WO2015182411A1 - Composite oxide powder, method for producing composite oxide powder, and laminated ceramic electric part - Google Patents

Composite oxide powder, method for producing composite oxide powder, and laminated ceramic electric part Download PDF

Info

Publication number
WO2015182411A1
WO2015182411A1 PCT/JP2015/064063 JP2015064063W WO2015182411A1 WO 2015182411 A1 WO2015182411 A1 WO 2015182411A1 JP 2015064063 W JP2015064063 W JP 2015064063W WO 2015182411 A1 WO2015182411 A1 WO 2015182411A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide powder
composite oxide
site
axis
surface area
Prior art date
Application number
PCT/JP2015/064063
Other languages
French (fr)
Japanese (ja)
Inventor
知里 矢尾
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2015182411A1 publication Critical patent/WO2015182411A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors

Definitions

  • barium titanate (BaTiO 3 ) powder is known, and in the past, in order to obtain fine and highly crystalline barium titanate powder, Researched and developed.
  • the barium titanate-based composite oxide having a good crystallinity with a specific surface area sphere equivalent diameter of 130 to 300 nm and an axial ratio c / a between the c-axis and the a-axis of 1.0075 to 1.0088.
  • the product powder is obtained.
  • the composite oxide powder preferably has a crystal particle diameter of 60 to 80 nm.
  • FIG. 1 is a perspective view showing an embodiment of a multilayer ceramic capacitor as a multilayer ceramic electronic component according to the present invention. It is a longitudinal cross-sectional view of FIG.
  • the ceramic layer When the ceramic layer is thinned to 0.6 ⁇ m or less, it is necessary to atomize the particle diameter of the composite oxide powder to a specific surface area sphere equivalent diameter of 60 to 80 nm as described above.
  • the larger the particle diameter the better the crystallinity of the composite oxide powder.
  • the axial ratio c / a can be 1.0075 or more, and the crystallinity can be further improved. .
  • the A site compound containing the constituent elements of the A site is added to the dispersion solution so that the molar ratio m between the A site and the B site is 1.011 to 1.030, and the A site compound and the A synthesis step in which a B-site compound is reacted and dried to produce a composite, and the composite is subjected to a heat treatment, and the axial ratio c / a of the c-axis to the a-axis of the crystal axis is 1.0070 or more. Since a composite oxide powder containing a barium compound as a main component is prepared, the compound is blended so that the molar ratio m is A-site-excess than the stoichiometric composition. Suppress growth It can, thereby even ultrafine can be obtained with high crystallinity composite oxide powder.
  • each composite had the molar ratio m shown in Table 1. I understood that.

Abstract

This composite oxide powder includes, as the principal component, a barium titanate compound represented by general formula AmBO3. The molar ratio (m) of an A-site to a B-site is 1.011-1.030, and in the crystallographic axis of the crystal particles, the axial ratio (c/a) of the c-axis to the a-axis is 1.0070 or more. The particle size of the crystal particles is 60-80 nm in terms of specific surface area sphere equivalent diameter. When the specific surface area sphere equivalent diameter is 70-80 nm, the axial ratio (c/a) can be configured to 1.0075 or more. A ceramic layer (3) is formed by the composite oxide powder. This makes it possible, even when the ceramic layer is made thinner than conventionally, to realize: a barium titanate composite oxide powder having high crystallinity and ultrafine particles with which desired characteristics can be ensured; a method for producing said composite oxide powder; and a laminated ceramic electric part, such as a laminated ceramic capacitor, using said composite oxide powder.

Description

複合酸化物粉末、複合酸化物粉末の製造方法、及び積層セラミック電子部品Composite oxide powder, method for producing composite oxide powder, and multilayer ceramic electronic component
 本発明は、複合酸化物粉末、複合酸化物粉末の製造方法、及び積層セラミック電子部品に関し、より詳しくは積層セラミック電子部品の電子材料に適した複合酸化物粉末とその製造方法、及びこの複合酸化物粉末を使用した積層セラミックコンデンサ等の積層セラミック電子部品に関する。 The present invention relates to a composite oxide powder, a method for producing a composite oxide powder, and a multilayer ceramic electronic component, and more specifically, a composite oxide powder suitable for an electronic material of a multilayer ceramic electronic component, a method for producing the composite oxide powder, and the composite oxidation The present invention relates to a multilayer ceramic electronic component such as a multilayer ceramic capacitor using a material powder.
 近年、積層セラミックコンデンサ等の積層セラミック電子部品の技術分野では、小型大容量化が急速に進展しており、セラミック層の薄層化が進んでいる。 In recent years, in the technical field of multilayer ceramic electronic components such as multilayer ceramic capacitors, miniaturization and large capacity are rapidly progressing, and the ceramic layer is becoming thinner.
 セラミック層の薄層化に対応するためには、セラミック原料である複合酸化物粉末の微粒化が必要となる。また、複合酸化物粉末の結晶性が低いと、焼成時に粒成長を起こし、積層セラミック電子部品の特性劣化を招くことから、結晶性の高いことも要求される。 In order to cope with the thinning of the ceramic layer, it is necessary to atomize the composite oxide powder which is a ceramic raw material. Further, if the crystallinity of the composite oxide powder is low, grain growth occurs at the time of firing, and the characteristics of the multilayer ceramic electronic component are deteriorated, so that the crystallinity is also required to be high.
 そして、この種の複合酸化物粉末の代表的なものとしては、チタン酸バリウム(BaTiO)粉末が知られており、従来より、微粒で結晶性の高いチタン酸バリウム粉末を得るべく、盛んに研究・開発されている。 And, as a representative of this kind of composite oxide powder, barium titanate (BaTiO 3 ) powder is known, and in the past, in order to obtain fine and highly crystalline barium titanate powder, Researched and developed.
 例えば、特許文献1には、一般式ABO(AはBa又はSrを示し、BはTiを示す。)で表されるペロブスカイト構造を有する複合酸化物粉末の製造方法であって、結晶水を含有したAサイト成分を構成する元素の水酸化物と250m/g以上の比表面積を有する酸化チタン粉末とを混合する混合処理工程を有し、前記混合処理工程は、加熱処理を行うことにより前記結晶水の水分のみで前記Aサイト成分の溶解した溶解液を生成する溶解液生成工程と、前記酸化チタン粉末と前記溶解液とが反応して反応合成物を生成する反応工程とを含み、前記溶解液生成工程と前記反応工程とは連続的に進行するようにした複合酸化物粉末の製造方法が提案されている。 For example, Patent Document 1, the general formula ABO 3 (A represents the Ba or Sr, B indicates the Ti.) A method of manufacturing composite oxide powder having a perovskite structure represented by the crystal water It has a mixing process step of mixing the hydroxide of the element constituting the contained A site component and a titanium oxide powder having a specific surface area of 250 m 2 / g or more, and the mixing process step is performed by performing a heat treatment. A solution production step for producing a solution in which the A-site component is dissolved only with water of the crystal water, and a reaction step in which the titanium oxide powder and the solution react to produce a reaction product, There has been proposed a method for producing a composite oxide powder in which the solution generation step and the reaction step proceed continuously.
 この特許文献1では、Aサイト成分とBサイト成分のモル比m(=A/B)が0.990~1.010となるように、Ba(OH)・8HO等のAサイト成分を構成する元素の水酸化物と超微粒のTiOとを混合し、反応させて20nm程度の超微粒の反応物を作製し、その後、仮焼処理を行なっている。そして、比表面積球相当径が130~300nmであって、結晶軸のc軸とa軸との軸比c/aが1.0075~1.0088の結晶性の良好なチタン酸バリウム系複合酸化物粉末を得ている。 In Patent Document 1, an A site component such as Ba (OH) 2 .8H 2 O is used so that the molar ratio m (= A / B) of the A site component to the B site component is 0.990 to 1.010. Is mixed with ultrafine TiO 2 and reacted to produce an ultrafine reaction product of about 20 nm, and then calcined. The barium titanate-based composite oxide having a good crystallinity with a specific surface area sphere equivalent diameter of 130 to 300 nm and an axial ratio c / a between the c-axis and the a-axis of 1.0075 to 1.0088. The product powder is obtained.
特許第4200427号公報(請求項1、表1、表3)Japanese Patent No. 4200197 (Claim 1, Table 1, Table 3)
 積層セラミック電子部品の技術分野では、上述したようにセラミック層の薄層化が進展しているが、最近では更なる薄層化が要請されており、セラミック層の厚みを0.6μm以下にまで薄層化することが求められている。 In the technical field of multilayer ceramic electronic components, as described above, the ceramic layer has been made thinner. Recently, however, further thinning has been demanded, and the thickness of the ceramic layer has been reduced to 0.6 μm or less. Thinning is required.
 そして、このようにセラミック層の更なる薄層化に伴い、複合酸化物粉末に要求される仕様も更に厳しくなり、より一層の微粒化が要求され、比表面積球相当径が60~80nm程度でかつ高結晶性を有する複合酸化物粉末の実現が要請されている。 As the ceramic layer is further thinned, the specifications required for the composite oxide powder become stricter, and further atomization is required, and the equivalent surface area sphere equivalent diameter is about 60 to 80 nm. Moreover, realization of a complex oxide powder having high crystallinity has been demanded.
 しかしながら、特許文献1では、比表面積球相当径が130~300nm程度であれば、結晶性の高い複合酸化物粉末を得ることができるが、比表面積球相当径が60~80nm程度の微粒になると、高結晶の複合酸化物を安定して得ることができず、結晶性の低下を招くおそれがある。 However, in Patent Document 1, when the specific surface area sphere equivalent diameter is about 130 to 300 nm, a complex oxide powder with high crystallinity can be obtained. However, when the specific surface area sphere equivalent diameter is about 60 to 80 nm, it becomes fine particles. Therefore, a highly crystalline complex oxide cannot be obtained stably, and the crystallinity may be lowered.
 すなわち、特許文献1では、Aサイト成分とBサイト成分のモル比mが0.990~1.010であり、化学量論組成(=1.000)の近傍域にあるため、結晶粒子は熱処理時に粒成長し易い。 That is, in Patent Document 1, since the molar ratio m of the A site component to the B site component is 0.990 to 1.010 and is in the vicinity of the stoichiometric composition (= 1.000), the crystal grains are heat treated. Sometimes easy to grow.
 結晶粒子の粒成長を抑制するためには、熱処理温度を低下させればよいが、熱処理温度を低下させると、粒成長にバラツキが生じて結晶性の低下を招くおそれがある。 In order to suppress the grain growth of crystal grains, the heat treatment temperature may be lowered. However, when the heat treatment temperature is lowered, there is a possibility that the grain growth varies and the crystallinity is lowered.
 したがって、特許文献1の複合酸化物粉末をより一層微粒化し、これによりセラミック層の厚みが0.6μm以下の積層セラミック電子部品に使用しても、結晶性に劣ることから、特性劣化を招き、所望の特性を発現するのが困難になる。 Therefore, the composite oxide powder of Patent Document 1 is further atomized, and even when used for a multilayer ceramic electronic component having a ceramic layer thickness of 0.6 μm or less, the crystallinity is inferior, leading to characteristic deterioration. It becomes difficult to express desired characteristics.
 本発明はこのような事情に鑑みなされたものであって、セラミック層が従来よりも更に薄層化されても、所望の特性を確保できる超微粒で高結晶性を有するチタン酸バリウム系の複合酸化物粉末、この複合酸化物粉末の製造方法、及びこの複合酸化物粉末を使用した積層セラミックコンデンサ等の積層セラミック電子部品を提供することを目的とする。 The present invention has been made in view of such circumstances, and is a barium titanate-based composite having ultrafine particles and high crystallinity that can ensure desired characteristics even when the ceramic layer is made thinner than before. It is an object of the present invention to provide an oxide powder, a method for producing the composite oxide powder, and a multilayer ceramic electronic component such as a multilayer ceramic capacitor using the composite oxide powder.
 本発明者は、上記目的を達成するに一般式ABOで表されるチタン酸バリウム系化合物を使用して鋭意研究を行ったところ、AサイトとBサイトとのモル比mを1.011~1.030とすることにより、比表面積球相当径が60~80nmの超微粒であっても、結晶軸のa軸に対するc軸の軸比c/aが、1.0070以上の結晶性の高い複合酸化物粉末を確実に得ることができるという知見を得た。 In order to achieve the above object, the present inventor conducted intensive studies using a barium titanate compound represented by the general formula A m BO 3 , and found that the molar ratio m between the A site and the B site was 1. By setting 011 to 1.030, even if the specific surface area sphere has an equivalent diameter of 60 to 80 nm, the crystallinity of the axial ratio c / a of the c axis to the a axis is 1.0070 or more. The knowledge that high complex oxide powder can be obtained reliably was obtained.
 本発明はこのような知見に基づきなされたものであって、本発明に係る複合酸化物粉末は、一般式ABOで表されるチタン酸バリウム系化合物を主成分とする複合酸化物粉末であって、AサイトとBサイトとのモル比mが1.011~1.030であり、かつ、結晶粒子の結晶軸は、a軸に対するc軸の軸比c/aが、1.0070以上であることを特徴としている。 The present invention has been made based on such knowledge, and the composite oxide powder according to the present invention is a composite oxide powder mainly composed of a barium titanate-based compound represented by the general formula A m BO 3. The molar ratio m between the A site and the B site is 1.011 to 1.030, and the crystal axis of the crystal grains is that the axial ratio c / a of the c axis to the a axis is 1.0070. It is characterized by the above.
 また、本発明の複合酸化物粉末は、粒子径が、比表面積球相当径で60~80nmであるのが好ましい。 In addition, the composite oxide powder of the present invention preferably has a particle diameter of 60 to 80 nm in terms of a specific surface area sphere equivalent diameter.
 また、本発明の複合酸化物粉末は、前記軸比c/aが、1.0075以上であるのが好ましい。 In addition, the composite oxide powder of the present invention preferably has an axial ratio c / a of 1.0075 or more.
 この場合は、粒子径が、比表面積球相当径で70~80nmの複合酸化物粉末を得ることができる。 In this case, a composite oxide powder having a particle diameter equivalent to a specific surface area sphere of 70 to 80 nm can be obtained.
 また、本発明に係る複合酸化物粉末の製造方法は、チタン酸化物を含むBサイトの構成元素を含有したBサイト化合物を溶媒中に分散させ、分散溶液を作製する分散溶液作製工程と、バリウム水酸化物を含むAサイトの構成元素を含有したAサイト化合物を、AサイトとBサイトとのモル比mが1.011~1.030となるように、前記分散溶液に添加し、前記Aサイト化合物と前記Bサイト化合物とを反応させ、乾燥させて合成物を作製する合成工程と、前記合成物に熱処理を施し、結晶軸のa軸に対するc軸の軸比c/aが1.0070以上のチタン酸バリウム系化合物を主成分とする複合酸化物粉末を作製することを特徴としている。 In addition, the method for producing a composite oxide powder according to the present invention includes a dispersion solution preparation step of dispersing a B site compound containing a constituent element of a B site containing titanium oxide in a solvent to prepare a dispersion solution, and barium. An A site compound containing a constituent element of the A site containing a hydroxide is added to the dispersion solution so that the molar ratio m between the A site and the B site is 1.011 to 1.030. A synthesis step in which a site compound and the B site compound are reacted and dried to produce a composite, and the composite is subjected to heat treatment, and an axial ratio c / a of the crystal axis to the a-axis is 1.0070. It is characterized by producing a composite oxide powder containing the barium titanate-based compound as a main component.
 また、本発明の複合酸化物粉末の製造方法は、前記複合酸化物粉末は、結晶粒子の粒子径が60~80nmであるのが好ましい。 In the method for producing a composite oxide powder of the present invention, the composite oxide powder preferably has a crystal particle diameter of 60 to 80 nm.
 また、本発明の複合酸化物粉末の製造方法は、前記熱処理時の熱処理温度が、745~970℃であるのが好ましい。 In the method for producing a composite oxide powder of the present invention, it is preferable that the heat treatment temperature during the heat treatment is 745 to 970 ° C.
 また、本発明に係る積層セラミック電子部品は、内部電極層とセラミック層とが交互に積層されたセラミック素体を有する積層セラミック電子部品において、前記セラミック層は、上記いずれかに記載の複合酸化物粉末が焼結されてなることを特徴としている。 In addition, the multilayer ceramic electronic component according to the present invention is a multilayer ceramic electronic component having a ceramic body in which internal electrode layers and ceramic layers are alternately stacked. It is characterized in that the powder is sintered.
 本発明の複合酸化物粉末によれば、一般式ABOで表されるチタン酸バリウム系化合物を主成分とする複合酸化物粉末であって、AサイトとBサイトとのモル比mが1.011~1.030であり、かつ、結晶粒子の結晶軸は、a軸に対するc軸の軸比c/aが、1.0070以上(好ましくは、1.0075以上)であるので、化学量論組成よりもAサイト過剰であることから結晶粒子の粒成長を抑制することができ、超微粒であっても結晶性の高い複合酸化物粉末を得ることができる。 According to the composite oxide powder of the present invention, the composite oxide powder is mainly composed of a barium titanate compound represented by the general formula A m BO 3 , and the molar ratio m between the A site and the B site is m. Since the crystal axis of the crystal grains is 1.011 to 1.030 and the axial ratio c / a of the c axis to the a axis is 1.0070 or more (preferably 1.0075 or more), Since the A site is excessive as compared with the stoichiometric composition, grain growth of crystal grains can be suppressed, and a complex oxide powder with high crystallinity can be obtained even with ultrafine grains.
 本発明の複合酸化物粉末の製造方法によれば、チタン酸化物を含むBサイトの構成元素を含有したBサイト化合物を溶媒中に分散させ、分散溶液を作製する分散溶液作製工程と、バリウム水酸化物を含むAサイトの構成元素を含有したAサイト化合物を、AサイトとBサイトとのモル比mが1.011~1.030となるように、前記分散溶液に添加し、前記Aサイト化合物と前記Bサイト化合物とを反応させ、乾燥させて合成物を作製する合成工程と、前記合成物に熱処理を施し、結晶軸のa軸に対するc軸の軸比c/aが1.0070以上のチタン酸バリウム系化合物を主成分とする複合酸化物粉末を作製するので、モル比mが化学量論組成よりもAサイト過剰となるように配合されることから、熱処理温度が高くでも結晶粒子の粒成長を抑制することができ、これにより超微粒であっても結晶性の高い複合酸化物粉末を得ることができる。 According to the method for producing a composite oxide powder of the present invention, a dispersion solution production step of producing a dispersion solution by dispersing a B site compound containing a constituent element of a B site containing titanium oxide in a solvent, and barium water An A-site compound containing an A-site constituent element including an oxide is added to the dispersion solution so that the molar ratio m between the A-site and the B-site is 1.011 to 1.030, and the A-site A synthesis step in which a compound is reacted with the B-site compound and dried to produce a composite; and the composite is subjected to a heat treatment, and an axial ratio c / a of the crystal axis to the a-axis is 1.0070 or more Since the composite oxide powder containing the barium titanate compound as a main component is prepared, the molar ratio m is compounded so that the A site is larger than the stoichiometric composition. Granulation of It can be suppressed, thereby even ultrafine can be obtained with high crystallinity composite oxide powder.
 本発明のセラミック電子部品によれば、内部電極層とセラミック層とが交互に積層さてセラミック素体を有する積層セラミック電子部品において、前記セラミック層は、上記いずれかに記載の複合酸化物粉末が焼結されてなるので、超微粒で高結晶の複合酸化物粉末を使用してセラミック素体が形成されることから、セラミック層が、0.6μm以下に薄層化されても、特性劣化を招くことなく、所望の電気特性を有する積層セラミックコンデンサ等の積層セラミック電子部品を得ることができる。 According to the ceramic electronic component of the present invention, in the multilayer ceramic electronic component having the ceramic body in which the internal electrode layers and the ceramic layers are alternately stacked, the ceramic layer is formed by firing the composite oxide powder described above. As a result, the ceramic body is formed using ultra-fine and highly crystalline composite oxide powder, so that even if the ceramic layer is thinned to 0.6 μm or less, it causes deterioration of characteristics. Thus, a multilayer ceramic electronic component such as a multilayer ceramic capacitor having desired electrical characteristics can be obtained.
本発明に係る積層セラミック電子部品としての積層セラミックコンデンサの一実施の形態を示す斜視図である。1 is a perspective view showing an embodiment of a multilayer ceramic capacitor as a multilayer ceramic electronic component according to the present invention. 図1の縦断面図である。It is a longitudinal cross-sectional view of FIG.
 次に、本発明の実施の形態を詳説する。 Next, an embodiment of the present invention will be described in detail.
 本発明に係る複合酸化物粉末は、一般式ABOで表されるチタン酸バリウム系化合物を主成分とし、AサイトとBサイトとのモル比mが1.011~1.030であり、かつ、結晶粒子の結晶軸は、a軸に対するc軸の軸比c/aが、1.0070以上とされている。 The composite oxide powder according to the present invention is mainly composed of a barium titanate compound represented by the general formula A m BO 3 , and the molar ratio m between the A site and the B site is 1.011 to 1.030. The crystal axis of the crystal grains is such that the axial ratio c / a of the c axis to the a axis is 1.0070 or more.
 そして、これにより化学量論組成よりもAサイト過剰であることから、結晶粒子の粒成長を抑制することができ、高温で熱処理を行うことが可能となり、超微粒であっても結晶性の高い複合酸化物粉末を得ることができる。 And since this is an A-site excess rather than a stoichiometric composition, the grain growth of a crystal grain can be suppressed, it becomes possible to heat-process at high temperature, and even if it is a superfine grain, it has high crystallinity A composite oxide powder can be obtained.
 ここで、チタン酸バリウム系化合物としては、チタン酸バリウムの他、バリウムの一部がストロンチウムやカルシウムで置換されていたり、或いはチタンの一部がハフニウムやジルコニウムで置換されていてもよい。 Here, as the barium titanate compound, in addition to barium titanate, a part of barium may be substituted with strontium or calcium, or a part of titanium may be substituted with hafnium or zirconium.
 チタン酸バリウム系化合物は、積層セラミックコンデンサ等の積層セラミック電子部品に広く使用されているが、電子機器の軽薄短小化の要請下、積層セラミック電子部品におけるセラミック層の薄層化が飛躍的に進んでおり、今日ではセラミック層の厚さが0.6μm以下のものの実現が求められている。 Barium titanate-based compounds are widely used in multilayer ceramic electronic components such as multilayer ceramic capacitors, but the demand for lighter, thinner, and smaller electronic devices has dramatically reduced the thickness of ceramic layers in multilayer ceramic electronic components. Today, it is required to realize a ceramic layer having a thickness of 0.6 μm or less.
 このためセラミック層を形成する複合酸化物粉末の粒子径も微粒化が求められており、セラミック層の厚さが0.6μm以下とするためには、複合酸化物粉末の粒子径を比表面積球相当径で60~80nm程度の微粒にし、かつ結晶性が高いことが要求される。 Therefore, the particle size of the composite oxide powder forming the ceramic layer is also required to be atomized, and in order to make the thickness of the ceramic layer 0.6 μm or less, the particle size of the composite oxide powder is reduced to a specific surface area sphere. It is required to have fine particles with an equivalent diameter of about 60 to 80 nm and high crystallinity.
 しかしながら、AサイトとBサイトとのモル比mが1.011未満になってモル比mが化学量論組成に近づくと、熱処理合成時に粒成長し易くなる。この場合、熱処理合成時の粒成長を抑制するには、熱処理温度を低くすればよいが、熱処理温度を低くすると、BaやTi等の構成元素の熱拡散が十分に進まないことから、粒子内の組成が均一とはならず、結晶性が低下する。 However, when the molar ratio m between the A site and the B site is less than 1.011 and the molar ratio m approaches the stoichiometric composition, grain growth tends to occur during heat treatment synthesis. In this case, in order to suppress the grain growth during the heat treatment synthesis, the heat treatment temperature may be lowered. However, if the heat treatment temperature is lowered, the thermal diffusion of constituent elements such as Ba and Ti does not sufficiently proceed. The composition is not uniform and crystallinity is lowered.
 一方、モル比mが1.030を超えると、Aサイト元素の含有量が過度に多くなり、この場合も結晶性の低下を招くおそれがある。 On the other hand, when the molar ratio m exceeds 1.030, the content of the A-site element is excessively increased, and in this case, the crystallinity may be lowered.
 これに対しモル比mを1.011~1.030の範囲にすると、Aサイト元素が適度に過剰であることから、熱処理合成時に粒成長が抑制され、745~970℃程度の高温で熱処理を行っても、粒子径は比表面積球相当径で60~80nmに抑制することができる。しかも熱処理を高温で行うことができることから、粒成長のバラツキが抑制されて略均一に粒成長し、a軸に対するc軸の軸比c/aを1.070以上の結晶性の良好な複合酸化物粉末を得ることができる。 On the other hand, when the molar ratio m is in the range of 1.011 to 1.030, the A site element is appropriately excessive, so that grain growth is suppressed during the heat treatment synthesis, and the heat treatment is performed at a high temperature of about 745 to 970 ° C. Even if it is performed, the particle diameter can be suppressed to 60 to 80 nm in terms of the specific surface area sphere equivalent diameter. In addition, since the heat treatment can be performed at a high temperature, variation in grain growth is suppressed, grain growth is substantially uniform, and the composite ratio of c-axis with respect to the a-axis, c / a, having a good crystallinity of 1.070 or more. A product powder can be obtained.
 そこで、本実施の形態では、モル比mを1.011~1.030としている。 Therefore, in this embodiment, the molar ratio m is set to 1.011 to 1.030.
 このように本複合酸化物粉末は、AサイトとBサイトとのモル比mが1.011~1.030であり、かつ、結晶粒子の結晶軸は、a軸に対するc軸の軸比c/aが、1.0070以上であるので、化学量論組成よりもAサイト過剰であることから結晶粒子の粒成長を抑制することができ、超微粒であっても結晶性の高い複合酸化物粉末を得ることができる。 Thus, in this composite oxide powder, the molar ratio m of the A site to the B site is 1.011 to 1.030, and the crystal axis of the crystal grains is the axial ratio c / axis of the c axis to the a axis. Since a is 1.0070 or more, the A-site is larger than the stoichiometric composition, so that the growth of crystal grains can be suppressed, and a composite oxide powder having high crystallinity even if it is ultrafine. Can be obtained.
 尚、セラミック層を0.6μm以下に薄層化した場合、上述のように複合酸化物粉末の粒子径を比表面積球相当径で60~80nmに微粒化する必要があるが、この範囲内で粒子径が大きいほど、複合酸化物粉末の結晶性は向上する。例えば、粒子径が、比表面積球相当径で70~80nmの場合であれば、軸比c/aは1.0075以上にすることが可能であり、より一層の結晶性向上を図ることができる。 When the ceramic layer is thinned to 0.6 μm or less, it is necessary to atomize the particle diameter of the composite oxide powder to a specific surface area sphere equivalent diameter of 60 to 80 nm as described above. The larger the particle diameter, the better the crystallinity of the composite oxide powder. For example, when the particle diameter is 70 to 80 nm in terms of the specific surface area sphere, the axial ratio c / a can be 1.0075 or more, and the crystallinity can be further improved. .
 次に、上記複合酸化物粉末の製造方法を説明する。 Next, a method for producing the composite oxide powder will be described.
 まず、比表面積が250m/g以上の微粒のTi酸化物を純水等の溶媒中に投入し、70~80℃に加熱してTi酸化物を溶媒中に分散させ、分散溶液を作製する。 First, a fine Ti oxide having a specific surface area of 250 m 2 / g or more is charged into a solvent such as pure water and heated to 70 to 80 ° C. to disperse the Ti oxide in the solvent to prepare a dispersion solution. .
 次に、熱処理後のモル比mが1.011~1.030となるように、Ba水酸化物を前記分散溶液に添加する。これにより水和熱が発生して温度上昇しTi酸化物とBa水酸化物とが反応する。その後、これを乾燥させることにより、比表面積球相当径で20~30nm程度の立方晶系(軸比c/a=1.0000)の合成物が得られる。 Next, Ba hydroxide is added to the dispersion so that the molar ratio m after the heat treatment is 1.011 to 1.030. As a result, heat of hydration is generated, the temperature rises, and Ti oxide and Ba hydroxide react. Thereafter, the resultant is dried to obtain a cubic system (axial ratio c / a = 1.0000) composite having a specific surface area sphere equivalent diameter of about 20 to 30 nm.
 次いで、この合成物に対し、745~970℃の温度で熱処理を行う。この熱処理により、合成物の結晶系は立方晶系から正方晶系に相転移し、軸比c/aが1.0070以上、好ましくは1.0075以上の結晶性が良好なチタン酸バリウム系粉末を得ることができる。 Next, the composite is heat-treated at a temperature of 745 to 970 ° C. By this heat treatment, the crystal system of the synthesized product undergoes a phase transition from a cubic system to a tetragonal system, and the barium titanate-based powder has a good crystallinity with an axial ratio c / a of 1.0070 or more, preferably 1.0075 or more. Can be obtained.
 このように本実施の形態によれば、チタン酸化物を含むBサイトの構成元素を含有したBサイト化合物を溶媒中に分散させ、分散溶液を作製する分散溶液作製工程と、バリウム水酸化物を含むAサイトの構成元素を含有したAサイト化合物を、AサイトとBサイトとのモル比mが1.011~1.030となるように、前記分散溶液に添加し、前記Aサイト化合物と前記Bサイト化合物とを反応させ、乾燥させて合成物を作製する合成工程と、前記合成物に熱処理を施し、結晶軸のa軸に対するc軸の軸比c/aが1.0070以上のチタン酸バリウム系化合物を主成分とする複合酸化物粉末を作製するので、モル比mが化学量論組成よりもAサイト過剰となるように配合されることから、熱処理温度が高くても結晶粒子の粒成長を抑制することができ、これにより超微粒であっても結晶性の高い複合酸化物粉末を得ることができる。 As described above, according to the present embodiment, the B-site compound containing the constituent elements of the B site containing titanium oxide is dispersed in a solvent, and a dispersion solution preparation step for preparing a dispersion solution, and barium hydroxide are prepared. The A site compound containing the constituent elements of the A site is added to the dispersion solution so that the molar ratio m between the A site and the B site is 1.011 to 1.030, and the A site compound and the A synthesis step in which a B-site compound is reacted and dried to produce a composite, and the composite is subjected to a heat treatment, and the axial ratio c / a of the c-axis to the a-axis of the crystal axis is 1.0070 or more. Since a composite oxide powder containing a barium compound as a main component is prepared, the compound is blended so that the molar ratio m is A-site-excess than the stoichiometric composition. Suppress growth It can, thereby even ultrafine can be obtained with high crystallinity composite oxide powder.
 次に、上記複合酸化物粉末を使用した積層セラミック電子部品について詳述する。 Next, a multilayer ceramic electronic component using the composite oxide powder will be described in detail.
 図1は本発明に係る積層セラミック電子部品としての積層セラミックコンデンサの一実施の形態を模式的に示す斜視図であり、図2は、その縦断面図である。 FIG. 1 is a perspective view schematically showing an embodiment of a multilayer ceramic capacitor as a multilayer ceramic electronic component according to the present invention, and FIG. 2 is a longitudinal sectional view thereof.
 該積層セラミックコンデンサは、セラミック素体1の両端部に外部電極2a、2bが形成されている。 The multilayer ceramic capacitor has external electrodes 2 a and 2 b formed at both ends of the ceramic body 1.
 そして、セラミック素体1は、図2に示すように、セラミック層3と内部電極層4とが交互に積層されて焼成されてなり、外部電極2aに電気的に接続される内部電極層4と、外部電極2bに電気的に接続される内部電極層4との対向面間で静電容量を形成している。 As shown in FIG. 2, the ceramic body 1 is formed by alternately laminating and firing ceramic layers 3 and internal electrode layers 4, and the internal electrode layers 4 electrically connected to the external electrodes 2a A capacitance is formed between the opposing surfaces of the internal electrode layer 4 electrically connected to the external electrode 2b.
 次に、上記積層セラミックコンデンサの製造方法を詳述する。 Next, the manufacturing method of the multilayer ceramic capacitor will be described in detail.
 まず、上述の方法・手順でチタン酸バリウム系化合物からなる複合酸化物粉末を作製する。 First, a composite oxide powder made of a barium titanate compound is prepared by the method and procedure described above.
 次いで、この複合酸化物粉末を所定の添加物や有機バインダ、有機溶剤、粉砕媒体と共にボールミルに投入して湿式混合し、セラミックスラリーを作製し、ドクターブレード法等によりセラミックスラリーに成形加工を行い、焼成後の厚みが1μm以下となるようにセラミックグリーンシートを作製する。 Next, the composite oxide powder is put into a ball mill together with predetermined additives, an organic binder, an organic solvent, and a grinding medium, wet mixed, and a ceramic slurry is produced. A ceramic green sheet is prepared so that the thickness after firing is 1 μm or less.
 次いで、Ni粉末等の導電性材料、有機ビヒクル及び有機溶剤を含有した内部電極用導電性ペーストを作製する。 Next, a conductive paste for internal electrodes containing a conductive material such as Ni powder, an organic vehicle and an organic solvent is prepared.
 そして、この内部電極用導電性ペーストを使用してセラミックグリーンシート上にスクリーン印刷を施し、前記セラミックグリーンシートの表面に所定パターンの導電膜を形成する。 Then, screen printing is performed on the ceramic green sheet using the conductive paste for internal electrodes, and a conductive film having a predetermined pattern is formed on the surface of the ceramic green sheet.
 次いで、この導電膜が形成されたセラミックグリーンシートを所定方向に複数枚積層した後、これを導電膜の形成されていないセラミックグリーンシートで挟持し、圧着し、所定寸法に切断してセラミック積層体を作製する。そしてこの後、温度300~500℃で脱バインダ処理を行ない、さらに、酸素分圧が10-9~10-12MPaに制御されたH-N-HOガスからなる還元性雰囲気下、温度1100~1300℃で約2時間焼成処理を行なう。これにより導電膜とセラミックグリーンシートとが共焼結され、セラミック層3と内部電極層4とが交互に積層されたセラミック素体1が得られる。 Next, after laminating a plurality of ceramic green sheets on which the conductive film is formed in a predetermined direction, the ceramic green sheets are sandwiched between the ceramic green sheets on which the conductive film is not formed, pressure-bonded, and cut to a predetermined size. Is made. Thereafter, the binder removal treatment is performed at a temperature of 300 to 500 ° C., and further, in a reducing atmosphere composed of H 2 —N 2 —H 2 O gas whose oxygen partial pressure is controlled to 10 −9 to 10 −12 MPa. Then, baking is performed at a temperature of 1100 to 1300 ° C. for about 2 hours. As a result, the conductive film and the ceramic green sheet are co-sintered, and the ceramic body 1 in which the ceramic layers 3 and the internal electrode layers 4 are alternately laminated is obtained.
 次に、セラミック素体1の両端面に外部電極用導電性ペーストを塗布し、600~800℃の温度で焼付処理を行い、外部電極2a、2bを形成する。 Next, a conductive paste for external electrodes is applied to both end faces of the ceramic body 1, and a baking treatment is performed at a temperature of 600 to 800 ° C. to form the external electrodes 2a and 2b.
 尚、外部電極用導電性ペーストに含有される導電性材料についても、特に限定されるものではないが、低コスト化の観点から、AgやCu、或いはこれらの合金を主成分とした材料を使用するのが好ましい。 The conductive material contained in the conductive paste for external electrodes is not particularly limited, but from the viewpoint of cost reduction, a material mainly composed of Ag, Cu, or an alloy thereof is used. It is preferable to do this.
 また、外部電極2a、2bの形成方法としては、セラミック積層体の両端面に外部電極用導電性ペーストを塗布した後、セラミック積層体と同時に焼成処理を施すようにしてもよい。 Further, as a method of forming the external electrodes 2a and 2b, after applying a conductive paste for external electrodes to both end faces of the ceramic laminate, firing may be performed simultaneously with the ceramic laminate.
 そして、最後に、電解めっきを施して外部電極2a、2bの表面にNi、Cu、Ni-Cu合金等からなるめっき皮膜及びはんだやスズ等からなるめっき皮膜を順次形成し、これにより積層セラミックコンデンサが製造される。 Finally, electrolytic plating is performed to sequentially form a plating film made of Ni, Cu, Ni—Cu alloy, etc., and a plating film made of solder, tin, etc. on the surfaces of the external electrodes 2a, 2b, whereby a multilayer ceramic capacitor is formed. Is manufactured.
 このように本積層セラミックコンデンサは、セラミック層3が、上記いずれかに記載の複合酸化物粉末が焼結されてなるので、超微粒で高結晶の複合酸化物粉末を使用して形成されることから、セラミック層3が、0.6μm以下に薄層化されても、特性劣化を招くことなく、所望の電気特性を有する積層セラミックコンデンサ等の積層セラミック電子部品を得ることができる。 In this way, in the present multilayer ceramic capacitor, the ceramic layer 3 is formed by sintering the composite oxide powder described in any of the above, so that the multilayer ceramic capacitor is formed using the ultrafine and high crystal composite oxide powder. Therefore, even when the ceramic layer 3 is thinned to 0.6 μm or less, a multilayer ceramic electronic component such as a multilayer ceramic capacitor having desired electrical characteristics can be obtained without causing deterioration of characteristics.
 尚、本発明は上記実施の形態に限定されるものではなく、要旨を変更しない範囲で変更可能なのはいうまでもない。 In addition, this invention is not limited to the said embodiment, It cannot be overemphasized that it can change in the range which does not change a summary.
 次に、本発明の実施例を具体的に説明する。 Next, specific examples of the present invention will be described.
〔試料の作製〕
 比表面積300m/gのTiO:300gを787gの純水中に投入してスラリー化し、これを約70℃に加熱し、分散溶液を得た。次いで合成後のモル比mが0.991~1.046となるように無水Ba(OH)を分散溶液に添加し、90℃の温度で1時間保持し、TiOと無水Ba(OH)とを反応させセラミックスラリーを得た。そして、このセラミックスラリーを150℃の温度に調整されたオーブンで乾燥し、その後、目開き60メッシュの篩いを使用して分篩し、試料番号1~8の合成物を得た。
[Sample preparation]
TiO 2 having a specific surface area of 300 m 2 / g: 300 g was put into 787 g of pure water to form a slurry, which was heated to about 70 ° C. to obtain a dispersion solution. Subsequently, anhydrous Ba (OH) 2 was added to the dispersion solution so that the molar ratio m after synthesis was 0.991 to 1.046, and kept at a temperature of 90 ° C. for 1 hour, TiO 2 and anhydrous Ba (OH) 2 2 was reacted to obtain a ceramic slurry. Then, this ceramic slurry was dried in an oven adjusted to a temperature of 150 ° C., and thereafter sieved using a sieve having an opening of 60 mesh to obtain composites of sample numbers 1 to 8.
 次いで、試料番号1~8の各合成物について、WD-XRF(波長分散型蛍光X線分析)法を使用してモル比を測定したところ、各合成物は表1に示すモル比mを有することが分かった。 Next, when the molar ratio of each of the composites of sample numbers 1 to 8 was measured using the WD-XRF (wavelength dispersive X-ray fluorescence analysis) method, each composite had the molar ratio m shown in Table 1. I understood that.
 また、試料番号1~8の各合成物について、全自動比表面積測定装置(マウンテック社製、商品名「Macsorb」)を使用し、BET法により比表面積を測定したところ、65m2/g(比表面積球相当径:15nm)であった。 Also, for each composite of Sample No. 1-8 where, using a fully automatic specific surface area measuring apparatus (Mountech Co., Ltd., trade name "Macsorb") were measured specific surface area by the BET method, 65 m 2 / g (the ratio Surface area sphere equivalent diameter: 15 nm).
 さらに、CuKαを特性X線として各合成物にX線を照射し、X線回折スペクトルを測定した。そして、このX線回折スペクトルをリートベルト解析し、結晶軸のa軸に対するc軸の軸比c/aを求めたところ、軸比c/aはいずれも1.0000であり、結晶系は立方晶系であることが分かった。 Further, each compound was irradiated with X-rays using CuKα as characteristic X-rays, and X-ray diffraction spectra were measured. The X-ray diffraction spectrum was subjected to Rietveld analysis, and the axial ratio c / a of the c-axis to the a-axis of the crystal axis was determined. As a result, the axial ratio c / a was 1.000 and the crystal system was cubic. It was found to be crystalline.
 次に、この合成物をアルミナ製のさやに入れ、バッチ炉内で熱処理を行った。そして、700℃~970℃の間で比表面積球相当径が60nm、70nm、80nmとなる熱処理温度を、上述したBET法を使用して求め、この熱処理温度で各乾燥粉末を1時間熱処理し、試料番号1~8の試料を得た。 Next, this composite was put in an alumina sheath and heat-treated in a batch furnace. Then, the heat treatment temperature at which the equivalent surface area sphere equivalent diameter is between 60 ° C. and 970 ° C. becomes 60 nm, 70 nm, and 80 nm is obtained using the BET method described above, and each dry powder is heat treated at this heat treatment temperature for 1 hour, Samples 1 to 8 were obtained.
〔試料の評価〕
 試料番号1~8の各試料について、上述と同様の方法・手順で軸比c/aを求めた。
(Sample evaluation)
The axial ratio c / a was determined for each of the samples Nos. 1 to 8 by the same method and procedure as described above.
 表1は、試料番号1~8の各試料について、モル比mと比表面積球相当径が60nm、70nm、80nmのときの軸比c/a及び熱処理温度を示している。 Table 1 shows the axial ratio c / a and the heat treatment temperature when the molar ratio m and the specific surface area sphere equivalent diameter are 60 nm, 70 nm, and 80 nm for each of the samples Nos. 1 to 8.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 この表1から明らかなように、試料番号3~7は、モル比mが1.011~1.030であり、本発明範囲内であるので、比表面積球相当径が60~80nmの範囲で軸比c/aを確実に1.0070以上にすることができることが分かった。 As is apparent from Table 1, since the sample numbers 3 to 7 have a molar ratio m of 1.011 to 1.030 and are within the scope of the present invention, the specific surface sphere equivalent diameter is in the range of 60 to 80 nm. It was found that the axial ratio c / a can surely be 1.0070 or more.
 特に、比表面積球相当径が70~80nmの場合は、軸比c/aを1.0075以上とすることができることが分かった。 In particular, it was found that the axial ratio c / a can be 1.0075 or more when the specific surface area sphere equivalent diameter is 70 to 80 nm.
 これに対し試料番号1は、モル比mが0.991であり、1.011未満であるので、比表面積球相当径が80nmと大きくなると、軸比c/aは1.0071と良好な結晶性を示すが、比表面積球相当径が60nmと小さくなると、軸比c/aは1.0060と小さくなり、結晶性に劣ることが分かった。 On the other hand, sample No. 1 has a molar ratio m of 0.991 and less than 1.011. Therefore, when the specific surface area sphere equivalent diameter increases to 80 nm, the axial ratio c / a is 1.0071, which is a good crystal. However, when the specific surface area sphere equivalent diameter was as small as 60 nm, the axial ratio c / a was as small as 1.0060, indicating that the crystallinity was poor.
 試料番号2は、モル比mが1.004であり、比表面積球相当径が70~80nm程度であれば、軸比c/aは1.0070~1.0075と良好な結晶性を示すが、比表面積球相当径が60nmと小さくなると、軸比c/aは1.0066と小さくなり、結晶性に劣ることが分かった。 Sample No. 2 shows good crystallinity with an axial ratio c / a of 1.0070 to 1.0075 when the molar ratio m is 1.004 and the equivalent surface area sphere diameter is about 70 to 80 nm. When the specific surface area sphere equivalent diameter was reduced to 60 nm, the axial ratio c / a was reduced to 1.0066, indicating that the crystallinity was inferior.
 また、試料番号8は、モル比mが1.046と過度にAサイト過剰であるため、比表面積球相当径が60~80nmの範囲では、軸比c/aは1.0062~1.0067となって結晶性に劣ることが分かった。 Sample No. 8 has a molar ratio m of 1.046 and an excessively large A site, so that the axial ratio c / a is 1.0062 to 1.0067 when the equivalent surface area sphere diameter is in the range of 60 to 80 nm. It was found that the crystallinity was inferior.
 このように比表面積球相当径が60~80nmの範囲で軸比c/aを1.0070以上とするためにはモル比mを1.011~1.030に調整する必要があり、特に比表面積球相当径が70~80nmの場合は、軸比c/aが1.0075以上のより結晶性の良好なチタン酸バリウム粉末が得られることが分かった。 Thus, in order for the axial ratio c / a to be 1.0070 or more when the equivalent surface area sphere diameter is in the range of 60 to 80 nm, it is necessary to adjust the molar ratio m to 1.011 to 1.030. When the surface area sphere equivalent diameter was 70 to 80 nm, it was found that a barium titanate powder with better crystallinity having an axial ratio c / a of 1.0075 or more can be obtained.
 セラミック層が従来よりも更に薄層化されても、所望の特性を確保できる超微粒で高結晶性を有するチタン酸バリウム系の複合酸化物粉末の実現が可能となる。 Even if the ceramic layer is made thinner than before, it is possible to realize a barium titanate-based composite oxide powder having ultrafine particles and high crystallinity that can ensure desired characteristics.
1 セラミック素体
2a、2b 外部電極
3 セラミック層
4 内部電極
1 Ceramic body 2a, 2b External electrode 3 Ceramic layer 4 Internal electrode

Claims (8)

  1.  一般式ABOで表されるチタン酸バリウム系化合物を主成分とする複合酸化物粉末であって、
     AサイトとBサイトとのモル比mが1.011~1.030であり、
     かつ、結晶粒子の結晶軸は、a軸に対するc軸の軸比c/aが、1.0070以上であることを特徴とする複合酸化物粉末。
    A composite oxide powder containing a barium titanate compound represented by the general formula A m BO 3 as a main component,
    The molar ratio m between the A site and the B site is 1.011 to 1.030,
    The composite oxide powder is characterized in that the crystal axis of the crystal grains is such that the axial ratio c / a of the c axis to the a axis is 1.0070 or more.
  2.  前記粒子径は、比表面積球相当径で60nm~80nmであることを特徴と請求項1記載の複合酸化物粉末。 2. The composite oxide powder according to claim 1, wherein the particle diameter is 60 nm to 80 nm in terms of a specific surface area sphere equivalent diameter.
  3.  前記軸比c/aが、1.0075以上であることを特徴とする請求項1記載の複合酸化物粉末。 The composite oxide powder according to claim 1, wherein the axial ratio c / a is 1.0075 or more.
  4.  前記粒子径は、比表面積球相当径で70nm~80nmであることを特徴と請求項3記載の複合酸化物粉末。 The composite oxide powder according to claim 3, wherein the particle diameter is 70 nm to 80 nm in terms of a specific surface area sphere equivalent diameter.
  5.  チタン酸化物を含むBサイトの構成元素を含有したBサイト化合物を溶媒中に分散させ、分散溶液を作製する分散溶液作製工程と、
     バリウム水酸化物を含むAサイトの構成元素を含有したAサイト化合物を、AサイトとBサイトとのモル比mが熱処理後に1.011~1.030となるように、前記分散溶液に添加し、前記Aサイト化合物と前記Bサイト化合物とを反応させ、乾燥させて合成物を作製する合成工程と、
     前記合成物に熱処理を施し、結晶軸のa軸に対するc軸の軸比c/aが、1.0070以上のチタン酸バリウム系化合物を主成分とする複合酸化物粉末を作製することを特徴とする複合酸化物粉末の製造方法。
    A dispersion solution preparing step of preparing a dispersion solution by dispersing a B site compound containing a constituent element of a B site containing titanium oxide in a solvent;
    An A-site compound containing a constituent element of A-site containing barium hydroxide is added to the dispersion so that the molar ratio m between the A-site and the B-site is 1.011 to 1.030 after heat treatment. A synthesis step in which the A site compound and the B site compound are reacted and dried to produce a composite;
    The composite is subjected to a heat treatment to produce a composite oxide powder whose main component is a barium titanate compound having an axial ratio c / a of the c axis to the a axis of 1.0070 or more. A method for producing a composite oxide powder.
  6.  前記複合酸化物粉末は、結晶粒子の粒子径が60~80nmであることを特徴とする請求項5記載の複合酸化物粉末の製造方法。 6. The method for producing a composite oxide powder according to claim 5, wherein the composite oxide powder has a crystal particle diameter of 60 to 80 nm.
  7.  前記熱処理時の熱処理温度は、745~970℃であることを特徴とする請求項5又は請求項6記載の複合酸化物粉末の製造方法。 The method for producing a composite oxide powder according to claim 5 or 6, wherein a heat treatment temperature during the heat treatment is 745 to 970 ° C.
  8.  内部電極層とセラミック層とが交互に積層されたセラミック素体を有する積層セラミック電子部品において、
     前記セラミック層が、請求項1乃至請求項4のいずれかに記載の複合酸化物粉末が焼結されてなることを特徴とする積層セラミック電子部品。
    In a multilayer ceramic electronic component having a ceramic body in which internal electrode layers and ceramic layers are alternately stacked,
    A multilayer ceramic electronic component, wherein the ceramic layer is obtained by sintering the composite oxide powder according to any one of claims 1 to 4.
PCT/JP2015/064063 2014-05-28 2015-05-15 Composite oxide powder, method for producing composite oxide powder, and laminated ceramic electric part WO2015182411A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-110039 2014-05-28
JP2014110039 2014-05-28

Publications (1)

Publication Number Publication Date
WO2015182411A1 true WO2015182411A1 (en) 2015-12-03

Family

ID=54698748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/064063 WO2015182411A1 (en) 2014-05-28 2015-05-15 Composite oxide powder, method for producing composite oxide powder, and laminated ceramic electric part

Country Status (1)

Country Link
WO (1) WO2015182411A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002234771A (en) * 2001-02-05 2002-08-23 Murata Mfg Co Ltd Oxide powder having tetragonal perovskite structure, method for producing the same, dielectric ceramic and multilayer ceramic capacitor
JP2004026641A (en) * 1996-11-22 2004-01-29 Hokko Chem Ind Co Ltd Raw material powder for barium titanate sintered compact
JP2008115042A (en) * 2006-11-06 2008-05-22 Matsushita Electric Ind Co Ltd Method for producing barium titanate powder, barium titanate powder, and multilayer ceramic capacitor using the same
JP2012184161A (en) * 2012-04-16 2012-09-27 Panasonic Corp Method for producing barium titanate powder, and laminated ceramic capacitor using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004026641A (en) * 1996-11-22 2004-01-29 Hokko Chem Ind Co Ltd Raw material powder for barium titanate sintered compact
JP2002234771A (en) * 2001-02-05 2002-08-23 Murata Mfg Co Ltd Oxide powder having tetragonal perovskite structure, method for producing the same, dielectric ceramic and multilayer ceramic capacitor
JP2008115042A (en) * 2006-11-06 2008-05-22 Matsushita Electric Ind Co Ltd Method for producing barium titanate powder, barium titanate powder, and multilayer ceramic capacitor using the same
JP2012184161A (en) * 2012-04-16 2012-09-27 Panasonic Corp Method for producing barium titanate powder, and laminated ceramic capacitor using the same

Similar Documents

Publication Publication Date Title
KR100674846B1 (en) Method for manufacturing dielectric ceramic powder, and multilayer ceramic capacitor using the seramic powder
DE60101641T2 (en) Process for the production of oxides with a perovskite structure
JP3835254B2 (en) Method for producing barium titanate powder
JP5484506B2 (en) Ceramic powder and multilayer ceramic capacitor
KR101295161B1 (en) Method for manufacturing composite oxide powder
US20070045912A1 (en) Production method of dielectric ceramic composition
KR20130027782A (en) Dielectric composition, fabricating method thereof and multi-layer ceramic electronic parts fabricated by using the same
JP2003002739A (en) Method for manufacturing barium titanate powder, barium titanate powder and its evaluation method, dielectric ceramic and laminated ceramic capacitor
JP2012116740A (en) Method of producing barium titanate powder, and barium titanate powder
JP6329236B2 (en) Dielectric material for multilayer ceramic capacitor and multilayer ceramic capacitor
US8771631B2 (en) Method for producing perovskite type composite oxide
JP3783678B2 (en) Method for producing raw material powder for dielectric ceramic, dielectric ceramic and multilayer ceramic capacitor
JP2002234771A (en) Oxide powder having tetragonal perovskite structure, method for producing the same, dielectric ceramic and multilayer ceramic capacitor
JP2006306632A (en) Method for producing barium titanate powder, barium titanate powder, and barium titanate sintered compact
JP2007001840A (en) Dielectric ceramic and its manufacturing method
JP5423303B2 (en) Method for producing dielectric ceramic composition
JP2005008471A (en) Method of manufacturing complex oxide powder, complex oxide powder, dielectric ceramic composition and lamination type electronic component
WO2015182411A1 (en) Composite oxide powder, method for producing composite oxide powder, and laminated ceramic electric part
JP4375092B2 (en) Method for producing ceramic composition
JP2005289788A (en) Oxide powder for dielectrics, method of manufacturing oxide powder for dielectrics, and multi-layer ceramic capacitor
KR20070094999A (en) Method for manufacturing dielectric ceramic powder, and multilayer ceramic capacitor using the ceramic powder
KR102555686B1 (en) Manufacturing method of barium titanate powder
JP5354185B2 (en) Dielectric ceramic and manufacturing method thereof, and multilayer ceramic capacitor
JP2016145119A (en) Dielectric porcelain and method for producing the same
JP6086038B2 (en) Dielectric ceramic manufacturing method and dielectric ceramic

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15800436

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15800436

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP