KR20120077637A - Preparation of the catalysts platinum system - Google Patents

Preparation of the catalysts platinum system Download PDF

Info

Publication number
KR20120077637A
KR20120077637A KR1020100139671A KR20100139671A KR20120077637A KR 20120077637 A KR20120077637 A KR 20120077637A KR 1020100139671 A KR1020100139671 A KR 1020100139671A KR 20100139671 A KR20100139671 A KR 20100139671A KR 20120077637 A KR20120077637 A KR 20120077637A
Authority
KR
South Korea
Prior art keywords
platinum
catalyst
epoxide
carrier
solvent
Prior art date
Application number
KR1020100139671A
Other languages
Korean (ko)
Other versions
KR101678225B1 (en
Inventor
김원일
김철민
고형림
최영교
Original Assignee
주식회사 효성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 효성 filed Critical 주식회사 효성
Priority to KR1020100139671A priority Critical patent/KR101678225B1/en
Publication of KR20120077637A publication Critical patent/KR20120077637A/en
Application granted granted Critical
Publication of KR101678225B1 publication Critical patent/KR101678225B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE: A method for manufacturing platinum-based catalyst is provided to increase the activity of the catalyst and to reduce the using amount of the catalyst by increasing the active area of platinum in the catalyst. CONSTITUTION: A method for manufacturing platinum-based catalyst includes the following: metal salt is dissolved in a solvent; a carbon support is added into the dissolved solution; fine platinum particles are formed in the solution by using epoxide; the fine platinum particles are washed and dried; and the dried product is passivated. The metal salt is chloroplatinic acid. The solvent is water or alcohol. The support is selected from a group including alumina, silica, zeolite, titania, niobia, and the mixture of the same. The epoxide is propylene oxide or buthylene oxide.

Description

백금계 촉매의 제조 방법 {Preparation of the catalysts Platinum System}Method for producing platinum catalysts {Preparation of the catalysts Platinum System}

본 발명은 나노 크기의 백금성분 및 조촉매 성분이 담체 표면에 고분산 되어 있는 백금계 촉매를 제조하는 기술로서, 기존의 방법으로 제조한 촉매보다 활성 성분의 입자 크기가 미세하고 높은 금속 표면적을 가지며 분산도가 높은 촉매를 제공하는 것이다. 특히 백금 등을 담지하는 방법에 있어서 에폭사이드를 사용하여 미세 금속입자를 담체 표면에 형성시켜 나노 크기의 금속입자와 높은 분산도를 갖는 백금계 담지 촉매를 제조하는 방법에 관한 것이다.The present invention is a technology for producing a platinum-based catalyst in which nano-sized platinum components and cocatalyst components are highly dispersed on the surface of the carrier, the particle size of the active component is finer than the catalyst prepared by the conventional method and has a high metal surface area It is to provide a catalyst having a high dispersibility. In particular, a method of supporting platinum and the like relates to a method for preparing a platinum-based supported catalyst having high dispersibility with nano-sized metal particles by forming fine metal particles on the surface of a carrier using epoxide.

탈수소화 촉매는 크롬계 촉매와 백금계 촉매의 두 부류로 나뉜다. 크롬계 촉매는 코크 생성에 따른 촉매의 비활성화 속도가 빠르며 그에 따른 재생 속도가 빠르기 때문에 촉매의 수명이 백금계 촉매에 비해 짧은 편이고 크롬 자체의 독성으로 인한 문제를 내재하고 있다. 그러나 백금계 촉매는 탈수소 촉매 활성 및 안정성도 우수하고 촉매의 수명도 길기 때문에 많이 활용되고 있다. 촉매의 담체로는 대부분 알루미나, 실리카, 제올라이트 등을 매우 다양하게 사용되고 있다. 이러한 탈수소 촉매에서 요구되는 특성으로는 활성성분의 함량, 조촉매의 종류, 활성성분의 분산도, 담체의 종류, 담체의 기공 특성, 담체의 산도 등을 고려하여야 하며, 특히 활성성분의 분산도는 촉매의 초기 활성도 매우 중요한 역할을 하며, 공정내에서 장기 사용할 경우 활성금속 성분의 뭉침현상 (sintering)이 진행되어 분산도가 낮아지고 결국에는 활성이 저하되는 특성을 갖게 된다 (Catalysis Today 111 (2006) 133-139). 따라서 높은 활성성분 분산도를 가지는 촉매의 제조방법이 필요로 된다.
Dehydrogenation catalysts fall into two classes: chromium based catalysts and platinum based catalysts. Since chromium-based catalysts have a high deactivation rate due to coke formation and a rapid regeneration rate, the catalyst life is shorter than that of platinum-based catalysts and has problems due to the toxicity of chromium itself. However, platinum-based catalysts have been widely used because of their excellent dehydrogenation catalyst activity and stability and long catalyst life. As a carrier of the catalyst, alumina, silica, zeolite and the like are used in various ways. The characteristics required for such a dehydrogenation catalyst should consider the content of active ingredient, type of promoter, dispersion of active ingredient, type of carrier, pore property of carrier, acidity of carrier, etc. The initial activity of the catalyst also plays a very important role, and if used for a long time in the process, the sintering of the active metal constituents causes the dispersion to be lowered and eventually the activity is lowered (Catalysis Today 111 (2006) 133-139). Therefore, there is a need for a method for preparing a catalyst having a high degree of active ingredient dispersion.

백금 촉매는 일반적으로 다음과 같은 상온/승온 흡착 담지법으로 제조된다. 염화백금산, 염산, 질산을 증류수에 넣어 녹인 후, 일정량의 담체를 추가한다. 상온에서 충분히 교반한 후 건조 및 열처리를 수행한다. 이후, 조촉매로 사용되는 성분을 증류수에 녹이고, 백금과 동일한 방법으로 흡착 담지한다.
Platinum catalysts are generally produced by the following room temperature / temperature adsorption support. Platinum chloride, hydrochloric acid and nitric acid are dissolved in distilled water, and then a fixed amount of carrier is added. After stirring sufficiently at room temperature, drying and heat treatment are performed. Thereafter, the component used as a promoter is dissolved in distilled water and adsorbed and supported in the same manner as platinum.

염화백금산(H2PtCl6) 용액에 아황산수소나트륨(NaHSO3)을 첨가하여 중화시킨 후 물에 희석시킨 후 희석액에 수산화나트륨을 넣어 pH 5가되도록 조절한다. 이어, 담체를 넣은 다음 수산화나트륨을 넣어 pH 5가 되도록 조절한 다음 환원제를 첨가하여 백금을 환원처리한다. 마지막으로 반응 결과물을 여과 및 세척한 다음 건조시키면 미세한 백금 입자가 담체 분말위에 석출된 백금 촉매 분말이 얻어진다. 그러나 상술한 방법으로 백금계 촉매를 제조할 경우, 백금 입자의 크기 및 분산된 형태가 균일하지 못하고, 염화백금산의 환원이 일시적으로 일어나면서 백금입자가 담체 표면에 급격히 석출되기 때문에 결정 크기의 조절이 어렵다는 문제점이 있다. 또한 매 단계마다 pH를 조절해야하는 어려움이 있다.
Neutralize by adding sodium hydrogen sulfite (NaHSO3) to chloroplatinic acid (H2PtCl6) solution, dilute with water, and add sodium hydroxide to the dilution to adjust pH to 5. Subsequently, after the carrier was added, sodium hydroxide was adjusted to pH 5, followed by reduction of platinum by the addition of a reducing agent. Finally, the reaction product is filtered, washed and dried to obtain a platinum catalyst powder having fine platinum particles deposited on the carrier powder. However, when the platinum-based catalyst is prepared by the above-described method, the size and dispersed form of the platinum particles are not uniform, and since the reduction of the platinum chloride acid occurs temporarily, the platinum particles precipitate rapidly on the surface of the carrier, so that the crystal size is controlled. There is a problem that is difficult. In addition, there is a difficulty in adjusting the pH at every step.

미국특허 제 US 5,068,161에서는 용매로서 과량의 물을 사용하여 염화백금산을 용해시킨 후 환원제로서 포름알데히드를 사용하여 이를 환원시킨 후에 여과하여 용매를 제거하고 진공건조시킴으로써 백금 합금이 담지된 촉매를 제조하는 용매 환원법이 제시되어 있으나 환원제에 따라 촉매 입자의 크기가 급변하며, 30 중량% 이상의 농도가 되면 촉매 입자의 크기가 너무 커진다는 문제점이 있다.
In US Pat. No. 5,068,161, a solvent for preparing a platinum alloy-supported catalyst by dissolving chloroplatinic acid using an excess of water as a solvent and then reducing it using formaldehyde as a reducing agent, followed by filtration to remove the solvent and vacuum drying. Although a reduction method is proposed, the size of the catalyst particles changes rapidly depending on the reducing agent, and when the concentration is 30 wt% or more, the size of the catalyst particles is too large.

H. Wendt (H. Wendt et al., Electrochim. Acta, 43, 1998) 등은 과량의 용매를 사용하여 촉매 원료물질을 용해시킨 후에 이를 탄소담체에 함침시킨 후, 건조과정을 통해 용매를 제거한 후, 수소기체를 이용해 환원시켜 탄소 담지 촉매를 제조하는 방법을 제시하였으나, 건조 단계에서 농도 구배가 발생하기 때문에 모세관현상에 의한 금속염이 담체 표면으로 유출될 수 있으며, 백금의 함량이 증가할수록 입자의 크기가 커진다는 문제점이 있다.H. Wendt (H. Wendt et al., Electrochim. Acta, 43, 1998) et al. Used an excess solvent to dissolve the catalyst raw material and impregnated the carbon carrier, followed by drying to remove the solvent. , But a method of preparing a carbon-supported catalyst by reducing with hydrogen gas, but the concentration gradient occurs in the drying step, the metal salt may be leaked to the surface of the carrier by the capillary phenomenon, the particle size as the platinum content increases There is a problem that increases.

본 발명은 상기된 문제점을 해결하기 위하여 발명된 것으로서, 본 발명은 기존의 방법으로 제조한 촉매보다 활성 성분의 입자 크기가 미세하고 높은 금속 표면적을 가지며 분산도가 높은 촉매를 제공하는 것이다. 특히 백금 등을 담지하는 방법에 있어서 에폭사이드를 사용하여 미세 금속입자를 담체 표면에 형성시켜 나노 크기의 금속입자와 높은 분산도를 갖는 백금계 담지 촉매를 제조하는 방법을 제공함에 그 목적이 있다.The present invention has been invented to solve the above problems, and the present invention is to provide a catalyst having a finer particle size, a higher metal surface area and a higher dispersibility than a catalyst prepared by a conventional method. In particular, in the method of supporting platinum and the like, an object of the present invention is to provide a method of preparing a platinum-based supported catalyst having high dispersibility with nano-sized metal particles by forming fine metal particles on the surface of the carrier using epoxide.

백금계 담지촉매의 제조방법은 4단계로 구성되며, 금속염을 용해시키고 담체를 첨가하는 제 1단계; 에폭사이드를 사용하여 미세 백금 입자를 형성시키는 제 2단계; 세척 및 건조시키는 제 3단계; 건조된 촉매를 passivation시키는 제 4단계를 포함한다.The method for preparing a platinum-based supported catalyst comprises four steps, the first step of dissolving a metal salt and adding a carrier; A second step of forming fine platinum particles using an epoxide; A third step of washing and drying; And a fourth step of passivation the dried catalyst.

본 발명은 기존의 담지방법들에 비해 복잡한 공정이 필요치 않은 간단한 공정으로 백금의 분산도가 높고 미세한 백금입자가 담지된 백금계 촉매를 제조할 수 있다. 또한 기존 흡착담지 방법의 경우 높은 백금 함량일 경우 입자의 크기가 급격히 커지는 것에 비하여 본 발명의 경우 높은 백금 함량에서도 입자크기가 작고 분산도가 좋은 촉매를 제조할 수 있으므로, 백금의 활성면적이 증가되어 여러 촉매 반응이나, 특히 탈수소 반응의 촉매로 사용될 경우 활성 증가 및 촉매 사용량의 저감효과를 기대할 수 있다.The present invention is a simple process that does not require a complicated process compared to the conventional supporting method can produce a platinum-based catalyst having high platinum dispersion and fine platinum particles. In addition, in the case of the conventional adsorption support method, since the size of the particles is rapidly increased in the case of high platinum content, in the present invention, a catalyst having a small particle size and good dispersion can be produced even at a high platinum content, thereby increasing the active area of platinum. When used as a catalyst for various catalytic reactions, especially dehydrogenation, it can be expected to increase the activity and reduce the amount of catalyst used.

본 발명의 탄소 담지 백금계 촉매의 제조방법은, 금속염을 용해시키고 탄소 담체를 첨가하는 제 1단계; 에폭사이드를 사용하여 미세 백금 입자를 형성시키는 제 2단계; 세척 및 건조시키는 제 3단계; 건조된 촉매를 passivation시키는 제 4단계로 구성되어 있다.
The method for preparing a carbon-supported platinum catalyst of the present invention includes a first step of dissolving a metal salt and adding a carbon carrier; A second step of forming fine platinum particles using an epoxide; A third step of washing and drying; It consists of a fourth step of passivation the dried catalyst.

제 1단계에서는, 금속염을 용매에 용해시키고 담체를 첨가하는 단계로 금속염은 용해 가능하며 에폭사이드와 반응할 수 있는 어떤 형태라도 가능하며, 특히 백금염의 경우에는 염화백금산이 바람직하다. 용매로는 물, 알코올 등이 가능하나 에탄올이 바랍직하다. 담체로는 알루미나, 실리카, 제올라이트, 타이타니아, 나이오비아 및 이의 혼합성분으로 이루어진 군이며, 담체의 형태로는 분말, 입자형, 팰랫형, 구형 등 모든 형태에 적용이 가능하다. 담체에 대한 용매의 양은 담체가 충분히 교반될 수 있는 정도로 하나 130 중량%가 바람직하다.
In the first step, the metal salt is dissolved in the solvent and the carrier is added, and the metal salt can be in any form that can be dissolved and react with the epoxide, especially in the case of the platinum salt, chloroplatinic acid is preferable. The solvent may be water or alcohol, but ethanol is preferred. The carrier is a group consisting of alumina, silica, zeolite, titania, niobia and mixed components thereof, and the carrier is applicable to all types of powders, particles, pallets, and spheres. The amount of solvent for the carrier is preferably 130% by weight to the extent that the carrier can be sufficiently stirred.

제 2단계에서는, 제1단계에서 얻어진 용액에 에폭사이드를 첨가하여 미세 금속입자를 형성시켜 담체에 담지하는 단계로 에폭사이드로는 프로필렌옥사이드, 부틸렌옥사이드 등이 가능하나 프로필렌옥사이드가 바람직하다. 백금염에 대한 프로필렌옥사이드의 양은 10~200 중량%로 하나 40~83 중량%가 바람직하다. 여기서 에폭사이드의 양이 10중량% 미만이면 환원제로의 역할을 충분히 하지 못해 금속입자의 형성이 어려워지고, 200중량% 초과하면 생성된 금속입자의 크기가 불균일해지게 되어 금속의 분산도가 감소하게 된다. 이때 용액의 pH는 프로필렌옥사이드의 양과 반응온도 및 반응시간에 따라 변화하며 초기 2이하의 낮은 pH에서 최종적으로 6~7까지 증가하게 조절된다. 또한 반응을 원활하게 하기 위하여 80℃ 이하의 온도로 가열할 수 있다.
In the second step, epoxide is added to the solution obtained in the first step to form fine metal particles and supported on a carrier. As the epoxide, propylene oxide, butylene oxide, etc. may be used, but propylene oxide is preferable. The amount of propylene oxide relative to the platinum salt is 10 to 200% by weight but preferably 40 to 83% by weight. If the amount of epoxide is less than 10% by weight, it is difficult to form a metal particle due to insufficient role as a reducing agent, and when the amount of the epoxide exceeds 200% by weight, the resulting metal particles become non-uniform in size, thereby reducing the dispersibility of the metal. do. At this time, the pH of the solution changes according to the amount of propylene oxide, the reaction temperature and the reaction time, and is finally adjusted to increase to 6-7 at low pH of 2 or less. In addition, it may be heated to a temperature of 80 ℃ or less in order to smooth the reaction.

제 3단계에서는, 제 2단계에서 제조된 금속 담지 촉매를 세척하고 필터링하여 건조시키는 단계로 건조온도는 가능한 한 낮은 온도에서 진행한다. 저온에서 질소기체를 흐르게 하여 건조시키거나 저온 진공건조 등이 바람직하다.
In the third step, the drying step is performed at the lowest possible temperature by washing, filtering and drying the supported metal catalyst prepared in the second step. Nitrogen gas is flowed at low temperature and dried, or low temperature vacuum drying is preferable.

제 4단계에서는, 제 3단계에서 건조된 백금계 촉매를 0.5~2% 산소가 포함된 불활성 기체로 passivation시키는 단계로 3단계에 이어 연속적으로 시행한다. 여기서 산소가 0.5 부피% 미만이면 passivation 시간이 증가하게 되고, 2부피% 초과하면 백금이 산화상태가 변화될 수 있다.
In the fourth step, passivation of the platinum-based catalyst dried in the third step with an inert gas containing 0.5-2% oxygen is carried out continuously after the third step. If the oxygen is less than 0.5% by volume, the passivation time is increased, and if more than 2% by volume, the oxidation state of platinum may be changed.

또한 백금 이외의 조촉매 성분을 추가로 담지할 경우에는 1단계에서 백금과 동시에 담지시키거나, 1~4단계를 반복적으로 수행할 수 있다.
In addition, in the case of additionally supporting a promoter component other than platinum, it may be simultaneously supported with platinum in the first step, or may be repeatedly performed steps 1 to 4.

다음 실시예는 본 발명을 상세히 예증하여 줄 것이나 이는 본 발명의 예시에 불과하고 본 발명의 범주가 이에 한정되는 것은 아니다.The following examples will illustrate the present invention in detail but this is merely illustrative of the present invention and the scope of the present invention is not limited thereto.

염화백금산 (H2PtCl6?6H2O, 99.95 %, Aldrich) 0.53 g을 에탄올 (99.99 %, Aldrich) 100 ml에 용해시키고, 알루미나 0.8 g을 첨가하여 2시간 동안 교반한다. 여기에 프로필렌옥사이드 50 ml을 가하고 65℃에서 5시간 동안 교반한다. 이 후 용액을 교반하면서 상온으로 냉각하여 3회 이상 에탄올으로 세척하고 필터링한 후 50℃에서 2일간 진공 건조하여 용매를 완전히 제거한다. 진공건조 후 분당 400 ml의 속도로 1% 산소가 포함되어 있는 질소기체를 2시간 동안 흘려주어 passivation을 수행하여 20 중량% 백금/알루미나 촉매를 제조하였다. X선 회절분석 결과로부터 계산된 백금의 입자크기는 2~10 nm이다.A chloroplatinic acid (H 2 PtCl 6? 6H 2 O, 99.95%, Aldrich) 0.53 g was dissolved in ethanol (99.99%, Aldrich) 100 ml , was added to 0.8 g of alumina and the mixture was stirred for 2 hours. 50 ml of propylene oxide was added thereto and stirred at 65 ° C for 5 hours. Thereafter, the solution was cooled to room temperature with stirring, washed three times or more with ethanol, filtered, and then vacuum dried at 50 ° C. for 2 days to completely remove the solvent. After vacuum drying, a nitrogen gas containing 1% oxygen was flowed for 2 hours at a rate of 400 ml per minute to perform passivation to prepare a 20 wt% platinum / alumina catalyst. The particle size of platinum calculated from X-ray diffraction analysis is 2 ~ 10 nm.

주석염화물 (SnCl2, >99%, Sigma) 0.12 g과 염화 백금산 (H2PtCl6?6H2O, 99.95 %, Aldrich) 0.53 g을 에탄올 (99.99 %, Aldrich) 100 ml에 용해시키고, 알루미나 0.8 g을 첨가하여 2시간 동안 교반한다. 여기에 프로필렌옥사이드 50 ml을 가하고 65℃에서 5시간 동안 교반한다. 이 후 용액을 교반하면서 상온으로 냉각하여 3회 이상 에탄올으로 세척하고 필터링한 후 50℃에서 2일간 진공 건조하여 용매를 완전히 제거한다. 진공건조 후 분당 400 ml의 속도로 1% 산소가 포함되어 있는 질소기체를 2시간 동안 흘려주어 passivation을 수행하여 20 중량% 백금-주석/알루미나 촉매를 제조하였다. 제조된 백금계 촉매의 입자크기는 2~10 nm이다.
Tin chloride (SnCl 2,> 99%, Sigma) 0.12 g and the chloroplatinic acid (H 2 PtCl 6? 6H 2 O, 99.95%, Aldrich) 0.53 g was dissolved in ethanol (99.99%, Aldrich) 100 ml , alumina 0.8 g is added and stirred for 2 hours. 50 ml of propylene oxide was added thereto and stirred at 65 ° C for 5 hours. Thereafter, the solution was cooled to room temperature with stirring, washed three times or more with ethanol, filtered, and then vacuum dried at 50 ° C. for 2 days to completely remove the solvent. After vacuum drying, a nitrogen gas containing 1% oxygen was flowed for 2 hours at a rate of 400 ml per minute to perform a passivation to prepare a 20 wt% platinum-tin / alumina catalyst. The particle size of the prepared platinum catalyst is 2 ~ 10 nm.

비교예 1 Comparative Example 1

일반적인 흡착 담지법을 사용하여 백금 촉매를 제조하였다. 염화 백금산 (H2PtCl6?6H2O, 99.95 %, Aldrich) 0.53 g, 염산 (HCl, >35%, JUNSEI) 0.2143 g, 질산 (HNO3, 70%, Yakuri) 0.0536 g을 증류수 24 g 에 녹인 후, 알루미나 0.8g을 넣어 담지 하였다. 담지액은 회전증발기를 이용하여 건조를 하였으며, 상온에서 1.5시간 25 rpm으로 교반한 후, 감압 상태 80oC에서 1.5시간을 25 rpm으로 회전시켜 건조를 하였고, 105oC 오븐에서 15시간 건조, 600oC 가열로에서 3시간 열처리 하였다. 이후, 주석과 백금이 담지된 알루미나 10 g을 질산 칼륨 (KNO3, >99%, Sigma-Aldrich) 0.1933 g, 염산 (HCl, >35%, JUNSEI) 0.1629 g이 녹아있는 증류수 12.1136 g 에 넣어 담지 하였다. 담지액은 회전증발기를 이용하여 건조를 하였으며, 상온에서 1.5시간 25 rpm 교반한 후, 감압 상태 80oC에서 1.5시간을 25 rpm으로 회전시켜 건조를 하였고, 105oC 오븐에서 15시간 건조, 600oC 가열로에서 3시간 열처리 하여 촉매를 제조하였다. 제조된 백금의 입자크기는 10~30 nm이다.
A platinum catalyst was prepared using a general adsorption supporting method. A chloroplatinic acid (H 2 PtCl 6? 6H 2 O, 99.95%, Aldrich) 0.53 g, hydrochloric acid (HCl,> 35%, JUNSEI ) 0.2143 g, nitric acid (HNO 3, 70%, Yakuri ) 0.0536 g of distilled water 24 g After dissolving, 0.8 g of alumina was added and supported. The supporting liquid was dried using a rotary evaporator, and stirred at room temperature for 1.5 hours at 25 rpm, and then dried at a reduced pressure of 80 o C for 1.5 hours at 25 rpm, and dried at 105 o C for 15 hours, Heat treatment was performed for 3 hours at 600 ° C. Then, 10 g of tin and platinum-supported alumina was added to 12.1136 g of distilled water in which 0.1933 g of potassium nitrate (KNO 3 ,> 99%, Sigma-Aldrich) and 0.1629 g of hydrochloric acid (HCl,> 35%, JUNSEI) were dissolved. It was. The supporting liquid was dried using a rotary evaporator, and stirred at room temperature for 1.5 hours at 25 rpm, and then dried at 80 ° C. under reduced pressure at 1.5 rpm for 25 hours, and dried at 105 ° C for 15 hours at 600 rpm. o A catalyst was prepared by heat treatment in a C furnace for 3 hours. The particle size of the prepared platinum is 10 ~ 30 nm.

비교예 2 Comparative Example 2

일반적인 흡착 담지법으로 백금-주석 촉매를 제조하였다. 주석염화물 (SnCl2, >99%, Sigma) 0.12 g, 염산 (HCl, >35%, JUNSEI) 0.5714 g, 질산 (HNO3, 70%, Yakuri) 0.0714 g을 증류수 24 g에 넣어 녹인 후, 알루미나 0.8 g을 넣어 담지하였다. 담지액은 회전증발기(HAHNSHIN Scientific Co.)를 이용하여 건조를 하였으며, 상온에서 1.5시간 25 rpm으로 교반한 후, 감압 상태 80oC에서 1.5시간을 25 rpm으로 회전시켜 건조를 하였고, 105oC 오븐에서 15시간 건조, 700oC 가열로에서 3시간 열처리 하였다. 이후, 주석이 담지된 알루미나 0.8 g을 염화 백금산 (H2PtCl6?6H2O, 99.95 %, Aldrich) 0.53 g, 염산 (HCl, >35%, JUNSEI) 0.2143 g, 질산 (HNO3, 70%, Yakuri) 0.0536 g이 녹아있는 증류수 18.0552 g 에 넣어 담지 하였다. 이후 비교예 1과 동일한 방법으로 건조 및 열처리를 수행하였다. 제조된 백금의 입자크기는 10~30 nm이다.A platinum-tin catalyst was prepared by a general adsorption supporting method. 0.12 g of tin chloride (SnCl 2 ,> 99%, Sigma), 0.5714 g of hydrochloric acid (HCl,> 35%, JUNSEI) and 0.0714 g of nitric acid (HNO 3 , 70%, Yakuri) were dissolved in 24 g of distilled water, and then alumina 0.8 g was added and supported. The supporting solution was dried using a rotary evaporator (HAHNSHIN Scientific Co.), stirred at 1.5 rpm for 25 hours at room temperature, and dried at 25 rpm for 1.5 hours at 80 ° C under reduced pressure, and dried at 105 ° C. Drying in oven for 15 hours, heat treatment for 3 hours in 700 ° C furnace. Thereafter, the alumina 0.8 g of tin-carrying chloroplatinic acid (H 2 PtCl 6? 6H 2 O, 99.95%, Aldrich) 0.53 g, hydrochloric acid (HCl,> 35%, JUNSEI ) 0.2143 g, nitric acid (HNO 3, 70% , Yakuri) was put in 18.0552 g of distilled water in which 0.0536 g of dissolved water was dissolved. Thereafter, drying and heat treatment were performed in the same manner as in Comparative Example 1. The particle size of the prepared platinum is 10 ~ 30 nm.

Figure pat00001
Figure pat00001

실시예 1,2와 비교예 1,2에 의해 제조된 촉매 A,B,C,D 3.2 ml를 LHSV=15 hr-1, 반응온도 620oC, 절대 압력 1.5 atm 하에서 탈수소 반응을 진행하였다. 수소와 프로판의 비율은 1:1로 고정하였으며, adiabatic 조건에서 반응하였다. 3.2 ml of catalysts A, B, C, and D prepared in Examples 1 and 2 and Comparative Examples 1 and 2 were subjected to dehydrogenation under LHSV = 15 hr −1, reaction temperature of 620 ° C., and absolute pressure of 1.5 atm. The ratio of hydrogen and propane was fixed at 1: 1 and reacted under adiabatic conditions.

프로판 탈수소 반응 결과, 활성 성분의 입자크기가 작은 촉매 A와 B가 더 높은 프로판 전환율을 나타내었다. 또한 주석을 포함하는 촉매 B와 D가 주석을 포함하지 않는 촉매 A와 C에 비해서, 더 높은 선택도를 나타내었다. 결과적으로 에폭사이드를 이용하여 제조된 백금-주석 촉매인 촉매 B가 가장 우수한 프로필렌 수율을 나타내었다.As a result of the propane dehydrogenation reaction, catalysts A and B with smaller particle sizes of the active ingredient showed higher propane conversion. Also, catalysts B and D containing tin showed higher selectivity than catalysts A and C containing no tin. As a result, catalyst B, a platinum-tin catalyst prepared using epoxide, showed the best propylene yield.

Figure pat00002
Figure pat00002

Claims (8)

금속염을 용매에 용해시키고 탄소 담체를 첨가하는 제 1단계;
상기 제1단계에서 얻어진 용액에 에폭사이드를 사용하여 미세 백금 입자를 형성시키는 제 2단계;
상기 제2단계에서 얻어진 미세 백금 입자를 세척 및 건조시키는 제 3단계; 및 상기 건조된 촉매를 passivation시키는 제 4단계를 포함하는 것을 특징으로 하는 백금계 촉매의 제조 방법.
A first step of dissolving a metal salt in a solvent and adding a carbon carrier;
A second step of forming fine platinum particles by using epoxide in the solution obtained in the first step;
A third step of washing and drying the fine platinum particles obtained in the second step; And a fourth step of passivating the dried catalyst.
제1항에 있어서, 상기 금속염은 염화백금산인 것을 특징으로 하는 백금계 촉매의 제조 방법.The method of claim 1, wherein the metal salt is platinum chloride. 제1항에 있어서, 상기 용매는 물 또는 알코올인 것을 특징으로 하는 백금계 촉매의 제조 방법.The method of claim 1, wherein the solvent is water or an alcohol. 제1항에 있어서, 상기 담체는 알루미나, 실리카, 제올라이트, 타이타니아, 나이오비아 및 이의 혼합성분으로 이루어진 군에서 선택된 것을 특징으로 하는 백금계 촉매의 제조 방법.The method of claim 1, wherein the carrier is selected from the group consisting of alumina, silica, zeolite, titania, niobia and mixed components thereof. 제1항에 있어서, 상기 에폭사이드는 프로필렌옥사이드 또는 부틸렌옥사이드인 것을 특징으로 하는 백금계 촉매의 제조 방법.The method of claim 1, wherein the epoxide is propylene oxide or butylene oxide. 제1항에 있어서, 상기 금속염에 대한 상기 에폭사이드의 양이 10~200 중량%인 것을 특징으로 하는 백금계 촉매의 제조 방법.The method of claim 1, wherein the amount of the epoxide to the metal salt is 10 to 200% by weight. 제1항에 있어서, 상기 제2단계에서의 용액의 pH가 6~7인 것을 특징으로 하는 백금계 촉매의 제조 방법.The method according to claim 1, wherein the pH of the solution in the second step is 6-7. 제1항에 있어서, 상기 passivation은 0.5~2% 산소가 포함된 불활성 기체로 passivation시키는 것을 특징으로 하는 백금계 촉매의 제조 방법.
The method of claim 1, wherein the passivation is a method for producing a platinum-based catalyst, characterized in that passivation with an inert gas containing 0.5 ~ 2% oxygen.
KR1020100139671A 2010-12-30 2010-12-30 Preparation of the catalysts Platinum System KR101678225B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100139671A KR101678225B1 (en) 2010-12-30 2010-12-30 Preparation of the catalysts Platinum System

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100139671A KR101678225B1 (en) 2010-12-30 2010-12-30 Preparation of the catalysts Platinum System

Publications (2)

Publication Number Publication Date
KR20120077637A true KR20120077637A (en) 2012-07-10
KR101678225B1 KR101678225B1 (en) 2016-11-22

Family

ID=46711090

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100139671A KR101678225B1 (en) 2010-12-30 2010-12-30 Preparation of the catalysts Platinum System

Country Status (1)

Country Link
KR (1) KR101678225B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115155651A (en) * 2022-08-05 2022-10-11 杭州果蔬鲜科技有限公司 Platinum-based metal catalyst, and preparation method and application thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200048827A (en) 2018-10-30 2020-05-08 한국생산기술연구원 High dispered noble metal alloy/carrier catalyst, and preparation method of catalyst
KR20230068356A (en) 2021-11-10 2023-05-17 한국기술교육대학교 산학협력단 Synthesis method of platinum catalyst using spent catalyst

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980039168A (en) * 1996-11-27 1998-08-17 김인환 Catalyst Composition for Dehydrogenation Reaction
KR20040088288A (en) * 2003-04-09 2004-10-16 주식회사 엘지화학 Preparation methods of platinum electrode catalyst for fuel cell
KR100757585B1 (en) * 2005-12-12 2007-09-10 현대자동차주식회사 Method for the preparation of highly dispersed supported Pt catalyst

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980039168A (en) * 1996-11-27 1998-08-17 김인환 Catalyst Composition for Dehydrogenation Reaction
KR20040088288A (en) * 2003-04-09 2004-10-16 주식회사 엘지화학 Preparation methods of platinum electrode catalyst for fuel cell
KR100757585B1 (en) * 2005-12-12 2007-09-10 현대자동차주식회사 Method for the preparation of highly dispersed supported Pt catalyst

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CARBON 46 (2008) 1393-1400 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115155651A (en) * 2022-08-05 2022-10-11 杭州果蔬鲜科技有限公司 Platinum-based metal catalyst, and preparation method and application thereof
CN115155651B (en) * 2022-08-05 2024-02-06 杭州果蔬鲜科技有限公司 Platinum-based metal catalyst and preparation method and application thereof

Also Published As

Publication number Publication date
KR101678225B1 (en) 2016-11-22

Similar Documents

Publication Publication Date Title
US9463444B2 (en) Preparation process of nanocatalysts with (111) crystal facet exposed and process for vapour-phase CO oxidative coupling to oxalate
EP3092072B1 (en) A process for vapor-phase methanol carbonylation to methyl formate
CN111085199A (en) Catalyst for preparing propylene by propane dehydrogenation and preparation method and application thereof
CN109876808B (en) Catalyst for preparing propylene by propane dehydrogenation and preparation and application thereof
CN110102334B (en) Olefin hydroformylation heterogeneous Co-based catalyst
CN109824473B (en) Method for preparing monofluoromethane by Pd-M alloy supported catalyst
US11666891B2 (en) Highly active metal oxide supported atomically dispersed platinum group metal catalysts
CN1244446A (en) Catalyst capable of using on carrier in organic compound conversion reaction
CN107282080B (en) Catalyst for hydrofining crude terephthalic acid and preparation method thereof
CN109821567B (en) Olefin hydroformylation heterogeneous Co-based catalyst and preparation method thereof
WO2022143275A1 (en) Method for treating or regenerating metal catalyst and application
CN113145130A (en) Supported copper-containing high-entropy alloy activated carbon catalyst for acetylene hydrochlorination reaction and preparation method and application thereof
CN114602495A (en) Preparation method of propane dehydrogenation Pt catalyst
KR101678225B1 (en) Preparation of the catalysts Platinum System
KR20120077634A (en) Oxidation of propylene from propane dehydrogenation catalyst and method for producing it
CN110665546A (en) Noble metal/amino MOFs selective hydrogenation catalyst, preparation method and application thereof
CN112206816A (en) Composite molecular sieve catalyst for preparing olefin by propane dehydrogenation and preparation method thereof
CN113731407B (en) TiO 22Base noble metal catalyst and preparation method and application thereof
CN114345336B (en) Transition metal molybdenum modified palladium silver-alumina catalyst, and preparation method and application thereof
KR101767899B1 (en) Method for manufacturing zinc-doped alumina dehydrogenation catalyst
CN111054384A (en) Catalyst for organic liquid hydrogen storage material dehydrogenation and preparation method thereof
CN112371116A (en) Long-life sulfur-containing catalyst for methylcyclohexane and preparation method thereof
CN115722218A (en) Preparation method and application of catalyst for hydrodechlorination of fluoroalkane
CN112915999B (en) Catalyst for degrading benzene series and ethyl acetate, and preparation method and application thereof
CN116371416B (en) Nickel-niobium/attapulgite-based ordered mesoporous catalyst and preparation method and application thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20191014

Year of fee payment: 4