship between the specific surface area (SSA) of the TiO 2 powder used as the raw material and the specific surface area (SSA) of the BaTiO 3 powder produced (synthesized) by reacting as described above is shown in FIG. The relationship between the pore volume of 2 powder and the specific surface area of the produced (synthesized) BaTiO 3 powder is shown in FIG. 1 and 2, number 1 to 9 attached in the vicinity of the plotted data is a number indicating the TiO 2 powder in No.1 ~ 9 shown in Table 1.

표 1과, 도 1 및 도 2로부터 명백하듯이, 표 1의 No.1~No.4의 TiO2 분말을 사용한 경우, 비표면적(SSA)은 307~315m2/g과, 표 1의 No.5~No.9의 TiO2 분말과 동등함에도 불구하고, 얻어진 BaTiO3 분말의 비표면적(SSA)은 10~44m2/g으로 작아지는 것이 확인되었다.As apparent from Table 1 and Figs. 1 and 2, when the No. 1 to No. 4 TiO 2 powders of Table 1 were used, the specific surface area (SSA) was 307 to 315 m 2 / g, and No of Table 1 In spite of being equivalent to the TiO 2 powders of 0.5 to No. 9, it was confirmed that the specific surface area (SSA) of the obtained BaTiO 3 powder was reduced to 10 to 44 m 2 / g.

또한 미반응물인 Ba(OH)2가 잔류하고 있는 것도 확인되었다.It was also confirmed that Ba (OH) 2 as an unreacted substance remained.

한편, 표 1의 No.5~No.9의 TiO2 분말을 사용한 경우, 미립이며 결정성이 높은 BaTiO3 분말이 얻어지는 것이 확인되었다. 또한 미반응물인 Ba(OH)2가 잔류하고 있지 않은 것이 확인되었다.On the other hand, when TiO 2 powders No. 5 to No. 9 in Table 1 were used, it was confirmed that BaTiO 3 powders having fine grains and high crystallinity were obtained. It was also confirmed that Ba (OH) 2 as an unreacted substance did not remain.

이것은 비표면적이 표 1의 No.1~No.4와 동등해도 세공 용적이 큰(0.38mL/g이상) TiO2 분말을 사용함으로써, Ba(OH)2가 TiO2 입자의 응집체의 내부까지 확산하여 반응이 충분히 진행된 것에 의한 것이다.This is because Ba (OH) 2 diffuses to the inside of the aggregate of TiO 2 particles by using a TiO 2 powder having a large pore volume (0.38 mL / g or more) even if the specific surface area is equivalent to Nos. 1 to 4 in Table 1. This is because the reaction proceeded sufficiently.

<실시예 2><Example 2>

최종 조성이 (Ba0 .95Ca0 .05)TiO3이 되도록 산화티탄(TiO2) 분말(표 1의 No.7의 TiO2 분말), 탄산칼슘(CaCO3) 분말, 수산화바륨(Ba(OH)2) 분말의 각 원료를 칭량하였다.The final composition of (Ba Ca 0 .95 0 .05) TiO 3 so that the titanium oxide (TiO 2) powder (No.7 of the TiO 2 powder shown in Table 1), calcium carbonate (CaCO 3) powder, barium hydroxide (Ba ( OH) 2 ) Each raw material of powder was weighed.

그리고 나서, 실시예 1과 동일하게 TiO2 분말(표 1의 No.7의 TiO2 분말)과, CaCO3 분말과, 순수를 반응기에 투입하고, 교반기로 교반하면서 70℃까지 가열한 시점에서, 수화수를 포함하지 않는 수산화바륨(Ba(OH)2)을 첨가하고, 계속해서 교반을 행하면서, 80℃이상에서 1시간 반응시켜 (Ba,Ca)TiO3 슬러리를 얻었다. 그 후 슬러리를 건조하여 (Ba,Ca)TiO3 분말을 얻었다.Then, the same manner as in Example 1 TiO 2 powder added to (No.7 of the TiO 2 powder shown in Table 1) and a CaCO 3 powder, pure water to the reactor, and at a time of heating while stirring with a stirrer to 70 ℃, Barium hydroxide (Ba (OH) 2 ) containing no hydrated water was added thereto, followed by stirring for 1 hour at 80 ° C or higher while stirring to obtain a (Ba, Ca) TiO 3 slurry. Thereafter, the slurry was dried to obtain a (Ba, Ca) TiO 3 powder.

얻어진 (Ba,Ca)TiO3 분말은, 실시예 1의 표 1의 No.7의 TiO2 분말을 사용하여 제작(합성)한 BaTiO3과 거의 같은 비표면적을 가지고, 조성이 목표인 (Ba0.95Ca0.05)TiO3과 일치하는 미세한 분말 ((Ba0 .95Ca0 .05)TiO3) 분말인 것이 확인되었다.The obtained (Ba, Ca) TiO 3 powder had a specific surface area substantially the same as that of BaTiO 3 produced (synthesized) using TiO 2 powder of No. 7 in Table 1 of Example 1, and the composition (Ba 0.95) Ca 0.05) fine powder matching TiO 3 ((Ba 0 .95 Ca 0 .05) TiO 3) it was confirmed that the powder.

또한 미반응물인 Ba(OH)2가 잔류하고 있지 않은 것이 확인되었다.It was also confirmed that Ba (OH) 2 as an unreacted substance did not remain.

또한 이 실시예 2에서는 Ca 소스로서 탄산칼슘(CaCO3) 분말을 사용하였는데, Ca 소스는 CaCO3 분말에 한정되는 것은 아니고, 예를 들면 아세트산칼슘, 질산칼슘 등의 다른 염이나, 수산화물(수산화칼슘)을 사용하는 것도 가능하다.In Example 2, calcium carbonate (CaCO 3 ) powder was used as the Ca source, but the Ca source is not limited to the CaCO 3 powder, and other salts such as calcium acetate and calcium nitrate, and hydroxides (calcium hydroxide), for example. It is also possible to use.

<실시예 3><Example 3>

최종 조성이 (Ba0 .95Sr0 .05)TiO3이 되도록 TiO2 분말(표 1의 No.7의 TiO2 분말), 탄산스트론튬(SrCO3) 분말, 수산화바륨(Ba(OH)2) 분말의 각 원료를 칭량하였다.The final composition (Ba 0 .95 0 .05 Sr) TiO 3 is such that TiO 2 powder (No.7 of the TiO 2 powder shown in Table 1), strontium carbonate (SrCO 3) powder, barium hydroxide (Ba (OH) 2) Each raw material of the powder was weighed.

그리고 나서, 실시예 1과 동일하게 TiO2 분말(표 1의 No.7의 TiO2 분말)과, SrCO3 분말과, 순수를 반응기에 투입하고, 교반기로 교반하면서 70℃까지 가열한 시점에서, 수화수를 포함하지 않는 수산화바륨(Ba(OH)2)을 첨가하고, 계속해서 교반을 행하면서, 80℃이상에서 1시간 반응시켜 (Ba,Sr)TiO3 슬러리를 얻었다. 그 후 슬러리를 건조하여 (Ba,Sr)TiO3 분말을 얻었다.Then, the same manner as in Example 1 In a (No.7 of the TiO 2 powder shown in Table 1) and a SrCO 3 powder and the pure TiO 2 powder to the reactor, and at a time of heating while stirring with a stirrer to 70 ℃, Barium hydroxide (Ba (OH) 2 ) containing no hydrated water was added thereto, followed by stirring for 1 hour at 80 ° C. or higher while stirring to obtain a (Ba, Sr) TiO 3 slurry. Thereafter, the slurry was dried to obtain a (Ba, Sr) TiO 3 powder.

얻어진 (Ba,Sr)TiO3 분말은 실시예 1의 표 1의 No.7의 TiO2 분말을 사용하여 제작(합성)한 BaTiO3과 거의 같은 비표면적을 가지고, 조성이 목표인 (Ba0.95Ca0.05)TiO3과 일치하는 미세한 분말 ((Ba0 .95Sr0 .05)TiO3) 분말인 것이 확인되었다.The obtained (Ba, Sr) TiO 3 powder had a specific surface area substantially the same as that of BaTiO 3 produced (synthesized) using TiO 2 powder of No. 7 in Table 1 of Example 1, and the composition (Ba 0.95 Ca) 0.05) fine powder matching TiO 3 ((Ba 0 .95 Sr 0 .05) TiO 3) it was confirmed that the powder.

또한 미반응물인 Ba(OH)2가 잔류하고 있지 않은 것이 확인되었다.It was also confirmed that Ba (OH) 2 as an unreacted substance did not remain.

또한 이 실시예 3에서는 Sr 소스로서 탄산스트론튬(SrCO3) 분말을 사용했는데, Sr 소스는 탄산스트론튬(SrCO3) 분말에 한정되는 것은 아니며, 예를 들면 질산스트론튬 등의 다른 염이나, 수산화물(수산화스트론튬) 등을 사용하는 것도 가능하다.In addition, in Example 3, strontium carbonate (SrCO 3 ) powder was used as the Sr source, but the Sr source is not limited to strontium carbonate (SrCO 3 ) powder. For example, other salts such as strontium nitrate or hydroxide (hydroxyl) Strontium) or the like.

<실시예 4><Example 4>

실시예 1의 표 1의 No.2의 TiO2 분말(본 발명의 요건을 만족하지 않는 세공 용적이 0.22mL/g의 TiO2 분말)을 사용하여 제작한 BaTiO3 분말과, No.7의 TiO2 분말(본 발명의 요건을 만족하는 세공 용적이 0.48mL/g의 TiO2 분말)을 사용하여 제작한 BaTiO3 분말을, 열처리로를 사용하여 온도 조건을 800~1000℃의 범위에서 다르게 하여 열처리(하소)를 행하였다.Example 1 Table No.2 of the TiO 2 powder of one of BaTiO produced using a (the pore volume that do not satisfy the requirements of the present invention of 0.22mL / g TiO 2 powder) 3 powder and, No.7 of TiO 2 BaTiO 3 powder produced using a powder (TiO 2 powder having a pore volume of 0.48 mL / g satisfying the requirements of the present invention) was heat-treated by using a heat treatment furnace at different temperature conditions in the range of 800 to 1000 ° C. (Calcination) was performed.

그리고, 열처리 후(하소 후)의 BaTiO3 분말에 대하여 BET법으로 비표면적을 측정하였다. 또한 X선 회절법(XRD)을 사용하여 격자 상수를 측정하고, c/a축 비를 산출하였다.The specific surface area of the BaTiO 3 powder after heat treatment (after calcination) was measured by the BET method. In addition, the lattice constant was measured using X-ray diffraction (XRD), and the c / a axis ratio was calculated.

열처리 후(하소 후)의 BaTiO3 분말의 비표면적(SSA)과, 결정의 c/a축 비의 관계를 도 3에 나타낸다.The relationship between the specific surface area (SSA) of BaTiO 3 powder after heat treatment (after calcination) and the c / a axis ratio of the crystal is shown in FIG. 3.

도 3으로부터 명백하듯이, 세공 용적이 0.38mL/g이상(0.48mL)이며, 본 발명의 요건을 만족하는 TiO2 분말(No.7의 TiO2 분말)을 사용하여 제작(합성)하고, 열 처리(하소)한 BaTiO3 분말은 세공 용적이 0.22mL/g이며, 본 발명의 요건을 만족하지 않는 TiO2 분말(No.2의 TiO2 분말)을 사용하여 제작(합성)하고, 열 처리(하소)한 BaTiO3 분말에 비해 c/a축 비가 크고, 결정성이 높아지는 것이 확인되었다.Figure 3 As is clear from, the pore volume is 0.38mL / g or more (0.48mL), manufacturing (synthesis) using TiO 2 powder (No.7 of the TiO 2 powder) satisfying the requirements of the present invention, heat treatment (calcination) a BaTiO 3 powder, and a pore volume of 0.22mL / g, TiO 2 powder, which does not satisfy the requirements of the present invention produced (synthesized) by using the (TiO 2 powder No.2), and heat treatment ( Compared with calcined BaTiO 3 powder, it was confirmed that c / a-axis ratio is large and crystallinity becomes high.

또한 도 3으로부터는 입성장하는(비표면적이 저하하는) 것에 수반하여, c/a축 비가 커져 결정성이 향상하는 경향이 있는 것을 알 수 있다.3 shows that with the grain growth (specific surface area falls), c / a-axis ratio becomes large and crystallinity tends to improve.

또한 본 발명은 상기 실시예에 한정되는 것은 아니며, 반응에 제공하는 산화티탄(TiO2) 분말을 포함하는 슬러리의 고형분 농도, 슬러리에 수산화바륨을 첨가하여 반응시킬 때의 반응 온도나 반응 시간 등의 조건, 원료인 산화티탄 분말의 비표면적의 범위 및 세공 용적, A사이트의 일부를 Sr 및/또는 Ca로 치환할 때의 치환 비율, 반응 공정에서 생성한 티탄산바륨을 열 처리할 때의 조건 등에 관하여, 발명의 범위 내에 있어서 다양한 응용, 변형을 가하는 것이 가능하다.In addition, the present invention is not limited to the above embodiment, and the solid content concentration of the slurry containing the titanium oxide (TiO 2 ) powder to be used for the reaction, the reaction temperature and the reaction time when the reaction is added by adding the barium hydroxide to the slurry Conditions, the range and pore volume of the specific surface area of the titanium oxide powder as a raw material, the substitution ratio when a part of the A site is replaced with Sr and / or Ca, the conditions when the heat treatment of the barium titanate produced in the reaction step, etc. It is possible to add various applications and modifications within the scope of the invention.

Claims (3)

일반식 ABO3으로 표시되는 티탄산바륨계의 페로브스카이트형 복합 산화물의 제조방법으로서,
적어도 산화티탄 분말을 포함하는 용액에 수산화바륨을 첨가하여 반응시키는 반응 공정을 구비하고 있는 동시에,
상기 산화티탄 분말로서, 세공 용적이 0.38mL/g이상이며, 비표면적이 250m2/g이상인 산화티탄 분말을 사용하는 것을 특징으로 하는 페로브스카이트형 복합 산화물의 제조방법.
As a method for producing a barium titanate-based perovskite-type composite oxide represented by general formula ABO 3 ,
A reaction step of adding and reacting barium hydroxide to a solution containing at least titanium oxide powder;
A method for producing a perovskite composite oxide, characterized in that titanium oxide powder having a pore volume of 0.38 mL / g or more and a specific surface area of 250 m 2 / g or more is used as the titanium oxide powder.
제1항에 있어서,
A사이트를 구성하는 Ba의 일부가 Sr 및/또는 Ca에 의해 치환되어 있는 것을 특징으로 하는 페로브스카이트형 복합 산화물의 제조방법.
The method of claim 1,
A part of Ba which comprises A site is substituted by Sr and / or Ca, The manufacturing method of the perovskite type | mold composite oxide.
제1항 또는 제2항에 있어서,
상기 반응 공정에서 생성한 페로브스카이트형 복합 산화물을 열 처리하는 공정을 더 구비하고 있는 것을 특징으로 하는 페로브스카이트형 복합 산화물의 제조방법.
The method according to claim 1 or 2,
A process for producing a perovskite complex oxide, further comprising the step of heat treating the perovskite complex oxide produced in the reaction step.
KR1020110144406A 2011-01-05 2011-12-28 Method for manufacturing perovskite-typed composite oxide powder KR101375601B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011000467A JP5375838B2 (en) 2011-01-05 2011-01-05 Method for producing perovskite complex oxide powder
JPJP-P-2011-000467 2011-01-05

Publications (2)

Publication Number Publication Date
KR20120079809A true KR20120079809A (en) 2012-07-13
KR101375601B1 KR101375601B1 (en) 2014-03-19

Family

ID=46472876

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110144406A KR101375601B1 (en) 2011-01-05 2011-12-28 Method for manufacturing perovskite-typed composite oxide powder

Country Status (3)

Country Link
JP (1) JP5375838B2 (en)
KR (1) KR101375601B1 (en)
CN (1) CN102583513B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014199761A1 (en) * 2013-06-12 2014-12-18 株式会社村田製作所 Barium titanate production method, and electronic component
JP5765505B1 (en) * 2013-08-23 2015-08-19 堺化学工業株式会社 Method for producing barium titanate powder
WO2021199702A1 (en) * 2020-03-30 2021-10-07 堺化学工業株式会社 Method for producing perovskite compound, and perovskite compound
JP2021160961A (en) * 2020-03-31 2021-10-11 住友化学株式会社 Titanium compound, powder, and method for manufacturing titanium compound
JP2021160962A (en) * 2020-03-31 2021-10-11 住友化学株式会社 Particle, powder composition, solid composition, liquid composition, and molded body
JP2021160976A (en) * 2020-03-31 2021-10-11 住友化学株式会社 Titanium oxide, powder, powder composition, solid composition, liquid composition, and molded body

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4764493A (en) * 1986-06-16 1988-08-16 Corning Glass Works Method for the production of mono-size powders of barium titanate
GB2193713B (en) * 1986-07-14 1990-12-05 Cabot Corp Method of producing perovskite-type compounds.
EP1017625B1 (en) * 1998-07-01 2002-09-11 Cabot Corporation Hydrothermal process for making barium titanate powders
JP4830216B2 (en) 2001-06-15 2011-12-07 株式会社村田製作所 Method for producing oxide powder having perovskite structure, oxide powder having perovskite structure, dielectric ceramic and ceramic electronic component
JP4017366B2 (en) * 2001-07-27 2007-12-05 千代田化工建設株式会社 High purity porous titanium oxide and method for producing the same
JP4200427B2 (en) * 2001-12-28 2008-12-24 株式会社村田製作所 Method for producing composite oxide powder
JP4057475B2 (en) * 2003-06-17 2008-03-05 Tdk株式会社 Method for producing barium titanate powder
JP4743481B2 (en) * 2004-03-25 2011-08-10 昭和電工株式会社 Titanium-containing perovskite type compound and method for producing the same
JP2009114034A (en) * 2007-11-07 2009-05-28 Tdk Corp Method for producing barium titanate
CN100509146C (en) * 2007-11-08 2009-07-08 北京师范大学 Method for preparing porous barium titanate photocatalyst
JP4530057B2 (en) * 2008-02-13 2010-08-25 Tdk株式会社 Method for producing dielectric powder
JP5320568B2 (en) * 2008-05-07 2013-10-23 石原薬品株式会社 Method for producing fibrous barium titanate

Also Published As

Publication number Publication date
CN102583513A (en) 2012-07-18
JP2012140309A (en) 2012-07-26
CN102583513B (en) 2014-11-26
JP5375838B2 (en) 2013-12-25
KR101375601B1 (en) 2014-03-19

Similar Documents

Publication Publication Date Title
JP4310318B2 (en) Method for producing dielectric ceramic powder, and multilayer ceramic capacitor produced using the ceramic powder
TWI290539B (en) Barium titanate and capacitor
KR101375601B1 (en) Method for manufacturing perovskite-typed composite oxide powder
KR101295161B1 (en) Method for manufacturing composite oxide powder
JP2004284897A (en) Method of producing ceramic powder with perovskite structure, ceramic powder with perovskite structure, ceramic electronic component and its production method, and multilayer ceramic capacitor and its production method
KR20050085803A (en) Barium titanate and electronic parts using the material
KR101515522B1 (en) Method for producing perovskite type composite oxide
JP2012116740A (en) Method of producing barium titanate powder, and barium titanate powder
JP3751304B2 (en) Barium titanate and electronic components using the same
US8431109B2 (en) Process for production of composition
JP5353728B2 (en) Method for producing the composition
JP2005075700A (en) Method for manufacturing composition
JP2005162594A (en) Perovskite type titanium-containing multiple oxide particle, method for manufacturing the same, and application
KR102210295B1 (en) Method for producing barium titanate powder
CN102452835B (en) Method for manufacturing composite oxide powder
KR102190834B1 (en) Method for producing barium titanate powder
KR100616542B1 (en) Oxide Powder Using A Material To Make A Dielectrics and Method for Producing A Perovskite Structure Oxide Powder Using A Material To Make A Dielectrics and Multilayer Ceramic Condenser
JP4671946B2 (en) Barium calcium titanate powder and production method thereof
KR20070094999A (en) Method for manufacturing dielectric ceramic powder, and multilayer ceramic capacitor using the ceramic powder
WO2021010368A1 (en) Me ELEMENT-SUBSTITUTED ORGANIC ACID TITANYL BARIUM, METHOD FOR PRODUCING SAME, AND METHOD FOR PRODUCING TITANIUM-BASED PEROVSKITE-TYPE CERAMIC RAW MATERIAL POWDER
JP2013014460A (en) Method for producing perovskite form composite oxide and production apparatus thereof
KR101771744B1 (en) Method for manufacturing dielectric material with high-tetragonality
WO2015182411A1 (en) Composite oxide powder, method for producing composite oxide powder, and laminated ceramic electric part

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170303

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180302

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190304

Year of fee payment: 6