KR20120074645A - Apparatus of manufacturing reduced iron using syngas and method for manufacturing reduced iron using the same - Google Patents

Apparatus of manufacturing reduced iron using syngas and method for manufacturing reduced iron using the same Download PDF

Info

Publication number
KR20120074645A
KR20120074645A KR1020100136545A KR20100136545A KR20120074645A KR 20120074645 A KR20120074645 A KR 20120074645A KR 1020100136545 A KR1020100136545 A KR 1020100136545A KR 20100136545 A KR20100136545 A KR 20100136545A KR 20120074645 A KR20120074645 A KR 20120074645A
Authority
KR
South Korea
Prior art keywords
syngas
flow reduction
reduced iron
gas
exhaust gas
Prior art date
Application number
KR1020100136545A
Other languages
Korean (ko)
Other versions
KR101220683B1 (en
Inventor
정준양
김성연
백찬준
김도형
최진식
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020100136545A priority Critical patent/KR101220683B1/en
Priority to PCT/KR2011/010164 priority patent/WO2012091414A2/en
Publication of KR20120074645A publication Critical patent/KR20120074645A/en
Application granted granted Critical
Publication of KR101220683B1 publication Critical patent/KR101220683B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/14Multi-stage processes processes carried out in different vessels or furnaces
    • C21B13/143Injection of partially reduced ore into a molten bath
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0006Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state
    • C21B13/0013Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state introduction of iron oxide into a bath of molten iron containing a carbon reductant
    • C21B13/002Reduction of iron ores by passing through a heated column of carbon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/134Reduction of greenhouse gas [GHG] emissions by avoiding CO2, e.g. using hydrogen

Abstract

PURPOSE: An apparatus for manufacturing reduced iron using syngas and a method for manufacturing reduced iron using the same are provided to produce reduced iron with a high yield rate using the syngas instead of exhaust gas in a melting furnace. CONSTITUTION: An apparatus for manufacturing reduced iron using syngas comprises one or more fluidized reduction furnaces(20,30,40), fine iron ore charging units(12,22,32,42), exhaust gas discharge units(21,31,41), a gasifying unit(100), a syngas supply unit(101), and an agglomeration unit(80). The fluidized reduction furnaces reduce fine iron ore into reduced iron by reacting the fine iron ore with a reduction gas. The fine iron ore charging units inject the fine iron ore into the one or more fluidized reduction furnaces. The exhaust gas discharge units discharge the exhaust gas generated from the one or more fluidized reduction furnaces. The gasifying unit forms synthetic syngas used as the reduction gas. The syngas supply unit supplies the syngas generated from the gasifying unit to a bottom of a first fluidized reduction furnace. The agglomeration unit compacts the reduced iron in the first fluidized reduction furnace.

Description

합성가스를 이용한 환원철 제조장치 및 이를 이용한 환원철 제조방법{APPARATUS OF MANUFACTURING REDUCED IRON USING SYNGAS AND METHOD FOR MANUFACTURING REDUCED IRON USING THE SAME}APPARATUS OF MANUFACTURING REDUCED IRON USING SYNGAS AND METHOD FOR MANUFACTURING REDUCED IRON USING THE SAME}

본 발명은 유동환원로를 통해 환원철을 제조하는 방법에 관한 것으로서, 보다 상세하게는 합성천연가스(Synthetic Natural Gas, SNG)의 제조를 위한 전단계로 제조되는 합성가스(Syngas)를 이용하여 환원철을 제조하는 장치 및 이를 이용한 환원철 제조방법에 관한 것이다.
The present invention relates to a method for producing reduced iron through a fluid reduction furnace, and more particularly to manufacturing reduced iron using synthetic gas (Syngas) prepared in the previous step for the production of Synthetic Natural Gas (SNG). It relates to an apparatus and a method for producing reduced iron using the same.

철강산업은 자동차, 조선, 가전, 건설 등의 전체 산업에 기초 소재를 공급하는 핵심기간산업으로서, 인류의 발전과 함께해온 가장 역사가 오래된 산업중의 하나이다. 철강산업의 중추적인 역할을 담당하는 제철소에서는 먼저 원료로 철광석 및 석탄을 이용하여 용융 상태의 선철인 용철을 제조한 다음, 이로부터 강을 제조하여 각 수요처에 공급하고 있다.
The steel industry is a key industry that supplies basic materials to the entire industry, such as automobiles, shipbuilding, home appliances, and construction, and is one of the oldest industries that have been with human development. Steel mills, which play a pivotal role in the steel industry, first produce molten pig iron, molten iron, using iron ore and coal as raw materials, and then manufacture steel from these and supply it to each customer.

지금까지 용철을 제조하는 방법으로는 주로 고로법을 이용하여 왔다. 고로법은 소결 과정을 거친 철광석과 유연탄을 원로로 하여 제조한 코크스 등을 고로에 함께 넣고 산소를 불어넣어 철광석을 철로 환원하여 용철을 제조하는 방법이다. 이러한 고로법은 코크스 제조설비 및 소결설비 등의 원료예비처리설비가 반드시 수반되므로, 고로 이외의 부대설비를 구축해야 하고, 환경 오염물질을 다량 발생시켜 방견오염 방지설비의 설치 필요 등으로 제조원가가 급격히 상승하는 문제점이 있다.
Until now, the blast furnace method was mainly used as a method of manufacturing molten iron. The blast furnace method is a method of manufacturing molten iron by reducing iron ore to iron by putting together iron ore and coke produced through sintering process into a blast furnace and blowing oxygen together. Since the blast furnace method necessarily involves preliminary processing facilities such as coke manufacturing facilities and sintering facilities, it is necessary to establish additional facilities other than blast furnaces, and the production cost is rapidly increased due to the need for installation of anti-contamination prevention facilities by generating large amounts of environmental pollutants. There is a rising problem.

이러한 고로법의 문제점을 해결하기 위해서, 소결 등의 원료예비설비를 필요치 않고, 전세계 광석 생산량의 80%이상을 점유하는 분광석을 직접 사용하여 용철을 제조하는 용융환원제철법의 개발에 많은 노력을 기울이고 있다.
In order to solve the problems of the blast furnace method, much effort has been made to develop a molten iron manufacturing method for manufacturing molten iron by directly using spectroscopy that occupies more than 80% of the world's ore production without the need for raw material preliminary facilities such as sintering. I'm leaning.

상기 용융환원제철법의 일종으로 개발된 파이넥스(Finex)공정은 분철광을 유동환원로내에서 환원시키는 유동 환원 공정과, 이와 같이 직접 환원된 분철광을 용융로 내에서 용융시켜 용철을 제조하는 용융 공정을 포함한다.
The Finex process, which is developed as a kind of the molten reduction steelmaking method, is a flow reduction process for reducing ferrous ore in a flow reduction furnace, and a melting process for melting molten ore directly in such a molten furnace to produce molten iron. It includes.

도 1은 일반적인 용융환원제철 설비를 도시한 공정 개략도이다. 도 1을 참조하면, 용융환원제철 설비는 분철광을 투입하여 환원시키는 하나 이상의 유동환원로(20, 30, 40), 환원된 분철광을 괴상화시키는 괴상화 수단(80) 및 용융로(10)를 포함한다.
1 is a process schematic showing a typical molten iron and steel reduction facility. Referring to FIG. 1, the molten iron reduction facility includes one or more flow reduction reactors 20, 30, and 40 for inputting and reducing ferrite ore, agglomeration means 80 and an melting furnace 10 for agglomerating the reduced ferrite ore. Include.

유동환원로(20, 30, 40)을 거쳐 환원된 분철광(이하 환원철)은 괴상화 수단(80)를 거쳐 괴상화 된다. 이렇게 괴상화된 환원철을 HBI(Hot Briquetted Iron) 또는 HCI(Hot Compacted Iron)이라 칭한다. 상기 HBI 또는 HCI는 용융로(10)에 장입하여 용선을 제조하는데 쓰이게 된다.
The reduced ferrite (hereinafter reduced iron) reduced through the flow reduction paths (20, 30, 40) is agglomerated via the bulking means (80). This agglomerated reduced iron is called hot briquetted iron (HBI) or hot compacted iron (HCI). The HBI or HCI is used to prepare the molten iron by charging in the melting furnace (10).

상기 유동환원로(20, 30, 40)를 이용한 유동 환원 공정에서는 철산화물 형태의 분철광을 환원시키기 위해서, CO 및 H2 등의 환원가스가 필요하다. 지금까지는 용융로(10)에서 석탄의 연소에 의해 발생한 일산화탄소 등을 주로 사용하고 있다.
In the flow reduction process using the flow reduction paths 20, 30 and 40, reducing gas such as CO and H 2 is required to reduce the iron oxide form of ferrite. Up to now, carbon monoxide generated by the combustion of coal in the melting furnace 10 is mainly used.

그러나, 상기 용융로(10)의 배가스 중 일산화탄소를 유동환원로(20, 30, 40)의 환원가스로 이용하는 경우에는, 충분한 환원가스가 포함되어 있지 않기 때문에 유동환원로의 환원효율이 낮고, 상기 용융로(10)에서 발생된 분진 등 다량의 불순물이 포함되어 있어, 환원철의 품질을 저하시키는 문제가 있다.
However, when carbon monoxide in the exhaust gas of the melting furnace 10 is used as the reducing gas of the flow reduction reactors 20, 30, and 40, since sufficient reducing gas is not contained, the reduction efficiency of the flow reduction furnace is low, and the melting furnace is Since a large amount of impurities such as dust generated in (10) is contained, there is a problem of reducing the quality of reduced iron.

한편, 20세기부터 지속된 사회의 급격한 성장에 따라 에너지의 수급체계가 불안정하여지고 지구의 온난화와 같은 환경문제가 대두되면서 환경친화적으로 화석에너지를 이용하려는 시도가 지속되고 있으며, 환경오염이 전혀 없는 연료를 생산하기 위한 제조공정에 대한 연구도 활발히 진행되고 있다. 특히, 환경오염이 심하게 발생되는 석탄의 직접적인 연소방식보다는 석탄을 활용하여 합성가스(Syngas), 합성천연가스(Synthetic Natural Gas, SNG) 등의 가스 연료 형태로 전환 생산하여 이를 이용하려는 노력이 지속적으로 진행되고 있으며, 이렇게 생산된 합성가스 등을 활용하는 기술에 대해서도 지속적인 연구가 진행되고 있다.
Meanwhile, with the rapid growth of society that has continued since the 20th century, as the energy supply and demand system became unstable and environmental problems such as global warming have emerged, attempts to use fossil energy in an environmentally friendly manner have continued, and fuel that has no environmental pollution Research on the manufacturing process to produce the is also actively underway. In particular, efforts to continuously convert and produce gaseous fuels such as Syngas and Synthetic Natural Gas (SNG) using coal rather than direct combustion of severely polluted coal are continuously used. In addition, ongoing research is being conducted on technologies utilizing the thus produced syngas.

그러나, 지금까지 석탄 등의 가스화를 통한 합성가스의 생산과 동시에 이를 활용하여 분철광을 환원시켜 강을 제조하는 기술에 대해서는 아직 제안된 바가 없다.
However, until now, there has not been yet been proposed a technology for producing steel by reducing ferrous ore using the same as the production of syngas through the gasification of coal or the like.

본 발명의 일측면은 합성천연가스(SNG) 제조를 위한 석탄 등의 가스화를 통해 얻어진 합성가스를 이용하여 환원철을 제조할 수 있는 장치와 이를 이용한 환원철 제조방법을 제공하고자 하는 것이다.
One aspect of the present invention is to provide a device for producing reduced iron using a syngas obtained through gasification of coal, etc. for the production of synthetic natural gas (SNG) and a method for producing reduced iron using the same.

본 발명은분철광을 환원가스와 반응시켜 환원철로 환원시키는 1개 이상의 유동환원로;The present invention comprises one or more flow reduction reactor for reducing the ferrous ore by reducing gas to reduced iron;

상기 1개 이상의 유동환원로에 분철광을 장입될 수 있도록 연결된 분철광 장입수단; Ferrite ore charging means connected to one or more flow reducing paths to load ferrite ore;

상기 1개 이상의 유동환원로에서 발생된 배가스를 배출하는 배가스 배출수단;Exhaust gas discharge means for discharging the exhaust gas generated in the one or more flow reduction paths;

상기 환원가스로 사용되는 합성가스를 형성하는 가스화수단 및 상기 가스화수단에서 형성된 합성가스를 제1 유동환원로의 저부에 공급할 수 있는 합성가스 공급수단; 및Syngas supply means for forming syngas used as the reducing gas and syngas supply means capable of supplying the syngas formed in the gasification means to the bottom of the first flow reduction path; And

상기 제1 유동환원로에서 환원된 환원철을 괴상화시키는 괴상화 수단을 포함하는 합성가스를 이용한 환원철 제조장치를 제공한다.
Provided is an apparatus for producing reduced iron using a synthesis gas including agglomeration means for agglomerating reduced iron reduced in the first flow reduction reactor.

또한, 본 발명은 가스화 수단을 통해 합성가스를 제조하는 단계;In addition, the present invention comprises the steps of preparing a synthesis gas through gasification means;

상기 합성가스를 하나 이상의 유동환원로 중 제1 유동환원로에 장입하여 분철광을 환원시키는 단계;Charging the syngas into a first flow reduction reactor among the one or more flow reduction reactors to reduce the ferrite ore;

상기 제1 유동환원로에 장입된 합성가스가 유동환원로를 순차적으로 통과하면서, 각 유동환원로 내의 분철광을 환원철로 환원시키는 단계; 및Reducing the ferrite ore in each flow reduction path with reduced iron while the synthesis gas charged in the first flow reduction path sequentially passes through the flow reduction path; And

상기 제1 유동환원로에서 환원된 환원철을 괴상화시키는 단계를 포함하는 합성가스를 이용한 환원철 제조방법을 제공한다.
It provides a method for producing reduced iron using the synthesis gas comprising the step of agglomerated the reduced iron reduced in the first flow reduction reactor.

본 발명에 의하면, 종래의 용융로의 배가스를 이용하는 대신에, 다량의 일산화탄소와 수소를 포함하는 합성가스(Syngas)를 이용하여 분철광을 환원시킴으로서, 높은 수율의 환원철을 확보할 수 있으며, 상기 배가스에서 미/소립광석 등은 분진을 제거할 필요가 없으므로, 추가설비가 필요하지 않은 장점이 있다.
According to the present invention, instead of using the exhaust gas of the conventional melting furnace, by reducing the ferrite ore by using a synthesis gas (Syngas) containing a large amount of carbon monoxide and hydrogen, it is possible to ensure a high yield of reduced iron, in the exhaust gas Fine or small ore does not need to remove dust, there is an advantage that does not require additional equipment.

도 1은 종래의 일반적인 유동환원로를 이용한 환원철 제조를 나타낸 개략도임.
도 2는 본 발명의 합성가스를 이용한 환원철 제조를 나타낸 개략도임.
1 is a schematic view showing the production of reduced iron using a conventional general fluid reduction reactor.
Figure 2 is a schematic diagram showing the production of reduced iron using the synthesis gas of the present invention.

이하, 첨부된 도면을 참조하여 본 발명의 실시형태를 설명한다. 그러나, 본 발명의 실시형태는 여러가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시형태로 한정되는 것은 아니다. 본 발명의 실시형태는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. However, embodiments of the present invention may be modified in various other forms, and the scope of the present invention is not limited to the embodiments described below. Embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art.

먼저, 본 발명의 제조장치에 대하여 도 2를 참조하여 상세히 설명한다. 도 2는 본 발명의 이해를 위한 것으로, 도 2에 의해 본 발명이 제한되는 것은 아니다.
First, the manufacturing apparatus of this invention is demonstrated in detail with reference to FIG. FIG. 2 is for understanding the present invention, and the present invention is not limited by FIG. 2.

본 발명의 장치는 장입된 분철광을 내부에 가스 분산판(23, 33, 43)이 구비된 유동환원로(20, 30, 40)를 포함한다. 이때 유동환원로는 적어도 1개 이상 설치되는데, 바람직하게는 3개의 유동환원로가 설치된다.The apparatus of the present invention includes a flow reduction path (20, 30, 40) equipped with a gas distribution plate (23, 33, 43) inside the charged iron ore. At this time, at least one flow reduction path is installed, preferably three flow reduction paths are installed.

상기 유동환원로(20, 30, 40)들은 저부로부터 공급되는 환원가스로 유동층을 형성하여 분철광을 환원하여 다음 공정으로 공급하고, 배가스는 상부로 배출되도록 배가스 배출관(21, 31, 41)을 포함한다.
The flow reduction paths 20, 30, and 40 form a fluidized bed with reducing gas supplied from the bottom to reduce the ferrite ore to be supplied to the next process, and exhaust gas discharge pipes 21, 31, and 41 to discharge the exhaust gas to the top. Include.

제1 유동환원로(20)에서 환원된 환원철을 괴상화시키는 괴상화 수단(80)을 포함한다. 상기 괴상화 수단(80)을 통해 괴상화된 환원철(HBI 또는 HCI)은 용융로(10)에 장입된다.
Agglomeration means 80 to agglomerate the reduced iron reduced in the first flow reduction reactor (20). Reduced iron (HBI or HCI) that has been agglomerated through the agglomeration means 80 is charged to the melting furnace (10).

본 발명은 합성가스(Syngas)를 형성하는 가스화 수단(100)을 포함한다. 상기 가스화 수단에서, 석탄 등을 원료로 하여 고온 고압에서 가스화되어 제조된 합성가스(Syngas)는 제1 유동환원로(20)의 저부와 연계된 합성가스 공급수단(101)을 통해 제1 유동환원로(20)에 공급된다. 상기 합성가스는 CO, H2 등의 환원가스를 포함한다.
The present invention includes a gasification means 100 for forming syngas. In the gasification means, synthetic gas (Syngas) produced by gasification at high temperature and high pressure using coal or the like is the first flow reduction through the syngas supply means 101 associated with the bottom of the first flow reduction path (20) It is supplied to the furnace 20. The syngas includes reducing gases such as CO and H 2 .

상기 합성가스는 석탄, 산소 및 스팀을 상기 가스화 수단(100)에 취입하여 고온, 고압의 상태로 합성하여 제조하게 된다. 상기 합성가스는 40%이상의 일산화탄소(CO)와 30%이상의 수소가스(H2)를 포함하고, 나머지는 일부 이산화탄소 및 메탄 가스를 포함한다.
The syngas is manufactured by incorporating coal, oxygen, and steam into the gasification means 100 and synthesizing at a high temperature and high pressure. The syngas contains at least 40% carbon monoxide (CO) and at least 30% hydrogen gas (H 2 ), with the remainder containing some carbon dioxide and methane gas.

상기 합성가스가 제1 유동로(20)에 공급되기 전, 합성가스의 온도를 상승시킬 수 있는 가열수단(110)이 설치되는 것이 바람직하다. 상기 합성가스는 가열을 통해 유동 환원로의 환원온도 이상의 온도로 가열된다.
Before the syngas is supplied to the first flow path 20, it is preferable that a heating means 110 capable of raising the temperature of the syngas is provided. The syngas is heated to a temperature above the reduction temperature of the flow reduction furnace through heating.

상기 가스화 수단(100)에 의해 형성된 합성가스는 높은 순도의 일산화탄소(CO) 및 수소(H2)를 포함하고 있어, 유동환원로(20, 30, 40)에서의 환원 효율을 높을 수 있으며, 용융로(10)에서 생성된 배가스를 이용하는 경우와 달리, 미/소립광석 등은 분진 등을 여과하여야 하는 공정이 불필요하다는 장점이 있다.
Synthesis gas formed by the gasification means 100 includes high purity carbon monoxide (CO) and hydrogen (H 2 ), it is possible to increase the reduction efficiency in the flow reduction reactor (20, 30, 40), the melting furnace Unlike the case of using the exhaust gas generated in (10), fine or small ore has the advantage that the process to filter the dust and the like is unnecessary.

도 2에서는 3개의 유동환원로를 예시하고 있다. 이때 상기 제1 유동환원로(20)에서 환원 후 배출되는 배가스는 다시 제2 유동환원로(30)의 저부와 가스 소통관계로 연결된 제1 유동환원로 배가스 배출수단(21)을 통해 제2 유동환원로(30)로 이송되어, 제2 유동환원로(20)에서의 환원에 이용된다.
2 illustrates three flow reduction reactors. At this time, the exhaust gas discharged after reduction in the first flow reduction path 20 is again flowed through the first flow reduction path exhaust gas discharge means 21 connected to the bottom of the second flow reduction path 30 in a gas communication relationship. It is transferred to the reduction furnace 30 and is used for the reduction in the second fluid reduction reactor 20.

또한, 제2 유동환원로(30)에서 환원 후 배출되는 배가스는 다시 제3 유동환원로(40)의 저부와 가스 소통관계로 연결된 제2 유동환원로 배가스 배출수단(31)을 통해 제3 유동환원로(30)로 이송되어 제3 유동환원로(40)에서의 환원에 이용된다.In addition, the exhaust gas discharged after reduction in the second flow reduction path 30 is again flowed through the second flow reduction path exhaust gas discharge means 31 connected to the bottom of the third flow reduction path 40 in a gas communication relationship. It is transferred to the reduction furnace 30 and used for reduction in the third flow reduction reactor 40.

순차적으로 제1 내지 제3 유동환원로를 통과한 합성가스는 제3 유동환원로(30)에서 배가스의 형태로 제3 배가스 배출수단(41)을 통해 배가스 청정장치(70)로 배출된다.
Synthetic gas sequentially passed through the first to third flow reduction path is discharged to the exhaust gas purifying device 70 through the third exhaust gas discharge means 41 in the form of exhaust gas in the third flow reduction path (30).

한편, 도 2에서 12는 용융로(10)에 연결된 환원철 이송수단, 22, 32 및 42는 상기 용융환원로(20, 30, 40)로의 분철광 장입수단을 나타낸 것이며, 60은 용융로의 분진취입장치를 의미한다.
On the other hand, in Figure 2 12 is a reduced iron transfer means connected to the melting furnace 10, 22, 32 and 42 shows the ferrite ore loading means to the molten reduction furnace (20, 30, 40), 60 is a dust blowing device of the melting furnace Means.

이하, 본 발명의 환원철 제조방법에 대하여 상세히 설명한다.Hereinafter, the method for producing reduced iron of the present invention will be described in detail.

먼저, 가스화수단을 통해 합성가스를 제조한다. 상기 합성가스는 앞서 언급한 바와 같이, 일산화탄소(CO)와 수소(H2)를 다량 포함한다. 상기 합성가스는 합성천연가스(SNG, Synthetic Natural Gas)를 제조하기 위한 가스화 수단에 의해 제조되는 것이 바람직하다.
First, syngas is produced through gasification means. As mentioned above, the syngas contains a large amount of carbon monoxide (CO) and hydrogen (H 2 ). The syngas is preferably produced by gasification means for producing Synthetic Natural Gas (SNG).

상기 합성가스를 제1 유동환원로에 장입하여 분철광을 환원시킨다. 상기 합성가스가 제1 유동환원로에 장입되기 전에, 제1 유동환원로의 반응온도 이상으로 상기 합성가스를 가열하는 것이 바람직하다. 이는 제1 유동환원로에서의 환원 반응 최적화하기 위한 것이다. 일예로, 제1 유동환원로의 환원온도가 780℃인 경우, 상기 합성가스는 820℃로 가열하는 것이 바람직하다.
The syngas is charged into the first flow reduction reactor to reduce the ferrite ore. Before the synthesis gas is charged to the first flow reduction reactor, it is preferable to heat the synthesis gas above the reaction temperature of the first flow reduction reactor. This is to optimize the reduction reaction in the first flow reduction reactor. As an example, when the reduction temperature of the first flow reduction reactor is 780 ° C, the synthesis gas is preferably heated to 820 ° C.

상기 제1 유동환원로는 장입된 합성가스는 1개 이상의 유동환원로를 순차적으로 통과하면서, 각 유동환원로 내의 분철광을 환원시킨다. 이러한 순차적인 유동환원로에서의 환원반응은 전단계의 유동환원로에서 배가스의 형태로 배출되는 합성가스에 의해 이루어진다. 예를 들면, 제1 유동환원로에서 환원반응이 이루어지고 배출된 배가스는 합성가스를 포함하고 있으며, 이 배가스는 다시 제2 유동환원로로 장입되어, 제2 유동환원로내의 분철광과 환원반응이 이루어지게 된다.
The charged gas flows through the one or more flow reduction paths sequentially, reducing the ferrite ore in each flow reduction path. The reduction reaction in this sequential flow reduction reactor is performed by syngas discharged in the form of flue gas in the previous stage flow reduction reactor. For example, the reduction reaction in the first flow reduction reactor and the discharged exhaust gas contains syngas, which is charged back to the second flow reduction reactor, and the reduction reaction with the ferrite ore in the second flow reduction reactor. This is done.

상기 제1 유동환원로에서 환원된 환원철을 괴상화시킨다. 상기 괴상화를 통해 용융로에 장입될 수 있는 적정의 크기로 형성한다. 상기 괴상화는 통상의 공정에 의하며, 본 발명에서 특별히 한정되는 것은 아니다. 이처럼 괴상화된 환원철을 HBI(Hot Briquetted Iron) 또는 HCI(Hot Compacted Iron)이라 한다.
The reduced iron reduced in the first flow reduction reactor is agglomerated. It is formed to the appropriate size that can be charged into the melting furnace through the agglomeration. The agglomeration is by a conventional process, and is not particularly limited in the present invention. Such agglomerated reduced iron is called hot briquetted iron (HBI) or hot compacted iron (HCI).

10.....용융로
11.....용융로 배가스 배출수단
20, 30, 40.....용융환원로
21, 31, 41....용용환원로 배가스 배출수단
12, 22, 32, 42.....분철광 장입수단
23, 33, 43.....가스 분산판
50.....용융로 배가스 포집수단
51.....용융로 배가스 배출수단
70.....배가스 처리수단
80.....괴상화 수단
100.....가스화 수단
101.....합성가스 공급수단
110.....가열수단
10 .... Melting Furnace
11 .... Melting Furnace Flue Gas Discharge Means
20, 30, 40 ..... melting reduction reactor
21, 31, 41..Means of exhaust gas discharge
12, 22, 32, 42 ..... ferrite ore charging means
23, 33, 43 ..... Gas Dispersion Plate
50 ..... Melting Furnace Flue Gas Collection Means
51 ..... Melting Furnace Flue Gas Discharge Means
70 ..... Fuel gas treatment means
80 .... Meaning means
100 ..... gasification means
101 ..... Synthetic gas supply means
110 ..... heating means

Claims (8)

분철광을 환원가스와 반응시켜 환원철로 환원시키는 1개 이상의 유동환원로;
상기 1개 이상의 유동환원로에 분철광을 장입될 수 있도록 연결된 분철광 장입수단;
상기 1개 이상의 유동환원로에서 발생된 배가스를 배출하는 배가스 배출수단;
상기 환원가스로 사용되는 합성가스를 형성하는 가스화수단 및 상기 가스화수단에서 형성된 합성가스를 제1 유동환원로의 저부에 공급할 수 있는 합성가스 공급수단; 및
상기 제1 유동환원로에서 환원된 환원철을 괴상화시키는 괴상화 수단
을 포함하는 합성가스를 이용한 환원철 제조장치.
At least one flow reduction reactor for reacting the ferrite with reducing gas to reduce iron;
Ferrite ore charging means connected to one or more flow reducing paths to load ferrite ore;
Exhaust gas discharge means for discharging the exhaust gas generated in the one or more flow reduction paths;
Syngas supply means for forming syngas used as the reducing gas and syngas supply means capable of supplying the syngas formed in the gasification means to the bottom of the first flow reduction path; And
Agglomeration means for agglomerating reduced iron reduced in the first flow reduction reactor
Reduced iron manufacturing apparatus using a synthesis gas comprising a.
청구항 1에 있어서,
상기 합성가스 공급수단은 합성가스가 제1 유동환원로에 공급되기 전 가열될 수 있도록 1개 이상의 가열수단을 포함하는 합성가스를 이용한 환원철 제조장치.
The method according to claim 1,
The syngas supply means is a reduced iron manufacturing apparatus using a syngas comprising one or more heating means to be heated before the syngas is supplied to the first flow reduction path.
청구항 1에 있어서,
상기 환원철 제조장치의 유동환원로는 3개로 이루어지는 합성가스를 이용한 환원철 제조장치.
The method according to claim 1,
Reduced iron manufacturing apparatus using a synthesis gas consisting of three flow reduction path of the reduced iron manufacturing apparatus.
청구항 3에 있어서,
상기 제1 유동환원로에서 배출된 배가스는 제2 유동환원로의 저부와 가스 소통관계로 연결되어 있고, 상기 제2 유동환원로에서 배출된 배가스는 제3 유동환원로의 저부와 가스 소통관계로 연결되어 있는 합성가스를 이용한 환원철 제조장치.
The method according to claim 3,
The exhaust gas discharged from the first flow reduction path is connected in gas communication with the bottom of the second flow reduction path, and the exhaust gas discharged from the second flow reduction path is in gas communication with the bottom of the third flow reduction path. Reduced iron manufacturing apparatus using the syngas connected.
가스화 수단을 통해 합성가스를 제조하는 단계;
상기 합성가스를 하나 이상의 유동환원로 중 제1 유동환원로에 장입하여 분철광을 환원시키는 단계;
상기 제1 유동환원로에 장입된 합성가스가 유동환원로를 순차적으로 통과하면서, 각 유동환원로 내의 분철광을 환원철로 환원시키는 단계; 및
상기 제1 유동환원로에서 환원된 환원철을 괴상화시키는 단계
를 포함하는 합성가스를 이용한 환원철 제조방법.
Preparing a syngas through gasification means;
Charging the syngas into a first flow reduction reactor among the one or more flow reduction reactors to reduce the ferrite ore;
Reducing the ferrite ore in each flow reduction path with reduced iron while the synthesis gas charged in the first flow reduction path sequentially passes through the flow reduction path; And
Agglomerating the reduced iron reduced in the first flow reduction reactor
Reduced iron manufacturing method using a synthesis gas comprising a.
청구항 5에 있어서,
상기 합성가스는 합성천연가스(SNG, Sythetic Natural Gas)를 제조하기 위한 가스화 수단에 의해 제조된 합성가스를 이용한 환원철 제조방법.
The method according to claim 5,
The syngas is reduced iron production method using the syngas produced by the gasification means for producing a synthetic natural gas (SNG, Sythetic Natural Gas).
청구항 6에 있어서,
상기 합성가스는 40%이상의 일산화탄소와 30%이상의 수소가스를 포함하는 합성가스를 이용한 환원철 제조방법.
The method of claim 6,
The synthesis gas is reduced iron production method using a synthesis gas containing more than 40% carbon monoxide and more than 30% hydrogen gas.
청구항 5에 있어서,
상기 제1 유동환원로에 장입되기 전, 상기 합성가스를 제1 유도환원로의 환원온도 이상으로 가열하는 단계를 더 포함하는 합성가스를 이용한 환원철 제조방법.
The method according to claim 5,
The method for producing reduced iron using the synthesis gas further comprises the step of heating the synthesis gas above the reduction temperature of the first induction reduction reactor, before being charged into the first flow reduction reactor.
KR1020100136545A 2010-12-28 2010-12-28 Apparatus of manufacturing reduced iron using syngas and method for manufacturing reduced iron using the same KR101220683B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020100136545A KR101220683B1 (en) 2010-12-28 2010-12-28 Apparatus of manufacturing reduced iron using syngas and method for manufacturing reduced iron using the same
PCT/KR2011/010164 WO2012091414A2 (en) 2010-12-28 2011-12-27 Device for manufacturing reduced iron using syngas and method for manufacturing reduced iron using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100136545A KR101220683B1 (en) 2010-12-28 2010-12-28 Apparatus of manufacturing reduced iron using syngas and method for manufacturing reduced iron using the same

Publications (2)

Publication Number Publication Date
KR20120074645A true KR20120074645A (en) 2012-07-06
KR101220683B1 KR101220683B1 (en) 2013-01-09

Family

ID=46383691

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100136545A KR101220683B1 (en) 2010-12-28 2010-12-28 Apparatus of manufacturing reduced iron using syngas and method for manufacturing reduced iron using the same

Country Status (2)

Country Link
KR (1) KR101220683B1 (en)
WO (1) WO2012091414A2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3237334A1 (en) 1982-10-08 1984-04-12 M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 4200 Oberhausen METHOD FOR OPERATING A REACTOR FOR THE PRODUCTION OF SYNTHESIS GAS AND DEVICE FOR IMPLEMENTING THE METHOD
US5082251A (en) * 1990-03-30 1992-01-21 Fior De Venezuela Plant and process for fluidized bed reduction of ore
AT406271B8 (en) * 1997-08-18 2000-05-25 Voest Alpine Ind Anlagen METHOD AND SYSTEM FOR DIRECTLY REDUCING PARTICULATE IRON OXIDE MATERIAL
US5912400A (en) * 1997-12-02 1999-06-15 Brifer International Ltd. Method for reforming reducing gas in a fluidized bed process for reduction of ore

Also Published As

Publication number Publication date
WO2012091414A2 (en) 2012-07-05
KR101220683B1 (en) 2013-01-09
WO2012091414A3 (en) 2012-09-13

Similar Documents

Publication Publication Date Title
KR101587199B1 (en) Process for production of direct reduced iron
KR101551886B1 (en) System and method for reducing iron oxide to metallic iron using coke oven gas and oxygen steelmaking furnace gas
JP5857054B2 (en) Method and apparatus for directly producing reduced iron using a reducing gas containing hydrogen and carbon monoxide as a supply source
KR101720075B1 (en) Method for melting raw iron while recirculating blast furnace gas by adding hydrocarbons
JP5807786B2 (en) Apparatus and method for producing iron, semi-steel and reducing gas
RU2618971C2 (en) Processing method for exhaust gases from plants for iron and / or synthetic gas production
MX2007001249A (en) Method and apparatus for producing clean reducing gases from coke oven gas.
CN111979371B (en) Method for distributed utilization of heat in process of producing direct reduced iron by dry quenching coupled shaft furnace
CN105671228A (en) Oxygen blast furnace and gas base shaft furnace combined production system and method
KR101197936B1 (en) Apparatus of manufacturing reduced iron using nuclear reactor and method for manufacturing reduced iron using the same
KR101220683B1 (en) Apparatus of manufacturing reduced iron using syngas and method for manufacturing reduced iron using the same
KR102091122B1 (en) Apparatus for manufacturing molten irons and method for manufacturing the same
CN112662824A (en) Blast furnace hydrogen-rich smelting process for efficiently utilizing metallurgical waste gas
CN101126112A (en) Method and device for reducing metallized pellet by using high-purity water gas in pure oxygen shaft furnace
JP2005089797A (en) Method of producing hydrogen and reduced iron, and device therefor
KR20150109413A (en) Method and apparatus for sequestering carbon dioxide from a spent gas
WO2023036474A1 (en) Method for producing direct reduced iron for an iron and steelmaking plant
LU500699B1 (en) Method for operating a shaft furnace plant
JP7197756B1 (en) Steelmaking equipment
CN117737324A (en) Blast furnace ironmaking process and system for preparing high-temperature hydrogen-rich gas from byproduct gas
CN109868335B (en) System and method for closed-loop utilization of tail gas in iron ore reduction process
CN105671229A (en) Oxygen blast furnace and gas base shaft furnace combined production system and method
CN118019863A (en) Method for operating a shaft furnace installation
KR20240068675A (en) Method for producing direct reduced iron in iron and steel plants
TW202336237A (en) Method for operating a blast furnace installation

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160105

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170103

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20171214

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee