KR20120051188A - Menufacturing method of luninescent paint - Google Patents

Menufacturing method of luninescent paint Download PDF

Info

Publication number
KR20120051188A
KR20120051188A KR1020100112494A KR20100112494A KR20120051188A KR 20120051188 A KR20120051188 A KR 20120051188A KR 1020100112494 A KR1020100112494 A KR 1020100112494A KR 20100112494 A KR20100112494 A KR 20100112494A KR 20120051188 A KR20120051188 A KR 20120051188A
Authority
KR
South Korea
Prior art keywords
light
titanium dioxide
light emitting
paint
propylene glycol
Prior art date
Application number
KR1020100112494A
Other languages
Korean (ko)
Other versions
KR101240597B1 (en
Inventor
강인배
이재선
백시영
Original Assignee
순천향대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 순천향대학교 산학협력단 filed Critical 순천향대학교 산학협력단
Priority to KR1020100112494A priority Critical patent/KR101240597B1/en
Publication of KR20120051188A publication Critical patent/KR20120051188A/en
Application granted granted Critical
Publication of KR101240597B1 publication Critical patent/KR101240597B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/12Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/01Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • C08K5/053Polyhydroxylic alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/06Ethers; Acetals; Ketals; Ortho-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/22Luminous paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/20Diluents or solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/80Processes for incorporating ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide

Abstract

PURPOSE: A manufacturing method of luminescent paint is provided to manufacture luminescent paint by using luminescent material coated by nano-sized titanium oxide, thereby improving axial lighting ability, and light emitting ability, and increasing afterglow time. CONSTITUTION: A manufacturing method of luminescent paint comprises: a step of synthesizing nano-sized titanium oxide-coated powder material by using fluorine, organic solvent, a dispersant, nano-sized titanium oxide and luminescent material powder; a step of putting the powder material, membrane-forming material, white filler and aiding agent into a dispersing vessel, and conducting dispersion; and a step of obtaining luminescent paint through filtering process.

Description

발광도료의 제조방법{MENUFACTURING METHOD OF LUNINESCENT PAINT}Manufacturing method of luminescent paint {MENUFACTURING METHOD OF LUNINESCENT PAINT}

본 발명은 발광도료의 제조방법에 관한 것으로, 더욱 상세하게는 무기물질을 이용하여 장시간 동안 잔광을 유지할 수 있는 발광도료의 제조방법에 관한 것이다.The present invention relates to a method of manufacturing a light-emitting paint, and more particularly to a method of manufacturing a light-emitting paint that can maintain the afterglow for a long time using an inorganic material.

현재 도료공업에 응용되는 축광재료와 발광재료는 주로 두 종류로, 황화아연(ZnS) 계열의 발광재료와 희토(稀土, rare earth)에 의해 활성화된 알칼리토 금속 알루민산염(alkaline earth metal aluminate) 발광재료가 그것이다. There are mainly two types of photoluminescent materials and luminescent materials applied to the paint industry, zinc sulfide (ZnS) -based luminescent materials and alkaline earth metal aluminate activated by rare earths. It is a light emitting material.

황화아연 기질의 축광재료와 발광재료를 전형적으로 대표하는 것은 구리와 코발트에 의해 활성화된 황화아연이며, 그 형상은 옅은 노란색 분말이다. 이러한 황화아연 계열의 발광도료는 여태까지 일종의 장기 잔광성(long-afterglow) 발광도료로 알려져 있을 뿐만 아니라 수많은 영역에 응용되고 있다. Typical examples of the phosphorescent material and the luminescent material of the zinc sulfide substrate are zinc sulfide activated by copper and cobalt, and the shape is pale yellow powder. The zinc sulfide-based light-emitting paint is known as a long-afterglow light-emitting paint so far, has been applied to a number of areas.

그러나 이 재료의 잔광은 1~2시간 정도밖에 지속하지 못하며 여러 응용장소에서 충분한 밝기를 갖추지 못하였을 뿐만 아니라 자외선 혹은 산소와 접촉 후 쉽게 변질된 성질이 있다. However, the afterglow of this material lasts only about 1 to 2 hours, not only enough brightness in various applications, but also easily deteriorated after contact with UV or oxygen.

그래서 황화아연 계열의 발광도료는 잔광시간을 연장하기 위해서 듀테륨(Deuterium)과 프로메튬(pm-147) 등 방사성 원소를 첨가해여 사용하였다. 하지만, 이와 같이 방사성 원소를 첨가하는 것은 환경의 방사성 오염을 초래하는 문제점이 있기 때문에, 황화아연 계열의 발광도료는 이미 점차적으로 시장에서 도태되고 있는 현실이다. Therefore, zinc sulfide-based light-emitting paints were used by adding radioactive elements such as deuterium and promethium (pm-147) to prolong the afterglow time. However, since the addition of radioactive elements has a problem of causing radioactive contamination of the environment, zinc sulfide-based light-emitting paints are already gradually taken away from the market.

최근에는 희토에 의해 활성화된 알칼리토금속 알루민산염, 상세하게는 히토유로퓸(Europium)을 활성 원소로 하여 알칼리토금속 알루민산염을 주물질로 하는 일종의 발광재료를 사용한다. Recently, alkaline earth metal aluminates activated by rare earths, in particular, a kind of light emitting material using alkaline earth metal aluminates as active elements, are used as an active element.

그 중 유로퓸(Europium, Eu)과 디스프로슘(Dysprosium, Dy)이 함께 활성화시킨 스트론튬 알루미네이트(strontium aluminate, SrO)는 전형적인 발광재료의 대표이며, 이는 종전과는 다른 차원에서 발전하기 시작한 일종의 신형 발광재료이다. Among them, strontium aluminate (SrO), which is activated by Europium (Eu) and dysprosium (Dy) together, is a representative example of a typical light emitting material, which is a kind of new light emitting material that has begun to develop in a different dimension than before. to be.

상기 스트론튬 알루미네이트는 초기 밝기가 밝고, 잔광시간이 10시간 이상에 달하며, 방사성이 없고, 내열성이 강하며, 환경침식에 강하고, 항산화 성능이 좋아서 친환경에너지절약의 재료로 불린다. The strontium aluminate has a bright initial brightness, afterglow time of 10 hours or more, no radioactivity, strong heat resistance, strong environmental erosion, and good anti-oxidation performance.

하지만, 알칼리토금속 알루민산염 발광재료 중 산화스트론튬과 산화알루미늄 함량의 비례가 같지 않음에 따라 형광의 파장과 잔광시간도 같지 않다. However, as the proportion of strontium oxide and aluminum oxide content in alkaline earth aluminate light emitting materials is not the same, the wavelength and afterglow time of fluorescence are not the same.

그러므로 산화스트론튬과 산화알루미늄 물질의 함량변화를 통해 유로퓸(Eu)과 디스프로슘(Dy)의 혼합량 및 산화칼슘(CaO), 산화마그네슘(MaO), 산화바륨(BaO) 등을 사용하여 스트론튬 알루미네이트(SrO)를 일부분 혹은 전부를 대체하거나 혹은 복합적으로 첨가하는 방법 등을 통하여 일련의 초기 발광강도와 잔광시간이 같지 않은 희토에 의해 활성화된 알칼리토금속 알루민산염의 발광재료를 얻을 수 있다. Therefore, the amount of strontium aluminate (SrO) can be changed by using a mixture of europium (Eu) and dysprosium (Dy) and calcium oxide (CaO), magnesium oxide (MaO), barium oxide (BaO), etc. ), A part or all of them may be replaced or a combination may be used to obtain a light emitting material of alkaline earth metal aluminate activated by rare earth whose initial emission intensity and afterglow time are not the same.

이와 같은 방법으로 얻을 수 있는 희토에 의해 활성화된 알칼리토금속 알루민산염의 발광재료는 다른 발광재료와 비교할 수 없는 장점을 가지기 때문에, 근래에는 상기 발광재료를 이용하여 제조된 발광도료가 교통과 소방 영역에서 널리 보급되어 사용되고 있다. Since the light emitting material of the alkaline earth metal aluminate activated by the rare earth which can be obtained by the above method has advantages incomparable with other light emitting materials, in recent years, the light emitting paint prepared by using the light emitting material has been used in traffic and fire fighting areas. It is widely used and used .

한편, 장기 잔광성 발광도료는 국제적으로 빠르게 발전되고 있는 첨단기능 재료 중의 하나로서, 발광안료, 유기수지 혹은 수지, 유기용제 혹은 용제, 무기안료, 충전제, 보조제 등을 일정한 비례로 하여 만들어진다.On the other hand, long-term afterglow luminescent paint is one of the high-tech functional materials that are rapidly developing internationally, is made of a constant proportion of the luminescent pigments, organic resins or resins, organic solvents or solvents, inorganic pigments, fillers, auxiliary agents.

이와 같이 만들어진 장기 잔광성 발광도료는 태양광 혹은 조명 등 가시광의 조사(照射) 하에서 빛 에너지를 흡수 저장한 다음 어두운 곳에서 흡수된 에너지를 가시광선의 형식으로 완만하게 방출해내어 발광시간을 10시간 이상 지속할 수 있다. The long-term afterglow luminous paint thus made absorbs and stores light energy under irradiation of visible light such as sunlight or lighting, and then slowly emits energy absorbed in the dark in the form of visible light, and thus emits light for more than 10 hours. Can last.

현재 장기 잔광성 및 축광성을 갖는 발광재료는 발광강도와 잔광시간, 견고 내구성을 제고함과 동시에 친환경적인 방향으로 발전하고 있다. At present, light emitting materials having long-term afterglow and photoluminescent properties are being developed in an environmentally friendly direction while improving luminous intensity, afterglow time, and durability.

특히, 나노입자는 표면효과, 스몰사이즈 효과, 거시적 양자터널링효과 등 특수성질을 가지기 때문에 이를 도료에 사용하는 경우 코팅층의 광학성능, 자기력성능, 전기성능, 역학성능을 대대적으로 제고하거나 혹은 새로운 기능을 나타내게 된다. In particular, nanoparticles have special properties such as surface effect, small size effect, macroscopic quantum tunneling effect, and when they are used in paints, they greatly improve the optical performance, magnetic force performance, electrical performance, and mechanical performance of coating layers. Will be displayed.

이에 따라, 나노입자를 도료에 사용하는 기술은 자동차, 건축자재, 기구계기, 선박, 항공기 등 제품의 등급과 시장경쟁력을 대대적으로 제고할 수 있으므로 고분자 재료와 도료 관계자들의 심후한 흥취를 불러 일으키고 있는 실정이다.
As a result, technologies that use nanoparticles in paints can greatly enhance the grades and market competitiveness of products such as automobiles, building materials, machinery, ships, aircrafts, etc. It is true.

본 발명은 상기한 바와 같은 문제점을 해결하기 위한 것으로, 본 발명의 목적은 나노입자를 이용해 발광재료를 코팅하여 발광강도 및 잔광시간을 증가시킬 수 있는 발광도료의 제조방법을 제공하는 것이다.The present invention is to solve the problems described above, an object of the present invention is to provide a method of manufacturing a light-emitting paint that can increase the intensity and afterglow time by coating the light emitting material using nanoparticles.

상기한 바와 같은 목적을 달성하기 위한 본 발명의 특징에 따르면, 본 발명은 (a) 불소수지, 유기용제, 분산제, 나노이산화티타늄(Titanium Dioxide) 및 발광재료 분말을 이용하여 나노이산화티타늄이 코팅처리된 분말재료를 합성하는 단계, (b) 상기 제 (a)단계에서 합성된 분말재료와 막 형성물질, 용제, 백색충전제 및 보조제를 분산용기에 넣어 분산시키는 단계 및 (c) 상기 제 (b)단계에서 분산이 완료되면 여과과정을 거쳐 발광도료제품을 얻는 단계를 포함한다.According to a feature of the present invention for achieving the object as described above, the present invention is (a) nano-titanium dioxide coating treatment using a fluorine resin, an organic solvent, a dispersant, nano titanium dioxide (oxide) and the light emitting material powder Synthesizing the powdered material, (b) dispersing the powdered material synthesized in the step (a) and the film forming material, the solvent, the white filler and the auxiliary agent in a dispersion container and (c) the agent (b) When the dispersion is completed in the step includes the step of obtaining a light-emitting paint product through a filtration process.

상기 제 (a)단계는 (a1) 상기 불소수지 5.00~20.00 중량%, 유기용제 10.00~50.00 중량%, 분산제 0.01~5.00 중량%, 나노이산화티타늄 0.20~6.00 중량% 및 발광재료 분말 40.00~60.00 중량%를 혼합한 혼합물을 500 내지 800회전/분의 중간속도로 30 내지 60분간 분산시키는 단계와 (a2) 상기 제 (a1)단계에서 분산된 용액을 60 내지 80℃에서 건조시켜 분쇄하여 나노이산화티타늄으로 코팅된 분말재료를 얻는 단계를 포함하고, 상기 나노이산화티타늄은 아나타제 타입, 루타일 타입 또는 상기 아나타제와 루타일의 결정혼합형 타입 중 하나이고, 상기 발광재료 분말은 규산염 발광재료, 알루민산염 발광재료, 알루미노규산염 발광재료 중 어느 하나 또는 둘 이상의 혼합분말이며, 상기 유기용제는 자일렌(Xylene), 아이소뷰탄올(Isobutanol), 프로필렌글리콜(Propylene Glycol), 프로필렌 글리콜 메틸 에테르(Propylene Glycol Methyl ether), 에틸렌 글리콜 모노부틸 에테르(Ethylene Glycol Monobutyl Ether), 프로필렌 글리콜 모노메틸 에테르 아세테이트(Propylene Glycol Monomethyl Ether Acetate), 아세트산 뷰틸(Butyl Acetate) 중 어느 하나 또는 둘 이상의 혼합물인 것을 특징으로 한다.The step (a) includes (a1) 5.00-20.00 wt% of the fluororesin, 10.00-50.00 wt% of the organic solvent, 0.01-5.00 wt% of the dispersant, 0.20-66.0 wt% of nano titanium dioxide, and 40.00-60.00 wt% of the light emitting material powder. Dispersing the mixture of the mixture at 30 to 60 minutes at an intermediate speed of 500 to 800 revolutions / minute and (a2) drying and grinding the solution dispersed in step (a1) at 60 to 80 ° C. And obtaining a powder material coated with the nano-titanium dioxide, which is one of an anatase type, a rutile type, or a crystal mixed type of the anatase and rutile, and the light emitting material powder is a silicate light emitting material or an aluminate light emitting material. A material or an aluminosilicate emitting material, any one or two or more powders of the organic solvent, the organic solvent is xylene, isobutanol, propylene glycol, propylene glycol Propylene Glycol Methyl ether, Ethylene Glycol Monobutyl Ether, Propylene Glycol Monomethyl Ether Acetate, Butyl Acetate (Butyl Acetate), or a mixture of two or more It is done.

상기 제 (b)단계는 (b1) 상기 막 형성물질 25~50 중량%, 나노이산화티타늄으로 코팅처리된 분말재료 5~50 중량%, 용제 0.1~30 중량%, 백색충전재 0.1~50 중량% 및 보조제 0.1~30 중량%를 상기 분산용기에 혼합하는 단계와 (b2) 상기 제 (b1)단계에서 혼합된 혼합물을 500 내지 800회전/분의 중간속도로 30 내지 60분간 분산시키는 단계를 포함하고, 상기 막 형성물질은 불소수지, 에폭시수지, 우레탄수지, 아크릴수지 중 어느 하나 또는 둘 이상인의 혼합물이며, 상기 불소수지는 클로로트리플루오로 에틸렌 공중합체 또는 테트라플로오루 에틸렌 공중합체이고, 상기 보조제는 분산제, 소포제(Defoamer), 유평제(leveling agent) 중에서 적어도 어느 하나이며, 상기 용제는 자일렌(Xylene), 아이소뷰탄올(Isobutanol), 프로필렌글리콜(Propylene Glycol), 프로필렌 글리콜 메틸 에테르(Propylene Glycol Methyl ether), 에틸렌 글리콜 모노부틸 에테르(Ethylene Glycol Monobutyl Ether), 프로필렌 글리콜 모노메틸 에테르 아세테이트(Propylene Glycol Monomethyl Ether Acetate), 아세트산 뷰틸(Butyl Acetate) 중 어느 하나 또는 둘 이상의 혼합물인 것을 특징으로 한다.The (b) step (b1) is 25 to 50% by weight of the film forming material, 5 to 50% by weight of the powder material coated with nano titanium dioxide, 0.1 to 30% by weight of the solvent, 0.1 to 50% by weight of the white filler and Mixing 0.1 to 30 wt% of the adjuvant into the dispersion container and (b2) dispersing the mixture mixed in the step (b1) for 30 to 60 minutes at an intermediate speed of 500 to 800 revolutions / minute, The film forming material is any one or a mixture of two or more of fluorine resin, epoxy resin, urethane resin, and acrylic resin, the fluorine resin is a chlorotrifluoro ethylene copolymer or tetrafluoro ethylene copolymer, and the auxiliary agent is a dispersant. , Defoamer, leveling agent (at least one), the solvent is xylene (Xylene), isobutanol (Isobutanol), propylene glycol (Propylene Glycol), propylene glycol methyl ether (Propylene Glyco l Methyl ether, ethylene glycol monobutyl ether (Ethylene Glycol Monobutyl Ether), propylene glycol monomethyl ether acetate (Propylene Glycol Monomethyl Ether Acetate), characterized in that any one or a mixture of two or more (Butyl Acetate).

상기 제 (c)단계는 80 내지 150메시의 여과망으로 여과하는 것을 특징으로 한다.The step (c) is characterized in that the filter with a mesh of 80 to 150 mesh.

상술한 바와 같이, 본 발명은 나노이산화티타늄으로 코팅된 발광재료를 이용해서 발광도료를 제조함에 따라 발광도료의 축광, 발광성능을 향상시키고 잔광시간을 증가시킬 수 있다. As described above, according to the present invention, as the light emitting material is manufactured using a light emitting material coated with nano titanium dioxide, it is possible to improve the photoluminescence, the light emitting performance of the light emitting material, and to increase the afterglow time.

특히, 본 발명은 제조된 발광도료의 사용 전 고르게 섞어 주고 용제를 사용하여 점도를 조절하여, 발광도료의 피막을 80㎛ 이상의 두께로 형성하는 경우, 균일하게 발광할 수 있는 발광코팅층을 형성할 수 있다.In particular, the present invention is evenly mixed before use of the prepared light-emitting paint and using a solvent to adjust the viscosity, when forming a film of the light-emitting paint to a thickness of 80㎛ or more, it is possible to form a light-emitting coating layer that can emit light uniformly have.

또 본 발명은 발광도료의 발광 강도를 향상시킬 수 있고, 나노이산화티타늄으로 코팅처리된 발광재료를 사용하지 않은 발광도료에 비해 축광능력과 발광능력을 약 3배 정도 제고할 수 있다. In addition, the present invention can improve the luminous intensity of the luminous paint, and can improve the luminous ability and luminous ability by about three times as compared to the luminous paint without the luminous material coated with nano titanium dioxide.

또한 본 발명은 제조된 발광도료를 브러쉬로 페인팅을 하는 방법으로 물체에 도포하거나 스프레이 페인팅 또는 롤러 페인팅 등 방법을 사용하여 다양한 방법을 이용하여 용이하게 시공할 수 있는 효과가 있다. In addition, the present invention has an effect that can be easily applied by using a variety of methods using a method such as painting the applied luminescent paint with a brush or spray painting or roller painting.

이하 본 발명의 바람직한 실시 예에 따른 발광도료의 제조방법을 첨부된 도면을 참조하여 상세하게 설명한다. Hereinafter, a method of manufacturing a light emitting paint according to a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.

본 발명의 바람직한 실시 예에 따른 발광도료의 제조방법은 나노이산화티타늄 코팅 처리된 장기 잔광성 분말재료를 합성하는 방법과 합성된 장기 잔광성 분말재료를 막 형성물질, 용제, 백색충전제 및 보조제와 함께 분산시켜 제조하는 방법을 포함한다. According to a preferred embodiment of the present invention, a method of preparing a light-emitting coating material comprising nano-titanium dioxide coating and a method of synthesizing a long-term afterglow powder material together with a film-forming material, a solvent, a white filler and an auxiliary agent It includes the method of manufacturing by dispersing.

먼저, 나노이산화티타늄 코팅 처리된 장기 잔광성 분말재료를 합성하는 방법을 설명한다. First, a method of synthesizing a long-term afterglow powder material treated with nano titanium dioxide coating will be described.

상기 장기 잔광성 분말재료는 불소수지, 유기용제, 분산제, 나노이산화티타튬 및 발광재료 분말을 이용해서 합성된다.  The long-term afterglow powder material is synthesized using a fluorine resin, an organic solvent, a dispersant, nanotitanium dioxide, and a light emitting material powder.

즉, 나노이산화티타늄 코팅 처리된 분말재료는 상기 물질들이 혼합된 혼합물을 500 내지 800회전/분의 속도로 30 내지 60분간 분산시키고, 분산된 용액을 60 내지 80℃에서 건조시켜 분쇄하여 얻게 된다.That is, the nano-titanium dioxide coating powder material is obtained by dispersing the mixture of the above materials mixed for 30 to 60 minutes at a rate of 500 to 800 revolutions / minute, and by drying the dispersed solution at 60 to 80 ℃.

표 1은 장기 잔광성 분말재료를 합성하는 원료 및 중량%를 보인 테이블이다. Table 1 is a table showing the raw materials and the weight% to synthesize a long-term afterglow powder material.

원료Raw material 중량%weight% 불소수지Fluorine Resin 5.00~20.005.00-20.00 유기용제Organic solvent 10.00~50.0010.00-50.00 분산제Dispersant 0.01~5.000.01 ~ 5.00 나노이산화티타늄Nano Titanium Dioxide 0.20~6.000.20 ~ 6.00 발광재료 분말Luminescent Material Powder 40.00~60.0040.00 ~ 60.00

상기 나노이산화티타늄은 아나타제 타입(Anatase Type), 루타일(금홍석) 타입 혹은 아나타제와 루타일의 결정혼합형 타입 중 하나이다.The nano titanium dioxide is one of an anatase type, rutile (rutile) type or a crystal mixed type of anatase and rutile.

상기 발광재료 분말은 규산염 발광재료, 알루민산염 발광재료, 알루미노규산염 발광재료 중 어느 하나 또는 둘 이상의 혼합분말로서, 평균 입경은 5~65㎛이며, 특히 25~60㎛인 것이 바람직하다. The light emitting material powder is any one, or a mixture of two or more of silicate light emitting material, aluminate light emitting material, aluminosilicate light emitting material, the average particle diameter is 5 ~ 65㎛, particularly preferably 25 ~ 60㎛.

상기 불소수지는 클로로트리플루오로 에틸렌(chlorotrifluoro ethylene, CTFE) 공중합체(copolymer) 또는 테트라플루오로 에틸렌(tetrafluoro ethylene) 공중합체이다.The fluororesin is a chlorotrifluoro ethylene (CTFE) copolymer or a tetrafluoro ethylene copolymer.

상기 분산제(deflocculationg agent)는 음이온 계면활성제로서, 헥사메타인산나트륨과 소디움 도데실 벤젠 술포네이트(sodium dodecyl benzene sulfonate, SDBS) 중 하나 또는 둘의 혼합물이다.The deflocculationg agent is an anionic surfactant and is a mixture of one or two of sodium hexametaphosphate and sodium dodecyl benzene sulfonate (SDBS).

상기 유기용제는 자일렌(Xylene), 아이소뷰탄올(Isobutanol), 프로필렌글리콜(Propylene Glycol), 프로필렌 글리콜 메틸 에테르(Propylene Glycol Methyl ether), 에틸렌 글리콜 모노부틸 에테르(Ethylene Glycol Monobutyl Ether), 프로필렌 글리콜 모노메틸 에테르 아세테이트(Propylene Glycol Monomethyl Ether Acetate), 아세트산 뷰틸(Butyl Acetate) 중 어느 하나 또는 둘 이상의 혼합물이다.The organic solvent is xylene, isobutanol, propylene glycol, propylene glycol methyl ether, ethylene glycol monobutyl ether, propylene glycol mono Methyl ether acetate (Propylene Glycol Monomethyl Ether Acetate), butyl acetate (Butyl Acetate) any one or a mixture of two or more.

다음, 나노이산화티타늄으로 코팅된 분말재료를 이용해 발광도료를 제조하는 방법을 설명한다. Next, a method of manufacturing a light-emitting paint using a powder material coated with nano titanium dioxide will be described.

나노이산화티타늄으로 코팅된 분말재료를 이용한 발광도료의 제조방법은 막 형성물질, 용제, 백색충전제 및 보조제와 나노이산화티타늄이 코팅된 분말재료를 분산용기에 넣어 분산시키는 단계와 분산된 용액을 건조한 후 건조물을 분쇄하여 발광도료를 제조하는 단계를 포함한다. The method of manufacturing a light-emitting coating using a powder material coated with nano titanium dioxide is to disperse a film-forming material, a solvent, a white filler and an auxiliary agent, and a powder material coated with nano titanium dioxide in a dispersing container and to dry the dispersed solution. Pulverizing the dried material to produce a light-emitting paint.

표 2는 발광도료를 제조하는 원료 및 중량%를 보인 테이블이다.Table 2 is a table showing the raw materials and the weight% to prepare a light-emitting paint.

원료Raw material 중량%weight% 막 형성물질Film forming material 25~5025-50 나노이산화티타늄으로 코팅처리된 분말재료Powder material coated with nano titanium dioxide 5~505-50 용제solvent 0.1~300.1-30 백색충전재White filler 0.1~500.1-50 보조제Supplements 0.1~300.1-30

상기 막 형성물질은 불소수지, 에폭시수지, 우레탄수지, 아크릴수지 중 어느 하나 또는 둘 이상이며, 각각의 수지 사용량은 막 형성물질 총량의 0~100%이다.The film forming material is any one or two or more of a fluorine resin, an epoxy resin, a urethane resin, an acrylic resin, and each resin is used in an amount of 0 to 100% of the total amount of the film forming material.

상기 용제는 자일렌(Xylene), 아이소뷰탄올(Isobutanol), 프로필렌글리콜(Propylene Glycol), 프로필렌 글리콜 메틸 에테르(Propylene Glycol Methyl ether), 에틸렌 글리콜 모노부틸 에테르(Ethylene Glycol Monobutyl Ether), 프로필렌 글리콜 모노메틸 에테르 아세테이트(Propylene Glycol Monomethyl Ether Acetate), 아세트산 뷰틸(Butyl Acetate) 중 어느 하나 또는 둘 이상의 혼합물이다. 그리고 상기 각각의 용제 사용량은 용제 총량의 0~100%이다.The solvent is xylene, isobutanol, propylene glycol, propylene glycol methyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl Ether acetate (Propylene Glycol Monomethyl Ether Acetate), butyl acetate (Butyl Acetate) any one or a mixture of two or more. And the amount of each solvent used is 0 to 100% of the total amount of the solvent.

상기 백색충전재는 이산화티타늄(Titanium Dioxide), 활석분, 탄산칼슘 중 어느 하나 또는 둘 이상이며 각각의 충전재 사용량은 백색충전재 총량의 0~100%이다.The white filler is any one or two or more of titanium dioxide (Titanium Dioxide), talc powder, calcium carbonate and the amount of each filler is 0 to 100% of the total amount of the white filler.

상기 보조제는 분산제, 소포제(Defoamer), 유평제(leveling agent) 중에서 적어도 하나 이상이다.The adjuvant is at least one of a dispersant, a defoamer, and a leveling agent.

상기 분산제는 솔벤트, 이산화티타늄, 헥사메타인산 나트륨, SDBS 중 어느 하나 또는 둘 이상을 혼합해서 사용하며 각각의 분산제 사용량은 분산제 총량의 0~100%이다.The dispersant may be used by mixing any one or two or more of solvent, titanium dioxide, sodium hexametaphosphate, SDBS, and the amount of each dispersant is 0 to 100% of the total amount of the dispersant.

상기 소포제는 디이소부틸케톤(Diisobutylketone), 이소부타놀(isobutanol), 탄화수소(hydrocabone), 폴리실록산(Polysiloxane) 중 어느 하나 또는 둘 이상을 혼합해서 사용하며 각각의 소포제 사용량은 소포제 총량의 0~100%이다.The antifoaming agent is used by mixing any one or two or more of diisobutylketone, isobutanol, isobutanol, hydrocarbon, and polysiloxane, and the amount of the antifoaming agent is 0 to 100% of the total amount of the antifoaming agent. to be.

상기 유평제는 폴리아크릴레이트(Polyacrylate), 자일렌, 솔벤트, 아크릴릭 코폴리머(acrylic copolymer) 중 어느 하나 또는 둘 이상을 혼합해서 사용하며 각각의 유평제 사용량은 유평제 총량의 0~100%이다.The leveling agent is used by mixing any one or two or more of polyacrylate, xylene, solvent, acrylic copolymer (acrylic copolymer) and the amount of each leveling agent is 0 to 100% of the total amount of the leveling agent.

따라서 본 발명에 따른 발광도료의 제조방법은 표 2에 도시된 바와 같이, 미리 설정된 성분비례에 의해 용제, 막 형성수지, 충전재, 기타 보조제와 상기한 합성방법에 따라 합성된 나노이산화티타늄으로 코팅 처리된 발광재료를 분산기의 재료배합탱크에 차례로 넣어 중간 속도, 예컨대 약 500~800회전/분으로 약 30~60분간 분산시킨다.Therefore, the method of manufacturing the light-emitting paint according to the present invention, as shown in Table 2, the coating treatment with the nano-titanium dioxide synthesized according to the above synthesis method with a solvent, a film forming resin, a filler, other auxiliaries by a predetermined proportion The light emitting material was sequentially put into the material mixing tank of the disperser and dispersed for about 30 to 60 minutes at an intermediate speed, for example, about 500 to 800 revolutions per minute.

이어서 분산기의 재료가 분산되면, 여과과정을 거쳐서 발광도료 제품을 얻을 수 있다.
Subsequently, when the material of the disperser is dispersed, a luminescent paint product may be obtained through filtration.

이하, 본 발명의 바람직한 실시 예에 따른 발광도료의 제조방법을 상세하게 설명한다.
Hereinafter, a method of manufacturing a light emitting paint according to a preferred embodiment of the present invention will be described in detail.

My 1실시예Example 1

표 3은 본 발명의 제 1실시 예에 따른 발광도료를 제조하는 원료 및 질량을 보인 테이블이다. Table 3 is a table showing the raw material and the mass for manufacturing the light-emitting paint according to the first embodiment of the present invention.

원료Raw material 질량mass 불소수지Fluorine Resin 50g50 g 나노이산화티타늄 코팅된 발광재료Nano Titanium Dioxide Coated Light Emitting Material 30g30 g 이산화티탄(충전안료)Titanium Dioxide (Filling Pigment) 18g18g 분산제Dispersant 1g1 g 분산제Dispersant 0.3g0.3 g 소포제Antifoam 0.3g0.3 g 유평제Judge 0.4g0.4g 이산화티타늄Titanium dioxide 25.5g25.5 g 소포제Antifoam 0.2g0.2 g 유평제Judge 0.3g0.3 g

먼저, 불소수지 200g, 유기용제 250g, 헥사메타인산나트륨 2g, 나노이산화티타늄 8g, 발광재료 540g을 분산용기 내에 넣어 중간속도, 예컨대 약 650회전/분으로 약 30분간 혼합하여 분산시켜 나노이산화티타늄 코팅처리된 발광재료의 분산체를 만든다.First, 200 g of fluorine resin, 250 g of organic solvent, 2 g of hexamethaphosphate, 8 g of nano titanium dioxide, and 540 g of a light emitting material were put into a dispersion container, mixed and dispersed for about 30 minutes at an intermediate speed, for example, about 650 revolutions / minute, thereby coating nano titanium dioxide. A dispersion of the treated luminescent material is made.

이어서, 나노이산화티타늄 코팅처리된 발광재료의 분산체를 60℃에서 건조시켜 분쇄하여 나노이산화티타늄 코팅처리된 발광재료를 만든다.Subsequently, the dispersion of the nano-titanium dioxide coated light-emitting material is dried and ground at 60 ° C. to produce the nano-titanium dioxide coated light-emitting material.

그리고 표 3에 기재된 바와 같이, 미리 설정한 비례에 따라 용제, 막 형성수지, 충전재, 기타 보조제와 나노이산화티타늄 코팅처리된 발광재료를 분산기 재료배합탱크에 차례로 넣어 중간속도, 예컨대 650회전/분으로 약 45분간 혼합하여 분산시킨다. As shown in Table 3, solvents, film-forming resins, fillers, other auxiliaries, and nano-titanium dioxide-coated light emitting materials were sequentially added to the disperser material mixing tank according to a preset proportion, and at a medium speed, for example, 650 revolutions per minute. Mix and disperse for about 45 minutes.

분산이 완료되면, 80메시(mesh)의 여과망으로 여과하는 과정을 거쳐서 발광도료를 얻게 된다.
When the dispersion is completed, the light-emitting paint is obtained by filtering through a mesh of 80 mesh (mesh).

My 2실시예2 Example

표 4는 본 발명의 제 2실시 예에 따른 발광도료를 제조하는 원료 및 질량을 보인 테이블이다. Table 4 is a table showing the raw materials and the mass for manufacturing the light-emitting paint according to the second embodiment of the present invention.

원료Raw material 질량mass 에폭시수지Epoxy resin 50g50 g 코팅된 발광안료Coated Luminescent Pigment 30g30 g 활석분(800#)Talc Powder (800 #) 10g10g 자일렌Xylene 7g7g 유평제Judge 1.4g1.4 g 분산제Dispersant 1.2g1.2 g 소포제Antifoam 0.6g0.6g

불소수지 190g, 유기용제 200g, 헥사메타인산나트륨 2g, 아나타제 타입 나노이산화티타늄 8g, SB-8C형 발광안료 600g을 분산용기 내에 넣어 중간속도, 예컨대 800회전/분으로 20분간 혼합하여 분산시켜 나노이산화티타늄 코팅처리된 발광재료의 분산체를 만든다.190 g of fluororesin, 200 g of organic solvent, 2 g of hexametaphosphate, 8 g of anatase type titanium dioxide, and 600 g of SB-8C type luminescent pigment were placed in a dispersing container and mixed by dispersing for 20 minutes at medium speed, for example, 800 revolutions per minute, to disperse the nano dioxide A dispersion of the titanium coated light emitting material is made.

이어서, 나노이산화티타늄 코팅처리된 발광재료의 분산체를 80℃에서 건조시켜 분쇄하여 나노이산화티타늄 코팅처리된 발광재료를 만든다.Subsequently, the dispersion of the nano-titanium dioxide coated luminescent material is dried and pulverized at 80 ° C. to produce the nano-titanium dioxide coated luminescent material.

그리고 표 4에 기재된 바와 같이, 미리 설정한 조성비에 따라 용제, 막 형성수지(에폭시수지), 충전재, 기타 보조제와 나노이산화티타늄 코팅처리된 발광재료를 분산기 재료배합탱크에 차례로 넣어 중간속도, 예컨대 약 500회전/분으로 약 30분간 혼합하여 분산시킨다. As shown in Table 4, solvents, film-forming resins (epoxy resins), fillers, other auxiliaries, and nano-titanium dioxide-coated light-emitting materials are sequentially added to the disperser material mixing tank according to a predetermined composition ratio. Mix and disperse for about 30 minutes at 500 revolutions / minute.

분산이 완료되면, 100메시 여과망으로 여과하는 과정을 거쳐 발광도료를 얻게 된다.
When the dispersion is completed, the luminous paint is obtained by filtration through a 100 mesh filter network.

My 3실시예3 Example

표 5는 본 발명의 제 3실시 예에 따라 발광재료를 제조하는 원료 및 질량을 보인 테이블이다. Table 5 is a table showing the raw materials and the mass for manufacturing the light emitting material according to the third embodiment of the present invention.

원료Raw material 질량mass 아크릴수지Acrylic resin 42g42 g 용제solvent 26g26 g 발광분말Luminous Powder 30g30 g 헥사메타인산나트륨(분산제)Sodium hexametaphosphate (dispersant) 2g2 g

불소수지 190g, 유기용제 200g, SDBS 4g, 아나타제 타입 나노이산화티타늄 6g, 발광재료 600g을 분산용기 내에 넣어 중간속도, 예컨대 약 600회전/분으로 약 40분간 혼합하여 분산시켜 나노이산화티타늄 코팅처리된 발광재료의 분산체를 만든다.190 g of fluorine resin, 200 g of organic solvent, 4 g of SDBS, 6 g of anatase type titanium dioxide, and 600 g of luminescent material were placed in a dispersion container, mixed and dispersed for about 40 minutes at a medium speed, such as about 600 revolutions per minute, to emit light coated with titanium dioxide. Make a dispersion of the material.

이어서 나노이산화티타늄 코팅처리된 발광안료의 분산체를 70℃에서 건조시켜 분쇄하여 나노이산화티타늄 코팅처리된 발광재료를 만든다.Subsequently, the dispersion of the nano-titanium dioxide coated luminescent pigment is dried and pulverized at 70 ° C. to produce the nano-titanium dioxide coated luminescent material.

그리고 표 5에 기재된 바와 같이, 미리 설정한 비례에 따라 용제, 막 형성수지, 충전재, 기타 보조제와 나노이산화티타늄 코팅처리된 발광재료를 분산기 재료배합탱크에 차례로 넣어 중간속도, 예컨대 약 600회전/분으로 약 30분간 혼합하여 분산시킨다. As shown in Table 5, solvents, film-forming resins, fillers, other auxiliaries, and nano-titanium dioxide-coated light emitting materials were sequentially added to the disperser material mixing tank according to a preset proportion, for example, at about 600 revolutions per minute. Mix for about 30 minutes and disperse.

분산이 완료되면, 150메시 여과망으로 여과하는 과정을 거쳐 발광도료를 얻게 된다.
When the dispersion is completed, the luminous paint is obtained by filtration through a 150 mesh filter network.

My 4실시예4 Examples

표 6은 본 발명의 제 4실시 예에 따른 발광도료를 제조하는 원료 및 질량을 보인 테이블이다. Table 6 is a table showing the raw material and the mass for manufacturing a light-emitting paint according to a fourth embodiment of the present invention.

원료Raw material 질량mass 우레탄수지Urethane Resin 25g25 g 발광분말Luminous Powder 25g25 g 루타일 이산화티타늄Rutile Titanium Dioxide 14g14 g 중질탄산칼슘Heavy calcium carbonate 10g10g 자일렌Xylene 24.6g24.6 g 습윤분산제Wet Dispersant 0.8g0.8 g 소포제Antifoam 0.2g0.2 g 유평제Judge 0.4g0.4g

먼저, 불소수지 190g, 유기용제 200g, 헥사메타인산나트륨 4g, 나노이산화티타늄 6g, 발광재료 300g을 분산용기 내에 넣어 중간속도, 예컨대 약 800회전/분으로 약 40분간 혼합하여 분산시켜 나노이산화티타늄 코팅처리된 발광재료의 분산체를 만든다.First, 190 g of fluorine resin, 200 g of organic solvent, 4 g of hexametha phosphate, 6 g of nano titanium dioxide, and 300 g of a light emitting material were put into a dispersion container, mixed and dispersed for about 40 minutes at a medium speed, for example, about 800 revolutions / minute, to apply nano titanium dioxide coating. A dispersion of the treated luminescent material is made.

이어서, 나노이산화티타늄 코팅처리된 발광안료의 분산체를 65℃에서 건조시켜 분쇄하여 나노이산화티타늄 코팅처리된 발광재료를 만든다.Subsequently, the dispersion of the nano-titanium dioxide coated luminescent pigment is dried and pulverized at 65 ° C. to produce the nano-titanium dioxide coated luminescent material.

그리고 표 6에 기재된 바와 같이, 미리 설정한 비례에 따라 용제, 막 형성수지, 충전재, 기타 보조제와 나노이산화티타늄 코팅처리된 발광안료를 분산기 재료배합탱크에 차례로 넣어 중간속도, 예컨대 약 800회전/분으로 약 30분간 혼합하여 분산시킨다. As shown in Table 6, solvents, film-forming resins, fillers, other auxiliaries, and nano-titanium dioxide-coated light-emitting pigments are sequentially added to the disperser material mixing tank according to a preset proportion, and at an intermediate speed, for example, about 800 revolutions per minute. Mix for about 30 minutes and disperse.

분산이 완료되면, 120메시 여과망으로 여과하는 과정을 거쳐 발광도료를 얻게 된다.
When the dispersion is completed, the luminous paint is obtained by filtering through a 120 mesh filter network.

이와 같이, 본 발명의 제 1 내지 제 4실시예에 따른 발광도료의 제조방법과 대비하기 위하여 나노이산화티타늄 코팅하지 않은 상업용 발광재료를 제 1 내지 제 4실시예와 동일한 방법으로 합성하여 제 1 내지 제 4 대조예에 따른 발광도료를 제조하고, 실험에 의해 제 1 내지 제 4실시예와 대비하였다.
As described above, in order to prepare the light emitting paints according to the first to fourth embodiments of the present invention, commercial light emitting materials not coated with nano-titanium dioxide are synthesized by the same method as the first to fourth embodiments. A light emitting paint according to the fourth comparative example was prepared and compared with the first to fourth examples by experiment.

My 1실험1 experiment

제 1 내지 제 4실시예와 제 1 내지 제 4대조예의 발광도료를 백색페인트가 초벌칠된 5개 조각의 50mm×50mm×1.5mm유리판에 고르게 칠하여 자연건조 7일 후 밀폐가 양호한 암실에서 축광, 발광실험을 진행하였다. The luminous paints of the first to fourth embodiments and the first to fourth control examples are evenly coated on five pieces of 50 mm x 50 mm x 1.5 mm glass plates prepainted with white paint, and after 7 days of natural drying, luminous and luminous in a well-closed dark room. The experiment was conducted.

실험방법은 상온, 공기 중에서 일정한 시간간격을 두고 광도계로 발광하는 코팅층의 축광, 발광 조명도를 측정하였으며 단위는 럭스(lux)이다.The experimental method measured the photoluminescence and the luminous intensity of the coating layer emitting light with a photometer at a constant time interval at room temperature and in air. The unit is lux.

표 7은 제 1실시예 내지 제 4실시예와 제 1 내지 제 4대조예에 따른 발광도료의 축광, 발광실험 결과의 비례값 테이블이다. Table 7 is a proportional value table of the photoluminescence of the light-emitting paints according to the first to fourth embodiments and the first to fourth control examples, and the light emission test results.

실 례excuse 실시예1/대조예1Example 1 / Control Example 1 실시예2/대조예2Example 2 / Control Example 2 실시예3/대조예3Example 3 / Control Example 3 실시예4/대조예4Example 4 / Control Example 4 상대적인 축,발광 조명도Relative axis, luminous intensity 2.762.76 1.921.92 2.462.46 2.222.22

My 2실험2 experiment

제 1 내지 제 4실시예와 제 1 내지 제 4대조예의 발광도료를 백색페인트가 초벌칠된 5개 조각의 50mm×50mm×1.5mm 유리판에 고르게 칠하여 자연건조 7일 후 밀폐가 양호한 암실에서 축광, 발광실험을 진행하였다. The luminous paints of the first to fourth embodiments and the first to fourth control examples are evenly coated on five pieces of 50 mm x 50 mm x 1.5 mm glass plates prepainted with white paint, and after 7 days of natural drying, they luminesce and emit light in a well-closed dark room. The experiment was conducted.

제 2실험 시 200ml의 이온을 제거한 용제가 담겨 있는 1000ml 비커에 잠겨 있는 샘플을 전조재배기에 놓고 일정한 시간 빛을 조사 후 조사등을 끈다. 그리고 상온, 공기 중에서 일정한 시간간격을 두고 광도계로 발광하는 코팅층의 축광, 발광 조명도를 측정하였으며 단위는 럭스이다.In the second experiment, a sample immersed in a 1000 ml beaker containing a solvent from which 200 ml of ions have been removed is placed in a precursor cultivator, and irradiated with light for a predetermined time, and then the lamp is turned off. In addition, photoluminescence and luminous intensity of the coating layer emitting light with a photometer were measured at room temperature and in air at regular time intervals. The unit is Lux.

표 8은 제 1 내지 제 4실시예와 제 1 내지 제 4대조예에 따른 발광도료의 축광, 발광실험 결과의 비례값 테이블이다. Table 8 is a proportional value table of the photoluminescence of the light-emitting paints according to the first to fourth embodiments and the first to fourth control examples, and the light emission test results.

실 례excuse 실시예1/대조예1Example 1 / Control Example 1 실시예2/대조예2Example 2 / Control Example 2 실시예3/대조예3Example 3 / Control Example 3 실시예4/대조예4Example 4 / Control Example 4 상대적인 축,발광 조명도Relative axis, luminous intensity 7.617.61 5.375.37 7.287.28 6.726.72

My 3실험3 experiment

제 1 내지 제 4실시예와 제 1 내지 제 4대조예의 발광도료를 백색페인트가 초벌칠된 5개 조각의 50mm×50mm×1.5mm 유리판에 고르게 칠하여 자연건조 7일 후 밀폐가 양호한 암실에서 실험을 진행하였다. The light emitting paints of the first to fourth embodiments and the first to fourth control examples were evenly coated on five pieces of 50 mm × 50 mm × 1.5 mm glass plates coated with white paint, and then experimented in a dark room with good sealing after 7 days of natural drying. It was.

제 3실험 시 400ml의 천연해수가 담겨 있는 1000ml 비커에 잠겨 있는 샘플을 전조재배기에 놓고 일정한 시간 빛을 조사 후 조사등을 끈다. 그리고 일정한 시간간격을 두고 광도계로 발광하는 코팅층의 축광, 발광 조명도를 측정하였으며 단위는 럭스이다.In the third experiment, a sample immersed in a 1000 ml beaker containing 400 ml of natural seawater is placed in a precursor cultivator and irradiated with light for a certain time and then the lamp is turned off. In addition, photoluminescence and luminous intensity of the coating layer emitting light with a photometer were measured at regular time intervals, and the unit was Lux.

표 9는 제 1 내지 제 4실시예와 제 1 내지 제 4대조예에 따른 발광도료의 축광, 발광조명도 실험 결과의 비례값 테이블이다.Table 9 is a proportional value table of the results of photoluminescence and luminous intensity experiments of the luminous paints according to the first to fourth embodiments and the first to fourth control examples.

실 례excuse 실시예1/대조예1Example 1 / Control Example 1 실시예2/대조예2Example 2 / Control Example 2 실시예3/대조예3Example 3 / Control Example 3 실시예4/대조예4Example 4 / Control Example 4 상대적인 축,발광 조명도Relative axis, luminous intensity 22.6622.66 15.3615.36 20.1320.13 17.0517.05

표 10은 제 1 내지 제 4대조예의 해수와 공기 중에서 빛을 복사한 후의 상대적인 조명도 비례값 테이블이다. Table 10 is a relative illuminance proportional value table after radiating light in seawater and air of the first to fourth control examples.

실 례excuse 대조예1Comparative Example 1 대조예2Comparative Example 2 대조예3Comparative Example 3 대조예4Comparative Example 4 상대적인 축,발광 조명도Relative axis, luminous intensity 0.610.61 0.430.43 0.550.55 0.470.47

표 11은 제 1 내지 제 4실시예의 해수와 공기 중에서 빛을 복사한 후의 상대적인 조명도 비례값 테이블이다. Table 11 is a table of relative illuminance proportional values after radiation of light in seawater and air of the first to fourth embodiments.

실 례excuse 실시예1/Example 1 실시예2/Example 2 / 실시예3/Example 3 / 실시예4/Example 4 / 상대적인 축,발광 조명도Relative axis, luminous intensity 8.168.16 9.749.74 7.857.85 8.498.49

상기한 바와 같은 실험결과에 따르면, 본 발명은 발광도료를 유리판에 도포한 후 일정한 심도의 물과 해수 속에서 빛을 받은 후에 측정한 축광강도와 발광강도는 공기 속에서 빛을 받은 후의 축광강도와 발광강도의 약 8~10배가 될 정도로 물과 해수 속에서 축광, 발광성능이 향상되었음을 알 수 있다.According to the experimental results as described above, the present invention, the luminous intensity and the luminous intensity measured after receiving the light in a certain depth of water and sea water after applying the luminous paint on the glass plate and the luminous intensity after receiving light in the air It can be seen that photoluminescence and luminous performance were improved in water and seawater to about 8-10 times the luminous intensity.

이와 같이, 본 발명에 따른 발광재료로 제조된 발광도료의 장기 잔광성, 축광성능 및 발광성능이 대대적으로 제고된 원인은 발광재료 속에 존재하는 레벨이 같지않은 심도의 트랩에너지의 레벨과 관계가 있다.  As such, the cause of the long-term afterglow property, the photoluminescent performance, and the luminescent performance of the luminescent material prepared by the luminescent material according to the present invention is greatly related to the level of the trap energy of the depth not equal to the level present in the luminescent material. .

상세하게 설명하면, 자외선 여기(Excitation) 발생 시 일정한 에너지 심도가 있는 트랩에너지 레벨이 여기 상태에서 충분한 수량의 전자(electron)를 포획하여 저장한다. 이때, 자외선 여기가 정지 후 트랩에너지 레벨에 저장되어 있는 전자는 실내온도의 열의 방해로 점차적으로 방출된다. 방출된 전자는 트랜지션(Transition) 되어 여기 상태가 되고 전자는 여기 상태에서 기저 상태(Ground State)로 돌아갈 때 장기 잔광성 발광이 발생된다. In detail, a trap energy level having a constant energy depth during the generation of ultraviolet excitation captures and stores a sufficient amount of electrons in the excited state. At this time, after the ultraviolet excitation is stopped, the electrons stored at the trap energy level are gradually released due to the interference of heat at room temperature. The emitted electrons are transitioned to an excited state, and long-term afterglow emission occurs when the electrons return from the excited state to the ground state.

특히, 나노이산화티타늄은 나노반도체화합물입자에 속하며 그 반도체 성질 때문에 자외선의 조사 하에서 전자가 여기되어 가전자대(Valence band)에서 전도대(conduction band)로 트랜지션됨에 따라 자외선에 대해 광대역(Broadband)의 강한 흡수작용이 발생한다. In particular, nano titanium dioxide belongs to the nanosemiconductor compound particles, and because of its semiconductor property, electrons are excited under ultraviolet irradiation and transition from valence band to conduction band, thus absorbing broadband broadly against ultraviolet rays. Action occurs.

따라서 나노입자의 입경이 충분히 작을 때 일정한 파장의 빛이 여기 상태에서 발광할 수 있다. Therefore, when the particle diameter of the nanoparticles is sufficiently small, light of a constant wavelength can emit light in an excited state.

결국, 불소수지와 분산제로 변이(modification)된 나노이산화티타늄입자로 코팅한 발광재료입자의 양공(electron hole) 쿨롱 작용이 강화되어 여기결합에너지와 진자(振子) 강도가 커지고 유전체효과가 증가되어 발광재료와 나노이산화티타늄 속에 전자의 트랜지션 과정을 서로 촉진시킴으로써 발광도료의 장기 잔광성, 축광성능 및 발광성능이 대대적으로 제고된다.As a result, the electron hole coulombic action of the light emitting material particles coated with nano-titanium dioxide particles modified with fluorine resin and dispersant is enhanced to increase excitation coupling energy, pendulum strength, and dielectric effect to increase light emission. By promoting the transition process of the electrons in the material and nano-titanium dioxide, the long-term afterglow, luminous performance and luminous performance of the luminous paint are greatly improved.

이와 같이 본 발명에 따른 발광도료의 제조방법에 의해 제조된 발광도료는 브러쉬로 페인팅을 하는 방법으로 물체에 발광도료를 도포할 수 있고, 스프레이 페인팅 혹은 롤러 페인팅 등 방법을 사용하여 시공할 수 있다. As described above, the luminous paint prepared by the method of manufacturing the luminous paint according to the present invention can be applied to the luminous paint by painting with a brush, and can be constructed using a method such as spray painting or roller painting.

특히, 본 발명에 따른 발광도료는 사용 전 고르게 섞어 주고 용제를 사용하여 점도를 조절할 수도 있다. In particular, the light-emitting paint according to the invention may be mixed evenly before use and the viscosity may be adjusted using a solvent.

상기한 바와 같은 과정을 통하여, 본 발명은 나노입자가 코팅된 이산화티타늄을 이용해서 발광도료를 제조함에 따라 발광도료의 축광, 발광성능을 향상시키고 잔광시간을 증가시킨다. Through the process as described above, the present invention is to produce a light-emitting coating using titanium dioxide coated nanoparticles to improve the photoluminescence of the light-emitting paint, luminous performance and increase the afterglow time.

본 발명의 권리범위는 위에서 설명된 실시 예에 한정되지 않고 청구범위에 기재된 바에 의해 정의되며, 본 발명의 기술분야에서 통상의 지식을 가진 자가 청구범위에 기재된 권리범위 내에서 다양한 변형과 개작을 할 수 있다는 것은 자명하다.
The scope of the present invention is not limited to the embodiments described above, but is defined by the claims, and various changes and modifications can be made by those skilled in the art within the scope of the claims. It is self evident.

Claims (4)

(a) 불소수지, 유기용제, 분산제, 나노이산화티타늄(Titanium Dioxide) 및 발광재료 분말을 이용하여 나노이산화티타늄이 코팅처리된 분말재료를 합성하는 단계,
(b) 상기 제 (a)단계에서 합성된 분말재료와 막 형성물질, 용제, 백색충전제 및 보조제를 분산용기에 넣어 분산시키는 단계 및
(c) 상기 제 (b)단계에서 분산이 완료되면 여과과정을 거쳐 발광도료제품을 얻는 단계를 포함하는 것을 특징으로 하는 발광도료의 제조방법.
(a) synthesizing a powder material coated with nano titanium dioxide using a fluorine resin, an organic solvent, a dispersant, nano titanium dioxide, and a light emitting material powder;
(b) dispersing the powder material synthesized in step (a) and the film forming material, the solvent, the white filler and the auxiliary agent in a dispersing container;
(c) when the dispersion is completed in step (b), the method of manufacturing a light-emitting paint comprising the step of obtaining a light-emitting paint product through a filtration process.
제 1항에 있어서, 상기 제 (a)단계는
(a1) 상기 불소수지 5.00~20.00 중량%, 유기용제 10.00~50.00 중량%, 분산제 0.01~5.00 중량%, 나노이산화티타늄 0.20~6.00 중량% 및 발광재료 분말 40.00~60.00 중량%를 혼합한 혼합물을 500 내지 800회전/분의 중간속도로 30 내지 60분간 분산시키는 단계와
(a2) 상기 제 (a1)단계에서 분산된 용액을 60 내지 80℃에서 건조시켜 분쇄하여 나노이산화티타늄으로 코팅된 분말재료를 얻는 단계를 포함하고,
상기 나노이산화티타늄은 아나타제 타입, 루타일 타입 또는 상기 아나타제와 루타일의 결정혼합형 타입 중 하나이고,
상기 발광재료 분말은 규산염 발광재료, 알루민산염 발광재료, 알루미노규산염 발광재료 중 어느 하나 또는 둘 이상의 혼합분말이며,
상기 유기용제는 자일렌(Xylene), 아이소뷰탄올(Isobutanol), 프로필렌글리콜(Propylene Glycol), 프로필렌 글리콜 메틸 에테르(Propylene Glycol Methyl ether), 에틸렌 글리콜 모노부틸 에테르(Ethylene Glycol Monobutyl Ether), 프로필렌 글리콜 모노메틸 에테르 아세테이트(Propylene Glycol Monomethyl Ether Acetate), 아세트산 뷰틸(Butyl Acetate) 중 어느 하나 또는 둘 이상의 혼합물인 것을 특징으로 하는 발광도료의 제조방법.
The method of claim 1, wherein step (a)
(a1) 500 to a mixture of 5.00-20.00 wt% of fluororesin, 10.00-50.00 wt% of organic solvent, 0.01-5.00 wt% of dispersant, 0.20-66.0 wt% of nano titanium dioxide, and 40.00-60.00 wt% of light emitting material powder. Dispersing for 30 to 60 minutes at an intermediate speed of from about 800 revolutions per minute;
(a2) drying the solution dispersed in the step (a1) at 60 to 80 ° C. and pulverizing to obtain a powder material coated with nano titanium dioxide,
The nano titanium dioxide is one of the anatase type, rutile type or a crystal mixed type of the anatase and rutile,
The light emitting material powder is any one or a mixture of two or more of silicate light emitting material, aluminate light emitting material, aluminosilicate light emitting material,
The organic solvent is xylene, isobutanol, propylene glycol, propylene glycol methyl ether, ethylene glycol monobutyl ether, propylene glycol mono Method for producing a light-emitting paint, characterized in that any one or a mixture of two or more of methyl ether acetate (Propylene Glycol Monomethyl Ether Acetate), butyl acetate (Butyl Acetate).
제 1항에 있어서, 상기 제 (b)단계는
(b1) 상기 막 형성물질 25~50 중량%, 나노이산화티타늄으로 코팅처리된 분말재료 5~50 중량%, 용제 0.1~30 중량%, 백색충전재 0.1~50 중량% 및 보조제 0.1~30 중량%를 상기 분산용기에 혼합하는 단계와
(b2) 상기 제 (b1)단계에서 혼합된 혼합물을 500 내지 800회전/분의 중간속도로 30 내지 60분간 분산시키는 단계를 포함하고,
상기 막 형성물질은 불소수지, 에폭시수지, 우레탄수지, 아크릴수지 중 어느 하나 또는 둘 이상인의 혼합물이며,
상기 불소수지는 클로로트리플루오로 에틸렌 공중합체 또는 테트라플로오루 에틸렌 공중합체이고,
상기 보조제는 분산제, 소포제(Defoamer), 유평제(leveling agent) 중에서 적어도 어느 하나이며,
상기 용제는 자일렌(Xylene), 아이소뷰탄올(Isobutanol), 프로필렌글리콜(Propylene Glycol), 프로필렌 글리콜 메틸 에테르(Propylene Glycol Methyl ether), 에틸렌 글리콜 모노부틸 에테르(Ethylene Glycol Monobutyl Ether), 프로필렌 글리콜 모노메틸 에테르 아세테이트(Propylene Glycol Monomethyl Ether Acetate), 아세트산 뷰틸(Butyl Acetate) 중 어느 하나 또는 둘 이상의 혼합물인 것을 특징으로 하는 발광도료의 제조방법.
The method of claim 1, wherein step (b)
(b1) 25 to 50% by weight of the film forming material, 5 to 50% by weight of the powder material coated with titanium dioxide, 0.1 to 30% by weight of solvent, 0.1 to 50% by weight of white filler and 0.1 to 30% by weight of auxiliary agent Mixing with the dispersion container
(b2) dispersing the mixture mixed in the step (b1) for 30 to 60 minutes at an intermediate speed of 500 to 800 revolutions / minute,
The film forming material is any one or a mixture of two or more of fluorine resin, epoxy resin, urethane resin, acrylic resin,
The fluororesin is a chlorotrifluoro ethylene copolymer or tetrafluoro ethylene copolymer,
The adjuvant is at least one of a dispersant, a defoamer, a leveling agent,
The solvent is xylene, isobutanol, propylene glycol, propylene glycol methyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl A method for producing a light-emitting paint, characterized in that any one or a mixture of two or more of ether acetate (Propylene Glycol Monomethyl Ether Acetate), butyl acetate (Butyl Acetate).
제 1항에 있어서, 상기 제 (c)단계는
80 내지 150메시의 여과망으로 여과하는 것을 특징으로 하는 발광도료의 제조방법.
The method of claim 1, wherein step (c)
Method for producing a light-emitting paint, characterized in that the filter with a mesh of 80 to 150 mesh.
KR1020100112494A 2010-11-12 2010-11-12 Menufacturing method of luninescent paint KR101240597B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100112494A KR101240597B1 (en) 2010-11-12 2010-11-12 Menufacturing method of luninescent paint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100112494A KR101240597B1 (en) 2010-11-12 2010-11-12 Menufacturing method of luninescent paint

Publications (2)

Publication Number Publication Date
KR20120051188A true KR20120051188A (en) 2012-05-22
KR101240597B1 KR101240597B1 (en) 2013-03-11

Family

ID=46268312

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100112494A KR101240597B1 (en) 2010-11-12 2010-11-12 Menufacturing method of luninescent paint

Country Status (1)

Country Link
KR (1) KR101240597B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102285155B1 (en) * 2021-01-15 2021-08-02 이규선 Paint composition and hybrid nano coating film formed therefrom
CN115505311A (en) * 2022-10-27 2022-12-23 陕西世纪交通工程股份有限公司 Environment-friendly self-luminous coating containing MMA resin and preparation method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104059418A (en) * 2014-06-30 2014-09-24 南通蛇类治疗研究所 Nanometer fluorocarbon air-purifying luminescent coating
KR102612325B1 (en) 2023-10-26 2023-12-12 주식회사 고산건업 Photoluminescent Paint Composition For Evacuation Guidance Pictograms In Tunnels And Construction Method Using The Same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100539831B1 (en) 2004-10-27 2005-12-28 주식회사 바이오탑 Luminescent composition and manufacturing method thereof
JP2009091411A (en) 2007-10-04 2009-04-30 Nippon Sheet Glass Co Ltd Glitter pigment-containing composition, print and coated article
KR100867617B1 (en) 2008-02-18 2008-11-10 (주)삼우종합건축사사무소 Luminous powder coating and making method of thereof
KR20100045348A (en) * 2008-10-23 2010-05-03 노찬우 Light emitting and slip-stop paint for road and method for painting the road

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102285155B1 (en) * 2021-01-15 2021-08-02 이규선 Paint composition and hybrid nano coating film formed therefrom
CN115505311A (en) * 2022-10-27 2022-12-23 陕西世纪交通工程股份有限公司 Environment-friendly self-luminous coating containing MMA resin and preparation method thereof
CN115505311B (en) * 2022-10-27 2024-01-30 陕西世纪交通工程股份有限公司 Environment-friendly self-luminous coating containing MMA resin and preparation method thereof

Also Published As

Publication number Publication date
KR101240597B1 (en) 2013-03-11

Similar Documents

Publication Publication Date Title
CN101333357B (en) Luminous paint and method for preparing same
US7674400B2 (en) Light-emitting body dispersed with phosphor particles, method for producing same and material or article containing such light-emitting body
US20140131619A1 (en) Luminescent material particles comprising a coating and lighting unit comprising such luminescent material
JP5443662B2 (en) Method for producing moisture-resistant phosphor particle powder and LED element or dispersion-type EL element using moisture-resistant phosphor particle powder obtained by the production method
CN101333349A (en) Water-soluble luminous paint with long afterglow phosphorescent material coated by nanometer titanium dioxide and method for preparing same
KR101240597B1 (en) Menufacturing method of luninescent paint
US20130153118A1 (en) Phosphorescent compositions and use thereof
CN108084752B (en) Inorganic water-based energy-storage luminescent coating for tunnel and preparation method thereof
KR101240590B1 (en) Luninescent paint
EP1279716A1 (en) Liquefied colour phosphorescent material and method for manufacturing the same
Tayebi et al. The effect of the surface coating of a strontium mono-aluminate europium dysprosium-based (SrAl 2 O 4: Eu 2+, Dy 3+) phosphor by polyethylene (PE), polystyrene (PS) and their dual system on the photoluminescence properties of the pigment
CN101220238A (en) Method for producing solvent type energy accumulation luminescent paint
CN104341898A (en) Water-proof flame-retardant luminescent sign board coating
JP2011094041A (en) Water resistant stress-induced light-emitting material, method for producing the same, and coating composition and ink composition using the same
KR101647764B1 (en) Improvements to phosphors
JP2017141391A (en) Method for producing luminous pigment
KR101766830B1 (en) Organic/inorganic coating red phosphor and Manufacturing method
JP2009249396A (en) Luminous white light emitting phosphor, fluorescent lamp, luminous display, and luminous molded product
KR100598144B1 (en) Composition of luminescent pigment whose afterglow time is lengthened
KR101250142B1 (en) Processing method of a long phosphorescence phosphor by combustion-reaction and its application for the fabrication of luminescent sheet
CN113061433A (en) Method for manufacturing phosphor material and lighting equipment
WO2009116565A1 (en) Fluorescent body for use in a near-ultraviolet excitation light-emitting element
CN113214821B (en) Application of phenolic compound in improving humidity resistance of tetravalent manganese fluoride red fluorescent powder
KR20010003910A (en) Method for treating surface of phosphor and surface-treated phosphor manufactured using the same
TWI474967B (en) Improvements to phosphors

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160226

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170228

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20200109

Year of fee payment: 8