KR101250142B1 - Processing method of a long phosphorescence phosphor by combustion-reaction and its application for the fabrication of luminescent sheet - Google Patents

Processing method of a long phosphorescence phosphor by combustion-reaction and its application for the fabrication of luminescent sheet Download PDF

Info

Publication number
KR101250142B1
KR101250142B1 KR1020100110371A KR20100110371A KR101250142B1 KR 101250142 B1 KR101250142 B1 KR 101250142B1 KR 1020100110371 A KR1020100110371 A KR 1020100110371A KR 20100110371 A KR20100110371 A KR 20100110371A KR 101250142 B1 KR101250142 B1 KR 101250142B1
Authority
KR
South Korea
Prior art keywords
powder
photoluminescent
strontium
reaction
aluminum oxide
Prior art date
Application number
KR1020100110371A
Other languages
Korean (ko)
Other versions
KR20120048906A (en
Inventor
김정식
Original Assignee
서울시립대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울시립대학교 산학협력단 filed Critical 서울시립대학교 산학협력단
Priority to KR1020100110371A priority Critical patent/KR101250142B1/en
Publication of KR20120048906A publication Critical patent/KR20120048906A/en
Application granted granted Critical
Publication of KR101250142B1 publication Critical patent/KR101250142B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/64Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing aluminium
    • C09K11/641Chalcogenides
    • C09K11/643Chalcogenides with alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/29Laminated material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/55Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing beryllium, magnesium, alkali metals or alkaline earth metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K2/00Non-electric light sources using luminescence; Light sources using electrochemiluminescence
    • F21K2/06Non-electric light sources using luminescence; Light sources using electrochemiluminescence using chemiluminescence
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F13/00Illuminated signs; Luminous advertising
    • G09F13/20Illuminated signs; Luminous advertising with luminescent surfaces or parts
    • G09F13/22Illuminated signs; Luminous advertising with luminescent surfaces or parts electroluminescent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/422Luminescent, fluorescent, phosphorescent
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F13/00Illuminated signs; Luminous advertising
    • G09F13/20Illuminated signs; Luminous advertising with luminescent surfaces or parts
    • G09F13/22Illuminated signs; Luminous advertising with luminescent surfaces or parts electroluminescent
    • G09F2013/222Illuminated signs; Luminous advertising with luminescent surfaces or parts electroluminescent with LEDs

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Luminescent Compositions (AREA)

Abstract

본 발명은 황록색의 발광특성을 나타내고, 발광휘도가 매우 높은 스트론튬-산화알루미늄(SrO-Al2O3)계의 축광체분말 제조방법 및 그 축광체분말에 관한 것이다.
이를 위해, 스트론튬염, 알루미늄염, 부활제, 공부활제를 0.97 : 2.0 : 0.005 : 0.01의 몰비(molar ratio)로 혼합하고, 융제를 첨가한 후 반응연료를 사용하여 가열 및 열처리하여 연소반응시킴으로서, 황록색 발광을 나타내는 스트론튬-산화알루미늄(SrO-Al2O3)계 축광체분말을 제조하는 것을 특징으로 한다.
상기한 구성에 따라, 연소반응을 일으켜 합성된 스트론튬-산화알루미늄계 축광체분말이 황록색 발광을 나타내고, 축광체분말 제조과정에서 융제 또는 반응연료의 적정한 첨가량에 따라, 그리고 적정 열처리온도에 따라 발광세기를 크게 향상시킬 수 있는 효과가 있고, 또한 축광체분말과 합성수지의 혼합을 통해 발광시트를 제조하고, 이 발광시트를 어두운 환경이나 야간에 보조조명으로서 활용할 수 있는 효과도 있다.
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a luminescent body powder of strontium-aluminum oxide (SrO-Al 2 O 3 ) system which exhibits yellow-green light emission characteristics, and has a very high luminance.
To this end, by mixing the strontium salt, aluminum salt, activator, the active agent in a molar ratio of 0.97: 2.0: 0.005: 0.01, adding a flux and heating and heat treatment using a reaction fuel to burn the reaction, It is characterized by producing a strontium-aluminum oxide (SrO-Al 2 O 3 ) -based photoluminescent powder exhibiting yellow-green light emission.
According to the above constitution, the strontium-aluminum oxide-based phosphor powder synthesized by the combustion reaction exhibits yellow-green light emission, and according to the appropriate amount of flux or reaction fuel in the process of manufacturing the phosphor powder, and the appropriate heat treatment temperature, In addition, there is an effect that can be greatly improved, and also by producing a light emitting sheet by mixing the phosphor powder and synthetic resin, there is also an effect that can be utilized as an auxiliary light in a dark environment or at night.

Description

연소반응법을 이용한 축광체분말 제조방법 및 그 축광체분말과, 상기 축광체분말을 이용하여 제조한 발광시트{Processing method of a long phosphorescence phosphor by combustion-reaction and its application for the fabrication of luminescent sheet}Process for manufacturing a phosphorescent body powder using a combustion reaction method and a phosphorescent body powder, and a light emitting sheet produced using the phosphorescent body powder {Processing method of a long phosphorescence phosphor by combustion-reaction and its application for the fabrication of luminescent sheet}

본 발명은 황록색의 발광특성을 나타내고, 발광휘도가 매우 높은 스트론튬-산화알루미늄(SrO-Al2O3)계의 축광체분말 제조방법 및 그 축광체분말과, 상기 축광체분말을 이용하여 제조한 발광시트에 관한 것이다.The present invention exhibits a luminescence property of yellow-green color and has a very high luminescence brightness. A method of preparing a phosphorescent powder of strontium-aluminum oxide (SrO-Al 2 O 3 ) -based phosphorescent powder and the phosphorescent powder prepared by using the phosphorescent powder It relates to a light emitting sheet.

일반적으로, 형광체에 전자기적인 외부자극을 가하는 경우 발광이 이루어지며, 이 외부자극을 정지하면 통상 형광체의 잔광시간은 극히 짧으므로 발광이 빠르게 소멸되는 것이 보통이다.In general, when an external external stimulus is applied to the phosphor, light emission is performed. When the external stimulus is stopped, the afterglow time of the phosphor is usually very short, so that the light emission quickly disappears.

반면, 이와 달리 축광재료는 전등이나 태양광 등과 같이 비교적 높은 준위를 갖는 빛의 자극을 받아 에너지를 흡수한 후, 이를 낮은 준위의 가시광으로 환원하여 어두운 곳에서도 장시간 발광하는 성질을 갖는 소재로서, 장잔광성 인광체 또는 축광체가 이에 해당된다.On the other hand, the photoluminescent material is a material having the property of absorbing energy by stimulating light having a relatively high level, such as a lamp or solar light, and then reducing it to low level visible light to emit light for a long time in a dark place. This is the case of photophosphor or phosphorescent material.

이같은 축광재료는 상기한 잔광 및 축광성으로 인해 비상구 표시, 군사용 시설, 의류페인트, 조명기기, 고속도로, 철도, 항공, 항만 및 빌딩의 표시장치 등에 사용되는 형광페인트로서 사용될 수 있을 뿐만 아니라, 각종 야광시계, 야광장식용품, 야광페인트, 형광유약으로도 널리 사용될 수 있다.Such photoluminescent materials can be used as fluorescent paints used in emergency exit signs, military installations, clothing paints, lighting equipment, highways, railways, aircraft, ports and buildings, etc. It can also be widely used as watch, luminous decoration, luminous paint, fluorescent glaze.

이러한 축광재료로 사용되는 대표적인 화합물들을 살펴보면, CaS:Bi(자청색 발광), CaSrS:Bi(청색 발광), ZnS:Cu(녹색 발광), ZnCdS:Cu(황색 ~ 등색발광) 등의 황화물계 축광체가 알려져 있다.Representative compounds used as such photoluminescent materials include sulfide-based photoluminescence such as CaS: Bi (violet luminescence), CaSrS: Bi (blue luminescence), ZnS: Cu (green luminescence), and ZnCdS: Cu (yellow to orange luminescence). Sieve is known.

그러나, 상기한 황화물계 축광체들은 화학적으로 안정되지 못할 뿐만 아니라, 습기가 많은 장소에서는 내광성이 떨어지는 등 실제 사용에 있어 여러 가지 문제점을 안고 있다.However, the sulfide-based phosphors are not only chemically stable, but also suffer from various problems in actual use, such as poor light resistance in a humid place.

예를 들어, 황화아연계의 ZnS:Cu는 비교적 많이 사용되고 있는 축광체 중 하나로써, 습기가 존재하면 자외선에 의해서 광분해되어 검게 변하든지 휘도가 저하되기 때문에 옥외에서 직접 일광에 쬐이는 용도에서의 사용은 곤란하여, 그 용도가 극히 제한되는 문제가 있는 것이다.For example, zinc sulfide-based ZnS: Cu is one of the most widely used phosphors, and when moisture is present, it is decomposed by ultraviolet rays and turns black, or its brightness decreases. Is difficult and its use is extremely limited.

한편, 상기한 문제점을 해결하기 위해 축광화합물에 관한 많은 연구가 진행되고 있는 실정에 있는데, 특히 황화아연을 주성분으로 사용하는 화합물의 경우 그 발광지속시간을 연장하기 위해 방사선 물질을 혼합하여 방사선에 의한 여기로 장시간에 걸쳐 발광하도록 하고 있다.On the other hand, in order to solve the above problems, many researches on photoluminescent compounds are being conducted. In particular, compounds containing zinc sulfide as a main component are mixed with radiation materials to extend the duration of light emission. Here, light is emitted for a long time.

그러나, 여기 원으로 사용되는 방사선 물질은 인체에 유해하고, 친환경적이지 못할 뿐만 아니라, 방사선 물질에 대한 취급규제로 인하여 원료 수급 측면에 있어 많은 제약이 따르는 문제가 있다.However, the radiation material used as the excitation source is not only harmful to the human body, it is not environmentally friendly, and there is a problem that many restrictions in terms of supply and demand of raw materials due to the handling regulations for the radiation material.

이에, 최근에는 화학적으로 안정되고, 내구성이 우수하며, 여기원으로서 방사성 물질을 함유하지 않은 스트론튬-산화알루미늄계(SrO-Al2O3)의 축광체가 알려지면서 점차 관심을 기울이고 있는 실정에 있으나, 현재 이에 대한 많은 연구 개발이 진행되지 않아, 우수한 발광 및 장잔광 특성 구현에 어려움이 있고, 그에 따라 상기한 축광체의 사용 용도 역시, 극히 제한적일 수 밖에 없는 문제점이 있었다.Therefore, in recent years, there has been a growing interest as the phosphorescent body of strontium-aluminum oxide (SrO-Al 2 O 3 ) which is chemically stable, has excellent durability, and does not contain a radioactive material as an excitation source, At present, many research and developments have not been progressed, and thus, there is a difficulty in implementing excellent luminescence and long afterglow characteristics, and accordingly, there is a problem that the use of the photoluminescent body is also extremely limited.

대한민국 등록특허공보 등록번호 제0174088호Republic of Korea Patent Registration No. 0174088 대한민국 등록특허공보 등록특허 제0350691호Republic of Korea Patent Registration No. 0350691 대한민국 등록특허공보 등록번호 제0487067호Korean Registered Patent Publication No. 0487067 대한민국 등록특허공보 등록번호 제0600934호Republic of Korea Patent Publication No. 0600934 대한민국 특허 출원번호 제10-2008-0099706호Republic of Korea Patent Application No. 10-2008-0099706 대한민국 특허 출원번호 제10-2008-0124055호Republic of Korea Patent Application No. 10-2008-0124055

본 발명은 전술한 바와 같은 종래의 문제점을 해결하기 위하여 안출한 것으로, 혼합물의 연소반응을 통해 스트론튬-산화알루미늄계 조성의 축광체분말을 제조하여 축광체분말의 발광세기를 크게 향상시킬 수 있도록 한 연소반응법을 이용한 축광체분말 제조방법 및 그 축광체분말과, 상기 축광체분말을 이용하여 제조한 발광시트를 제공하는 데 있다.The present invention has been made to solve the conventional problems as described above, to produce a luminescent powder of the strontium-aluminum oxide composition through the combustion reaction of the mixture to significantly improve the light emission intensity of the phosphor powder There is provided a method of manufacturing a phosphorescent body powder using a combustion reaction method, a phosphorescent body powder thereof, and a light emitting sheet manufactured using the phosphorescent body powder.

본 발명의 다른 목적은 축광체분말을 갖는 발광시트를 제조하고, 이를 조명이 필요한 여러 기구에 부착하여 전기에너지 사용을 줄여 에너지를 절감할 수 있도록 한 연소반응법을 이용한 축광체분말 제조방법 및 그 축광체분말과, 상기 축광체분말을 이용하여 제조한 발광시트를 제공하는 데 있다.Another object of the present invention is to manufacture a light emitting sheet having a phosphor powder, and attaching it to various apparatuses for lighting to reduce the use of electric energy to reduce energy by using a combustion reaction method and a method for producing the phosphor powder It is to provide a photoluminescent powder and a light emitting sheet produced using the photoluminescent powder.

상기와 같은 목적을 달성하기 위한 본 발명의 축광체분말 제조방법은, 스트론튬염(Sr(NO3)2), 알루미늄염(Al(NO3)9H2O), 부활제, 공부활제를 0.97 : 2.0 : 0.005 : 0.01의 몰비(molar ratio)로 혼합하고, 융제를 첨가한 후 반응연료를 사용하여 가열 및 열처리하여 연소반응시킴으로서, 황록색 발광을 나타내는 스트론튬-산화알루미늄(SrO-Al2O3)계 축광체분말을 제조하는 것을 특징으로 한다.The phosphorescent powder manufacturing method of the present invention for achieving the above object, strontium salt (Sr (NO 3 ) 2 ), aluminum salt (Al (NO 3 ) 2 9H 2 O), activator, a study agent Strontium-aluminum oxide (SrO-Al 2 O 3) , which emits yellow-green light emission by mixing at a molar ratio of 0.97: 2.0: 0.005: 0.01, adding a flux, and heating and heat-treating the reaction fuel. A) phosphorescent powder is produced.

또한, 본 발명의 다른 축광체분말 제조방법은, 스트론튬염(Sr(NO3)2)과, 알루미늄염(Al(NO3)2·9H2O)과, 융제와, 반응연료를 증류수와 혼합하여 용해시키는 제1용액 용해단계와; 부활제와, 공부활제를 산성수와 혼합하여 용해시키는 제2용액 용해단계와; 제1용액과, 제2용액을 서로 혼합하여 교반하는 단계와; 교반된 혼합용액을 노 내에서 가열 및 연소반응시켜 스트론튬-산화알루미늄 조성의 분말을 생성하는 단계와; 생성된 분말을 수소 환원 분위기에서 고온 열처리하여 스트론튬-산화알루미늄(SrO-Al2O3)계 축광체분말을 제조하는 단계로 이루어지는 것을 특징으로 한다.Further, another method of manufacturing the phosphorescent powder of the present invention is to mix strontium salt (Sr (NO 3 ) 2 ), aluminum salt (Al (NO 3 ) 2 .9H 2 O), a flux, and a reaction fuel with distilled water. Dissolving the first solution; A second solution dissolving step of dissolving the activator and the study active agent by mixing with acidic water; Mixing and stirring the first solution and the second solution; Heating and burning the stirred mixed solution in a furnace to produce a powder of strontium-aluminum oxide composition; The resulting powder is subjected to a high temperature heat treatment in a hydrogen reducing atmosphere to prepare a strontium-aluminum oxide (SrO-Al 2 O 3 ) -based phosphorescent powder.

여기서, 상기 융제는 산화붕소(B2O3)가 사용되고, 반응연료는 유레아(NH2CONH2)가 사용되며, 부활제는 산화유로피움(Eu2O3)이 사용되고, 공부활제는 산화디프로시움(Dy2O3)이 사용된다.Here, the flux is boron oxide (B 2 O 3 ) is used, the reaction fuel is urea (NH 2 CONH 2 ) is used, the activator is europium oxide (Eu 2 O 3 ) is used, the active agent is deep oxide oxide Rossium (Dy 2 O 3 ) is used.

그리고, 상기 반응연료는 스트론튬염과, 알루미늄염과, 부활제와, 공부활제가 혼합된 원료에 대하여 1:0.5~3.0의 몰비 비율로 혼합된다.The reaction fuel is mixed at a molar ratio of 1: 0.5 to 3.0 with respect to a raw material in which strontium salt, aluminum salt, activator, and study agent are mixed.

또한, 상기 융제는 스트론튬염과, 알루미늄염과, 부활제와, 공부활제가 혼합된 원료에 대하여 1:0.1~0.8의 몰비 비율로 혼합된다.In addition, the flux is mixed in a molar ratio of 1: 0.1 to 0.8 with respect to the raw material in which the strontium salt, the aluminum salt, the activator, and the study agent are mixed.

또, 상기 축광체분말을 제조하는 단계에서는 합성된 분말을 수소 환원 분위기에서 1100~1500℃의 온도로 2~6시간 열처리한다.In addition, in the step of preparing the photoluminescent powder, the synthesized powder is heat-treated for 2 to 6 hours at a temperature of 1100 ~ 1500 ℃ in a hydrogen reducing atmosphere.

한편, 상기한 축광체분말 제조방법에 의해 축광체분말을 제조한 것을 특징으로 한다.On the other hand, it is characterized in that the photoluminescent powder is produced by the above method.

본 발명에 의해 제조된 발광시트는, 축광체분말을 합성수지와 수지경화제와 혼합 및 건조하여 연질의 축광층을 형성하고, 상기 축광층 표면에 투명수지층을 부착하며, 상기 축광층 이면에 접착층을 부착한 것을 특징으로 한다.In the light emitting sheet manufactured according to the present invention, the photoluminescent powder is mixed and dried with a synthetic resin and a resin hardener to form a soft photoluminescent layer, attaching a transparent resin layer on the surface of the photoluminescent layer, and attaching an adhesive layer on the back surface of the photoluminescent layer. It is characterized by being attached.

여기서, 상기 발광시트는 태양광이 차단되거나 어두운 환경에서의 야광표지판, 광고판, 간판, 데코레이션장식, 조명기구 중 어느 하나에 부착하여 사용한다.Here, the light emitting sheet is used to attach to any one of the luminous signs, billboards, billboards, decorations, lighting fixtures in the dark or blocked sunlight.

상기한 과제 해결수단을 통해 본 발명은, 연소반응을 일으켜 합성된 스트론튬-산화알루미늄계 축광체분말이 폭넓은 450∼600㎚ 파장 대의 황록색 발광을 나타낼 뿐만 아니라, 축광체분말 제조과정에서 융제 또는 반응연료의 적정한 첨가량에 따라, 그리고 적정 열처리온도에 따라 발광세기를 크게 향상시킬 수 있는 효과가 있다.Through the above-mentioned means for solving the problem, the present invention, the strontium-aluminum oxide-based phosphor powder synthesized by the combustion reaction not only shows yellow-green light emission in the broad 450 ~ 600nm wavelength range, but also the flux or reaction in the manufacturing process of the phosphor phosphor powder There is an effect that can greatly improve the light emission intensity according to the appropriate amount of fuel, and according to the appropriate heat treatment temperature.

더욱이, 축광체분말과 합성수지의 혼합을 통해 발광시트를 제조하고, 이 발광시트를 야광표지판, 광고판, 간판, 데코레이션장식, 조명기구 등에 부착하여 태양광이 차단되거나 어두운 환경에서 야간 보조조명으로서 활용할 수 있는 효과도 있다.Furthermore, it is possible to manufacture a light emitting sheet by mixing phosphorescent powder and synthetic resin, and attach the light emitting sheet to luminous signs, billboards, signs, decorations, lighting fixtures, etc. There is also an effect.

도 1은 본 발명에 의한 스트론튬-산화알루미늄계 축광체분말을 제조하기 위한 공정도,
도 2는 본 발명에 의한 축광체분말을 이용하여 제조된 발광시트 사시도,
도 3은 본 발명에 의한 축광체분말 제조과정에서 서로 다른 열처리온도에 따른 스트론튬-산화알루미늄 축광체에 대한 주사전자현미경(SEM) 사진,
도 4는 본 발명에 의한 축광체분말 제조과정에서 서로 다른 열처리온도에 따른 스트론튬-산화알루미늄 축광체분말의 X-선 회절패턴.
도 5는 본 발명에 의해 제조된 스트론튬-산화알루미늄 축광체의 여기 및 발광 스펙트럼을 나타낸 그래프,
도 6은 본 발명에 의한 축광체분말 제조과정에서 서로 다른 열처리온도에 따른 스트론튬-산화알루미늄 축광체분말의 발광 스펙트럼을 나타낸 그래프,
도 7은 본 발명에 의한 축광체분말 제조과정에서 융제의 첨가량에 따른 스트론튬-산화알루미늄 축광체분말의 발광세기 변화를 나타낸 그래프,
도 8은 본 발명에 의한 축광체분말 제조과정에서 반응연료의 혼합비에 따른 스트론튬-산화알루미늄 축광체분말의 발광세기 변화를 나타낸 그래프,
도 9는 본 발명의 축광체분말에 의해 제조된 발광시트에서 축광체분말의 혼합비에 따른 발광시트의 발광세기 변화를 나타낸 그래프.
1 is a strontium-aluminum oxide system according to the present invention Process drawing for manufacturing phosphorescent powder,
2 is a perspective view of a light emitting sheet manufactured by using a phosphor photoluminescent powder according to the present invention;
3 is strontium-aluminum oxide according to different heat treatment temperatures in the process of manufacturing the phosphor body according to the present invention Scanning electron microscope (SEM) images of the phosphors,
Figure 4 is an X-ray diffraction pattern of the strontium-aluminum oxide photoluminescent powder at different heat treatment temperatures in the manufacturing process of the photoluminescent powder according to the present invention.
5 is strontium-aluminum oxide prepared by the present invention A graph showing the excitation and emission spectra of the phosphor,
6 is a graph showing the emission spectrum of the strontium-aluminum oxide photoluminescent powder at different heat treatment temperatures in the process of manufacturing the photoluminescent powder according to the present invention;
7 is strontium-aluminum oxide according to the amount of flux added in the process of manufacturing the phosphor phosphor according to the present invention A graph showing the change in the luminescence intensity of the phosphor powder,
8 is strontium-aluminum oxide according to the mixing ratio of the reaction fuel in the manufacturing process of the phosphor phosphor according to the present invention A graph showing the change in the luminescence intensity of the phosphor powder,
9 is a graph showing the change in the light emission intensity of the light emitting sheet according to the mixing ratio of the photoluminescent powder in the light emitting sheet produced by the photoluminescent powder of the present invention.

본 발명의 바람직한 실시예를 첨부된 도면에 의하여 상세히 설명하면 다음과 같다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명의 연소반응법을 이용한 축광체 제조방법에 대해 도시한 것으로, 크게 제1용액 용해단계와, 제2용액 용해단계와, 교반단계와, 분말생성단계와, 분말제조단계로 이루어진다.1 shows a method of manufacturing a photoluminescent body using the combustion reaction method of the present invention, and includes a first solution dissolving step, a second solution dissolving step, a stirring step, a powder producing step, and a powder manufacturing step. .

구체적으로 살펴보면, 먼저 제1용액 용해단계에서는 스트론튬염(Sr(NO3)2)과, 알루미늄염(Al(NO3)2·9H2O)과, 융제와, 반응연료를 증류수와 혼합하여 증류수 용해함으로써, 제1용액을 마련한다.Specifically, in the first solution dissolving step, strontium salt (Sr (NO 3 ) 2 ), aluminum salt (Al (NO 3 ) 2 .9H 2 O), a flux, and a reaction fuel are mixed with distilled water to distilled water. By dissolving, a first solution is prepared.

여기서, 상기 융제로는 산화붕소(B2O3) 등이 사용됨이 적절하고, 반응연료로는 유레아(NH2CONH2) 등이 사용되는 것이 적절하다.Here, it is appropriate that boron oxide (B 2 O 3 ) or the like is used as the flux, and urea (NH 2 CONH 2 ) or the like is appropriate as the reaction fuel.

그리고, 제2용액 용해단계에서는 부활제와, 공부활제를 산성수와 혼합하여 산용해함으로써 제2용액을 마련한다.In the second solution dissolving step, a second solution is prepared by mixing and dissolving the activator and the study active agent with acidic water.

여기서, 상기 부활제로는 산화유로피움(Eu2O3) 등이 사용됨이 적절하고, 공부활제로는 산화디프로시움(Dy2O3) 등이 사용됨이 적절하며, 산성수로는 질산(HNO3) 등이 사용됨이 적절하다.Herein, europium oxide (Eu 2 O 3 ), or the like, is appropriately used as the activator, and diprosium oxide (Dy 2 O 3 ), etc., is appropriately used as a study agent, and nitric acid (HNO) is used as an acidic water. 3 ) and the like are appropriate.

이때, 상기 각 원료의 조성 혼합비를 살펴보면, 스트론튬염과, 알루미늄염과, 부활제와 공부활제를 0.97 : 2.0 : 0.005 : 0.01의 몰비(molar ratio)로 혼합한다.At this time, looking at the composition mixing ratio of each of the raw materials, strontium salt, aluminum salt, the activator and the active agent is mixed in a molar ratio of 0.97: 2.0: 0.005: 0.01.

계속해서, 교반단계에서는 상기한 제1용액와, 제2용액을 서로 혼합하여 교반시킨다.Subsequently, in the stirring step, the first solution and the second solution are mixed with each other and stirred.

그리고, 분말생성단계에서는 교반된 혼합용액을 통상의 전기노 내에 투입하여 대기압하에서 500~700℃의 온도로 대략 5분 정도 가열 및 연소반응시켜, 스트론튬-산화알루미늄 조성의 분말을 생성한다.In the powder producing step, the stirred mixed solution is introduced into a conventional electric furnace and heated and burned for about 5 minutes at a temperature of 500 to 700 ° C. under atmospheric pressure to produce a powder of strontium-aluminum oxide composition.

마지막으로, 분말제조단계에서는 상기와 같이 합성 및 생성된 분말을 알루미나보트 내의 수소 환원 분위기에서 1100~1500℃의 온도로 2~6시간 고온 열처리하여 스트론튬-산화알루미늄(SrO-Al2O3)계 축광체분말을 제조한다. 이때, 승온 온도는 약 3~10℃/min 정도로 일정하게 유지한다.Finally, in the powder manufacturing step, the strontium-aluminum oxide (SrO-Al 2 O 3 ) -based powder was synthesized as described above by subjecting the powder synthesized and produced at the high temperature to a temperature of 1100 to 1500 ° C. for 2 to 6 hours in a hydrogen reduction atmosphere in the alumina boat. A photoluminescent powder is prepared. At this time, the elevated temperature is kept constant at about 3 ~ 10 ℃ / min.

한편, 도 2는 본 발명의 축광체분말을 이용하여 제조한 발광시트(10)를 나타낸 것으로, 상기 발광시트(10)는 크게 축광층(11)과, 투명수지층(12)과, 접착층(13)을 포함하여 구성된다.On the other hand, Figure 2 shows a light emitting sheet 10 manufactured using the photoluminescent powder of the present invention, the light emitting sheet 10 is largely a photoluminescent layer 11, a transparent resin layer 12, and an adhesive layer ( 13) is configured to include.

구체적으로 살펴보면, 먼저 축광체분말을 액상의 합성수지와 혼합한 후 플렉시블한 얇은 판 형태로 경화시켜 연질의 축광층(11)을 제조한다. 여기서, 상기 합성수지는 비스페놀이 주성분인 연질 에폭시수지를 수지경화제(예: 폴리아마이드)와 함께 사용하며, 축광체분말과 충분히 균일하게 혼합시킨 후, 약 65~80℃ 정도의 건조기에서 수 시간 건조시켜 축광층(11)을 제조한다.Specifically, first, the photoluminescent powder is mixed with a liquid synthetic resin and then cured into a flexible thin plate to produce a soft photoluminescent layer 11. Here, the synthetic resin is a bisphenol-based soft epoxy resin used with a resin hardener (for example, polyamide), mixed sufficiently with the phosphor body powder, and then dried in a dryer of about 65 ~ 80 ℃ for several hours The photoluminescent layer 11 is manufactured.

이때, 상기 합성수지, 수지경화제, 축광체분말의 바람직한 혼합비는 중량비로 약 2:1.0:0.6 정도로 혼합하며, 반드시 정해진 혼합비로 사용하지 않고 다소 다르게 혼합하여 사용할 수도 있다.At this time, the preferred mixing ratio of the synthetic resin, the resin hardener, and the photoluminescent powder may be mixed in a weight ratio of about 2: 1.0: 0.6, and may be mixed slightly differently without using a predetermined mixing ratio.

그리고, 상기 축광층(11) 상면에는 상기 축광층(11)의 열화를 보호하도록 비닐과 같은 재질의 투명수지층(12)을 부착하고, 상기 축광층(11) 저면에는 발광시트(10)를 부착시킬 수 있도록 접착층(13)을 부착 구성한다. 이때, 상기 접착층(13) 이면에는 상기 접착층(13)을 보호하는 역할의 커버지(도시 생략)가 더 구비될 수 있고, 상기 투명수지층(12)의 경우 용도에 따라서는 생략될 수도 있다.In addition, a transparent resin layer 12 made of a material such as vinyl is attached to the upper surface of the photoluminescent layer 11 to protect deterioration of the photoluminescent layer 11, and a light emitting sheet 10 is disposed on a bottom surface of the photoluminescent layer 11. The adhesive layer 13 is attached and configured to attach. In this case, the backing of the adhesive layer 13 may further include a cover (not shown) serving to protect the adhesive layer 13, and the transparent resin layer 12 may be omitted depending on the purpose.

아울러, 상기와 같이 제조된 발광시트(10)는 태양광이 차단되거나 어두운 환경에서의 야광표지판, 광고판, 간판, 데코레이션장식, 조명기구 중 어느 하나에 부착하여 사용 가능하나, 상기한 예시들에 한정되는 것은 아니며, 이 외에도 보조조명 기구로서 활용될 수 있는 다양한 기구에 부착 사용이 가능하다. 즉, 상기 발광시트(10)를 부착하기 위해서는 그 이면의 접착층(13)을 통해 반사판(10)에 접착 고정시키게 된다.In addition, the light emitting sheet 10 manufactured as described above may be used by being attached to any one of luminous signs, billboards, signs, decoration decorations, and lighting fixtures in a sun-blocked or dark environment, but is limited to the above examples. In addition, it is possible to attach to various apparatuses that can be utilized as an auxiliary lighting apparatus. That is, in order to attach the light emitting sheet 10, the light emitting sheet 10 may be adhesively fixed to the reflective plate 10 through the adhesive layer 13 on the rear surface thereof.

이와 같이 구성된 본 발명의 작용 및 효과를 상세하게 설명하면 다음과 같다.Referring to the operation and effect of the present invention configured as described in detail as follows.

본 발명에 따른 스트론튬-산화알루미늄계의 축광체분말을 제조하기 위해서는 도 1에 도시된 바와 같이 스트론튬염과, 알루미늄염과, 융제와 반응연료를 증류수에 용해시킨 용액을 부활제와 공부활제를 산성수에 따로 용해시킨 용액과 혼합하고 연소반응시킴으로서 스트론튬-산화알루미늄계 조성의 분말을 합성한다.In order to prepare the strontium-aluminum oxide-based photoluminescent powder according to the present invention, as shown in FIG. A powder of strontium-aluminum oxide composition is synthesized by mixing with a solution dissolved in water and subjecting to combustion.

연소반응을 유도하기 위한 반응연료는 산화제(스트론튬염과, 알루미늄염과, 부활제와, 공부활제가 혼합된 원료)와의 비율을 반응연료를 기준으로 1:0.5~3.0의 몰비(molar ratio)로 혼합한다. 그리고, 모체결정의 입자성장을 촉진시켜 발광세기를 향상시키는 역할을 하는 융제는 산화제(스트론튬염과, 알루미늄염과, 부활제와, 공부활제가 혼합된 원료)와의 비율을 융제를 기준으로 1:0.1~0.8의 몰비로 첨가한다.The reaction fuel for inducing the combustion reaction is a molar ratio of 1: 0.5 to 3.0, based on the reaction fuel, of the ratio of the oxidizing agent (a raw material mixed with the strontium salt, the aluminum salt, the activator, and the study active agent). Mix. The flux, which promotes grain growth of the parent crystal and improves the luminescence intensity, is based on the ratio of the oxidizing agent (a raw material mixed with the strontium salt, the aluminum salt, the activator, and the active agent) based on the flux 1: Add in a molar ratio of 0.1-0.8.

상기와 같이 준비된 혼합용액을 약 600℃ 온도로 가열하여 연소반응 되도록 하여 스트론튬-산화알루미늄계 조성의 분말을 합성한다. 최종적으로 합성된 분말이 발광특성을 지니도록 하기 위해서 알루미나보트에 넣고 수소 환원분위기 중에서 1100∼1500℃ 온도범위로 2~6시간동안 열처리 한다. 이때, 승온 속도는 약 3~10℃/min정도로 일정하게 유지한다.The mixed solution prepared as described above is heated to a temperature of about 600 ° C. to cause a combustion reaction to synthesize a powder of strontium-aluminum oxide-based composition. Finally, the synthesized powder is placed in an alumina boat and heat-treated for 2 to 6 hours in a temperature range of 1100 to 1500 ° C. in a hydrogen reduction atmosphere to have luminescent properties. At this time, the temperature increase rate is kept constant at about 3 ~ 10 ℃ / min.

상기에서 제조된 황록색 파장 발광의 스트론튬-산화알루미늄계 축광체 분말을 합성수지 및 수지경화제와 혼합 및 건조하여 도 2와 같은 수지를 포함한 발광시트(10)를 제조할 수 있고, 상기 발광시트(10)를 야광표지판, 광고판, 간판, 데코레이션장식, 조명기구 등에 부착하여 보조조명 기능으로 사용할 수 있다.The light emitting sheet 10 including the resin as shown in FIG. 2 may be manufactured by mixing and drying the strontium-aluminum oxide-based photoluminescent powder of the yellow-green wavelength emission prepared above with a synthetic resin and a resin hardener, and the light emitting sheet 10 It can be used as an auxiliary lighting function by attaching it to luminous signs, billboards, signs, decorations, and lighting fixtures.

또한, 발광도료에 상기 스트론튬-산화알루미늄계 축광체 분말을 적당하게 혼합한 다음, 상기한 기구들에 적용할 수 있다.
In addition, the strontium-aluminum oxide-based photoluminescent powder may be appropriately mixed with the light-emitting paint, and then applied to the above apparatuses.

(1)연소반응법으로 합성된 스트론튬-산화알루미늄계 축광체분말의 물리적 특성(1) Physical Properties of Strontium-Aluminum-Ox Phosphor Powders Synthesized by Combustion

도 3은 연소반응법으로 합성된 스트론튬-산화알루미늄계 조성의 분말을 수소 환원분위기에서 1100℃에서 1400℃까지 각각 100℃간격으로 변화시켜 3시간 동안 소결시킨 축광체분말들의 전계방출 주사전자현미경(FE-SEM) 사진을 나타낸 것으로, (a)는 연소반응법으로 합성된 초기 분말형상이고, (b)는 반응온도가 1100℃일 때의 분말형상이며, (c)는 반응온도가 1200℃일 때의 분말형상이고, (d)는 반응온도가 1300℃일 때의 분말형상이며, (e)는 반응온도가 1400℃일 때의 분말형상이다.3 is a field emission scanning electron microscope of luminescent powders sintered for 3 hours by varying the strontium-aluminum oxide-based composition synthesized by a combustion reaction at a hydrogen reduction atmosphere at 100 ° C. intervals from 1100 ° C. to 1400 ° C. FE-SEM) photo, (a) is the initial powder form synthesized by the combustion reaction method, (b) is the powder form when the reaction temperature is 1100 ℃, (c) is the reaction temperature is 1200 ℃ Powder at the time, (d) is the powder when the reaction temperature is 1300 ° C, and (e) is the powder when the reaction temperature is 1400 ° C.

사진에 나타난 바와 같이, 열처리과정 동안 입자성장이 일어났음을 알 수 있다. 즉, 초기분말의 입자크기(두께)는 약 수십 ㎚정도이나, 1100℃에서 열처리된 경우 수백 ㎚정도로 증가되었고, 이를 통해 1100℃이상의 고온으로 열처리되면 입자간 응집이 활발하게 일어나 결정성장이 일어남을 확인할 수 있다. 그러나, 1100℃이상으로부터 1400℃까지 열처리 온도가 증가되더라도 입자크기는 크게 변하지 않았다.As shown in the photograph, it can be seen that particle growth occurred during the heat treatment process. That is, the particle size (thickness) of the initial powder is about several tens of nm, but when heat-treated at 1100 ℃ increased to several hundred nm, through this heat treatment at a high temperature of more than 1100 ℃ by the aggregation between the particles is active and crystal growth occurs You can check it. However, even if the heat treatment temperature was increased from 1100 ° C. to 1400 ° C., the particle size did not change significantly.

도 4는 열처리 온도에 따른 스트론튬-산화알루미늄계 축광체 분말의 X-선 회절분석 결과이다. 이에, X-선 회절피크들을 보면, 연소반응에 의해서 합성된 초기분말과 1100℃, 1200℃에서 열처리된 분말들은 중간상들(SrAl2O4, Sr2Al2O7 등)이 일부 생성되었으나, 1300℃ 이상이 되면 중간상들은 사라지고 오직 본 발명의 스트론튬-산화알루미늄계 최종 결정상만이 존재한다.
4 is a strontium-aluminum oxide-based photoluminescent powder according to the heat treatment temperature X-ray diffraction analysis results. Thus, the X-ray diffraction peaks, the initial powder synthesized by the combustion reaction and the powders heat-treated at 1100 ℃, 1200 ℃ produced some intermediate phases (SrAl 2 O 4 , Sr 2 Al 2 O 7, etc.) Above 1300 ° C., the intermediate phases disappear and only the strontium-oxide final crystal phase of the present invention is present.

(2) 스트론튬-산화알루미늄계 축광체분말의 인광 특성(2) Phosphorescent Properties of Strontium-Aluminum-Ox Phosphor Powders

도 5는 1300℃에서 3시간 열처리시킨 스트론튬-산화알루미늄계 축광체분말에 대해서 얻은 여기스펙트럼과 발광스펙트럼을 보여주고 있다.Figure 5 shows the excitation spectrum and the emission spectrum obtained for the strontium-oxide aluminum-based photoluminescent powder heat-treated at 1300 ℃ 3 hours.

여기스펙트럼은 220㎚에서 470㎚의 넓은 파장영역에 걸쳐 여기가 일어나고 369㎚에서 최대흡수피크를 나타낸다. 220㎚~470㎚ 범위의 파장은 태양광에도 포함되어 있는 파장 영역이므로 스트론튬-산화알루미늄계 축광체는 태양광에 의해서 쉽게 여기되어 발광할 수 있고, 또한 320㎚ 이하에서 여기강도가 현저히 저하되는 특성을 지닌 기존의 ZnS:Cu계 보다 단파장인 자외선에서도 발광될 수 있는 축광 물질임을 알 수 있다.The excitation spectrum exhibits excitation over a wide wavelength region of 220 nm to 470 nm and exhibits a maximum absorption peak at 369 nm. Since the wavelength range of 220 nm to 470 nm is also included in the sunlight, the strontium-aluminum oxide photoluminescent material is easily excited by sunlight and emits light, and the excitation intensity is significantly lowered at 320 nm or less. It can be seen that it is a photoluminescent material which can emit light even in ultraviolet rays having shorter wavelength than the existing ZnS: Cu-based.

또한, 발광스펙트럼은 황록색의 발광영역인 493㎚를 최대 발광파장으로 하는 450∼600㎚의 폭넓은 발광스펙트럼을 나타내며, 이는 종래의 축광재료로서 널리 사용되고 있는 ZnS:Cu의 발광파장과 비슷한 파장이다. In addition, the emission spectrum exhibits a broad emission spectrum of 450 to 600 nm with a maximum emission wavelength of 493 nm, which is an yellowish green emission region, and is similar to that of ZnS: Cu, which is widely used as a conventional photoluminescent material.

도 6은 1100~1500℃ 온도 범위에서 수소 환원 분위기에서 3시간동안 열처리 시킨 분말 시료의 열처리온도에 따라 나타난 발광스펙트럼이다.Figure 6 is a light emission spectrum according to the heat treatment temperature of the powder sample heat-treated for 3 hours in a hydrogen reducing atmosphere in the temperature range of 1100 ~ 1500 ℃.

여기광원으로는 Xe 램프로부터 발생된 360㎚의 빛을 사용하였다. 도면에서와 같이 열처리온도가 올라갈수록 발광강도는 높아졌다. 그러나 1500℃ 이상의 온도인 1550℃와 1600℃에서 열처리된 분말은 오히려 발광강도가 감소되었으며, 이는 1500℃ 이상의 온도에서는 일부 부분용해가 일어나고 또한, 상분해가 발생되어 제2상이 생성되기 때문이다.
As the excitation light source, light of 360 nm generated from the Xe lamp was used. As shown in the figure, the emission intensity increased as the heat treatment temperature increased. However, the powders heat-treated at 1550 ° C. and 1600 ° C., which are more than 1500 ° C., exhibited a decrease in luminescence intensity, because at some temperatures above 1500 ° C., partial partial dissolution occurred, and phase decomposition occurred to generate a second phase.

(3) 융제의 영향(3) effect of flux

도 7은 융제의 첨가량에 따라 스트론튬-산화알루미늄계 축광체에 대해서 측정된 발광세기를 나타낸 그래프이다.7 is a graph showing the luminescence intensity measured with respect to the strontium-aluminum oxide-based photoluminescent body according to the amount of flux added.

도면에서 나타난 바와 같이 융제의 첨가량이 증가되면 발광세기가 크게 증가하여 0.5몰에서 가장 높은 발광세기를 나타내고 그 이상으로 첨가되면 오히려 감소하는 경향을 나타낸다. 따라서, 융제의 적정 첨가량은 0.5몰임을 알 수 있다.
As shown in the figure, when the addition amount of the flux is increased, the luminescence intensity is greatly increased, indicating the highest luminescence intensity at 0.5 mol, and decreasing rather than being added thereto. Therefore, it can be seen that the appropriate amount of flux is 0.5 mole.

(4) 반응연료의 영향(4) Effect of Reaction Fuel

도 8은 연소반응법으로 스트론튬-산화알루미늄계 조성의 분말을 합성하기 위해서 사용되는 반응연료의 혼합되는 양[반응연료/산화제(스트론튬염과, 알루미늄염과, 부활제와, 공부활제가 혼합된 원료)]에 따른 축광체의 발광세기를 나타낸 그래프이다.8 is a mixed amount of the reaction fuel used to synthesize the powder of the strontium-aluminum oxide-based composition by the combustion reaction [reaction fuel / oxidizing agent (strontium salt, aluminum salt, activator, and a study agent) Raw material)].

도면에서 나타난 바와 같이 반응연료의 혼합되는 양이 증가되면 발광세기가 크게 증가하여 산화제와 반응연료의 혼합비가 1.5에서 가장 높은 발광세기를 나타내고 그 이상의 크기로 혼합되면 오히려 감소하는 경향을 나타낸다. 따라서, 반응연료의 적정 혼합비는 산화제 대비 1.5 정도임을 알 수 있다.
As shown in the figure, when the amount of reaction fuel is increased, the luminescence intensity is greatly increased, and the mixing ratio of the oxidant and the reaction fuel shows the highest luminescence intensity at 1.5. Therefore, it can be seen that the proper mixing ratio of the reaction fuel is about 1.5 compared to the oxidizing agent.

(5) 발광시트의 축광특성(5) Luminous property of light emitting sheet

상기에서 설명된 스트론튬-산화알루미늄계 축광체 분말을 합성수지와 혼합하여 발광시트(10)를 제조하고, 축광특성을 고찰하였다.The light emitting sheet 10 was prepared by mixing the strontium-aluminum oxide-based photoluminescent powder described above with a synthetic resin, and the photoluminescent properties were examined.

합성수지 및 수지경화제에 혼합되는 축광체분말의 중량비를 서로 다르게 혼합하여 발광휘도(세기)를 측정하였다.Luminescent luminance (intensity) was measured by mixing different weight ratios of the photoluminescent powder mixed with the synthetic resin and the resin hardener.

즉, 합성수지와 수지경화제의 혼합비율을 2.0:1.0의 중량비로 고정하고, 축광체분말의 중량비를 25중량%에서 50중량%의 범위로 변화시키고, 발광휘도를 측정하기 위해 여기광원으로 Hg-램프(350㎚)를 사용하여 약 10분간 조사하였다.That is, the mixing ratio of the synthetic resin and the resin hardener is fixed at a weight ratio of 2.0: 1.0, the weight ratio of the phosphor powder is changed in the range of 25% to 50% by weight, and the Hg-lamp as the excitation light source to measure the luminous luminance. It was irradiated for about 10 minutes using (350 nm).

도 9에 나타낸 바와 같이, 축광체분말의 양이 40중량%까지는 발광휘도가 거의 축광체분말의 양에 비례하여 증가하다가, 그 이상이 되면 감소하는 경향을 나타내었다. 따라서, 발광시트(10) 제조시 적정한 축광체분말의 혼합비는 합성수지와 수지경화제의 혼합 중량 대비 약 40중량% 정도임을 알 수 있었다.As shown in FIG. 9, the luminance of the phosphor was increased up to 40% by weight, and the luminance was increased in proportion to the amount of the phosphor. Therefore, it was found that the appropriate mixing ratio of the phosphorescent body powder in manufacturing the light emitting sheet 10 was about 40% by weight based on the mixing weight of the synthetic resin and the resin hardener.

한편, 본 발명은 상기한 구체적인 예에 대해서만 상세히 설명되었지만 본 발명의 기술사상 범위 내에서 다양한 변형 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속함은 당연한 것이다.On the other hand, the present invention has been described in detail only with respect to the specific examples described above it will be apparent to those skilled in the art that various modifications and variations are possible within the technical scope of the present invention, it is natural that such variations and modifications belong to the appended claims. .

10 : 발광시트 11 : 축광층
12 : 투명수지층 13 : 접착층
10 light emitting sheet 11 light emitting layer
12: transparent resin layer 13: adhesive layer

Claims (9)

스트론튬염(Sr(NO3)2), 알루미늄염(Al(NO3)9H2O), 부활제, 공부활제를 0.97 : 2.0 : 0.005 : 0.01의 몰비(molar ratio)로 혼합하고, 융제를 첨가한 후 반응연료를 사용하여 가열 및 열처리하여 연소반응시킴으로서, 황록색 발광을 나타내는 스트론튬-산화알루미늄(SrO-Al2O3)계 축광체분말을 제조하는 것을 특징으로 하는 연소반응법을 이용한 축광체분말 제조방법.Strontium salt (Sr (NO 3 ) 2 ), aluminum salt (Al (NO 3 ) 2 · 9H 2 O), activator, active agent in a molar ratio of 0.97: 2.0: 0.005: 0.01 By adding and reacting with a fuel to heat and heat the combustion reaction to produce a strontium-aluminum oxide (SrO-Al 2 O 3 ) -based phosphor body which exhibits yellow-green light emission. Body powder manufacturing method. 스트론튬염(Sr(NO3)2)과, 알루미늄염(Al(NO3)2·9H2O)과, 융제와, 반응연료를 증류수와 혼합하여 용해시키는 제1용액 용해단계와;
부활제와, 공부활제를 산성수와 혼합하여 용해시키는 제2용액 용해단계와;
제1용액과, 제2용액을 서로 혼합하여 교반하는 단계와;
교반된 혼합용액을 노 내에서 가열 및 연소반응시켜 스트론튬-산화알루미늄 조성의 분말을 생성하는 단계와;
생성된 분말을 수소 환원 분위기에서 고온 열처리하여 스트론튬-산화알루미늄(SrO-Al2O3)계 축광체분말을 제조하는 단계로 이루어지는 것을 특징으로 하는 연소반응법을 이용한 축광체분말 제조방법.
A first solution dissolving step of dissolving strontium salt (Sr (NO 3 ) 2 ), aluminum salt (Al (NO 3 ) 2 .9H 2 O), a flux, and a reaction fuel with distilled water;
A second solution dissolving step of dissolving the activator and the study active agent by mixing with acidic water;
Mixing and stirring the first solution and the second solution;
Heating and burning the stirred mixed solution in a furnace to produce a powder of strontium-aluminum oxide composition;
A method of manufacturing a photoluminescent powder using a combustion reaction method comprising the step of preparing a strontium-aluminum oxide (SrO-Al 2 O 3 ) -based photoluminescent powder by heat-treating the resulting powder at high temperature in a hydrogen reducing atmosphere.
제 1항 또는 제 2항에 있어서, 상기 융제는 산화붕소(B2O3)가 사용되고, 반응연료는 유레아(NH2CONH2)가 사용되며, 부활제는 산화유로피움(Eu2O3)이 사용되고, 공부활제는 산화디프로시움(Dy2O3)이 사용됨을 특징으로 하는 연소반응법을 이용한 축광체분말 제조방법.According to claim 1 or 2, wherein the flux is boron oxide (B 2 O 3 ) is used, the reaction fuel is urea (NH 2 CONH 2 ) is used, the activator is europium oxide (Eu 2 O 3 ) This is used, a method for preparing a photoluminescent powder using a combustion reaction method, characterized in that di- prosium oxide (Dy 2 O 3 ) is used. 제 1항 내지 제 2항 중 어느 한 항에 있어서, 상기 반응연료는 스트론튬염과, 알루미늄염과, 부활제와, 공부활제가 혼합된 원료에 대하여 1:0.5~3.0의 몰비 비율로 혼합되는 것을 특징으로 하는 연소반응법을 이용한 축광체분말 제조방법.The reaction fuel according to any one of claims 1 to 2, wherein the reaction fuel is mixed at a molar ratio of 1: 0.5 to 3.0 with respect to a raw material in which a strontium salt, an aluminum salt, an activator, and an active agent are mixed. A method of manufacturing a photoluminescent powder using a combustion reaction method. 제 1항 내지 제 2항 중 어느 한 항에 있어서, 상기 융제는 스트론튬염과, 알루미늄염과, 부활제와, 공부활제가 혼합된 원료에 대하여 1:0.1~0.8의 몰비 비율로 혼합되는 것을 특징으로 하는 연소반응법을 이용한 축광체분말 제조방법.The method of claim 1, wherein the flux is mixed with a strontium salt, an aluminum salt, an activator, and a study agent in a molar ratio of 1: 0.1 to 0.8 with respect to a raw material. A method of manufacturing a photoluminescent powder using a combustion reaction method. 제 2항에 있어서, 상기 축광체분말을 제조하는 단계에서는 합성된 분말을 수소 환원 분위기에서 1100~1500℃의 온도로 2~6시간 열처리하는 것을 특징으로 하는 연소반응법을 이용한 축광체분말 제조방법.The method of claim 2, wherein in the step of preparing the photoluminescent powder, the synthesized powder is heat-treated at a temperature of 1100-1500 ° C. for 2 to 6 hours in a hydrogen reducing atmosphere. . 제 1항 또는 제 2항의 제조방법에 의해 제조한 것을 특징으로 하는 연소반응법을 이용한 축광체분말.A photoluminescent powder using the combustion reaction method, which is prepared by the method according to claim 1 or 2. 제 7항에 의해 제조된 축광체분말을 합성수지와 수지경화제와 혼합 및 건조하여 연질의 축광층(11)을 형성하고, 상기 축광층(11) 표면에 투명수지층(12)을 부착하며, 상기 축광층(11) 이면에 접착층(13)을 부착한 것을 특징으로 하는 축광체분말을 이용하여 제조한 발광시트.The photoluminescent powder prepared according to claim 7 is mixed with a synthetic resin and a resin hardener and dried to form a soft photoluminescent layer 11, and the transparent resin layer 12 is attached to the surface of the photoluminescent layer 11. The light emitting sheet manufactured using the photoluminescent powder characterized by attaching the adhesive layer 13 to the back surface of the photoluminescent layer (11). 제 8항에 있어서, 상기 발광시트는 태양광이 차단되거나 어두운 환경에서의 야광표지판, 광고판, 간판, 데코레이션장식, 조명기구 중 어느 하나에 부착하여 사용하는 것을 특징으로 하는 축광체분말을 이용하여 제조한 발광시트.The method of claim 8, wherein the light emitting sheet is manufactured using a photoluminescent powder, characterized in that attached to any one of the luminous signs, billboards, billboards, signs, decoration decorations, lighting fixtures in the sun is blocked or dark environment. Luminous sheet.
KR1020100110371A 2010-11-08 2010-11-08 Processing method of a long phosphorescence phosphor by combustion-reaction and its application for the fabrication of luminescent sheet KR101250142B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100110371A KR101250142B1 (en) 2010-11-08 2010-11-08 Processing method of a long phosphorescence phosphor by combustion-reaction and its application for the fabrication of luminescent sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100110371A KR101250142B1 (en) 2010-11-08 2010-11-08 Processing method of a long phosphorescence phosphor by combustion-reaction and its application for the fabrication of luminescent sheet

Publications (2)

Publication Number Publication Date
KR20120048906A KR20120048906A (en) 2012-05-16
KR101250142B1 true KR101250142B1 (en) 2013-04-04

Family

ID=46266991

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100110371A KR101250142B1 (en) 2010-11-08 2010-11-08 Processing method of a long phosphorescence phosphor by combustion-reaction and its application for the fabrication of luminescent sheet

Country Status (1)

Country Link
KR (1) KR101250142B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101311638B1 (en) * 2012-05-30 2013-09-25 서울시립대학교 산학협력단 An advertising device including long phosphorescence phosphor and method for manufacturing an advertising device
KR101486065B1 (en) * 2013-05-23 2015-01-26 주식회사 하슬라 Phosphorescence phosphor composite and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0174088B1 (en) * 1995-07-03 1999-03-20 김학선 Preparation of phosphores by sol-gel method
JP2005232414A (en) 2004-02-23 2005-09-02 Ishihara Sangyo Kaisha Ltd Strontium aluminate-based luminous powder and its production method
KR20050101151A (en) * 2005-10-01 2005-10-20 김정식 Synthesis of the phosphorescent phosphor of strontium barium aluminates

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0174088B1 (en) * 1995-07-03 1999-03-20 김학선 Preparation of phosphores by sol-gel method
JP2005232414A (en) 2004-02-23 2005-09-02 Ishihara Sangyo Kaisha Ltd Strontium aluminate-based luminous powder and its production method
KR20050101151A (en) * 2005-10-01 2005-10-20 김정식 Synthesis of the phosphorescent phosphor of strontium barium aluminates
KR100733009B1 (en) 2005-10-01 2007-06-27 서울시립대학교 산학협력단 Synthesis of the Phosphorescent Phosphor of Strontium Barium Aluminates

Also Published As

Publication number Publication date
KR20120048906A (en) 2012-05-16

Similar Documents

Publication Publication Date Title
KR100700231B1 (en) Pigment with day-light fluorescence
CN1089108C (en) Photostimulable phosphor
US8928005B2 (en) Light-emitting device
CN103160278A (en) Red long-lasting phosphor material and preparation method thereof
CN102965103A (en) Superfine rare earth magnesium silicate strontium fluorescent powder and preparation technology thereof
CN110387235A (en) Near-infrared luminous fluorophor, phosphor blends, light-emitting component and light emitting device
JP2010270196A (en) Phosphor, method for manufacturing phosphor, phosphor-containing composition, light-emitting device, lighting apparatus, image display, and fluorescent paint
Singh et al. Eu3+ and Dy3+ activated Sr2V2O7 phosphor for solid state lighting
Khattab et al. Preparation of strontium aluminate: Eu2+ and Dy3+ persistent luminescent materials based on recycling alum sludge
Lou et al. Synthesis and phosphorescence mechanism of yellow-emissive long-afterglow phosphor BaAl2Si3O4N4: Yb2+
CN103154196A (en) Mn-activated phosphors
WO2011117791A1 (en) Led-based lighting device comprising a plurality of luminescent materials
KR101250142B1 (en) Processing method of a long phosphorescence phosphor by combustion-reaction and its application for the fabrication of luminescent sheet
RU2396302C1 (en) Luminophor for light sources
Naktode et al. Effective red-orange emitting CaMgPO4Cl: Sm3+ halophosphate phosphor
Yildirim et al. Boosting optical performance of polymer embedded phosphors using iodine-free and iodine-decorated sol-gel synthesized α-Fe2O3
KR100733009B1 (en) Synthesis of the Phosphorescent Phosphor of Strontium Barium Aluminates
CN105802618A (en) Afterglow-adjustable luminescent material and preparation method thereof, and LED illuminating device using afterglow-adjustable luminescent material
KR101779141B1 (en) Silicate-based long-afterglow phosphor and method of preparing the same
CN101671561A (en) Method for preparing blue long afterglow luminescence C12A7 powder
KR101311638B1 (en) An advertising device including long phosphorescence phosphor and method for manufacturing an advertising device
CN113061432A (en) Preparation method and application of high-stability multifunctional whitlockite type fluorescent powder
CN107722978B (en) Multi-component oxide long-afterglow luminescent material and preparation method thereof
Atabaev et al. Effects of Li+ codoping on the optical properties of SrAl2O4 long afterglow ceramic phosphors
US8686626B2 (en) Oxynitride-based phosphor and light emitting device including the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160202

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170316

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180124

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190201

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20200203

Year of fee payment: 8