KR20120056657A - Magnetic levitation system having halbach array - Google Patents

Magnetic levitation system having halbach array Download PDF

Info

Publication number
KR20120056657A
KR20120056657A KR1020100118304A KR20100118304A KR20120056657A KR 20120056657 A KR20120056657 A KR 20120056657A KR 1020100118304 A KR1020100118304 A KR 1020100118304A KR 20100118304 A KR20100118304 A KR 20100118304A KR 20120056657 A KR20120056657 A KR 20120056657A
Authority
KR
South Korea
Prior art keywords
permanent magnet
magnetic
magnetic pole
levitation system
plate
Prior art date
Application number
KR1020100118304A
Other languages
Korean (ko)
Other versions
KR101174092B1 (en
Inventor
한형석
김창현
이종민
김봉섭
김동성
Original Assignee
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기계연구원 filed Critical 한국기계연구원
Priority to KR20100118304A priority Critical patent/KR101174092B1/en
Publication of KR20120056657A publication Critical patent/KR20120056657A/en
Application granted granted Critical
Publication of KR101174092B1 publication Critical patent/KR101174092B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L13/00Electric propulsion for monorail vehicles, suspension vehicles or rack railways; Magnetic suspension or levitation for vehicles
    • B60L13/04Magnetic suspension or levitation for vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61BRAILWAY SYSTEMS; EQUIPMENT THEREFOR NOT OTHERWISE PROVIDED FOR
    • B61B13/00Other railway systems
    • B61B13/08Sliding or levitation systems
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B25/00Tracks for special kinds of railways
    • E01B25/30Tracks for magnetic suspension or levitation vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • H01F7/0231Magnetic circuits with PM for power or force generation
    • H01F7/0236Magnetic suspension or levitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/30Railway vehicles

Abstract

PURPOSE: A magnetic levitation system is provided to effectively transfer magnetic force to a conductor plate by having a halbach array that a rotator induces the magnetic force to the upward and downward. CONSTITUTION: A trolley(120) comprises a conductor plate(123) and a ferromagnetic plate(121). The ferromagnetic plate is located on the conductor plate. The conductor plate is composed of aluminum or aluminum alloy. A ground side levitation device(150) comprises a plurality of permanent magnet modules(140) and an electric motor(153). The electric motor rotates the plurality of permanent magnet modules. The electric motor is connected with the plurality of permanent magnet modules by the medium of a driving shaft(154). A bottom absorptive plate(151) is installed between the permanent magnet module and the electric motor.

Description

할바흐 배열을 이용한 자기부상 시스템{MAGNETIC LEVITATION SYSTEM HAVING HALBACH ARRAY}MAGNETIC LEVITATION SYSTEM HAVING HALBACH ARRAY}

본 발명은 자기부상 시스템에 관한 것으로서 보다 상세하게는 할바흐 배열을 갖는 자기부상 시스템에 관한 것이다.The present invention relates to a magnetic levitation system and more particularly to a magnetic levitation system having a Halbach arrangement.

자기부상 열차는 전기 자기력을 이용하여, 궤도로부터 일정한 높이로 부상하여 추진하는 열차를 말한다. 자기부상 열차는 궤도 상에서 부상 및 추진하는 대차와, 대차에 탑재되어 객차 또는 화차를 형성하는 차량 바디를 포함한다.Maglev train refers to a train that floats and propels to a certain height from the track using electric magnetic force. Maglev trains include a trolley that floats and propels on a track, and a vehicle body mounted on the trolley to form a carriage or wagon.

자기부상 열차는 대차와 궤도 사이에서 전자석에 의한 인력 또는 반발력을 응용하여, 대차를 궤도로부터 이격시킨 상태로 추진한다. 이와 같이 자기부상 열차는 궤도와 비접촉 상태로 추진하므로 소음 및 진동이 적고 고속 추진이 가능하다.The magnetic levitation train propels the trolley away from the track by applying an attractive force or repulsion force by an electromagnet between the trolley and the track. In this way, the magnetic levitation train is propelled in a non-contact state with the track, so the noise and vibration is low and high speed propulsion is possible.

자기부상 열차의 부상 방법에는 자석의 인력을 이용하는 흡인식과, 자석의 반발력을 이용하는 반발식이 있다.The floating method of the magnetic levitation train includes a suction method using the attraction force of the magnet and a reaction method using the repulsive force of the magnet.

또한, 자기부상 열차의 부상 방법에는 전자석의 원리에 따라, 초전도 방식과 상전도 방식이 있다. 초전도 방식은 전기 저항이 없고 강한 자력을 얻을 수 있으므로 고속 열차에 적용하고, 상전도 방식은 중속도의 중단거리용 열차에 적용하고 있다.In addition, the floating method of the magnetic levitation train has a superconducting method and a phase conducting method according to the principle of the electromagnet. The superconducting method is applied to high speed trains because there is no electric resistance and strong magnetic force can be obtained, and the phase conduction method is applied to medium speed stop trains.

반발식에는 같은 극의 영구자석 간에 작용하는 반발력을 이용하는 영구자석 반발식과, 차량에 부착된 자석의 운동으로 유도된 지상 코일의 유도전류에 의한 자장의 반발력으로 부상시키는 유도 반발식이 있으며, 일반적으로 흡인식보다는 반발식이 제어가 쉽고, 흡인식은 정지 시와 저속에서도 부상이 가능하다는 장점이 있다.Reaction type includes permanent magnet repulsion using repulsive force acting between permanent magnets of the same pole, and inductive repulsion floating by magnetic field repulsive force caused by induced current of ground coil induced by movement of magnet attached to vehicle. Repulsion is easier to control than recognition, and suction has the advantage that it can be injured even at low speeds.

특히, 유도 반발식은 하중의 변화에 민감하지 않으며 초고속에 적합한데, 차량의 자석은 초전도 자석을 사용하고, 초전도를 위해서 극저온이 요구되므로 고가의 설치비가 요구되는 단점이 있다.In particular, the inductive repulsion is not sensitive to changes in load and is suitable for ultra-high speeds. The magnet of the vehicle uses a superconducting magnet and requires a very low temperature for superconducting.

이와 같이 고속의 자기부상방식은 대표적으로 독일에서는 상전도 흡인식을 이용하여 연구가 진행되고 있으며, 일본에서는 초전도 반발식을 기본으로 하여 연구가 진행되고 있다.As such, a high-speed magnetic levitation method is typically researched in Germany using a phase conduction suction formula, and in Japan, a research is being conducted based on a superconducting repulsion formula.

흡인식이나 반발식 모두 전자석을 이용하여 부상력을 발생시키고 있는데, 원하는 부상력을 얻기 위해서는 전자석의 부피가 커야 하고, 이에 따라 전력의 소모가 크다는 문제가 있다.Both suction and repulsion are generating flotation by using an electromagnet, but in order to obtain a desired flotation force, the volume of the electromagnet must be large, and accordingly, power consumption is large.

한편, 궤도를 사용하지 않고 자석을 회전시켜서 부상하는 자기부상 시스템이 제안되고 있는 바, 이러한 부상 시스템은 회전하는 영구자석 또는 전자석의 회전에 의한 자기 유도 현상을 이용한 것이다. 자기 유도를 효율적으로 발생시키기 위해서는 영구자석의 위 또는 아래 방향으로 자기력선을 밀집시켜야 한다.On the other hand, a magnetic levitation system that floats by rotating a magnet without using a track has been proposed, and this levitation system uses a magnetic induction phenomenon by rotation of a rotating permanent magnet or an electromagnet. In order to generate magnetic induction efficiently, magnetic force lines should be concentrated in the direction of up and down of permanent magnet.

그러나 도 6에 도시된 바와 같이 종래의 영구자석 회전자는 자기력이 상하 방향으로 분포하기 보다는 가까운 방향인 측방향으로 작용하게 되므로 자력에 비하여 도체판에 작용하는 자기력 유도는 미미한 실정이다. 이에 따라 부상을 위해서는 강한 자력과 강한 회전력을 필요하고, 부상을 위한 에너지의 소모가 지나치게 커진다.However, as shown in FIG. 6, the conventional permanent magnet rotor acts in the lateral direction, which is a closer direction than the magnetic force is distributed in the vertical direction, so that the induction of the magnetic force acting on the conductor plate is insignificant compared to the magnetic force. Accordingly, a strong magnetic force and a strong rotational force are required for the injury, and the consumption of energy for the injury is excessively large.

본 발명은 상기한 바와 같은 문제를 해결하기 위해 안출된 것으로서, 본 발명의 목적은 효율이 향상된 자기부상 시스템을 제공함에 있다.The present invention has been made to solve the above problems, an object of the present invention is to provide a magnetic levitation system with improved efficiency.

본 발명의 일 측면에 따른 자기부상 시스템은 도체판, 및 상기 도체판 위에 위치하며 할바흐 배열(halbach array)을 갖는 복수개의 영구자석모듈과 상기 영구자석모듈들을 회전시키며 지상에 고정 설치된 전동기를 포함하는 지상측 부상장치, 및 상기 지상측 부상장치 위에 위치하는 도체판을 갖는 대차를 포함하고, 상기 영구자석모듈은 둘래 방향을 따라 배치된 복수 개의 영구자석편으로 이루어지며, 상기 영구자석편들의 자화방향은 상하방향으로 변하도록 배치된다.The magnetic levitation system according to an aspect of the present invention includes a conductor plate and a plurality of permanent magnet modules positioned on the conductor plate and having a halbach array and a motor fixed to the ground by rotating the permanent magnet modules. And a trolley having a ground plate floating device, and a conductor plate positioned on the ground side floating device, wherein the permanent magnet module is formed of a plurality of permanent magnet pieces disposed along a direction of the magnetization of the permanent magnet pieces. The direction is arranged to change in the vertical direction.

상기 도체판은 알루미늄 또는 알루미늄 합금으로 이루어질 수 있으며, 상기 도체판의 위에는 강자성체판이 배치될 수 있으며, 상가 영구자석모듈은 고리형상으로 이루어질 수 있다.The conductor plate may be made of aluminum or an aluminum alloy, a ferromagnetic plate may be disposed on the conductor plate, and the permanent magnet module of the mall may be formed in a ring shape.

상기 영구자석모듈은 위를 향하는 방향의 자화방향을 갖는 제1 자극 자석편과, 아래를 향하는 방향의 자화방향을 갖는 제2 자극 자석편, 및 상기 제1 자극 자석편과 상기 제2 자극 자석편 사이에 위치하며, 상기 제1 자극 자석편에서 제2 자극 자석편을 향하는 방향의 자화방향을 갖는 유도 자석편을 포함할 수 있으며, 상기 유도 자석편은 복수개로 이루어지고, 유도 자석편들의 자화방향은 제1 자극 자석편의 자화방향에서 제2 자극 자석편의 자화방향으로 점진적을 변하도록 배치될 수 있다.The permanent magnet module includes a first magnetic pole magnet piece having a magnetization direction in an upward direction, a second magnetic pole magnet piece having a magnetization direction in a downward direction, and the first magnetic pole piece and the second magnetic pole magnet piece. Located in between, and may include an induction magnet piece having a magnetization direction of the direction from the first magnetic pole magnet piece to the second magnetic pole magnet piece, the induction magnet piece is composed of a plurality, the magnetization direction of the induction magnet pieces May be arranged to gradually change from the magnetization direction of the first magnetic pole magnet piece to the magnetization direction of the second magnetic pole magnet piece.

상기 도체판과 상기 영구자석모듈 사이에는 자기력이 통과하거나 증폭되는 전달 플레이트가 설치될 수 있으며, 상기 영구자석모듈과 상기 전동기 사이에는 자기력을 흡수하는 하부 흡수판이 설치될 수 있다. 또한, 상기 도체판에는 보조 차륜이 설치될 수 있다.A transfer plate through which a magnetic force passes or amplifies may be installed between the conductor plate and the permanent magnet module, and a lower absorbing plate may be installed between the permanent magnet module and the motor to absorb magnetic force. In addition, an auxiliary wheel may be installed on the conductor plate.

이상 설명한 바와 같이 본 발명의 일 실시예에 따른 자기부상 시스템은 회전자가 상하방향으로 자력을 유도하는 할바흐 배열을 가지므로 도체판으로 자기력을 효율적으로 전달할 수 있다.As described above, the magnetic levitation system according to the embodiment of the present invention has a Halbach arrangement in which the rotor induces a magnetic force in the up and down direction, thereby efficiently transmitting the magnetic force to the conductor plate.

도 1은 본 발명의 제1 실시예에 따른 자기부상 시스템을 도시한 단면도이다.
도 2는 본 발명의 제1 실시예에 따른 자기부상 시스템의 지상측 부상장치를 도시한 사시도이다.
도 3은 본 발명의 제1 실시예에 따른 영구자석모듈을 도시한 사시도이다.
도 4는 본 발명의 제1 실시예의 변형예에 따른 영구자석모듈을 도시한 사시도이다.
도 5는 본 발명의 제2 실시예에 따른 자기부상 시스템을 도시한 평면도이다.
도 6은 종래의 영구자석모듈을 도시한 사시도이다.
1 is a cross-sectional view showing a magnetic levitation system according to a first embodiment of the present invention.
2 is a perspective view showing the ground-side floating device of the magnetic levitation system according to the first embodiment of the present invention.
3 is a perspective view showing a permanent magnet module according to a first embodiment of the present invention.
4 is a perspective view showing a permanent magnet module according to a modification of the first embodiment of the present invention.
5 is a plan view showing a magnetic levitation system according to a second embodiment of the present invention.
Figure 6 is a perspective view of a conventional permanent magnet module.

이하, 첨부한 도면을 참조하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조부호를 붙였다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art can easily carry out the present invention. The present invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. In order to clearly illustrate the present invention, parts not related to the description are omitted, and the same or similar components are denoted by the same reference numerals throughout the specification.

도 1은 본 발명의 제1 실시예에 따른 자기부상 시스템의 단면도이고, 도 2는 본 발명의 제1 실시예에 따른 자기부상 시스템의 지상측 부상장치를 도시한 사시도이다.1 is a cross-sectional view of a magnetic levitation system according to a first embodiment of the present invention, Figure 2 is a perspective view showing a ground-side floating device of the magnetic levitation system according to the first embodiment of the present invention.

도 1 및 도 2를 참조하여 설명하면, 본 실시예에 따른 자기부상 시스템(100)은 대차(120)와 대차(120)의 아래에 위치하는 지상측 부상장치(150)를 포함한다.Referring to FIGS. 1 and 2, the magnetic levitation system 100 according to the present exemplary embodiment includes a bogie 120 and a ground side flotation device 150 positioned below the bogie 120.

대차(120)는 부상 작동하며, 도체판(123)과 도체판(123) 상에 위치하는 강자성체판(121)을 포함한다. 도체판(123)은 강자성체판(121)과 밀착되어 있다. 이 때, 도체판(123)은 알루미늄 또는 알루미늄 합금으로 이루어지며, 강자성체판(121)은 외부에서 강한 자기장을 걸어주었을 때 알루미늄보다 더 큰 자성을 갖는 철, 니켈 코발트 또는 이들의 합금으로 이루어질 수 있다.The trolley 120 is floating and includes a conductive plate 123 and a ferromagnetic plate 121 positioned on the conductive plate 123. The conductor plate 123 is in close contact with the ferromagnetic body plate 121. At this time, the conductor plate 123 is made of aluminum or aluminum alloy, the ferromagnetic body plate 121 may be made of iron, nickel cobalt or an alloy thereof having a greater magnetic than aluminum when a strong magnetic field is applied from the outside. .

실시예와 같이 강자성체판(121)이 알루미늄 또는 알루미늄 합금으로 이루어진 도체판(123)에 밀착되면, 도체판(123)에 더욱 큰 와전류를 형성할 수 있으며, 이에 따라 더 큰 부상력이 발생하게 된다. When the ferromagnetic body 121 is in close contact with the conductor plate 123 made of aluminum or an aluminum alloy as in the embodiment, a larger eddy current may be formed in the conductor plate 123, thereby causing a greater floating force. .

본 실시예에서는 도체판(123)이 알루미늄 또는 알루미늄 합금으로 이루어진 것으로 예시하고 있으나, 본 발명이 이에 제한되는 것은 아니며, 도체판(123)은 다양한 재질의 금속으로 이루어질 수 있다.Although the conductor plate 123 is illustrated as being made of aluminum or an aluminum alloy in the present embodiment, the present invention is not limited thereto, and the conductor plate 123 may be made of metal of various materials.

도 2 및 도 3에 도시된 바와 같이 지상측 부상장치(150)는 도체판(123)과 마주하는 복수개의 영구자석모듈(140)과 영구자석모듈(140)을 회전시키는 전동기(153)를 포함한다.As shown in FIGS. 2 and 3, the ground-side floating device 150 includes a plurality of permanent magnet modules 140 facing the conductor plate 123 and an electric motor 153 for rotating the permanent magnet module 140. do.

영구자석모듈(140)들은 복수 개의 행과 열로 정렬되어 배치된다. 전동기(153)는 영구자석모듈(140)과 구동축(154)을 매개로 연결되며 영구자석모듈(140)과 전동기(153) 사이에는 하부 흡수판(151)이 설치된다. 하부 흡수판(151)은 영구자석모듈(140)의 자기력이 전동기로 전달되는 것을 방지할 수 있도록 자기력을 흡수할 수 있는 소재를 갖는다. 하부 흡수판(151) 자체가 자기력을 흡수할 수 있는 물질로 이루어질 수 있으며, 자기력 흡수부재가 필름 형태로 하부 흡수판(151)에 부착되거나 자기력 흡수부재가 분말 형태로 코팅될 수도 있다. 자기력을 흡수할 수 있는 물질은 일반적으로 자기력을 흡수할 수 있는 소재가 적용될 수 있다.The permanent magnet modules 140 are arranged to be arranged in a plurality of rows and columns. The electric motor 153 is connected through the permanent magnet module 140 and the drive shaft 154, and a lower absorbing plate 151 is installed between the permanent magnet module 140 and the motor 153. The lower absorbing plate 151 has a material capable of absorbing magnetic force to prevent the magnetic force of the permanent magnet module 140 from being transmitted to the electric motor. The lower absorbent plate 151 itself may be made of a material capable of absorbing magnetic force, and the magnetic force absorbing member may be attached to the lower absorbent plate 151 in the form of a film, or the magnetic force absorbing member may be coated in a powder form. In general, a material capable of absorbing magnetic force may be applied to a material capable of absorbing magnetic force.

구동축(154)은 하부 흡수판(151)은 관통하여 하부 흡수판(151)의 위에 위치하는 영구자석모듈(140)과 연결되는 바, 이에 따라 영구자석모듈(140)은 전동기(153)에 의하여 자유롭게 회전할 수 있다. 본 실시예에서는 하나의 전동기(153)에 하나의 영구자석모듈(140)이 연결된 것으로 예시하고 있으나 본 발명이 이에 제한되는 것은 아니며, 하나의 전동기(153)에 복수개의 영구자석모듈(140)이 기어모듈을 통해서 연결될 수도 있다.The drive shaft 154 is connected to the permanent magnet module 140 located above the lower absorbing plate 151 through the lower absorbing plate 151, whereby the permanent magnet module 140 is by the electric motor 153 It can rotate freely. In this embodiment, one permanent magnet module 140 is connected to one electric motor 153, but the present invention is not limited thereto. A plurality of permanent magnet modules 140 may be connected to one electric motor 153. It can also be connected via a gear module.

영구자석모듈(140)은 할바흐 배열(Halbach array)을 갖는 고리 형상으로 이루어진다. 할바흐 배열은 1979년 Klaus Halbach에 의하여 처음 제안된 것으로서, 복수 개의 영구자석 조각을 조합하여 모터 시스템에서 요구되는 자계분포를 발생시킨다.Permanent magnet module 140 is formed in a ring shape having a Halbach array (Halbach array). The Halbach array, first proposed by Klaus Halbach in 1979, combines multiple permanent magnet pieces to generate the magnetic field distribution required by the motor system.

도 3에 도시된 바와 같이 영구자석모듈(140)은 복수 개의 영구자석편들을 포하며, 영구자석편들의 자화방향은 상하방향으로 변하도록 배치된다. 본 기재에서 자화방향이 상하방향으로 변한다 함은 영구자석모듈을 구성하는 영구자석편들의 상하방향 자화방향이 상이함을 뜻한다.As shown in FIG. 3, the permanent magnet module 140 includes a plurality of permanent magnet pieces, and the magnetization directions of the permanent magnet pieces are arranged to change in the vertical direction. In the present description, the magnetization direction is changed in the vertical direction to mean that the magnetization direction of the permanent magnet pieces constituting the permanent magnet module is different.

영구자석모듈(140)은 자극 자석편(141, 142)과 자극 자석편들(141, 142) 사이에 배치된 안내 자석편(143, 144, 145)을 포함한다. 자극 자석편(141, 142)과 안내 자석편(143, 144, 145)은 영구자석모듈(140)의 둘레방향으로 이어져 배치된다. 이에 따라 영구자석모듈(140)은 대략 원형 고리 형상을 이룬다.The permanent magnet module 140 includes guide magnet pieces 143, 144, and 145 disposed between the magnetic pole pieces 141 and 142 and the magnetic pole pieces 141 and 142. The magnetic pole magnet pieces 141 and 142 and the guide magnet pieces 143, 144 and 145 are arranged to extend in the circumferential direction of the permanent magnet module 140. Accordingly, the permanent magnet module 140 forms a substantially circular ring shape.

제1 자극 자석편(141)은 하방을 향하는 자화방향을 갖고, 제2 자극 자석편(142)은 상방을 향하는 자화방향을 갖는다. 이에 따라 제1 자극 자석편(141)은 하방으로 자기력선을 방출하고 제2 자극 자석편(142)은 상방으로 자기력선을 방출한다. 안내 자석편들(143, 144, 145)은 자기력선을 안내하는 역할을 하며, 자화 방향이 제1 자극 자석편(141)에서 제2 자극 자석편(142) 방향으로 점진적으로 변하도록 배치된다. 안내 자석편들(143, 143, 144)이 제1 자극 자석편(141)에서 방출된 자기력선을 제2 자극 자석편(142)으로 이동시키는 바, 이에 따라 아래쪽으로 나가는 자기력선은 밀집되지 못하고 퍼지게 되나, 위쪽으로 나가는 자기력선은 밀집된다. 영구자석모듈(140)은 자화방향이 일정하게 형성된 영구자석을 여러 조각으로 나눈 후, 이들을 결합하여 형성될 수 있다. The first magnetic pole magnet piece 141 has a magnetization direction facing downward, and the second magnetic pole magnet piece 142 has a magnetization direction pointing upward. Accordingly, the first magnetic pole magnet piece 141 emits magnetic force lines downward and the second magnetic pole magnet piece 142 emits magnetic force lines upward. The guide magnet pieces 143, 144, and 145 serve to guide the lines of magnetic force, and are arranged such that the magnetization direction is gradually changed from the first magnetic pole magnet piece 141 to the second magnetic pole magnet piece 142. The guide magnet pieces 143, 143, and 144 move the lines of magnetic force emitted from the first magnetic pole magnet piece 141 to the second magnetic pole magnet piece 142, whereby the lines of magnetic force extending downward do not become dense but spread. The magnetic field lines going upward are concentrated. The permanent magnet module 140 may be formed by dividing the permanent magnet having a constant magnetization direction into several pieces, and then combining them.

본 실시예에 따른 영구자석모듈(140)은 고리형으로 이루어지더라도 둘레방향으로 자화방향이 변하는 것이 아니라 상하방향으로 자화방향이 변하므로 영구자석모듈(140)은 하부에 형성되는 자기장의 세기를 최소화하면서 상부에 형성되는 자기장을 밀집시킬 수 있다. 따라서 영구자석모듈(140)의 자기장은 위쪽 방향으로 집중되어 기존의 영구자석보다 더 큰 부상력을 얻을 수 있다.Permanent magnet module 140 according to this embodiment is made of a ring shape, but the magnetization direction is not changed in the circumferential direction, but the magnetization direction is changed in the circumferential direction, so the permanent magnet module 140 is the strength of the magnetic field formed at the bottom The magnetic field formed at the top can be concentrated while minimizing. Therefore, the magnetic field of the permanent magnet module 140 may be concentrated in the upward direction to obtain a larger flotation force than the existing permanent magnet.

영구자석모듈(140)이 회전하면 페러데이(Faraday) 법칙에 의하여 전기장이 유도되며, 유도된 전기장으로 인하여 도체판(123)에는 전류가 발생한다. 즉, 영구자석모듈(140)이 움직이는 방향으로 자석의 자계의 변화를 방해하려는 기전력이 형성되고, 이 기전력은 도체판(123)에 와전류(eddy current)를 발생시킨다. 와전류의 세기는 도체판(123)의 도전율, 영구자석모듈(140)의 이동 속도 및 법선방향의 자속밀도의 크기에 비례한다. When the permanent magnet module 140 rotates, an electric field is induced by Faraday's law, and a current is generated in the conductor plate 123 due to the induced electric field. That is, an electromotive force is formed to interfere with the change of the magnetic field of the magnet in the direction in which the permanent magnet module 140 moves, and this electromotive force generates an eddy current in the conductor plate 123. The intensity of the eddy current is proportional to the conductivity of the conductor plate 123, the moving speed of the permanent magnet module 140, and the magnitude of the magnetic flux density in the normal direction.

도 6에 도시된 바와 같이 종래의 영구자석은 2개 또는 4개의 자극 자석편으로 이루어지는 바, 자기력이 아래로 밀집되기 보다는 옆쪽에 위치하는 자석으로 수평방향으로 이동하거나 퍼지게 된다. 이에 따라 자력에 비하여 도체판에 미치는 영향은 작아서 와전류의 세기가 크지 못하게 된다.As shown in FIG. 6, the conventional permanent magnet is composed of two or four magnetic pole magnet pieces, and the magnetic force is horizontally moved or spread by a magnet located sideways rather than being concentrated downward. Accordingly, the influence on the conductor plate is smaller than that of the magnetic force, so that the strength of the eddy current is not large.

그러나 본 실시예와 같이 영구자석모듈(140)이 할바흐배열을 가지면 법선방향 자속밀도가 1.4배 이상 커지므로 보다 큰 와전류를 발생시킬 수 있다. 와전류가 발생하면 로렌쯔(Lorentz)의 힘이라는 자기력이 생성되며 이 자기력의 수직방향 성분이 부상력으로 작용한다.However, if the permanent magnet module 140 has a Halbach array as in the present embodiment, since the normal magnetic flux density increases by 1.4 times or more, a larger eddy current may be generated. When an eddy current occurs, a magnetic force called Lorentz's force is generated, and the vertical component of the magnetic force acts as a floating force.

로렌쯔 힘에 의하여 부상력이 발생할 뿐만 아니라 저항력도 발생하는데, 저항력(drag-force)이라 함은 영구자석모듈(140)의 회전 방향과 반대 방향으로 작용하는 힘을 말한다. 저항력은 저속에서는 크지만, 속도가 증가하면 점점 감소하며 부상력은 속도가 증가할 수록 더욱 커진다. 본 실시예서 저항력은 대차(120)가 이동하는 방향이 아닌 영구자석모듈(140)의 회전방향으로 발생하고, 전동기(131)에 의하여 영구자석모듈(140)이 고속으로 회전하므로 일렬로 배열된 할바흐 배열에 비하여 저항력을 최소화할 수 있다.In addition to the floating force generated by the Lorentz force, the resistance is also generated, the drag force (drag-force) refers to the force acting in the direction opposite to the rotation direction of the permanent magnet module 140. Resistance is large at low speeds, but decreases with increasing speed, and flotation increases with increasing speed. In this embodiment, the resistive force is generated in the rotational direction of the permanent magnet module 140, not the direction in which the bogie 120 moves, and the permanent magnet module 140 rotates at a high speed by the electric motor 131. The resistivity can be minimized compared to the Bach arrangement.

이와 같이 본 실시예에 따르면 할바흐 배열을 갖는 영구자석모듈(140)을 이용하여 큰 부상력을 발생시킬 수 있으며, 이에 따라 종래의 자기부상 시스템에 비하여 부상을 위한 전력 소비를 현저히 감소시킬 수 있다.As described above, according to the present embodiment, a large floating force may be generated by using the permanent magnet module 140 having a Halbach arrangement, and thus, power consumption for injuries may be significantly reduced as compared to a conventional magnetic levitation system. .

본 실시예에서는 영구자석모듈(140)이 8 요소의 할바흐 배열로 이루어진 것으로 예시하고 있지만, 본 발명이 이에 제한되는 것은 아니다.In the present embodiment, the permanent magnet module 140 is illustrated as being composed of a Halbach array of eight elements, but the present invention is not limited thereto.

도 4는 본 제1 실시예의 변형예에 따른 영구자석모듈(160)을 도시한 사시도이다.4 is a perspective view illustrating a permanent magnet module 160 according to a modification of the first embodiment.

도 4를 참조하여 설명하면 본 실시예에 따른 영구자석모듈(160)은 4개의 자극 자석편(161, 162)과 자극 자석편들(161, 162) 사이에 배치된 안내 자석편(163)을 포함한다. 자극 자석편(161, 162)과 안내 자석편(163)은 영구자석모듈(160)의 둘레방향으로 이어져 배치된다. 이에 따라 영구자석모듈(160)은 대략 원형 고리 형상을 갖는다.Referring to FIG. 4, the permanent magnet module 160 according to the present embodiment includes a guide magnet piece 163 disposed between four magnetic pole pieces 161 and 162 and magnetic pole pieces 161 and 162. Include. The magnetic pole magnet pieces 161 and 162 and the guide magnet piece 163 are arranged to extend in the circumferential direction of the permanent magnet module 160. Accordingly, the permanent magnet module 160 has a substantially circular ring shape.

제1 자극 자석편(161)은 상방으로 자기력선을 방출하고, 제2 자극 자석편(162)은 하방으로 자기력선을 방출한다. 안내 자석편들(163)은 자기력선을 안내하는 역할을 하며, 자화 방향은 제1 자극 자석편(161)에서 제2 자극 자석편(162)을 향하는 방향이 된다. 이에 따라 안내 자석편들(163)은 제1 자극 자석편(161)에서 방출된 자기력선을 제2 자극 자석편(162)으로 이동시킨다. 따라서 아래쪽으로 나가는 자기력선은 밀집되지 못하고 퍼지게 되나, 위쪽으로 나가는 자기력선은 밀집된다. 영구자석모듈(160)은 자화방향이 일정하게 형성된 영구자석을 여러 조각으로 나눈 후, 이들을 결합하여 형성될 수 있다. The first magnetic pole magnet piece 161 emits magnetic force lines upward, and the second magnetic pole magnet piece 162 emits magnetic force lines downward. The guide magnet pieces 163 serve to guide the lines of magnetic force, and the magnetization direction is a direction from the first magnetic pole magnet piece 161 toward the second magnetic pole magnet piece 162. Accordingly, the guide magnet pieces 163 move the line of magnetic force emitted from the first magnetic pole magnet piece 161 to the second magnetic pole magnet piece 162. Therefore, the lines of magnetic force going downward are not concentrated and spread, but the lines of magnetic force going upward are concentrated. The permanent magnet module 160 may be formed by dividing the permanent magnet having a constant magnetization direction into several pieces and then combining them.

본 실시예에 따른 영구자석모듈(160)은 하부에 형성되는 자기장의 세기를 최소화하면서 상부에 형성되는 자기장을 밀집시킬 수 있다. 따라서 영구자석모듈(160)의 자기장은 위쪽 방향으로 집중되어 기존의 영구자석보다 더 큰 부상력을 얻을 수 있다.The permanent magnet module 160 according to the present embodiment may compact the magnetic field formed at the top while minimizing the strength of the magnetic field formed at the bottom. Therefore, the magnetic field of the permanent magnet module 160 is concentrated in the upward direction can obtain a greater flotation force than the existing permanent magnet.

도 5는 본 발명의 제2 실시예에 따른 자기부상 시스템을 도시한 단면도이다.5 is a cross-sectional view showing a magnetic levitation system according to a second embodiment of the present invention.

도 5를 참조하여 설명하면 본 실시예에 따른 자기부상 시스템(200)은 대차(120)와 대차(120)의 아래에 위치하는 지상측 부상장치(150)를 포함한다.Referring to FIG. 5, the magnetic levitation system 200 according to the present embodiment includes a trolley 120 and a ground-side floating device 150 positioned below the trolley 120.

본 실시예에 따른 자기부상 시스템(200)은 전달 플레이트와 보조 차륜이 설치된 것을 제외하고는 상기한 제1 실시예에 따른 자기부상 시스템과 동일한 구조로 이루어지므로 동일한 구조에 대한 중복 설명은 생략한다.The magnetic levitation system 200 according to the present exemplary embodiment has the same structure as the magnetic levitation system according to the first embodiment except that the transfer plate and the auxiliary wheel are installed, and thus the redundant description of the same structure will be omitted.

본 실시예에 따른 영구자석모듈(140)들 상에는 지상에 고정된 전달 플레이트(157)가 설치된다. 전달 플레이트(157)은 영구자석모듈(140)에서 발생된 자기력이 흡수되거나 반사되지 않고 통과시키거나 증폭할 수 있도록 자기력을 통과시키거나 증폭시킬 수 있는 물질로 이루어진다.On the permanent magnet modules 140 according to the present embodiment, a transmission plate 157 fixed to the ground is installed. The transfer plate 157 is made of a material capable of passing or amplifying the magnetic force so that the magnetic force generated in the permanent magnet module 140 may pass or amplify without being absorbed or reflected.

본 실시예와 같이 전달 플레이트(157)가 설치되면 영구자석모듈들(140)을 보호할 수 있을 뿐만 아니라 부상이 정지될 경우, 도체판(123)에 설치된 보조차륜(137)을 이용하여 대차가 이동할 수 있다. When the transfer plate 157 is installed as in this embodiment, not only can the permanent magnet modules 140 be protected, but also when the injury is stopped, the bogie is provided using the auxiliary wheel 137 installed on the conductor plate 123. I can move it.

이상을 통해 본 발명의 바람직한 실시예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 특허청구범위와 발명의 상세한 설명 및 첨부한 도면의 범위 안에서 여러 가지로 변형 또는 변경하여 실시하는 것이 가능하고 이 또한 본 발명의 범위에 속하는 것은 당연하다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments, but many variations and modifications may be made without departing from the spirit and scope of the invention. And it goes without saying that they belong to the scope of the present invention.

100, 20: 자기부상 시스템 120: 대차
121: 강자성체판 123: 도체판
131: 전동기 137: 보조차륜
1401 160: 영구자석모듈 141, 161: 제1 자극 자석편
142, 162: 제2 자극 자석편 143, 144, 145, 163: 안내 자석편
150: 지상측 부상장치 151: 하부 흡수판
153: 전동기 154: 구동축
157: 전달 플레이트
100, 20: Maglev system 120: Balance
121: ferromagnetic plate 123: conductor plate
131: electric motor 137: auxiliary wheel
1401 160: permanent magnet module 141, 161: first magnetic pole piece
142 and 162: second magnetic pole magnet pieces 143, 144, 145 and 163: guide magnet pieces
150: ground-floating flotation device 151: lower absorber plate
153: electric motor 154: drive shaft
157: transfer plate

Claims (9)

할바흐 배열(halbach array)을 갖는 복수개의 영구자석모듈과 상기 영구자석모듈들을 회전시키며 지상에 고정 설치된 전동기를 포함하는 지상측 부상장치; 및
상기 지상측 부상장치 위에 위치하는 도체판을 갖는 대차;
를 포함하고,
상기 영구자석모듈은 둘래 방향을 따라 배치된 복수 개의 영구자석편으로 이루어지며, 상기 영구자석편들의 자화방향은 상하방향으로 변하도록 배치된 자기부상 시스템.
A ground-side floating device including a plurality of permanent magnet modules having a Halbach array and an electric motor fixed to the ground by rotating the permanent magnet modules; And
A bogie having a conductor plate positioned on the ground-side floating device;
Including,
The permanent magnet module is composed of a plurality of permanent magnet pieces arranged along the direction, the magnetic levitation system of the permanent magnet pieces are arranged to change in the vertical direction.
제1 항에 있어서,
상기 도체판은 알루미늄 또는 알루미늄 합금으로 이루어진 자기부상 시스템.
The method according to claim 1,
The conductor plate is a magnetic levitation system of aluminum or aluminum alloy.
제1 항에 있어서,
상기 도체판의 위에는 강자성체판이 배치된 자기부상 시스템.
The method according to claim 1,
A magnetic levitation system on which the ferromagnetic plate is disposed.
제1 항에 있어서,
상가 영구자석모듈은 고리형상으로 이루어진 자기부상 시스템
The method according to claim 1,
Mall permanent magnet module is a ring-shaped magnetic levitation system
제1 항에 있어서,
상기 영구자석모듈은 위를 향하는 방향의 자화방향을 갖는 제1 자극 자석편과, 아래를 향하는 방향의 자화방향을 갖는 제2 자극 자석편, 및 상기 제1 자극 자석편과 상기 제2 자극 자석편 사이에 위치하며, 상기 제1 자극 자석편에서 제2 자극 자석편을 향하는 방향의 자화방향을 갖는 유도 자석편을 포함하는 자기부상 시스템.
The method according to claim 1,
The permanent magnet module includes a first magnetic pole magnet piece having a magnetization direction in an upward direction, a second magnetic pole magnet piece having a magnetization direction in a downward direction, and the first magnetic pole piece and the second magnetic pole magnet piece. And an induction magnet piece positioned between and having a magnetization direction in a direction from the first magnetic pole magnet piece to the second magnetic pole magnet piece.
제5 항에 있어서,
상기 유도 자석편은 복수개로 이루어지고, 유도 자석편들의 자화방향은 제1 자극 자석편의 자화방향에서 제2 자극 자석편의 자화방향으로 점진적을 변하도록 배치된 자기부상 시스템.
The method of claim 5,
And a plurality of induction magnet pieces, and the magnetization direction of the induction magnet pieces is arranged to gradually change from the magnetization direction of the first magnetic pole magnet piece to the magnetization direction of the second magnetic pole magnet piece.
제1 항에 있어서,
상기 도체판과 상기 영구자석모듈 사이에는 자기력이 통과하거나 증폭되는 전달 플레이트가 설치된 자기부상 시스템
The method according to claim 1,
Magnetic levitation system between the conductor plate and the permanent magnet module is installed a transfer plate through which a magnetic force passes or amplified
제1 항에 있어서,
상기 영구자석모듈과 상기 전동기 사이에는 자기력을 흡수하는 하부 흡수판이 설치된 자기부상 시스템.
The method according to claim 1,
Magnetic levitation system is installed between the permanent magnet module and the electric motor, the lower absorbing plate to absorb the magnetic force.
제1 항에 있어서,
상기 도체판에는 보조 차륜이 설치된 자기부상 시스템.
The method according to claim 1,
The magnetic levitation system is provided with an auxiliary wheel on the conductor plate.
KR20100118304A 2010-11-25 2010-11-25 Magnetic levitation system having halbach array KR101174092B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20100118304A KR101174092B1 (en) 2010-11-25 2010-11-25 Magnetic levitation system having halbach array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20100118304A KR101174092B1 (en) 2010-11-25 2010-11-25 Magnetic levitation system having halbach array

Publications (2)

Publication Number Publication Date
KR20120056657A true KR20120056657A (en) 2012-06-04
KR101174092B1 KR101174092B1 (en) 2012-08-14

Family

ID=46608745

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20100118304A KR101174092B1 (en) 2010-11-25 2010-11-25 Magnetic levitation system having halbach array

Country Status (1)

Country Link
KR (1) KR101174092B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110244243A (en) * 2019-06-17 2019-09-17 西南交通大学 A kind of rotary permanent-magnet electrodynamics suspension, driving integrated testing device
CN113265914A (en) * 2021-05-27 2021-08-17 江西理工大学 Permanent magnetic suspension track and permanent magnetic suspension track system
CN113997797A (en) * 2021-12-03 2022-02-01 中国科学院电工研究所 Permanent magnet electric suspension guide driving integrated device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103308323B (en) * 2013-06-25 2015-10-14 西南交通大学 A kind of electromagnetic type weight reducing device for celestial body detecting vehicle test
KR102415944B1 (en) 2015-06-23 2022-07-04 삼성전자주식회사 Supporting Unit and Substrate Treating Apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6827022B2 (en) 2002-12-27 2004-12-07 General Atomics Magnetic levitation and propulsion system
US20070089636A1 (en) * 2003-05-20 2007-04-26 Guardo Jose L Jr Magnetic levitation transport system
US7224252B2 (en) 2003-06-06 2007-05-29 Magno Corporation Adaptive magnetic levitation apparatus and method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110244243A (en) * 2019-06-17 2019-09-17 西南交通大学 A kind of rotary permanent-magnet electrodynamics suspension, driving integrated testing device
CN110244243B (en) * 2019-06-17 2024-01-30 西南交通大学 Rotary permanent magnet electric suspension and driving integrated testing device
CN113265914A (en) * 2021-05-27 2021-08-17 江西理工大学 Permanent magnetic suspension track and permanent magnetic suspension track system
CN113997797A (en) * 2021-12-03 2022-02-01 中国科学院电工研究所 Permanent magnet electric suspension guide driving integrated device
CN113997797B (en) * 2021-12-03 2024-01-26 中国科学院电工研究所 Permanent magnet electric suspension guiding driving integrated device

Also Published As

Publication number Publication date
KR101174092B1 (en) 2012-08-14

Similar Documents

Publication Publication Date Title
KR101215630B1 (en) Magnetic levitation system having halbach array
KR101174092B1 (en) Magnetic levitation system having halbach array
KR101004511B1 (en) Magnetic suspension system
US9278627B2 (en) Planar electric generator
KR101544383B1 (en) Magnetic levitation system having switch for guide elctromagnetic and stoping method thereof
US20050204948A1 (en) Inductrack configuration
KR101009465B1 (en) Magnetic levitation system and magnetic levitation method using halbach array
KR100895899B1 (en) Magnetically levitated vehicle system using linear switched reluctance motor and halbach array
KR101049221B1 (en) Magnetic Levitation Carrier Using Linear Induction Motor
CN110244243B (en) Rotary permanent magnet electric suspension and driving integrated testing device
CN109562696B (en) Magnetic levitation device for vehicle
US20180030662A1 (en) Rail-bound maglev train
CN108394312A (en) A kind of magnetic suspension train
JP2010252413A (en) Magnetic levitation mobile system
KR20050078514A (en) Magnetic levitation planar transportation vehicle using magnetic induction
KR101299711B1 (en) Magnetic levitation system haviang permanent magnet module
CN117162795A (en) Suspension guiding integrated magnetic suspension mechanism based on permanent magnet array and closed coil group
KR101182354B1 (en) Magnetic levitation conveyance system having spring
CN102910086A (en) Magnetic levitation thrust unit
CN206841206U (en) Eddy current retarder and magnetically supported vehicle
CN112644555B (en) Circular ring type HALBACH magnetic braking device and high-speed train
JP2012522484A (en) Method and system for transport using a magnetic bearing structure
CN110979019B (en) Multi-source combined electromagnetic braking device and application thereof
WO2017203232A2 (en) Drive arrangement
Lembke Review of electrodynamic bearings

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150609

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160608

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170621

Year of fee payment: 6