KR20050101151A - Synthesis of the phosphorescent phosphor of strontium barium aluminates - Google Patents

Synthesis of the phosphorescent phosphor of strontium barium aluminates Download PDF

Info

Publication number
KR20050101151A
KR20050101151A KR1020050092648A KR20050092648A KR20050101151A KR 20050101151 A KR20050101151 A KR 20050101151A KR 1020050092648 A KR1020050092648 A KR 1020050092648A KR 20050092648 A KR20050092648 A KR 20050092648A KR 20050101151 A KR20050101151 A KR 20050101151A
Authority
KR
South Korea
Prior art keywords
added
mol
phosphor
amount
emission
Prior art date
Application number
KR1020050092648A
Other languages
Korean (ko)
Other versions
KR100733009B1 (en
Inventor
김정식
Original Assignee
김정식
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김정식 filed Critical 김정식
Priority to KR1020050092648A priority Critical patent/KR100733009B1/en
Publication of KR20050101151A publication Critical patent/KR20050101151A/en
Application granted granted Critical
Publication of KR100733009B1 publication Critical patent/KR100733009B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7734Aluminates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/55Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing beryllium, magnesium, alkali metals or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7792Aluminates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

본 발명은 황록색과 청록색 발광특성을 나타내는 Sr1 - xBaxAl2O4:Eu2 +,Dy3 +계(이하 스트론튬-바륨 알루미네이트 로 함)의 형광체를 합성하는 제조공정에 관한 것으로서, 시작 원료인 SrCO3 , BaCO3, Al2O3에 부활제로서 Eu2O3, 공부활제로서 Dy2O3, 그리고 융제로서 B2O3를 첨가하여 고상반응에 의해 형광물질을 합성한다. 형광체를 합성하는 소결공정은 95%Ar+5%H2 환원 분위기에서 1100∼1400℃ 온도로 3시간동안 열처리하였다. Ba 첨가량은 0.0-1.0 mol의 범위로 변화시켰고, Ba의 양이 0.0-0.4mol 첨가될 경우에는 발광파장이 황록색 영역이었으며, 0.5mol을 초과하게 되면 발광파장 영역이 청록색에 가까운 영역으로 변한다. 또한 Ba의 양이 많을수록 발광의 세기는 증가하고 장잔광 특성은 Ba이 0.1 mol 첨가되었을 때 가장 우수한 특성을 나타낸다. 분말의 여기 및 발광 특성을 측정한 결과, 여기스펙트럼은 250~450 nm의 넓은 파장영역에 걸쳐 여기가 일어나고, 발광스펙트럼은 480~520 nm에서 최대 피크를 나타낸다.It relates to a manufacturing process of synthesizing a phosphor of - (referred to as barium aluminate or less strontium), Eu 2 +, Dy 3 + system: - The invention Sr 1 represents the yellow-green and cyan light emitting characteristic x Ba x Al 2 O 4 Fluorescent substance was synthesized by solid phase reaction by adding SrCO 3 , BaCO 3 , Al 2 O 3 as starting material, Eu 2 O 3 as activator, Dy 2 O 3 as study agent, and B 2 O 3 as flux. The sintering process for synthesizing the phosphor was heat-treated for 3 hours at a temperature of 1100 ~ 1400 ℃ in a 95% Ar + 5% H 2 reducing atmosphere. The amount of Ba added was changed in the range of 0.0-1.0 mol. When the amount of Ba was added in the range of 0.0-0.4 mol, the emission wavelength was yellow-green region. When the amount of Ba was exceeded, the emission wavelength region was changed to a region close to cyan. In addition, as the amount of Ba increases, the intensity of light emission increases and the long afterglow property shows the best characteristic when 0.1 mol of Ba is added. As a result of measuring the excitation and luminescence properties of the powder, the excitation spectrum is excited over a wide wavelength region of 250 to 450 nm, and the emission spectrum shows a maximum peak at 480 to 520 nm.

Description

스트론튬-바륨 알루미네이트계 형광체 제조{Synthesis of the Phosphorescent Phosphor of Strontium Barium Aluminates}Synthesis of the Phosphorescent Phosphor of Strontium Barium Aluminates

본 발명은 황록색과 청록색 발광특성을 나타내는 스트론튬-바륨 알루미네이트(Sr1-xBaxAl2O4:Eu2+,Dy3+)계의 축광성 형광체를 제조하는 방법에 관한 것이다. 형광체 재료 중에서 축광재료는 전등이나 태양광 등의 빛의 자극을 받아 에너지를 흡수한 후, 이를 가시광으로 환원하여 어두운 곳에서도 장시간 발광하는 성질을 가진 재료로서 일반적으로 장잔광성 형광체가 이에 해당된다. 이러한 축광재료는 중국과 일본에서 11세기에 그리고 유럽에서는 16세기에 발견되었다. 축광재료는 고속도로, 철도, 항공, 항만 및 빌딩의 전반부 등에 사용되는 형광페인트로서 사용되어 질 수 있을 뿐만 아니라 형광분말은 투명한 유약에 첨가하여 다양한 세라믹 생산품의 형광 유약으로 사용되어 질 수 있다. 그리고 야광문자판, 야광시계 등 다양한 활용성을 가지고 있다.The present invention relates to a method for producing a luminescent phosphor of strontium-barium aluminate (Sr 1-x Ba x Al 2 O 4 : Eu 2+ , Dy 3+ ) -based exhibiting yellow-green and blue-green light emission characteristics. Among the phosphor materials, the photoluminescent material is a material having a property of absorbing energy by stimulation of light such as an electric light or sunlight, and then reducing it to visible light and emitting light even in a dark place for a long time. These photoluminescent materials were found in the 11th century in China and Japan and in the 16th century in Europe. Phosphorescent materials can be used as fluorescent paints used in highways, railways, aviation, ports and the first half of buildings, and fluorescent powders can be used as fluorescent glazes in various ceramic products by adding them to transparent glazes. And it has various applications such as luminous clockface and luminous clock.

대표적인 축광성 형광체로 ZnS:Cu 가 오래전부터 발명되었는데, 이 황화물계 축광성 형광체는 유해원소를 포함하고 있고, 환경적으로 안정하지 못하기 때문에 사용상에 문제점이 있다. 반면 SrAl2O4:Eu2 +,Dy3 + 축광성 형광체는 화학적으로 안정하고 내구성이 우수하며 여기 원으로서 방사성 물질을 함유하고 있지 않아 안전성이 뛰어난 축광성 형광체로서 최근 알려지면서 그 용도가 점차 확대되고 있다. 그러나 본 발명에서 제안된 Ba을 첨가시켜서 황록색으로부터 청록색에 가까운 색을 발광하는 스트론튬-바륨 알루미네이트(Sr1-xBaxAl2O4:Eu2+,Dy3+) 형광체 제조와 그 활용에 대해서는 아직 시도된 바가 없다.ZnS: Cu has been invented for a long time as a representative photoluminescent phosphor. However, since sulfide-based photoluminescent phosphors contain harmful elements and are not environmentally stable, they have problems in use. On the other hand, SrAl 2 O 4 : Eu 2 + , Dy 3 + photoluminescent phosphors are chemically stable, durable, and do not contain radioactive material as excitation source, and their use is gradually expanding as they are recently known as excellent phosphorescent phosphors. It is becoming. However, in the present invention, strontium-barium aluminate (Sr 1-x Ba x Al 2 O 4 : Eu 2+ , Dy 3+ ) phosphors emitting light of yellow-green to cyan by adding Ba proposed in the present invention and their use No attempt has been made yet.

본 발명의 목적은 황록색파장으로부터 청록색파장까지 발광할 수 있는 형광체로서 잔광특성이 뛰어난 축광성 재료를 제조하는 것으로서 SrAl2O4 모체결정에 BaCO3를 0.0~1.0mol의 범위로 첨가시키고, 부활제로서 Eu2O3를 소량 첨가시키고 공부활제로서 Dy2O3를 소량 첨가하였으며, 융제로서 B2O3를 첨가하였다. 소성과정에서 Eu(Ⅲ)가 Eu(Ⅱ)로 환원되도록 95%Ar+5%H2의 환원분위기 속에서 1300~1400℃ 온도로 열처리시켜 축광성 형광체를 제조하였다. 이와 같이 제조된 스트론튬-바륨 알루미네이트 형광체에 대해서 Ba 첨가량에 따른 발광특성과 장잔광 특성을 조사한 결과, Ba 양이 0.0~0.4mol 첨가될 경우에는 발광파장이 황록색 영역이었으며, 0.5mol을 초과하게 되면 발광파장 영역이 청록색에 가까운 영역으로 변하였다. 또한 Ba이 첨가되었을 경우가 첨가되지 않았을 경우보다 발광세기가 높고 장잔광 특성이 우수하였다. 따라서 황록색 파장으로 발광하는 SrAl2O4 계 형광체에 Ba을 적당하게 첨가시키면 황록색 파장으로부터 청록색 파장까지 발광을 구현하고 장잔광특성이 우수한 축광성 형광체 제조가 가능하다.An object of the present invention is to produce a photoluminescent material having excellent afterglow characteristics as a phosphor capable of emitting light from yellowish green wavelength to cyan wavelength, and is characterized in that SrAl 2 O 4 BaCO 3 was added to the matrix crystal in the range of 0.0 to 1.0 mol, a small amount of Eu 2 O 3 was added as an activator, and a small amount of Dy 2 O 3 was added as a activator, and B 2 O 3 was added as a flux. The phosphorescent phosphor was prepared by heat treatment at a temperature of 1300 to 1400 ° C. in a reducing atmosphere of 95% Ar + 5% H 2 to reduce Eu (III) to Eu (II) during the firing process. The luminescence properties and long afterglow characteristics of the strontium-barium aluminate phosphors prepared as described above were investigated. When the amount of Ba added was 0.0 to 0.4 mol, the emission wavelength was yellowish green. The emission wavelength region was changed to a region close to cyan. In addition, when Ba was added, the luminescence intensity was higher and the afterglow property was superior to that when Ba was not added. Therefore, when Ba is appropriately added to the SrAl 2 O 4 -based phosphor that emits light at the yellow-green wavelength, light emission from the yellow-green wavelength to the blue-green wavelength can be realized and the phosphorescent phosphor having excellent long afterglow property can be manufactured.

본 발명에 따른 스트론튬-바륨 알루미네이트(Sr1 - xBaxAl2O4:Eu2 +,Dy3 + )계의 축광성 형광체를 제조하는 방법은 도 1에 도시된 바와 같이 출발원료로서 99.9%이상 고순도 급의 SrCO3, BaCO3, Al2O3 분말들을 적정 몰비로 혼합하고, 부활제와 공부활제로서 Eu2O3와 Dy2O3을 각각 사용한다. 각 원료의 조성몰비(molar ratio)는 (SrCO3 ,BaCO3): Al2O3: Eu2O3: Dy2O3 = 0.97 : 1.0 : 0.005 : 0.01로 한다. 또한, 반응온도를 낮추어 모체결정의 입자성장을 촉진시키고 발광효율을 향상시키는 역할을 하는 융제(flux)로서 3~4wt%의 B2O3 분말을 혼합한다. 즉, 적정몰비로 칭량된 SrCO3 , BaCO3, Al2O3, Eu2O3, B2O3를 1차적으로 유발에서 혼합시키고, 분말의 비산방지와 보다 효과적인 혼합을 위하여 에탄올과 혼합하여 24시간 볼밀을 이용하여 습식 혼합한다. 그리고 혼합 때 함유된 에탄올을 제거하기 위하여 130℃에서 24시간 건조시킨다. 최종적으로 건조된 혼합분말을 알루미나보트에 넣고 (95%Ar+5%H2)의 환원분위기 중에서 반응온도 1100∼1500℃로 3시간동안 열처리 한다. 이때 승온속도는 약 5~10℃/min정도로 일정하게 유지한다.Barium aluminate-strontium according to the invention (Sr 1 - x Ba x Al 2 O 4: Eu 2 +, Dy 3 +) and hold the axial light component fluorescent material as a starting material, as a method of manufacturing are shown in Figure 1 99.9 SrCO 3 , BaCO 3 and Al 2 O 3 powders of higher purity than% are mixed in an appropriate molar ratio, and Eu 2 O 3 and Dy 2 O 3 are used as an activator and a study agent, respectively. The molar ratio of each raw material is (SrCO 3 , BaCO 3 ): Al 2 O 3 : Eu 2 O 3 : Dy 2 O 3 = 0.97: 1.0: 0.005: 0.01. In addition, by mixing the 3 ~ 4wt% B 2 O 3 powder as a flux to lower the reaction temperature to promote the grain growth of the parent crystal and improve the luminous efficiency. That is, SrCO 3 , BaCO 3 , Al 2 O 3 , Eu 2 O 3 , B 2 O 3 , weighed in the proper molar ratio, are mixed first in the mortar, and mixed with ethanol to prevent the scattering of powder and more effective mixing. Wet mixing using a ball mill for 24 hours. And it is dried for 24 hours at 130 ℃ to remove ethanol contained during mixing. Finally, the dried mixed powder is placed in an alumina boat and heat-treated at a reaction temperature of 1100-1500 ° C. for 3 hours in a reducing atmosphere of (95% Ar + 5% H 2 ). At this time, the temperature increase rate is kept constant at about 5 ~ 10 ℃ / min.

이하, 본 발명에 따른 실시 예를 단계별로 설명하면 다음과 같다. Hereinafter, an embodiment according to the present invention will be described step by step.

(1) 스트론튬-바륨 알루미네이트 형광체의 물리적 특성(1) Physical Properties of Strontium-Barium Aluminate Phosphors

도 2는 준비된 혼합분말을 (95%Ar+5%H2) 환원분위기에서 1100℃에서 1400℃까지 각각 100℃간격으로 변화시켜 3시간 동안 소결시킨 분말들의 주사전자현미경(SEM) 사진을 보여주고 있다. 사진에 나타난 바와 같이 소결과정 동안 입자성장이 일어났음을 알 수 있다. 즉, 분말이 1100℃에서 소결된 경우 입자크기가 약 1㎛정도이나, 1200℃이상의 소결온도에서는 입자간 응집이 활발하게 일어나 입자가 성장되었으며 1300℃에서는 결정입자가 약 2㎛정도까지 성장하였다. 이러한 결정입자의 조대화는 특히, 융제로서 첨가한 B2O3가 소결 공정시 용해되어 입자들의 미끄럼이나 회전이 용이하도록 조장함으로써 입자 상호간의 확산반응을 촉진시켰기 때문인 것으로 판단된다. 1400℃ 소결온도에서는 B2O3의 심한 유리화로 인하여 용해된 B2O3가 분말들을 포켓모양으로 완전히 덮어버렸음을 알 수 있다.FIG. 2 shows scanning electron microscope (SEM) images of powders sintered for 3 hours by changing the prepared mixed powders at 100 ° C intervals from 1100 ° C to 1400 ° C in a (95% Ar + 5% H 2 ) reducing atmosphere. have. As shown in the photo, it can be seen that particle growth occurred during the sintering process. In other words, when the powder was sintered at 1100 ° C., the particle size was about 1 μm, but at sintering temperature of 1200 ° C. or more, the particles were actively agglomerated, and the particles were grown. The coarsening of the crystal grains is considered to be due to the fact that B 2 O 3 added as a flux dissolves during the sintering process to facilitate the sliding and rotation of the particles, thereby promoting the diffusion reaction between the particles. At sintering temperature of 1400 ℃, due to severe vitrification of B 2 O 3 , the dissolved B 2 O 3 completely covered the powders in a pocket.

도 3은 1400℃에서 열처리한 Sr1 - xBaxAl2O4:Eu2 +,Dy3 +(x=0∼1.0mol)의 X-선 회절분석 결과이다. Ba 0~0.3mol 까지는 SrAl2O4의 회절피크와 유사하고 Ba 0.5~1.0mol의 경우는 BaAl2O4의 회절피크와 유사하게 나타나고 있다.Figure 3 is a Sr 1 subjected to heat treatment at 1400 ℃ - x Ba x Al 2 O 4: the Eu 2 +, Dy 3 + ( x = 0~1.0mol) X-ray diffraction analysis results. Ba 0 ~ 0.3mol is similar to the diffraction peak of SrAl 2 O 4 , Ba 0.5 ~ 1.0mol is similar to the diffraction peak of BaAl 2 O 4 .

(2) 스트론튬-바륨 알루미네이트 형광체의 여기 특성(2) Excitation Characteristics of Strontium-Barium Aluminate Phosphors

도 4는 1400℃에서 3시간 소결시킨 SrAl2O4:Eu2 +,Dy3 + 형광체에 대해서 얻은 여기스펙트럼으로서 발광파장을 520 nm로 고정한 후 200nm에서 500nm까지 주사하여 측정하였다. 그림에서와 같이 250nm에서 450nm의 넓은 파장영역에 걸쳐 여기가 일어나고, 360nm에서 최대흡수피크를 나타내며 그밖에 260nm, 330nm, 380nm, 420nm 등에서 여기피크들이 일어나는 복잡한 형태의 여기스펙트럼으로 나타나고 있다. 이러한 여기피크들은 부활제인 Eu2 +4 f 7 → 4 f 6 5d 1 천이에 의한 여기피크들과 공부활제인 Dy3 +의 결정결함에 의해 형성된 깊은 준위들로부터 일어나는 복합적인 여기피크들로 생각된다. 250nm-450nm 범위의 파장은 태양광에도 포함되어 있는 파장영역이므로 SrAl2O4:Eu2 +,Dy3 + 형광체는 태양광에 의해서 쉽게 여기되어 발광할 수 있고, 또한 320nm 이하에서 여기강도가 현저히 저하되는 특성을 지닌 기존의 ZnS:Cu계 보다 단파장인 자외선에서도 발광될 수 있는 형광물질임을 알 수 있다.4 is SrAl 2 O 4 was sintered at 1400 ℃ 3 hours: measured by scanning from after the light emission wavelength as an excitation spectrum obtained for Eu 2 +, Dy 3 + phosphor is fixed to 520 nm 200nm to 500nm. As shown in the figure, excitation occurs over a wide wavelength range from 250 nm to 450 nm, maximum absorption peak at 360 nm, and other excitation peaks at 260 nm, 330 nm, 380 nm, and 420 nm. These Here peaks are considered to be the combination of this peak occurs from deep levels formed by the crystal defects of the activator agent Eu 2 + a 4 f 7 4 is f 6 5d according to the 1002 peak and study lubricant here Dy 3 + do. Since the wavelength in the range of 250 nm to 450 nm is also included in the sunlight, the SrAl 2 O 4 : Eu 2 + and Dy 3 + phosphors can be easily excited by the sunlight and emit light. It can be seen that it is a fluorescent material capable of emitting light even in ultraviolet light having a shorter wavelength than conventional ZnS: Cu-based having a deteriorating property.

(3) 스트론튬-바륨 알루미네이트 형광체의 발광 특성(3) Luminescence Characteristics of Strontium-Barium Aluminate Phosphors

도 5는 0.1몰의 Ba을 모체결정에 치환시켜 1100~1400℃ 3시간동안 95%Ar+5%H2의 환원 분위기에서 열처리 시킨 분말 시료의 발광스펙트럼을 나타낸 것이다. 여기광원으로는 Xe 램프로부터 발생된 360nm의 빛을 사용하였다. 그림에서와 같이 Sr1 - xBaxAl2O4:Eu2 +,Dy3 +(x=0.1mol) 형광체의 발광스펙트럼은 황록색의 발광영역인 510nm-520nm를 최대 발광파장으로 하는 400∼600nm의 폭넓은 발광스펙트럼을 나타내며, 이는 종래의 축광재료로서 널리 사용되고 있는 ZnS:Cu의 발광파장과 비슷한 파장이다. 그리고 반응온도가 올라갈수록 발광강도는 높아졌다. 이와 같이 합성온도 증가에 따른 발광강도의 증가는 환원분위기의 높은 온도에서 Eu3 +이온이 Eu2 +이온으로 쉽게 환원되어 치환됨으로서 안정한 발광중심(luminescence center)을 형성하기 때문인 것으로 사료된다.FIG. 5 shows the emission spectrum of a powder sample in which 0.1 mole of Ba was substituted for a mother crystal and heat-treated in a reducing atmosphere of 95% Ar + 5% H 2 for 3 hours at 1100 to 1400 ° C. FIG. As the excitation light source, light of 360 nm generated from the Xe lamp was used. As shown in the figure, the emission spectrum of Sr 1 - x Ba x Al 2 O 4 : Eu 2 + , Dy 3 + (x = 0.1mol) phosphor is 400 ~ 600nm with 510nm-520nm as the maximum emission wavelength. It shows a broad emission spectrum of which is a wavelength similar to that of ZnS: Cu, which is widely used as a conventional photoluminescent material. And as the reaction temperature increased, the emission intensity increased. Thus, increase in emission intensity according to the synthesis temperature is increased by being the Eu 3 + ion substitution is easily reduced to Eu 2 + ions at a temperature of the reducing atmosphere is considered to be due to form a stable light emitting center (luminescence center).

도 6은 Ba을 0∼1.0mol로 첨가하여 발광강도가 가장 좋은 1400℃에서 3시간 열처리 시킨 분말 시료의 발광스펙트럼이다. 이 경우 0∼0.3mol은 510∼520nm에서 발광하는데 비해서 0.5∼1.0mol 치환시킨 것은 480∼490nm에서 발광스펙트럼을 보인다. 또한 그림에서 알 수 있듯이 발광의 세기는 BaAl2O4 형광체가 SrAl2O4 형광체보다 상대적으로 더 높게 나타난다.FIG. 6 is a light emission spectrum of a powder sample heat-treated at 1400 ° C. for 3 hours by adding Ba to 0 to 1.0 mol. In this case, 0-0.3 mol emits light at 510-520 nm, whereas 0.5-1.0 mol substitutes show emission spectrum at 480-490 nm. In addition, as can be seen in the figure is the light emitting intensity of BaAl 2 O 4 phosphor has shown a relatively more highly than SrAl 2 O 4 phosphor.

도 7은 스트론튬-바륨 알루미네이트(Sr1 - xBaxAl2O4:Eu2 +,Dy3 +(x=0∼1.0mol)) 형광체가 가장 우수한 발광강도를 갖는 1400℃에서 3시간 동안 95%Ar+5%H2의 환원분위기에서 열처리한 분말을 태양광과 유사한 백색광을 방출하는 Xe 램프로 5분을 여기시킨 후, 암시야 상태에서 잔광특성을 측정한 결과를 나타낸 것이다. 그림에서와 같이 잔광강도는 Ba의 첨가량과 관계없이 시간에 따라 감소하는 경향을 보였다. 또한 Ba의 첨가량에 따라 잔광특성이 변하며, Ba이 첨가된 경우가 첨가되지 않은 경우보다 장잔광 특성이 우수하고 특히 Ba이 0.1mol 일 때 가장 우수한 장잔광 특성을 나타내고 있다. 장잔광 특성은 보통 형광체의 경우 여기파장 360nm의 여기광에 의해 전자가 4f 7상태에서 4f 65d 1상태로 여기된 후 재차 4f 7 상태로 천이됨에 따라 480~520nm에서 발광하는 반면에, 잔광은 단파장의 여기광에 의하여 4f 65d 1 상태보다 높은 준위에 존재하는 trap 준위에 여기?포획되어 포획된 전자가 열적에너지에 의하여 trap으로부터 해방되어 평형에 도달하기까지 장시간이 소요되기 때문에 생긴다.7 is a strontium-barium aluminate (Sr 1 - x Ba x Al 2 O 4: Eu 2 +, Dy 3 + (x = 0~1.0mol)) during the 1400 ℃ 3 sigan phosphor has the most excellent luminous intensity After the powder heat-treated in a reducing atmosphere of 95% Ar + 5% H 2 by excitation for 5 minutes by Xe lamp emitting white light similar to the sunlight, afterglow characteristics in the dark field state is measured. As shown in the figure, afterglow intensity tended to decrease with time regardless of the amount of Ba added. In addition, the afterglow property changes according to the amount of Ba added, and the long afterglow property is better than the case where Ba is added, and particularly, when Ba is 0.1 mol, it shows the best long afterglow property. On the other hand Chapter afterglow characteristic is that in the case of usual phosphor by the excitation light of the excitation wavelength 360nm electroluminescent at 480 ~ 520nm as the transition to the re-4 f 7 state after excitation in a 4 f 7 state to the 4 f 6 5 d 1 state Afterglow takes a long time to be trapped at a trap level higher than 4 f 6 5 d 1 due to short wavelength excitation light, and the trapped electrons are released from the trap by thermal energy to reach equilibrium. Because it becomes.

이상에서 설명한 바와 같이 본 발명에 따라 합성된 스트론튬-바륨 알루미네이트 형광체는 400∼600nm의 폭넓은 발광스펙트럼을 나타내며, 최대발광피크는 Ba 첨가량이 증가될수록 520nm의 황록색 발광으로부터 480nm의 청록색 발광 영역으로 이동되었다. 발광 및 장잔광 특성은 소결 온도가 높을수록 우수하게 나타났고, 소결 온도가 1400℃에서 최대 발광강도 및 잔광강도를 나타내었다. Ba의 첨가량이 0.5몰 미만일 경우에는 SrAl2O4 형광체와 유사하게 황록색 파장 영역의 발광특성을 나타내었고, 0.5 몰 이상일 경우에는 청록색 파장의 발광 특성을 나타내었다. Ba 첨가량에 따라 잔광특성을 측정한 결과, Ba이 첨가되었을 경우가 첨가되지 않았을 경우보다 우수한 장잔광 특성을 나타내었으며, Ba이 0.1몰 첨가되었을 때 가장 우수한 장잔광 특성을 나타내었다. 이상에서 본 발명에 따라 제조된 스트론튬-바륨 알루미네이트 형광체는 황록색 파장으로부터 청록색 파장까지 발광을 구현하고 장잔광특성이 우수한 축광성 형광체이다.As described above, the strontium-barium aluminate phosphor synthesized according to the present invention exhibits a broad emission spectrum of 400 to 600 nm, and the maximum emission peak is shifted from 520 nm yellow-green emission to 480 nm blue-green emission region as the amount of Ba addition increases. It became. The luminescence and long afterglow characteristics were excellent as the sintering temperature was higher, and the maximum luminescence intensity and afterglow intensity were shown at the sintering temperature of 1400 ° C. If the amount of Ba added is less than 0.5 mole, SrAl 2 O 4 Similar to the fluorescent material, the light emission characteristics of the yellow-green wavelength region are shown, and when the molar is 0.5 mole or more, the light emission characteristics of the blue-green wavelength are shown. As a result of measuring the afterglow property according to the amount of Ba added, the afterglow property was better than when Ba was added, and the longest afterglow property was excellent when 0.1 mole of Ba was added. The strontium-barium aluminate phosphor prepared according to the present invention is a photoluminescent phosphor that emits light from a yellowish green wavelength to a cyan wavelength and has excellent long afterglow characteristics.

도 1은 스트론튬-바륨 알루미네이트 형광체 제조공정도. 1 is a process chart for producing strontium-barium aluminate phosphors.

도 2는 서로 다른 반응온도에 따른 스트론튬-바륨 알루미네이트 형광체에 대한 주사전자현미경(SEM) 사진으로서,FIG. 2 is a scanning electron microscope (SEM) photograph of strontium-barium aluminate phosphors at different reaction temperatures.

(a)는 반응온도가 1100℃일 때의 분말형상, (a) is the powder when the reaction temperature is 1100 ℃,

(b)는 반응온도가 1200℃일 때의 분말형상, (b) is the powder form when the reaction temperature is 1200 ℃,

(c)는 반응온도가 1300℃일 때의 분말형상, (c) is the powder when the reaction temperature is 1300 ℃,

(d)는 반응온도가 1400℃일 때의 분말형상.(d) is powder form when reaction temperature is 1400 degreeC.

도 3은 서로 다른 양의 Ba이 첨가된 스트론튬-바륨 알루미네이트 형광체의 XRD 패턴.3 is an XRD pattern of strontium-barium aluminate phosphors having different amounts of Ba added thereto.

도 4는 형광체의 여기 스펙트럼.4 is an excitation spectrum of a phosphor.

도 5는 0.1몰 Ba가 첨가된 형광체의 소결온도에 따른 발광 스펙트럼.5 is an emission spectrum according to the sintering temperature of the phosphor to which 0.1 mol Ba is added.

도 6은 서로 다른 Ba 양에 따른 스트론튬-바륨 알루미네이트 형광체의 발광 스펙트럼. 6 is an emission spectrum of strontium-barium aluminate phosphors according to different Ba amounts.

도 7은 서로 다른 Ba 양에 따른 스트론튬-바륨 알루미네이트 형광체의 감쇠 곡선.7 is attenuation curves of strontium-barium aluminate phosphors according to different Ba amounts.

Claims (3)

SrAl2O4 모체결정에 Ba을 0.0~1.0mol의 범위로 첨가시켜서 다양한 파장대에서 발광하는 스트론튬-바륨 알루미네이트계의 축광성 형광체를 제조하는 방법.SrAl 2 O 4 A method of manufacturing a strontium-barium aluminate-based photoluminescent phosphor which emits light at various wavelengths by adding Ba to a matrix crystal in a range of 0.0 to 1.0 mol. 제1항에 있어서, 부활제로서 0.005~0.01몰의 Eu2O3를 소량 첨가시키고 공부활제로서 0.01~0.02몰의 Dy2O3를 소량 첨가하고, 융제로서 3~4wt% B2O3를 첨가하여 제조된 형광체.The method according to claim 1, wherein a small amount of 0.005 to 0.01 mol of Eu 2 O 3 is added as an activator, and a small amount of 0.01 to 0.02 mol of Dy 2 O 3 is added as a activator, and 3 to 4 wt% B 2 O 3 is used as a flux. Phosphor prepared by addition. 제1항과 제2항에 있어서, 상기 분말을 95%Ar+5%H2 환원 분위기에서 1100∼1500℃ 온도로 3시간동안 열처리함으로서 황록색 파장으로부터 청록색 파장까지 발광을 구현하는 형광체의 제조방법.3. The method of claim 1, wherein the powder is heat-treated at 1100 to 1500 ° C. for 3 hours in a 95% Ar + 5% H 2 reducing atmosphere to realize light emission from an yellowish green color to a cyan green color.
KR1020050092648A 2005-10-01 2005-10-01 Synthesis of the Phosphorescent Phosphor of Strontium Barium Aluminates KR100733009B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050092648A KR100733009B1 (en) 2005-10-01 2005-10-01 Synthesis of the Phosphorescent Phosphor of Strontium Barium Aluminates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050092648A KR100733009B1 (en) 2005-10-01 2005-10-01 Synthesis of the Phosphorescent Phosphor of Strontium Barium Aluminates

Publications (2)

Publication Number Publication Date
KR20050101151A true KR20050101151A (en) 2005-10-20
KR100733009B1 KR100733009B1 (en) 2007-06-27

Family

ID=37279752

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050092648A KR100733009B1 (en) 2005-10-01 2005-10-01 Synthesis of the Phosphorescent Phosphor of Strontium Barium Aluminates

Country Status (1)

Country Link
KR (1) KR100733009B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100381618C (en) * 2006-08-30 2008-04-16 大连理工大学 Method for preparing aluminate long-persistence luminous plate
CN102618265A (en) * 2012-03-06 2012-08-01 合肥工业大学 Green fluorescent material for alternating current - light-emitting diode (AC-LED) and preparation method thereof
CN103013507A (en) * 2012-12-26 2013-04-03 广州有色金属研究院 Ultrafine rare-earth aluminate long-persistence luminescent material and preparation method thereof
KR101250142B1 (en) * 2010-11-08 2013-04-04 서울시립대학교 산학협력단 Processing method of a long phosphorescence phosphor by combustion-reaction and its application for the fabrication of luminescent sheet
CN116875303A (en) * 2023-06-02 2023-10-13 常熟理工学院 Aluminate-based red luminescent material and preparation method and application thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990031608A (en) * 1997-10-13 1999-05-06 김종만 Photoluminescent phosphor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100381618C (en) * 2006-08-30 2008-04-16 大连理工大学 Method for preparing aluminate long-persistence luminous plate
KR101250142B1 (en) * 2010-11-08 2013-04-04 서울시립대학교 산학협력단 Processing method of a long phosphorescence phosphor by combustion-reaction and its application for the fabrication of luminescent sheet
CN102618265A (en) * 2012-03-06 2012-08-01 合肥工业大学 Green fluorescent material for alternating current - light-emitting diode (AC-LED) and preparation method thereof
CN103013507A (en) * 2012-12-26 2013-04-03 广州有色金属研究院 Ultrafine rare-earth aluminate long-persistence luminescent material and preparation method thereof
CN116875303A (en) * 2023-06-02 2023-10-13 常熟理工学院 Aluminate-based red luminescent material and preparation method and application thereof

Also Published As

Publication number Publication date
KR100733009B1 (en) 2007-06-27

Similar Documents

Publication Publication Date Title
JP5503288B2 (en) Aluminum silicate orange-red phosphor mixed with divalent and trivalent cations
JP5234781B2 (en) Phosphor, method for producing the same, and light emitting device
JP3837588B2 (en) Phosphors and light emitting devices using phosphors
JP4565141B2 (en) Phosphors and light emitting devices
JP5229878B2 (en) Luminescent device using phosphor
US9382477B2 (en) Oxynitride phosphor powder
JP5206941B2 (en) Phosphor, method for producing the same, and light emitting device
US5885483A (en) Long afterglow phosphor and a process for the preparing thereof
TWI407474B (en) A ceramic luminescence converter and illumination system comprising said converter
JP5660471B2 (en) Phosphor, method for producing the same, and light emitting device
US8158026B2 (en) Method for preparing B-Sialon phosphor
JP5362288B2 (en) Non-stoichiometric tetragonal copper alkaline earth silicate phosphor and method for producing the same
CN102333844A (en) Nitridosilicates co-doped with zirconium and hafnium
JP2010189651A (en) New silicate-based yellow-green phosphor
TWI588117B (en) Oxynitride phosphor powder and method of manufacturing the same
JP2009167328A (en) Phosphor, method for producing it, and light emission apparatus
CN102634339B (en) Red long-afterglow fluorescent material of alkaline earth titanate activated by Bi<2+> and preparation method thereof
KR100733009B1 (en) Synthesis of the Phosphorescent Phosphor of Strontium Barium Aluminates
JP2008208238A (en) Fluorescent substance and method for producing the same and lighting apparatus and image display device equipped with the same
JP3488602B2 (en) Blue to blue-green luminous aluminum silicate phosphor and method for producing the same
EP2009077A1 (en) Manganese-doped metal-silicon-nitrides phosphors
EP2009078A1 (en) Ce3+, Eu2+ -activated alkaline earth silicon nitride phosphors
JP5170640B2 (en) Phosphor, method for producing the same, and light emitting device
KR20140029331A (en) Halogenated oxycarbidonitride phosphor and devices using same
Yamamoto et al. Phosphors for white LEDs

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Re-publication after modification of scope of protection [patent]
FPAY Annual fee payment

Payment date: 20130610

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140617

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee