KR20120041649A - 무선 통신 시스템에서 릴레이 노드가 기지국으로부터 데이터를 수신하는 방법 및 이를 위한 장치 - Google Patents

무선 통신 시스템에서 릴레이 노드가 기지국으로부터 데이터를 수신하는 방법 및 이를 위한 장치 Download PDF

Info

Publication number
KR20120041649A
KR20120041649A KR1020110026760A KR20110026760A KR20120041649A KR 20120041649 A KR20120041649 A KR 20120041649A KR 1020110026760 A KR1020110026760 A KR 1020110026760A KR 20110026760 A KR20110026760 A KR 20110026760A KR 20120041649 A KR20120041649 A KR 20120041649A
Authority
KR
South Korea
Prior art keywords
relay node
channel
downlink physical
downlink
dedicated
Prior art date
Application number
KR1020110026760A
Other languages
English (en)
Other versions
KR101769375B1 (ko
Inventor
김학성
서한별
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to EP11834515.6A priority Critical patent/EP2630737B1/en
Priority to AU2011318816A priority patent/AU2011318816B2/en
Priority to CN201180029353.9A priority patent/CN102986148B/zh
Priority to US13/696,045 priority patent/US8923304B2/en
Priority to JP2013511115A priority patent/JP5612760B2/ja
Priority to CA2799132A priority patent/CA2799132C/en
Priority to MX2012013171A priority patent/MX2012013171A/es
Priority to PCT/KR2011/003670 priority patent/WO2012053715A1/en
Publication of KR20120041649A publication Critical patent/KR20120041649A/ko
Priority to US14/518,822 priority patent/US9148883B2/en
Application granted granted Critical
Publication of KR101769375B1 publication Critical patent/KR101769375B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15528Control of operation parameters of a relay station to exploit the physical medium
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15528Control of operation parameters of a relay station to exploit the physical medium
    • H04B7/15542Selecting at relay station its transmit and receive resources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2603Arrangements for wireless physical layer control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 출원에서는 무선 통신 시스템에서 릴레이 노드가 기지국으로부터 릴레이 노드 전용 하향링크 물리 공용 채널을 수신하는 방법이 개시된다. 구체적으로, 릴레이 노드 전용 하향링크 물리 제어 채널(R-PDCCH)을 릴레이 노드 특정 참조 신호를 이용하여 복조하는 단계; 및 상기 복조된 릴레이 노드 전용 하향링크 물리 제어 채널에서 특정 하향링크 제어 정보가 검출된 경우, 상기 릴레이 노드 전용 하향링크 물리 공용 채널이 기 설정된 안테나 포트와 스크램블링 식별자를 이용하여 단일 안테나 포트를 통하여 전송된 것으로 가정하여, 상기 릴레이 노드 전용 하향링크 물리 공용 채널을 복조하는 단계를 포함한다. 여기서 상기 특정 하향링크 제어 정보는 폴백 모드(Fallback Mode)를 지시하고, 상기 기 설정된 안테나 포트와 스크램블링 식별자는 각각 안테나 포트 7과 스크램블링 식별자 0인 것을 특징으로 한다.

Description

무선 통신 시스템에서 릴레이 노드가 기지국으로부터 데이터를 수신하는 방법 및 이를 위한 장치{METHOD OF RECEIVING DATA FROM BASE STATION AT RELAY NODE IN WIRELESS COMMUNICATION SYSTEM AND APPARATUS THEREOF}
본 발명은 무선 통신 시스템에 관한 것으로서, 보다 상세하게는, 무선 통신 시스템에서 릴레이 노드가 기지국으로부터 데이터를 수신하는 방법 및 이를 위한 장치에 관한 것이다.
본 발명이 적용될 수 있는 무선 통신 시스템의 일례로서 3GPP LTE (3rd Generation Partnership Project Long Term Evolution; 이하 "LTE"라 함) 통신 시스템에 대해 개략적으로 설명한다.
도 1은 무선 통신 시스템의 일례로서 E-UMTS 망구조를 개략적으로 도시한 도면이다. E-UMTS(Evolved Universal Mobile Telecommunications System) 시스템은 기존 UMTS(Universal Mobile Telecommunications System)에서 진화한 시스템으로서, 현재 3GPP에서 기초적인 표준화 작업을 진행하고 있다. 일반적으로 E-UMTS는 LTE(Long Term Evolution) 시스템이라고 할 수도 있다. UMTS 및 E-UMTS의 기술 규격(technical specification)의 상세한 내용은 각각 "3rd Generation Partnership Project; Technical Specification Group Radio Access Network"의 Release 7과 Release 8을 참조할 수 있다.
도 1을 참조하면, E-UMTS는 단말(User Equipment; UE)(120)과 기지국(eNode B; eNB)(110a 및 110b), 네트워크(E-UTRAN)의 종단에 위치하여 외부 네트워크와 연결되는 접속 게이트웨이(Access Gateway; AG)를 포함한다. 기지국은 브로드캐스트 서비스, 멀티캐스트 서비스 및/또는 유니캐스트 서비스를 위해 다중 데이터 스트림을 동시에 전송할 수 있다.
한 기지국에는 하나 이상의 셀이 존재한다. 셀은 1.25, 2.5, 5, 10, 15, 20Mhz 등의 대역폭 중 하나로 설정돼 여러 단말에게 하향 또는 상향 전송 서비스를 제공한다. 서로 다른 셀은 서로 다른 대역폭을 제공하도록 설정될 수 있다. 기지국은 다수의 단말에 대한 데이터 송수신을 제어한다. 하향 링크(Downlink; DL) 데이터에 대해 기지국은 하향 링크 스케줄링 정보를 전송하여 해당 단말에게 데이터가 전송될 시간/주파수 영역, 부호화, 데이터 크기, HARQ(Hybrid Automatic Repeat and reQuest) 관련 정보 등을 알려준다. 또한, 상향 링크(Uplink; UL) 데이터에 대해 기지국은 상향 링크 스케줄링 정보를 해당 단말에게 전송하여 해당 단말이 사용할 수 있는 시간/주파수 영역, 부호화, 데이터 크기, HARQ 관련 정보 등을 알려준다. 기지국간에는 사용자 트래픽 또는 제어 트래픽 전송을 위한 인터페이스가 사용될 수 있다. 핵심망(Core Network; CN)은 AG와 단말의 사용자 등록 등을 위한 네트워크 노드 등으로 구성될 수 있다. AG는 복수의 셀들로 구성되는 TA(Tracking Area) 단위로 단말의 이동성을 관리한다.
무선 통신 기술은 WCDMA를 기반으로 LTE까지 개발되어 왔지만, 사용자와 사업자의 요구와 기대는 지속적으로 증가하고 있다. 또한, 다른 무선 접속 기술이 계속 개발되고 있으므로 향후 경쟁력을 가지기 위해서는 새로운 기술 진화가 요구된다. 비트당 비용 감소, 서비스 가용성 증대, 융통성 있는 주파수 밴드의 사용, 단순구조와 개방형 인터페이스, 단말의 적절한 파워 소모 등이 요구된다.
상술한 바와 같은 논의를 바탕으로 이하에서는 무선 통신 시스템에서 릴레이 노드가 기지국으로부터 데이터를 수신하는 방법 및 이를 위한 장치를 제안하고자 한다.
본 발명의 일 양상인 다중 안테나 무선 통신 시스템에서 릴레이 노드가 기지국으로부터 릴레이 노드 전용 하향링크 물리 공용 채널(R-PDSCH)을 수신하는 방법은, 릴레이 노드 전용 하향링크 물리 제어 채널(R-PDCCH)을 릴레이 노드 특정 참조 신호를 이용하여 복조하는 단계; 및 상기 복조된 릴레이 노드 전용 하향링크 물리 제어 채널에서 특정 하향링크 제어 정보가 검출된 경우, 상기 릴레이 노드 전용 하향링크 물리 공용 채널이 기 설정된 안테나 포트와 스크램블링 식별자를 이용하여 단일 안테나 포트를 통하여 전송된 것으로 가정하여, 상기 릴레이 노드 전용 하향링크 물리 공용 채널을 복조하는 단계를 포함하는 것을 특징으로 한다.
한편, 본 발명의 다른 양상인 무선 통신 시스템에서의 릴레이 노드는 기지국으로부터 릴레이 노드 전용 하향링크 물리 제어 채널(R-PDCCH)과 릴레이 노드 전용 하향링크 물리 공용 채널(R-PDSCH)을 수신하는 수신 모듈; 및 릴레이 노드 특정 참조 신호에 기반하여 상기 릴레이 노드 전용 하향링크 물리 제어 채널을 복조하고, 상기 복조된 릴레이 노드 전용 하향링크 물리 제어 채널에서 검출되는 특정 하향링크 제어 정보에 따라 상기 릴레이 노드 전용 하향링크 물리 공용 채널을 복호하는 프로세서를 포함하며, 상기 프로세서는 상기 릴레이 노드 전용 하향링크 물리 공용 채널이 기 설정된 안테나 포트와 스크램블링 식별자를 이용하여 단일 안테나 포트를 통하여 전송된 것으로 가정하여 상기 릴레이 노드 전용 하향링크 물리 공용 채널을 복조하는 것을 특징으로 한다.
여기서 상기 릴레이 노드 특정 참조 신호는 복조 용 참조 신호(Demodulation-Reference Signal; DM-RS)이고, 상기 특정 하향링크 제어 정보는 폴백 모드(Fallback Mode)를 지시하는 하향링크 제어 정보이며, 상기 폴백 모드(Fallback Mode)를 지시하는 하향링크 제어 정보는 DCI(Downlink Control Information) 포맷 1A인 것을 특징으로 한다.
바람직하게는, 상기 기 설정된 안테나 포트와 스크램블링 식별자는 상기 릴레이 노드 전용 하향링크 물리 제어 채널의 복조 시 사용한 상기 릴레이 노드 특정 참조 신호의 안테나 포트와 스크램블링 식별자인 것을 특징으로 하며, 보다 바람직하게는, 상기 기 설정된 안테나 포트와 스크램블링 식별자는 각각 안테나 포트 7과 스크램블링 식별자 0인 것을 특징으로 한다.
본 발명의 실시예에 따르면 무선 통신 시스템에서 릴레이 노드는 기지국으로부터 데이터를 효과적으로 수신할 수 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1은 무선 통신 시스템의 일례로서 E-UMTS 망구조를 개략적으로 도시한 도면.
도 2는 3GPP 무선 접속망 규격을 기반으로 한 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 제어평면(Control Plane) 및 사용자평면(User Plane) 구조를 나타내는 도면.
도 3은 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 설명하기 위한 도면.
도 4는 LTE 시스템에서 사용되는 무선 프레임의 구조를 예시하는 도면.
도 5는 LTE 시스템에서 사용되는 하향 링크 무선 프레임의 구조를 예시하는 도면.
도 6은 일반적인 다중 안테나(MIMO) 통신 시스템의 구성도.
도 7은 4개의 안테나를 이용한 하향링크 전송을 지원하는 LTE 시스템에서의 참조 신호의 구조를 도시하는 도면.
도 8은 PDSCH를 전송하기 위한 전송 모드와 PDCCH에서 지시하는 DCI 포맷과의 관계를 도시하는 도면이다
도 9는 무선 통신 시스템에서 릴레이 백홀 링크 및 릴레이 액세스 링크의 구성을 나타낸 도면.
도 10은 릴레이 노드 자원 분할의 예시를 나타내는 도면.
도 11은 하나의 자원 블록 쌍에서 DM-RS를 위한 자원 요소가 12개 할당된 경우를 도시하는 도면.
도 12는 하나의 자원 블록 쌍에서 DM-RS를 위한 자원 요소가 24개 할당된 경우를 도시하는 도면.
도 13은 본 발명의 일 실시예에 따른 통신 장치의 블록 구성도를 예시한다.
이하에서 첨부된 도면을 참조하여 설명된 본 발명의 실시예들에 의해 본 발명의 구성, 작용 및 다른 특징들이 용이하게 이해될 수 있을 것이다. 이하에서 설명되는 실시예들은 본 발명의 기술적 특징들이 3GPP 시스템에 적용된 예들이다.
본 명세서는 LTE 시스템 및 LTE-A 시스템을 사용하여 본 발명의 실시예를 설명하지만, 이는 예시로서 본 발명의 실시예는 상기 정의에 해당되는 어떤 통신 시스템에도 적용될 수 있다. 또한, 본 명세서는 FDD 방식을 기준으로 본 발명의 실시예에 대해 설명하지만, 이는 예시로서 본 발명의 실시예는 H-FDD 방식 또는 TDD 방식에도 용이하게 변형되어 적용될 수 있다.
도 2는 3GPP 무선 접속망 규격을 기반으로 한 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 제어평면(Control Plane) 및 사용자평면(User Plane) 구조를 나타내는 도면이다. 제어평면은 단말(User Equipment; UE)과 네트워크가 호를 관리하기 위해서 이용하는 제어 메시지들이 전송되는 통로를 의미한다. 사용자평면은 애플리케이션 계층에서 생성된 데이터, 예를 들어, 음성 데이터 또는 인터넷 패킷 데이터 등이 전송되는 통로를 의미한다.
제1계층인 물리계층은 물리채널(Physical Channel)을 이용하여 상위 계층에게 정보 전송 서비스(Information Transfer Service)를 제공한다. 물리계층은 상위에 있는 매체접속제어(Medium Access Control) 계층과는 전송채널(Transport Channel)을 통해 연결되어 있다. 상기 전송채널을 통해 매체접속제어 계층과 물리계층 사이에 데이터가 이동한다. 송신측과 수신측의 물리계층 사이는 물리채널을 통해 데이터가 이동한다. 상기 물리채널은 시간과 주파수를 무선 자원으로 활용한다. 구체적으로, 물리채널은 하향 링크에서 OFDMA(Orthogonal Frequency Division Multiple Access) 방식으로 변조되고, 상향 링크에서 SC-FDMA(Single Carrier Frequency Division Multiple Access) 방식으로 변조된다.
제2계층의 매체접속제어(Medium Access Control; MAC) 계층은 논리채널(Logical Channel)을 통해 상위계층인 무선링크제어(Radio Link Control; RLC) 계층에 서비스를 제공한다. 제2계층의 RLC 계층은 신뢰성 있는 데이터 전송을 지원한다. RLC 계층의 기능은 MAC 내부의 기능 블록으로 구현될 수도 있다.제2계층의 PDCP(Packet Data Convergence Protocol) 계층은 대역폭이 좁은 무선 인터페이스에서 IPv4나 IPv6와 같은 IP 패킷을 효율적으로 전송하기 위해 불필요한 제어정보를 줄여주는 헤더 압축(Header Compression) 기능을 수행한다.
제3계층의 최하부에 위치한 무선 자원제어(Radio Resource Control; RRC) 계층은 제어평면에서만 정의된다. RRC 계층은 무선베어러(Radio Bearer; RB)들의 설정(Configuration), 재설정(Re-configuration) 및 해제(Release)와 관련되어 논리채널, 전송채널 및 물리채널들의 제어를 담당한다. RB는 단말과 네트워크 간의 데이터 전달을 위해 제2계층에 의해 제공되는 서비스를 의미한다. 이를 위해, 단말과 네트워크의 RRC 계층은 서로 RRC 메시지를 교환한다. 단말과 네트워크의 RRC 계층 사이에 RRC 연결(RRC Connected)이 있을 경우, 단말은 RRC 연결 상태(Connected Mode)에 있게 되고, 그렇지 못할 경우 RRC 휴지 상태(Idle Mode)에 있게 된다. RRC 계층의 상위에 있는 NAS(Non-Access Stratum) 계층은 세션 관리(Session Management)와 이동성 관리(Mobility Management) 등의 기능을 수행한다.
기지국(eNB)을 구성하는 하나의 셀은 1.25, 2.5, 5, 10, 15, 20Mhz 등의 대역폭 중 하나로 설정되어 여러 단말에게 하향 또는 상향 전송 서비스를 제공한다. 서로 다른 셀은 서로 다른 대역폭을 제공하도록 설정될 수 있다.
네트워크에서 단말로 데이터를 전송하는 하향 전송채널은 시스템 정보를 전송하는 BCH(Broadcast Channel), 페이징 메시지를 전송하는 PCH(Paging Channel), 사용자 트래픽이나 제어 메시지를 전송하는 하향 SCH(Shared Channel) 등이 있다. 하향 멀티캐스트 또는 방송 서비스의 트래픽 또는 제어 메시지의 경우 하향 SCH를 통해 전송될 수도 있고, 또는 별도의 하향 MCH(Multicast Channel)을 통해 전송될 수도 있다. 한편, 단말에서 네트워크로 데이터를 전송하는 상향 전송채널로는 초기 제어 메시지를 전송하는 RACH(Random Access Channel), 사용자 트래픽이나 제어 메시지를 전송하는 상향 SCH(Shared Channel)가 있다. 전송채널의 상위에 있으며, 전송채널에 매핑되는 논리채널(Logical Channel)로는 BCCH(Broadcast Control Channel), PCCH(Paging Control Channel), CCCH(Common Control Channel), MCCH(Multicast Control Channel), MTCH(Multicast Traffic Channel) 등이 있다.
도 3은 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 설명하기 위한 도면이다.
단말은 전원이 켜지거나 새로이 셀에 진입한 경우 기지국과 동기를 맞추는 등의 초기 셀 탐색(Initial cell search) 작업을 수행한다(S301). 이를 위해, 단말은 기지국으로부터 주 동기 채널(Primary Synchronization Channel; P-SCH) 및 부 동기 채널(Secondary Synchronization Channel; S-SCH)을 수신하여 기지국과 동기를 맞추고, 셀 ID 등의 정보를 획득할 수 있다. 그 후, 단말은 기지국으로부터 물리 방송 채널(Physical Broadcast Channel)를 수신하여 셀 내 방송 정보를 획득할 수 있다. 한편, 단말은 초기 셀 탐색 단계에서 하향 링크 참조 신호(Downlink Reference Signal; DL RS)를 수신하여 하향 링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 단말은 물리 하향 링크 제어 채널(Physical Downlink Control Channel; PDCCH) 및 상기 PDCCH에 실린 정보에 따라 물리 하향 링크 공유 채널(Physical Downlink Control Channel; PDSCH)을 수신함으로써 좀더 구체적인 시스템 정보를 획득할 수 있다(S302).
한편, 기지국에 최초로 접속하거나 신호 전송을 위한 무선 자원이 없는 경우 단말은 기지국에 대해 임의 접속 과정(Random Access Procedure; RACH)을 수행할 수 있다(단계 S303 내지 단계 S306). 이를 위해, 단말은 물리 임의 접속 채널(Physical Random Access Channel; PRACH)을 통해 특정 시퀀스를 프리앰블로 전송하고(S303 및 S305), PDCCH 및 대응하는 PDSCH를 통해 프리앰블에 대한 응답 메시지를 수신할 수 있다(S304 및 S306). 경쟁 기반 RACH의 경우, 추가적으로 충돌 해결 절차(Contention Resolution Procedure)를 수행할 수 있다.
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상/하향 링크 신호 전송 절차로서 PDCCH/PDSCH 수신(S307) 및 물리 상향 링크 공유 채널(Physical Uplink Shared Channel; PUSCH)/물리 상향 링크 제어 채널(Physical Uplink Control Channel; PUCCH) 전송(S308)을 수행할 수 있다. 특히 단말은 PDCCH를 통하여 하향링크 제어 정보(Downlink Control Information; DCI)를 수신한다. 여기서 DCI는 단말에 대한 자원 할당 정보와 같은 제어 정보를 포함하며, 그 사용 목적에 따라 포맷이 서로 다르다.
한편, 단말이 상향 링크를 통해 기지국에 전송하는 또는 단말이 기지국으로부터 수신하는 제어 정보는 하향 링크/상향 링크 ACK/NACK 신호, CQI(Channel Quality Indicator), PMI(Precoding Matrix Index), RI(Rank Indicator) 등을 포함한다. 3GPP LTE 시스템의 경우, 단말은 상술한 CQI/PMI/RI 등의 제어 정보를 PUSCH 및/또는 PUCCH를 통해 전송할 수 있다.
도 4는 LTE 시스템에서 사용되는 무선 프레임의 구조를 예시하는 도면이다.
도 4를 참조하면, 무선 프레임(radio frame)은 10ms(327200*Ts)의 길이를 가지며 10개의 균등한 크기의 서브프레임(subframe)으로 구성되어 있다. 각각의 서브프레임은 1ms의 길이를 가지며 2개의 슬롯(slot)으로 구성되어 있다. 각각의 슬롯은 0.5ms(15360*Ts)의 길이를 가진다. 여기에서, Ts 는 샘플링 시간을 나타내고, Ts =1/(15kHz*048)=3.2552*10-8(약 33ns)로 표시된다. 슬롯은 시간 영역에서 복수의 OFDM 심볼을 포함하고, 주파수 영역에서 복수의 자원블록(Resource Block; RB)을 포함한다. LTE 시스템에서 하나의 자원블록은 12개의 부반송파*(6)개의 OFDM 심볼을 포함한다. 데이터가 전송되는 단위시간인 TTI(Transmission Time Interval)는 하나 이상의 서브프레임 단위로 정해질 수 있다. 상술한 무선 프레임의 구조는 예시에 불과하고, 무선 프레임에 포함되는 서브프레임의 수 또는 서브프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 OFDM 심볼의 수는 다양하게 변경될 수 있다.
도 5는 하향 링크 무선 프레임에서 하나의 서브프레임의 제어 영역에 포함되는 제어 채널을 예시하는 도면이다.
도 5를 참조하면, 서브프레임은 14개의 OFDM 심볼로 구성되어 있다. 서브프레임 설정에 따라 처음 1 내지 3개의 OFDM 심볼은 제어 영역으로 사용되고 나머지 13~11개의 OFDM 심볼은 데이터 영역으로 사용된다. 도면에서 R1 내지 R4는 안테나 0 내지 3에 대한 기준 신호(Reference Signal(RS) 또는 Pilot Signal)를 나타낸다. RS는 제어 영역 및 데이터 영역과 상관없이 서브프레임 내에 일정한 패턴으로 고정된다. 제어 채널은 제어 영역 중에서 RS가 할당되지 않은 자원에 할당되고, 트래픽 채널도 데이터 영역 중에서 RS가 할당되지 않은 자원에 할당된다. 제어 영역에 할당되는 제어 채널로는 PCFICH(Physical Control Format Indicator CHannel), PHICH(Physical Hybrid-ARQ Indicator CHannel), PDCCH(Physical Downlink Control CHannel) 등이 있다.
PCFICH는 물리 제어 포맷 지시자 채널로서 매 서브프레임 마다 PDCCH에 사용되는 OFDM 심볼의 개수를 단말에게 알려준다. PCFICH는 첫 번째 OFDM 심볼에 위치하며 PHICH 및 PDCCH에 우선하여 설정된다. PCFICH는 4개의 REG(Resource Element Group)로 구성되고, 각각의 REG는 셀 ID(Cell IDentity)에 기초하여 제어 영역 내에 분산된다. 하나의 REG는 4개의 RE(Resource Element)로 구성된다. RE는 하나의 부반송파와 OFDM 심볼로 정의되는 최소 물리 자원을 나타낸다. PCFICH 값은 대역폭에 따라 1 내지 3 또는 2 내지 4의 값을 지시하며 QPSK(Quadrature Phase Shift Keying)로 변조된다.
PHICH는 물리 HARQ(Hybrid - Automatic Repeat and request) 지시자 채널로서 상향 링크 전송에 대한 HARQ ACK/NACK을 나르는데 사용된다. 즉, PHICH는 UL HARQ를 위한 DL ACK/NACK 정보가 전송되는 채널을 나타낸다. PHICH는 1개의 REG로 구성되고, 셀 특정(cell-specific)하게 스크램블(scrambling) 된다. ACK/NACK은 1 비트로 지시되며, BPSK(Binary phase shift keying)로 변조된다. 변조된 ACK/NACK은 확산인자(Spreading Factor; SF) = 2 또는 4로 확산된다. 동일한 자원에 매핑되는 복수의 PHICH는 PHICH 그룹을 구성한다. PHICH 그룹에 다중화되는 PHICH의 개수는 확산 코드의 개수에 따라 결정된다. PHICH (그룹)은 주파수 영역 및/또는 시간 영역에서 다이버시티 이득을 얻기 위해 3번 반복(repetition)된다.
PDCCH는 물리 하향 링크 제어 채널로서 서브프레임의 처음 n개의 OFDM 심볼에 할당된다. 여기에서, n은 1 이상의 정수로서 PCFICH에 의해 지시된다. PDCCH는 하나 이상의 CCE로 구성된다. PDCCH는 전송 채널인 PCH(Paging channel) 및 DL-SCH(Downlink-shared channel)의 자원할당과 관련된 정보, 상향 링크 스케줄링 그랜트(Uplink Scheduling Grant), HARQ 정보 등을 각 단말 또는 단말 그룹에게 알려준다. PCH(Paging channel) 및 DL-SCH(Downlink-shared channel)는 PDSCH를 통해 전송된다. 따라서, 기지국과 단말은 일반적으로 특정한 제어 정보 또는 특정한 서비스 데이터를 제외하고는 PDSCH를 통해서 데이터를 각각 전송 및 수신한다.
PDSCH의 데이터가 어떤 단말(하나 또는 복수의 단말)에게 전송되는 것이며, 상기 단말들이 어떻게 PDSCH 데이터를 수신하고 디코딩(decoding)을 해야 하는 지에 대한 정보 등은 PDCCH에 포함되어 전송된다. 예를 들어, 특정 PDCCH가 "A"라는 RNTI(Radio Network Temporary Identity)로 CRC 마스킹(masking)되어 있고, "B"라는 무선자원(예, 주파수 위치) 및 "C"라는 DCI 포맷 즉, 전송형식정보(예, 전송 블록 사이즈, 변조 방식, 코딩 정보 등)를 이용해 전송되는 데이터에 관한 정보가 특정 서브프레임을 통해 전송된다고 가정한다. 이 경우, 셀 내의 단말은 자신이 가지고 있는 RNTI 정보를 이용하여 PDCCH를 모니터링하고, "A" RNTI를 가지고 있는 하나 이상의 단말이 있다면, 상기 단말들은 PDCCH를 수신하고, 수신한 PDCCH의 정보를 통해 "B"와 "C"에 의해 지시되는 PDSCH를 수신한다.
이하 MIMO 시스템에 대하여 설명한다. MIMO(Multiple-Input Multiple-Output)는 복수개의 송신안테나와 복수개의 수신안테나를 사용하는 방법으로서, 이 방법에 의해 데이터의 송수신 효율을 향상시킬 수 있다. 즉, 무선 통신 시스템의 송신단 혹은 수신단에서 복수개의 안테나를 사용함으로써 용량을 증대시키고 성능을 향상 시킬 수 있다. 이하 본 문헌에서 MIMO를 '다중 안테나'라 지칭할 수 있다.
다중 안테나 기술에서는, 하나의 전체 메시지를 수신하기 위해 단일 안테나 경로에 의존하지 않는다. 그 대신 다중 안테나 기술에서는 여러 안테나에서 수신된 데이터 조각(fragment)을 한데 모아 병합함으로써 데이터를 완성한다. 다중 안테나 기술을 사용하면, 특정된 크기의 셀 영역 내에서 데이터 전송 속도를 향상시키거나, 또는 특정 데이터 전송 속도를 보장하면서 시스템 커버리지(coverage)를 증가시킬 수 있다. 또한, 이 기술은 이동통신 단말과 중계기 등에 폭넓게 사용할 수 있다. 다중 안테나 기술에 의하면, 단일 안테나를 사용하던 종래 기술에 의한 이동 통신에서의 전송량 한계를 극복할 수 있다.
일반적인 다중 안테나(MIMO) 통신 시스템의 구성도가 도 6에 도시되어 있다. 송신단에는 송신 안테나가 NT개 설치되어 있고, 수신단에서는 수신 안테나가 NR개가 설치되어 있다. 이렇게 송신단 및 수신단에서 모두 복수개의 안테나를 사용하는 경우에는, 송신단 또는 수신단 중 어느 하나에만 복수개의 안테나를 사용하는 경우보다 이론적인 채널 전송 용량이 증가한다. 채널 전송 용량의 증가는 안테나의 수에 비례한다. 따라서, 전송 레이트가 향상되고, 주파수 효율이 향상된다 하나의 안테나를 이용하는 경우의 최대 전송 레이트를 Ro라고 한다면, 다중 안테나를 사용할 때의 전송 레이트는, 이론적으로, 아래 수학식 1과 같이 최대 전송 레이트 Ro에 레이트 증가율 Ri를 곱한 만큼 증가할 수 있다. 여기서 Ri는 NT와 NR 중 작은 값이다.
Figure pat00001
예를 들어, 4개의 송신 안테나와 4개의 수신 안테나를 이용하는 MIMO 통신 시스템에서는, 단일 안테나 시스템에 비해 이론상 4배의 전송 레이트를 획득할 수 있다. 이와 같은 다중 안테나 시스템의 이론적 용량 증가가 90 년대 중반에 증명된 이후, 실질적으로 데이터 전송률을 향상시키기 위한 다양한 기술들이 현재까지 활발히 연구되고 있으며, 이들 중 몇몇 기술들은 이미 3 세대 이동 통신과 차세대 무선랜 등의 다양한 무선 통신의 표준에 반영되고 있다.
현재까지의 다중안테나 관련 연구 동향을 살펴보면 다양한 채널 환경 및 다중접속 환경에서의 다중안테나 통신 용량 계산 등과 관련된 정보 이론 측면 연구, 다중안테나 시스템의 무선 채널 측정 및 모형 도출 연구, 그리고 전송 신뢰도 향상 및 전송률 향상을 위한 시공간 신호 처리 기술 연구 등 다양한 관점에서 활발한 연구가 진행되고 있다.
다중 안테나 시스템에 있어서의 통신 방법을 보다 구체적인 방법으로 설명하기 위해 이를 수학적으로 모델링 하는 경우 다음과 같이 나타낼 수 있다. 도 6에 도시된 바와 같이 NT개의 송신 안테나와 NR개의 수신 안테나가 존재하는 것을 가정한다. 먼저, 송신 신호에 대해 살펴보면, NT개의 송신 안테나가 있는 경우 최대 전송 가능한 정보는 NT개이므로, 전송 정보를 하기의 수학식 2와 같은 벡터로 나타낼 수 있다.
Figure pat00002
한편, 각각의 전송 정보
Figure pat00003
에 있어 전송 전력을 다르게 할 수 있으며, 이때 각각의 전송 전력을
Figure pat00004
라 하면, 전송 전력이 조정된 전송 정보를 벡터로 나타내면 하기의 수학식 3과 같다.
Figure pat00005
또한,
Figure pat00006
를 전송 전력의 대각행렬
Figure pat00007
를 이용하여 나타내면 하기의 수학식 4와 같다.
Figure pat00008
한편, 전송전력이 조정된 정보 벡터
Figure pat00009
에 가중치 행렬
Figure pat00010
가 적용되어 실제 전송되는 NT 개의 송신신호(transmitted signal)
Figure pat00011
가 구성되는 경우를 고려해 보자. 여기서, 가중치 행렬은 전송 정보를 전송 채널 상황 등에 따라 각 안테나에 적절히 분배해 주는 역할을 수행한다. 이와 같은 전송신호
Figure pat00012
는 벡터
Figure pat00013
를 이용하여 하기의 수학식 5와 같이 나타낼 수 있다. 여기서
Figure pat00014
Figure pat00015
번째 송신안테나와
Figure pat00016
번째 정보 간의 가중치를 의미한다.
Figure pat00017
는 가중치 행렬(Weight Matrix) 또는 프리코딩 행렬(Precoding Matrix)이라고 불린다.
Figure pat00018
일반적으로, 채널 행렬의 랭크의 물리적인 의미는, 주어진 채널에서 서로 다른 정보를 보낼 수 있는 최대 수라고 할 수 있다. 따라서 채널 행렬의 랭크(rank)는 서로 독립인(independent) 행(row) 또는 열(column)의 개수 중에서 최소 개수로 정의되므로, 행렬의 랭크는 행(row) 또는 열(column)의 개수보다 클 수 없게 된다. 수식적으로 예를 들면, 채널 행렬 H의 랭크(rank(H))는 수학식 6과 같이 제한된다.
Figure pat00019
또한, 다중 안테나 기술을 사용해서 보내는 서로 다른 정보 각각을 '전송 스트림(Stream)' 또는 간단하게 '스트림' 으로 정의하기로 하자. 이와 같은 '스트림' 은 '레이어 (Layer)' 로 지칭될 수 있다. 그러면 전송 스트림의 개수는 당연히 서로 다른 정보를 보낼 수 있는 최대 수인 채널의 랭크 보다는 클 수 없게 된다. 따라서, 채널 행렬이 H는 아래 수학식 7과 같이 나타낼 수 있다.
Figure pat00020
여기서 "# of streams"는 스트림의 수를 나타낸다. 한편, 여기서 한 개의 스트림은 한 개 이상의 안테나를 통해서 전송될 수 있음에 주의해야 한다.
한 개 이상의 스트림을 여러 개의 안테나에 대응시키는 여러 가지 방법이 존재할 수 있다. 이 방법을 다중 안테나 기술의 종류에 따라 다음과 같이 설명할 수 있다. 한 개의 스트림이 여러 안테나를 거쳐 전송되는 경우는 공간 다이버시티 방식으로 볼 수 있고, 여러 스트림이 여러 안테나를 거쳐 전송되는 경우는 공간 멀티플렉싱 방식으로 볼 수 있다. 물론 그 중간인 공간 다이버시티와 공간 멀티플렉싱의 혼합(Hybrid)된 형태도 가능하다.
이하에서는, 참조 신호에 관하여 보다 상세히 설명한다. 일반적으로 채널 측정을 위하여 데이터와 함께 송신측과 수신측 모두가 이미 알고 있는 참조 신호가 송신측에서 수신측으로 전송된다. 이러한 참조 신호는 채널 측정뿐만 아니라 변조 기법을 알려주어 복조 과정이 수행되도록 하는 역할을 수행한다. 참조 신호는 기지국과 특정 단말을 위한 전용 참조 신호(dedicated RS; DRS), 즉 단말 특정 참조 신호와 셀 내 모든 단말을 위한 셀 특정 참조 신호인 공통 참조 신호(common RS; CRS)로 구분된다. 또한, 셀 특정 참조는 단말에서 CQI/PMI/RI 를 측정하여 기지국으로 보고하기 위한 참조 신호를 포함하며, 이를 CSI-RS(Channel State Information-RS)라고 지칭한다.
도 7은 4개의 안테나를 이용한 하향링크 전송을 지원하는 LTE 시스템에서의 참조 신호의 구조를 도시하는 도면이다. 특히 도 7의 (a)는 일반(normal) 순환 전치(Cyclic Prefix)인 경우를 도시하며, 도 7의 (b)는 확장(extended) 순환 전치인 경우를 도시한다.
도 7을 참조하면, 격자에 기재된 0 내지 3은 안테나 포트 0 내지 3 각각에 대응하여 채널 측정과 데이터 복조를 위하여 송신되는 셀 특정 참조 신호인 CRS(Common Reference Signal)를 의미하며, 상기 셀 특정 참조 신호인 CRS는 데이터 정보 영역 뿐만 아니라 제어 정보 영역 전반에 걸쳐 단말로 전송될 수 있다.
또한, 격자에 기재된 "D"는 단말 특정 RS인 하향링크 DM-RS(Demodulation-RS)를 의미하고, DM-RS는 데이터 영역 즉, PDSCH를 통하여 단일 안테나 포트 전송을 지원한다. 단말은 상위 계층을 통하여 상기 단말 특정 RS인 DM-RS의 존재 여부를 시그널링 받는다.
한편, 자원블록(RB)으로의 참조 신호의 매핑 규칙은 다음 수학식 8 내지 수학식 10과 같이 나타낼 수 있다. 다음 수학식 8은 CRS 매핑 규칙을 나타내기 위한 식이다. 그리고, 수학식 9는 일반 CP가 적용되는 DRS의 매핑 규칙을 나타내기 위한 식이고, 수학식 10은 확장 CP가 적용되는 DRS의 매핑 규칙을 나타내기 위한 식이다.
Figure pat00021
Figure pat00022
Figure pat00023
Figure pat00024
Figure pat00025
Figure pat00026
Figure pat00027
상기 수학식 8내지 수학식 10에서, k 및 p는 각각 부반송파 인덱스 및 안테나 포트를 나타낸다. NDL RB, ns, NID cell는 각각 하향링크에 할당된 RB의 수, 슬롯 인덱스의 수, 셀 ID의 수를 나타낸다. RS의 위치는 주파수 도메인 관점에서 Vshift 값에 따라 달라진다.
이하에서는, 현재 LTE 표준 문서에 기술된 바에 따라, PDSCH를 전송하기 위한 전송 모드(Transmission Mode; TM)에 관하여 설명한다.
도 8은 PDSCH를 전송하기 위한 전송 모드와 PDCCH에서 지시하는 DCI 포맷과의 관계를 도시하는 도면이다. 상술한 바와 같이 단말이 어떻게 PDSCH 데이터를 수신하고 디코딩(decoding)을 해야 하는 지에 대한 정보 등은 PDCCH에 포함되어 전송된다. 따라서, PDCCH는 "A"라는 RNTI(Radio Network Temporary Identity)로 CRC 마스킹(masking)되어 있고 PDSCH를 수신하기 위한 DCI 포맷에 관한 정보를 포함할 수 있다.
도 8을 참조하면, PDCCH를 마스킹된 RNTI의 종류에 따른 DCI 포맷이 나타나 있으며, 특히 C-RNTI와 SPS C-RNTI의 경우, 전송 모드와 이에 대응하는 DCI 포맷, 즉 전송 모드 기반 DCI 포맷을 도시하고 있다. 또한, 각각의 전송 모드에 무관하게 적용될 수 있는 DCI 포맷 1A가 정의되어 있다.
특히 DCI 포맷 1A는 전송 모드의 변경 시 또는 기지국과 단말 간의 RRC 연결 재설정(reconfiguration) 과정 시 안정적인 신호 송수신을 목적으로 하나의 PDSCH 코드워드의 스케쥴링을 위한 폴백 모드(fallback mode) 용 DCI 포맷이다. 예를 들어, 기지국과 단말 간의 재설정(reconfiguration) 과정 중에 재설정된 파라미터를 적용하는 시점이 일치하지 않는 경우 기지국은 DCI 포맷 1A로 PDSCH를 전송할 수 있다.
보다 구체적으로, 현재 표준문서에 따르면 설정된 전송 모드에 상관없이 C-RNTI로 마스킹된 PDCCH에서 DCI포맷 1A가 검출된다면, 상기 PDCCH가 단일 안테나 포트의 CRS로 복조되는 경우 안테나 포트 0의 단일 안테나 전송을 가정하여 PDSCH를 디코딩하고, 그 이외의 경우에는 전송 다이버시티 기법으로 PDSCH가 전송된 것으로 가정하고 디코딩한다.
한편, 차세대 이동통신 시스템의 표준인 LTE-A 시스템에서는 데이터 전송률 향상을 위해 기존 표준에서는 지원되지 않았던 CoMP(Coordinated Multi Point) 방식을 지원할 것으로 예상된다. 여기서, CoMP 시스템은 음영 지역에 있는 단말 및 기지국(셀 또는 섹터) 간의 통신성능을 향상시키기 위해 2개 이상의 기지국 혹은 셀이 서로 협력하여 단말과 통신하는 시스템을 말한다.
CoMP 방식은 데이터 공유를 통한 협력적 MIMO 형태의 조인트 프로세싱(CoMP-Joint Processing, CoMP-JP) 및 협력 스케줄링/빔포밍(CoMP-Coordinated Scheduling/beamforming, CoMP-CS/CB) 방식으로 구분할 수 있다.
하향링크의 경우 조인트 프로세싱(CoMP-JP) 방식에서, 단말은 CoMP를 수행하는 각 기지국으로부터 데이터를 순간적으로 동시에 수신할 수 있으며, 각 기지국으로부터의 수신한 신호를 결합하여 수신 성능을 향상시킬 수 있다. 이와 달리, 협력 스케줄링/빔포밍 방식(CoMP-CS)에서, 단말은 빔포밍을 통해 데이터를 순간적으로 하나의 기지국을 통해서 수신할 수 있다.
상향링크의 경우 조인트 프로세싱(CoMP-JP) 방식에서, 각 기지국은 단말로부터 PUSCH 신호를 동시에 수신할 수 있다. 이와 달리, 협력 스케줄링/빔포밍 방식(CoMP-CS)에서, 하나의 기지국만이 PUSCH를 수신하는데 이때 협력 스케줄링/빔포밍 방식을 사용하기로 하는결정은 협력 셀(혹은 기지국)들에 의해 결정된다.
한편, 기지국과 단말 간의 채널 상태가 열악한 경우에는 기지국과 단말 간에 릴레이 노드(Relay Node, RN)를 설치하여 채널 상태가 보다 우수한 무선 채널을 단말에게 제공할 수 있다. 또한, 기지국으로부터 채널 상태가 열악한 셀 경계 지역에서 릴레이 노드를 도입하여 사용함으로써 보다 고속의 데이터 채널을 제공할 수 있고, 셀 서비스 영역을 확장시킬 수 있다. 이와 같이, 릴레이 노드는 무선 통신 시스템에서 전파 음영 지역 해소를 위해 도입된 기술로서 현재 널리 사용되고 있다.
과거의 방식이 단순히 신호를 증폭해서 전송하는 리피터(Repeater)의 기능에 국한된 것에 비해 최근에는 보다 지능화된 형태로 발전하고 있다. 더 나아가 릴레이 노드 기술은 차세대 이동통신 시스템에서 기지국 증설 비용과 백홀망의 유지 비용을 줄이는 동시에, 서비스 커버리지 확대와 데이터 처리율 향상을 위해 반드시 필요한 기술에 해당한다. 릴레이 노드 기술이 점차 발전함에 따라, 종래의 무선 통신 시스템에서 이용하는 릴레이 노드를 새로운 무선 통신 시스템에서 지원할 필요가 있다.
3GPP LTE-A(3rd Generation Partnership Project Long Term Evolution-Advanced) 시스템에서 릴레이 노드에 기지국과 단말 간의 링크 연결을 포워딩하는 역할을 도입하면서 각각의 상향링크 및 하향링크 캐리어 주파수 밴드에 속성이 다른 두 가지 종류의 링크가 적용되게 된다. 기지국과 릴레이 노드의 링크 간에 설정되는 연결 링크 부분을 백홀 링크(backhaul link)라고 정의하여 표현한다. 하향링크 자원을 이용하여 FDD(Frequency Division Duplex)) 혹은 TDD(Time Division Duplex) 방식으로 전송이 이루어지는 것을 백홀 하향링크(backhaul downlink)라고 하며, 상향링크 자원을 이용하여 FDD 또는 TDD 방식으로 전송이 이루어지는 것을 백홀 상향링크라고 표현할 수 있다.
도 9는 무선 통신 시스템에서 릴레이 백홀 링크 및 릴레이 액세스 링크의 구성을 나타낸 도면이다.
도 9를 참조하면, 기지국과 단말 간 링크의 연결을 포워딩(forwarding)하는 역할을 위해 릴레이 노드가 도입되면서 각각의 상향링크 및 하향링크 캐리어 주파수 대역에 속성이 다른 두 종류의 링크가 적용된다. 기지국과 릴레이 노드 간의 설정되는 연결 링크 부분을 릴레이 백홀 링크(relay backhaul link)로서 정의하여 표현한다. 백홀 링크가 하향링크 주파수 대역(Frequency Division Duplex, FDD의 경우)이나 하향링크 서브프레임(Time Division Duplex, TDD의 경우) 자원을 이용하여 전송이 이루어지는 경우 백홀 하향링크(backhaul downlink)로 표현하고 상향링크 주파수 대역이나(FDD의 경우) 상향링크 서브프레임(TDD의 경우) 자원을 이용하여 전송이 이루어지는 경우 백홀 상향링크(backhaul uplink)로 표현할 수 있다.
반면 릴레이 노드와 일련의 단말들 간에 설정되는 연결 링크 부분을 릴레이 액세스 링크(relay access link)로서 정의하여 표현한다. 릴레이 액세스 링크가 하향링크 주파수 대역(FDD의 경우)이나 하향링크 서브프레임(TDD의 경우) 자원을 이용하여 전송이 이루어지는 경우 액세스 하향링크(access downlink)로 표현하고 상향링크 주파수 대역(FDD의 경우)이나 상향링크 서브프레임(TDD의 경우) 자원을 이용하여 전송이 이루어지는 경우 액세스 상향링크(access uplink)로 표현할 수 있다.
릴레이 노드(RN)는 릴레이 백홀 하향링크(relay backhaul downlink)를 통해 기지국으로부터 정보를 수신할 수 있고, 릴레이 백홀 상향링크를 통해 기지국으로 정보를 전송할 수 있다. 또한, 릴레이 노드는 릴레이 액세스 하향링크를 통해 단말로 정보를 전송할 수 있고, 릴레이 액세스 상향링크를 통해 단말로부터 정보를 수신할 수 있다.
한편, 릴레이 노드의 대역(또는 스펙트럼) 사용과 관련하여, 백홀 링크가 액세스 링크와 동일한 주파수 대역에서 동작하는 경우를 '인-밴드(in-band)'라고 하고, 백홀 링크와 액세스 링크가 상이한 주파수 대역에서 동작하는 경우를 '아웃-밴드(out-band)'라고 한다. 인-밴드 및 아웃-밴드 경우 모두에서 기존의 LTE 시스템(예를 들어, 릴리즈-8)에 따라 동작하는 단말(이하, 레거시(legacy) 단말이라 함)이 도너 셀에 접속할 수 있어야 한다.
단말에서 릴레이 노드를 인식하는지 여부에 따라 릴레이 노드는 트랜스패런트(transparent) 릴레이 노드 또는 넌-트랜스패런트(non-transparent) 릴레이 노드로 분류될 수 있다. 트랜스패런트는 단말이 릴레이 노드를 통하여 네트워크와 통신하는지 여부를 인지하지 못하는 경우를 의미하고, 넌-트랜스패런트는 단말이 릴레이 노드를 통하여 네트워크와 통신하는지 여부를 인지하는 경우를 의미한다.
릴레이 노드의 제어와 관련하여, 도너 셀의 일부로 구성되는 릴레이 노드 또는 스스로 셀을 제어하는 릴레이 노드로 구분될 수 있다.
도너 셀의 일부로서 구성되는 릴레이 노드는 릴레이 노드 식별자(ID)를 가질 수는 있지만, 릴레이 노드 자신의 셀 아이덴터티(identity)를 가지지 않는다. 도너 셀이 속하는 기지국에 의하여 RRM(Radio Resource Management)의 적어도 일부가 제어되면 (RRM의 나머지 부분들은 릴레이 노드에 위치하더라도), 도너 셀의 일부로서 구성되는 릴레이 노드라 한다. 바람직하게는, 이러한 릴레이 노드는 레거시 단말을 지원할 수 있다. 예를 들어, 스마트 리피터(Smart repeaters), 디코드-앤-포워드 릴레이 노드(decode-and-forward relays), L2(제2계층) 릴레이 노드들의 다양한 종류들 및 타입-2 릴레이 노드가 이러한 릴레이 노드에 해당한다.
스스로 셀을 제어하는 릴레이 노드의 경우에, 릴레이 노드는 하나 또는 여러개의 셀들을 제어하고, 릴레이 노드에 의해 제어되는 셀들 각각에 고유의 물리계층 셀 아이덴터티가 제공되며, 동일한 RRM 메커니즘을 이용할 수 있다. 단말 관점에서는 릴레이 노드에 의하여 제어되는 셀에 액세스하는 것과 일반 기지국에 의해 제어되는 셀에 액세스하는 것에 차이점이 없다. 바람직하게는, 이러한 릴레이 노드에 의해 제어되는 셀은 레거시 단말을 지원할 수 있다. 예를 들어, 셀프-백홀링(Self-backhauling) 릴레이 노드, L3(제3계층) 릴레이 노드, 타입-1 릴레이 노드 및 타입-1a 릴레이 노드가 이러한 릴레이 노드에 해당한다.
타입-1 릴레이 노드는 인-밴드 릴레이 노드로서 복수개의 셀들을 제어하고, 이들 복수개의 셀들의 각각은 단말 입장에서 도너 셀과 구별되는 별개의 셀로 보인다. 또한, 복수개의 셀들은 각자의 물리 셀 ID(LTE 릴리즈-8에서 정의함)를 가지고, 릴레이 노드는 자신의 동기화 채널, 참조신호 등을 전송할 수 있다. 단일-셀 동작의 경우에, 단말은 릴레이 노드로부터 직접 스케줄링 정보 및 HARQ 피드백을 수신하고 릴레이 노드로 자신의 제어 채널(스케줄링 요청(SR), CQI, ACK/NACK 등)을 전송할 수 있다. 또한, 레거시 단말(LTE 릴리즈-8 시스템에 따라 동작하는 단말)들에게 타입-1 릴레이 노드는 레거시 기지국(LTE 릴리즈-8 시스템에 따라 동작하는 기지국)으로 보인다. 즉, 역방향 호환성(backward compatibility)을 가진다. 한편, LTE-A 시스템에 따라 동작하는 단말들에게는, 타입-1 릴레이 노드는 레거시 기지국과 다른 기지국으로 보여, 성능 향상을 제공할 수 있다.
타입-1a 릴레이 노드는 아웃-밴드로 동작하는 것 외에 전술한 타입-1 릴레이 노드와 동일한 특징들을 가진다. 타입-1a 릴레이 노드의 동작은 L1(제1계층) 동작에 대한 영향이 최소화 또는 없도록 구성될 수 있다.
타입-2 릴레이 노드는 인-밴드 릴레이 노드로서, 별도의 물리 셀 ID를 가지지 않으며, 이에 따라 새로운 셀을 형성하지 않는다. 타입-2 릴레이 노드는 레거시 단말에 대해 트랜스패런트하고, 레거시 단말은 타입-2 릴레이 노드의 존재를 인지하지 못한다. 타입-2 릴레이 노드는 PDSCH를 전송할 수 있지만, 적어도 CRS 및 PDCCH는 전송하지 않는다.
한편, 릴레이 노드가 인-밴드로 동작하도록 하기 위하여, 시간-주파수 공간에서의 일부 자원이 백홀 링크를 위해 예비되어야 하고 이 자원은 액세스 링크를 위해서 사용되지 않도록 설정할 수 있다. 이를 자원 분할(resource partitioning)이라 한다.
릴레이 노드에서의 자원 분할에 있어서의 일반적인 원리는 다음과 같이 설명할 수 있다. 백홀 하향링크 및 액세스 하향링크가 하나의 반송파 주파수 상에서 시간분할다중화(Time Division Multiplexing; TDM) 방식으로 다중화될 수 있다 (즉, 특정 시간에서 백홀 하향링크 또는 액세스 하향링크 중 하나만이 활성화된다). 유사하게, 백홀 상향링크 및 액세스 상향링크는 하나의 반송파 주파수 상에서 TDM 방식으로 다중화될 수 있다 (즉, 특정 시간에서 백홀 상향링크 또는 액세스 상향링크 중 하나만이 활성화된다).
FDD 에서의 백홀 링크 다중화는, 백홀 하향링크 전송은 하향링크 주파수 대역에서 수행되고, 백홀 상향링크 전송은 상향링크 주파수 대역에서 수행되는 것으로 설명할 수 있다. TDD 에서의 백홀 링크 다중화는, 백홀 하향링크 전송은 기지국과 릴레이 노드의 하향링크 서브프레임에서 수행되고, 백홀 상향링크 전송은 기지국과 릴레이 노드의 상향링크 서브프레임에서 수행되는 것으로 설명할 수 있다.
인-밴드 릴레이 노드의 경우에, 예를 들어, 소정의 주파수 대역에서 기지국으로부터의 백홀 하향링크 수신과 단말로의 액세스 하향링크 전송이 동시에 이루어지면, 릴레이 노드의 송신단으로부터 전송되는 신호가 릴레이 노드의 수신단에서 수신될 수 있고, 이에 따라 릴레이 노드의 RF 전단(front-end)에서 신호 간섭 또는 RF 재밍(jamming)이 발생할 수 있다. 유사하게, 소정의 주파수 대역에서 단말로부터의 액세스 상향링크의 수신과 기지국으로의 백홀 상향링크의 전송이 동시에 이루어지면, 릴레이 노드의 RF 전단에서 신호 간섭이 발생할 수 있다. 따라서, 릴레이 노드에서 하나의 주파수 대역에서의 동시 송수신은 수신 신호와 송신 신호간에 충분한 분리(예를 들어, 송신 안테나와 수신 안테나를 지리적으로 충분히 이격시켜(예를 들어, 지상/지하에) 설치함)가 제공되지 않으면 구현하기 어렵다.
이와 같은 신호 간섭의 문제를 해결하는 한 가지 방안은, 릴레이 노드가 도너 셀로부터 신호를 수신하는 동안에 단말로 신호를 전송하지 않도록 동작하게 하는 것이다. 즉, 릴레이 노드로부터 단말로의 전송에 갭(gap)을 생성하고, 이 갭 동안에는 단말(레거시 단말 포함)이 릴레이 노드로부터의 어떠한 전송도 기대하지 않도록 설정할 수 있다. 이러한 갭은 MBSFN (Multicast Broadcast Single Frequency Network) 서브프레임을 구성함으로써 설정할 수 있다
도 10은 릴레이 노드 자원 분할의 예시를 나타내는 도면이다.
도 10에서는 제 1 서브프레임은 일반 서브프레임으로서 릴레이 노드로부터 단말로 하향링크 (즉, 액세스 하향링크) 제어신호 및 데이터가 전송되고, 제 2 서브프레임은 MBSFN 서브프레임으로서 하향링크 서브프레임의 제어 영역에서는 릴레이 노드로부터 단말로 제어 신호가 전송되지만 하향링크 서브프레임의 나머지 영역에서는 릴레이 노드로부터 단말로 아무런 전송이 수행되지 않는다. 여기서, 레거시 단말의 경우에는 모든 하향링크 서브프레임에서 물리하향링크제어채널(PDCCH)의 전송을 기대하게 되므로 (다시 말하자면, 릴레이 노드는 자신의 영역 내의 레거시 단말들이 매 서브프레임에서 PDCCH를 수신하여 측정 기능을 수행하도록 지원할 필요가 있으므로), 레거시 단말의 올바른 동작을 위해서는 모든 하향링크 서브프레임에서 PDCCH를 전송할 필요가 있다. 따라서, 기지국으로부터 릴레이 노드로의 하향링크 (즉, 백홀 하향링크) 전송을 위해 설정된 서브프레임 (제 2 서브프레임(1020))상에서도, 서브프레임의 처음 N (N=1, 2 또는 3) 개의 OFDM 심볼구간에서 릴레이 노드는 백홀 하향링크를 수신하는 것이 아니라 액세스 하향링크 전송을 해야할 필요가 있다. 이에 대하여, 제 2 서브프레임의 제어 영역에서 PDCCH가 릴레이 노드로부터 단말로 전송되므로 릴레이 노드에서 서빙하는 레거시 단말에 대한 역방향 호환성이 제공될 수 있다. 제 2 서브프레임의 나머지 영역에서는 릴레이 노드로부터 단말로 아무런 전송이 수행되지 않는 동안에 릴레이 노드는 기지국으로부터의 전송을 수신할 수 있다. 따라서, 이러한 자원 분할 방식을 통해서, 인-밴드 릴레이 노드에서 액세스 하향링크 전송과 백홀 하향링크 수신이 동시에 수행되지 않도록 할 수 있다.
MBSFN 서브프레임을 이용하는 제 2 서브프레임에 대하여 구체적으로 설명한다. 제 2 서브프레임의 제어 영역은 릴레이 노드 비-청취(non-hearing) 구간이라고 할 수 있다. 릴레이 노드 비-청취 구간은 릴레이 노드가 백홀 하향링크 신호를 수신하지 않고 액세스 하향링크 신호를 전송하는 구간을 의미한다. 이 구간은 전술한 바와 같이 1, 2 또는 3 OFDM 길이로 설정될 수 있다. 릴레이 노드 비-청취 구간에서 릴레이 노드는 단말로의 액세스 하향링크 전송을 수행하고 나머지 영역에서는 기지국으로부터 백홀 하향링크를 수신할 수 있다. 이 때, 릴레이 노드는 동일한 주파수 대역에서 동시에 송수신을 수행할 수 없으므로, 릴레이 노드가 송신 모드에서 수신 모드로 전환하는 데에 시간이 소요된다. 따라서, 백홀 하향링크 수신 영역의 처음 일부 구간에서 릴레이 노드가 송신/수신 모드 스위칭을 하도록 가드 시간(GT)이 설정될 필요가 있다. 유사하게 릴레이 노드가 기지국으로부터의 백홀 하향링크를 수신하고 단말로의 액세스 하향링크를 전송하도록 동작하는 경우에도, 릴레이 노드의 수신/송신 모드 스위칭을 위한 가드 시간(GT)이 설정될 수 있다. 이러한 가드 시간의 길이는 시간 영역의 값으로 주어질 수 있고, 예를 들어, k (k=1) 개의 시간 샘플(time sample, Ts) 값으로 주어질 수있고, 또는 하나 이상의 OFDM 심볼 길이로 설정될 수도 있다. 또는, 릴레이 노드 백홀 하향링크 서브프레임이 연속으로 설정되어 있는 경우에 또는 소정의 서브프레임 타이밍 정렬(timing alignment) 관계에 따라서, 서브프레임의 마지막 부분의 가드시간은 정의되거나 설정되지 않을 수 있다. 이러한 가드 시간은 역방향 호환성을 유지하기 위하여, 백홀 하향링크 서브프레임 전송을 위해 설정되어 있는 주파수 영역에서만 정의될 수 있다 (액세스 하향링크 구간에서 가드 시간이 설정되는 경우에는 레거시 단말을 지원할 수 없다). 가드 시간을 제외한 백홀 하향링크 수신 구간에서 릴레이 노드는 기지국으로부터 PDCCH 및 PDSCH를 수신할 수 있다. 이를 릴레이 노드 전용 물리 채널이라는 의미에서 R-PDCCH (Relay-PDCCH) 및 R-PDSCH (Relay-PDSCH)로 표현할 수도 있다.
한편, R-PDSCH는 두 종류의 참조 신호, 즉 CRS또는 DM-RS에 기반하여 복조(demodulation)가 가능하다. 그러나, 기지국이 릴레이 기지국으로 하향링크 신호를 전송 시 MBSFN 서브프레임을 사용하는 경우, 상기 MBSFN 서브프레임에는 전송 다이버시티 기법으로 전송된 PDSCH를 복조하기 위한 CRS가 존재하지 않는다. 따라서, 릴레이 기지국은 모든 종류의 서브프레임에서 전송이 가능한 DM-RS를 이용하여 R-PDSCH를 복조하는 것이 바람직하다.
또한, R-PDCCH의 복호 결과 검출된 DCI 포맷이 상술한 폴백(Fallback) 모드에 적용되는 DCI 포맷 1A인 경우, DCI 포맷 1A에는 기지국이 릴레이 노드에게 랭크 정보를 알려 줄 수 있는 필드가 존재하지 않는다. 따라서, R-PDCCH, 특히 하나의 서브프레임에서 첫 번째 슬롯에서 전송되는 하향링크 그랜트(DL Grant)를 복호한 결과 DCI 포맷 1A를 검출하는 경우, 릴레이 노드는 두 번째 슬롯에서 전송될 수 있는 R-PDSCH의 실제 전송 랭크를 알 수 없다.
본 발명에서는 릴레이 노드가 R-PDCCH의 복호 결과 DCI 포맷 1A를 검출한 경우, 상기 R-PDCCH에 대응하는 R-PDSCH의 전송은 가장 신뢰성이 높은 단일 안테나 포트 전송인 것으로 가정하는 것을 제안한다. 즉, 릴레이 노드는 기지국이 랭크 1로 R-PDSCH의 전송을 수행하고 있다는 가정하에, R-PDSCH를 복조(demodulation) 및 복호(decoding)하는 것을 제안한다. 이를 보다 구체적으로 설명한다.
도 11은 하나의 자원 블록 쌍(Resource Block Pair)에서 DM-RS를 위한 자원 요소가 12개 할당된 경우를 도시하며, 도 12는 하나의 자원 블록 쌍에서 DM-RS를 위한 자원 요소가 24개 할당된 경우를 도시한다.
R-PDSCH의 실제 전송 랭크에 따라 필요한 DM RS의 자원 요소 개수는 달라지게 되는데, 랭크가 1 또는 2인 경우는 도 11과 같이 제 1 슬롯과 제 2 슬롯에 걸친 하나의 자원 블록 쌍에서 12 개의 자원 요소들이, 랭크가 3 이상인 경우는 도 12과 같이 하나의 자원 블록 쌍에서 24 개의 자원 요소들이 요구된다. 따라서 릴레이 노드가 실제 전송 랭크를 모르는 상태에서 R-PDSCH를 디코딩하기 위해서는, 릴레이 노드는 R-PDSCH를 복조 및 복호하기 위한 DM RS 자원 요소의 개수에 대한 가정이 필요하다.
이 경우 본 발명에 따르면, R-PDCCH을 블라인드 디코딩한 결과 R-PDSCH를 위한 전송 포맷으로서 폴백 모드(Fallback Mode)를 지시하는 DCI 포맷 1A가 검출된다면, R-PDSCH는 단일 안테나 전송 포트, 즉 항상 랭크 1로 전송되는 것으로 가정하여 복조 및 변조하는 것이므로, R-PDSCH 디코딩 시 DM-RS를 위한 자원 요소는 도 11과 같이 12개의 자원 요소가 할당되는 것으로 설정하는 것이 바람직하다.
예를 들어, 릴레이 노드가 상위 계층 신호에 의해서 DM-RS 를 위한 안테나 포트로 2개 또는 4개의 안테나 포트를 시그널링 받았다고 할지라도, DCI 포맷 1A가 검출한 릴레이 노드는 R-PDSCH는 항상 랭크 1로 전송되고 DM-RS는 12개의 자원 요소에 할당된다는 것으로 가정하여 R-PDSCH를 복조 및 복호할 수 있다.
또한, 본 발명에서는 기지국이 릴레이 노드로 기지국 특정 참조 신호인 DM-RS로 복조 가능한, 즉 DM-RS기반 R-PDCCH를 전송하는 경우, 릴레이 노드가 R-PDCCH에서 R-PDSCH의 전송 포맷으로서 폴백 모드에 적용되는 DCI 포맷 1A를 검출하였다면, 미리 설정된 논리적 안테나 포트를 이용하여 데이터, 즉 R-PDSCH를 디코딩하는 것을 제안한다. 여기서 논리적 안테나 포트란 안테나 포트와 스크램블링 ID로 정의된다.
구체적으로, R-PDCCH 복조에 사용한 DM-RS의 논리적 안테나 포트, 즉 안테나 포트와 스크램블링 ID를 이용하여 R-PDSCH를 복조 및 복호하도록 설정할 수 있으며, R-PDCCH 복조에 사용한 DM-RS의 논리적 안테나 포트는 안테나 포트 7(또는 8)로서 스크램블링 ID는 0(또는 1)인 것이 바람직하다. 이는 R-PDCCH를 DM-RS를 이용하여 복조 및 복호에 성공하였다면, R-PDCCH에 복조에 사용된 논리적 안테나 포트는 해당 릴레이 노드와 양호한 통신을 유지할 수 있도록 빔포밍되어 있을 가능성이 높기 때문이다.
따라서, 릴레이 노드가 DM-RS 기반 R-PDCCH를 복호하여 DCI 포맷 1A를 검출한 경우라면, 단일 안테나 포트 전송을 가정하여 R-PDSCH를 복호하되, 이 경우, R-PDSCH는 R-PDCCH 복조 시 사용한 DM-RS의 논리적 안테나 포트, 예를 들어, 안테나 포트 7(또는 8)로서 스크램블링 ID는 0(또는 1)을 사용하여 복조 및 복호하는 것이 바람직하다.
도 13은 본 발명의 일 실시예에 따른 통신 장치의 블록 구성도를 예시한다.
도 13을 참조하면, 통신 장치(1300)는 프로세서(1310), 메모리(1320), RF 모듈(1330), 디스플레이 모듈(1340) 및 사용자 인터페이스 모듈(1350)을 포함한다.
통신 장치(1300)는 설명의 편의를 위해 도시된 것으로서 일부 모듈은 생략될 수 있다. 또한, 통신 장치(1300)는 필요한 모듈을 더 포함할 수 있다. 또한, 통신 장치(1300)에서 일부 모듈은 보다 세분화된 모듈로 구분될 수 있다. 프로세서(1310)는 도면을 참조하여 예시한 본 발명의 실시예에 따른 동작을 수행하도록 구성된다. 구체적으로, 프로세서(1310)의 자세한 동작은 도 1 내지 도 12에 기재된 내용을 참조할 수 있다.
메모리(1320)는 프로세서(1310)에 연결되며 오퍼레이팅 시스템, 어플리케이션, 프로그램 코드, 데이터 등을 저장한다. RF 모듈(1330)은 프로세서(1310)에 연결되며 기저대역 신호를 무선 신호를 변환하거나 무선신호를 기저대역 신호로 변환하는 기능을 수행한다. 이를 위해, RF 모듈(1330)은 아날로그 변환, 증폭, 필터링 및 주파수 상향 변환 또는 이들의 역과정을 수행한다. 디스플레이 모듈(1340)은 프로세서(1310)에 연결되며 다양한 정보를 디스플레이한다. 디스플레이 모듈(1340)은 이로 제한되는 것은 아니지만 LCD(Liquid Crystal Display), LED(Light Emitting Diode), OLED(Organic Light Emitting Diode)와 같은 잘 알려진 요소를 사용할 수 있다. 사용자 인터페이스 모듈(1350)은 프로세서(1310)와 연결되며 키패드, 터치 스크린 등과 같은 잘 알려진 사용자 인터페이스의 조합으로 구성될 수 있다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 문서에서 본 발명의 실시예들은 주로 릴레이 노드와 기지국 간의 데이터 송수신 관계를 중심으로 설명되었다. 본 문서에서 기지국에 의해 수행된다고 설명된 특정 동작은 경우에 따라서는 그 상위 노드(upper node)에 의해 수행될 수 있다. 즉, 기지국을 포함하는 복수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. 기지국은 고정국(fixed station), Node B, eNode B(eNB), 억세스 포인트(access point) 등의 용어에 의해 대체될 수 있다.
본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
상술한 바와 같은 무선 통신 시스템에서 기지국이 릴레이 노드로 전송하는 전송 블록의 크기를 결정하는 방법 및 이를 위한 장치는 3GPP LTE 시스템에 적용되는 예를 중심으로 설명하였으나, 3GPP LTE 시스템 이외에도 다양한 다중 안테나 무선 통신 시스템에 적용하는 것이 가능하다.

Claims (14)

  1. 다중 안테나 무선 통신 시스템에서 릴레이 노드가 기지국으로부터 릴레이 노드 전용 하향링크 물리 공용 채널(R-PDSCH)을 수신하는 방법에 있어서,
    릴레이 노드 전용 하향링크 물리 제어 채널(R-PDCCH)을 릴레이 노드 특정 참조 신호를 이용하여 복조하는 단계; 및
    상기 복조된 릴레이 노드 전용 하향링크 물리 제어 채널에서 특정 하향링크 제어 정보가 검출된 경우, 상기 릴레이 노드 전용 하향링크 물리 공용 채널이 기 설정된 안테나 포트와 스크램블링 식별자를 이용하여 단일 안테나 포트를 통하여 전송된 것으로 가정하여, 상기 릴레이 노드 전용 하향링크 물리 공용 채널을 복조하는 단계를 포함하는,
    릴레이 노드 전용 하향링크 물리 공용 채널 수신 방법.
  2. 제 1 항에 있어서,
    상기 릴레이 노드 특정 참조 신호는,
    복조 용 참조 신호(Demodulation-Reference Signal; DM-RS)인 것을 특징으로 하는,
    릴레이 노드 전용 하향링크 물리 공용 채널 수신 방법.
  3. 제 1 항에 있어서,
    상기 특정 하향링크 제어 정보는,
    폴백 모드(Fallback Mode)를 지시하는 하향링크 제어 정보인 것을 특징으로 하는,
    릴레이 노드 전용 하향링크 물리 공용 채널 수신 방법.
  4. 제 1 항에 있어서,
    상기 폴백 모드(Fallback Mode)를 지시하는 하향링크 제어 정보는,
    DCI(Downlink Control Information) 포맷 1A인 것을 특징으로 하는,
    릴레이 노드 전용 하향링크 물리 공용 채널 수신 방법.
  5. 제 1 항에 있어서,
    상기 기 설정된 안테나 포트와 스크램블링 식별자는,
    상기 릴레이 노드 전용 하향링크 물리 제어 채널의 복조 시 사용한 상기 릴레이 노드 특정 참조 신호의 안테나 포트와 스크램블링 식별자인 것을 특징으로 하는,
    릴레이 노드 전용 하향링크 물리 공용 채널 수신 방법.
  6. 제 1 항에 있어서,
    상기 기 설정된 안테나 포트와 스크램블링 식별자는,
    각각 안테나 포트 7과 스크램블링 식별자 0인 것을 특징으로 하는,
    릴레이 노드 전용 하향링크 물리 공용 채널 수신 방법.
  7. 제 1 항에 있어서,
    상기 릴레이 노드 전용 하향링크 물리 제어 채널과 상기 릴레이 노드 전용 하향링크 물리 공용 채널은,
    MBSFN(Multicast Broadcast Single Frequency Network) 서브프레임을 통하여 전송되는 것을 특징으로 하는,
    릴레이 노드 전용 하향링크 물리 공용 채널 수신 방법.
  8. 다중 안테나 무선 통신 시스템에서의 릴레이 노드로서,
    기지국으로부터 릴레이 노드 전용 하향링크 물리 제어 채널(R-PDCCH)과 릴레이 노드 전용 하향링크 물리 공용 채널(R-PDSCH)을 수신하는 수신 모듈; 및
    릴레이 노드 특정 참조 신호에 기반하여 상기 릴레이 노드 전용 하향링크 물리 제어 채널을 복조하고, 상기 복조된 릴레이 노드 전용 하향링크 물리 제어 채널에서 검출되는 특정 하향링크 제어 정보에 따라 상기 릴레이 노드 전용 하향링크 물리 공용 채널을 복호하는 프로세서를 포함하며,
    상기 프로세서는,
    상기 릴레이 노드 전용 하향링크 물리 공용 채널이 기 설정된 안테나 포트와 스크램블링 식별자를 이용하여 단일 안테나 포트를 통하여 전송된 것으로 가정하여 상기 릴레이 노드 전용 하향링크 물리 공용 채널을 복조하는 것을 특징으로 하는,
    릴레이 노드.
  9. 제 8 항에 있어서,
    상기 릴레이 노드 특정 참조 신호는,
    복조 용 참조 신호(Demodulation-Reference Signal; DM-RS)인 것을 특징으로 하는,
    릴레이 노드.
  10. 제 8 항에 있어서,
    상기 특정 하향링크 제어 정보는,
    폴백 모드(Fallback Mode)를 지시하는 하향링크 제어 정보인 것을 특징으로 하는,
    릴레이 노드.
  11. 제 10 항에 있어서,
    상기 폴백 모드(Fallback Mode)를 지시하는 하향링크 제어 정보는,
    DCI(Downlink Control Information) 포맷 1A인 것을 특징으로 하는,
    릴레이 노드.
  12. 제 8 항에 있어서,
    상기 기 설정된 안테나 포트와 스크램블링 식별자는,
    상기 릴레이 노드 전용 하향링크 물리 제어 채널의 복조 시 사용한 상기 릴레이 노드 특정 참조 신호의 안테나 포트와 스크램블링 식별자인 것을 특징으로 하는,
    릴레이 노드.
  13. 제 8 항에 있어서,
    상기 기 설정된 안테나 포트와 스크램블링 식별자는,
    각각 안테나 포트 7과 스크램블링 식별자 0인 것을 특징으로 하는,
    릴레이 노드.
  14. 제 8 항에 있어서,
    상기 수신 모듈은,
    상기 릴레이 노드 전용 하향링크 물리 제어 채널과 상기 릴레이 노드 전용 하향링크 물리 공용 채널을 MBSFN(Multicast Broadcast Single Frequency Network) 서브프레임을 통하여 수신하는 것을 특징으로 하는,
    릴레이 노드.
KR1020110026760A 2010-10-21 2011-03-25 무선 통신 시스템에서 릴레이 노드가 기지국으로부터 데이터를 수신하는 방법 및 이를 위한 장치 KR101769375B1 (ko)

Priority Applications (9)

Application Number Priority Date Filing Date Title
AU2011318816A AU2011318816B2 (en) 2010-10-21 2011-05-18 Method of receiving data from base station at relay node in wireless communication system and apparatus thereof
CN201180029353.9A CN102986148B (zh) 2010-10-21 2011-05-18 在无线通信系统中在中继节点处从基站接收数据的方法及其装置
US13/696,045 US8923304B2 (en) 2010-10-21 2011-05-18 Method of receiving data from base station at relay node in wireless communication system and apparatus thereof
JP2013511115A JP5612760B2 (ja) 2010-10-21 2011-05-18 無線通信システムのリレーノードにおいて基地局からデータを受信する方法及びそのための装置
EP11834515.6A EP2630737B1 (en) 2010-10-21 2011-05-18 Method of receiving data from base station at relay node in wireless communication system and apparatus thereof
CA2799132A CA2799132C (en) 2010-10-21 2011-05-18 Method of receiving data from base station at relay node in wireless communication system and apparatus thereof
MX2012013171A MX2012013171A (es) 2010-10-21 2011-05-18 Metodo de rcepcion de datos desde una estacion base en nodo de rele en sistema de comunicacion inalambrico y aparato del mismo.
PCT/KR2011/003670 WO2012053715A1 (en) 2010-10-21 2011-05-18 Method of receiving data from base station at relay node in wireless communication system and apparatus thereof
US14/518,822 US9148883B2 (en) 2010-10-21 2014-10-20 Method of receiving data from base station at relay node in wireless communication system and apparatus thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US40523710P 2010-10-21 2010-10-21
US40562510P 2010-10-21 2010-10-21
US61/405,237 2010-10-21
US61/405,625 2010-10-21

Publications (2)

Publication Number Publication Date
KR20120041649A true KR20120041649A (ko) 2012-05-02
KR101769375B1 KR101769375B1 (ko) 2017-08-18

Family

ID=46262683

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110026760A KR101769375B1 (ko) 2010-10-21 2011-03-25 무선 통신 시스템에서 릴레이 노드가 기지국으로부터 데이터를 수신하는 방법 및 이를 위한 장치

Country Status (9)

Country Link
US (2) US8923304B2 (ko)
EP (1) EP2630737B1 (ko)
JP (1) JP5612760B2 (ko)
KR (1) KR101769375B1 (ko)
CN (1) CN102986148B (ko)
AU (1) AU2011318816B2 (ko)
CA (1) CA2799132C (ko)
MX (1) MX2012013171A (ko)
WO (1) WO2012053715A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014014164A1 (en) * 2012-07-15 2014-01-23 Lg Electronics Inc. Method and apparatus for subset network coding with multiple antennas by relay node in wireless communication system

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011049401A2 (ko) 2009-10-25 2011-04-28 엘지전자 주식회사 중계국의 백홀 하향링크 신호 디코딩 방법 및 상기 방법을 이용하는 중계국
US8965430B2 (en) * 2011-06-30 2015-02-24 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for controlling channel quality reporting modes used by wireless communication network users
KR20140034281A (ko) * 2011-07-27 2014-03-19 후지쯔 가부시끼가이샤 다운링크 제어 정보의 송수신 방법, 기지국, 및 이동 단말기
CN102932090B (zh) * 2011-08-08 2016-07-13 华为技术有限公司 检测、发送信息的方法及设备
GB2493784B (en) 2011-08-19 2016-04-20 Sca Ipla Holdings Inc Wireless communications system and method
GB2498767A (en) * 2012-01-27 2013-07-31 Renesas Mobile Corp Identifying a specific antenna port using a CRC masking encoding scheme
CN102711251B (zh) * 2012-05-07 2014-09-10 电信科学技术研究院 一种导频端口的确定方法及装置
KR20150046029A (ko) * 2012-07-27 2015-04-29 엘지전자 주식회사 무선 통신 시스템에서 하향링크 신호 수신 방법 및 장치
US9307521B2 (en) * 2012-11-01 2016-04-05 Samsung Electronics Co., Ltd. Transmission scheme and quasi co-location assumption of antenna ports for PDSCH of transmission mode 10 for LTE advanced
WO2014113171A1 (en) * 2013-01-17 2014-07-24 Intel IP Corporation Channel quality indication for fallback transmission mode over new carrier type
US9420576B2 (en) * 2013-04-23 2016-08-16 Qualcomm Incorporated PDSCH transmission schemes with compact downlink control information (DCI) format in new carrier type (NCT) in LTE
CN104219021A (zh) * 2013-05-31 2014-12-17 中兴通讯股份有限公司 一种下行虚拟多天线系统的数据传输方法、装置及系统
CN103747442B (zh) * 2013-12-27 2017-06-30 华为技术有限公司 一种安全密钥上下文分发方法,移动管理实体及基站
EP3175574A4 (en) * 2014-08-01 2018-03-07 Intel IP Corporation Pdcch design for narrowband deployment
KR101656586B1 (ko) * 2014-08-11 2016-09-12 한양대학교 산학협력단 임의접근채널 전송방법 및 장치
US9942944B2 (en) * 2014-12-29 2018-04-10 Intel IP Corporation Network-initiated discovery and path selection procedures for multi-hop underlay networks
KR102034360B1 (ko) * 2015-01-30 2019-10-18 텔레폰악티에볼라겟엘엠에릭슨(펍) 무선 백홀 경로 상의 전송 조정을 위한 방법 및 네트워크 노드
WO2018112849A1 (zh) * 2016-12-22 2018-06-28 广东欧珀移动通信有限公司 用于非连续接收的数据传输方法和装置
JP7231775B2 (ja) * 2017-11-02 2023-03-01 シャープ株式会社 端末装置、基地局装置、および、通信方法
JP7066372B2 (ja) 2017-11-02 2022-05-13 シャープ株式会社 端末装置、基地局装置、および、通信方法
US11582000B2 (en) * 2018-05-11 2023-02-14 Qualcomm Incorporated Front loaded sounding reference signal and physical random access channel signal
US11606176B2 (en) * 2018-06-29 2023-03-14 Qualcomm Incorporated Reference signal and uplink control channel association design
US11855836B2 (en) * 2020-01-31 2023-12-26 Qualcomm Incorporated Indicating user equipment capability for beam failure detection
KR20240031959A (ko) * 2021-07-12 2024-03-08 엘지전자 주식회사 무선 통신 시스템에서 harq를 기반으로 물리 공유 채널을송수신하기 위한 방법 및 그 장치

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9031052B2 (en) * 2008-07-14 2015-05-12 Lg Electronics Inc. Uplink transmission control method in system supporting an uplink multiple access transmission mode
KR20100035088A (ko) * 2008-09-25 2010-04-02 한국전자통신연구원 협력 통신 방법 및 그 기지국
US8224242B2 (en) 2008-10-23 2012-07-17 Lg-Ericsson Co., Ltd. Apparatus and method for removing self-interference and relay system for the same
WO2010077938A1 (en) 2008-12-17 2010-07-08 Research In Motion Limited Semi-persistent resource release by wireless communication device
US8547896B2 (en) * 2009-02-18 2013-10-01 Lg Electronics Inc. Signal transmitting/receiving method for a relay node and relay node using the method
KR20100099655A (ko) * 2009-03-03 2010-09-13 엘지전자 주식회사 무선통신 시스템에서 중계국의 데이터 수신방법 및 장치
US8400906B2 (en) * 2009-03-11 2013-03-19 Samsung Electronics Co., Ltd Method and apparatus for allocating backhaul transmission resource in wireless communication system based on relay
CA2755223C (en) 2009-03-13 2016-06-28 Research In Motion Limited Relay link control channel design
US8537724B2 (en) * 2009-03-17 2013-09-17 Motorola Mobility Llc Relay operation in a wireless communication system
CN101868033B (zh) 2009-04-20 2013-04-24 电信科学技术研究院 一种中继链路下行子帧的控制和数据传输方法和装置
WO2010134749A2 (ko) * 2009-05-19 2010-11-25 엘지전자 주식회사 무선 통신 시스템에서 백홀 하향링크 제어 정보 송수신 방법 및 장치
WO2011005576A2 (en) * 2009-06-24 2011-01-13 Research In Motion Limited Methods and apparatus to perform antenna management
EP2465225B1 (en) * 2009-08-13 2018-08-01 Samsung Electronics Co., Ltd. Method and apparatus for transmitting reference signals in communication systems
KR101641388B1 (ko) 2009-08-19 2016-07-21 엘지전자 주식회사 중계국의 참조신호 이용 방법 및 상기 방법을 이용하는 중계국
CN102014527B (zh) * 2009-09-29 2014-04-16 电信科学技术研究院 回程链路上解调导频的发送及信道解调方法、系统和设备
US8724648B2 (en) * 2009-09-30 2014-05-13 Nokia Corporation Enhanced control signaling for backhaul link
KR101838284B1 (ko) * 2009-10-01 2018-03-13 인터디지탈 패튼 홀딩스, 인크 업링크 제어 데이터 전송
US9030977B2 (en) 2009-10-15 2015-05-12 Qualcomm Incorporated Methods and apparatus for transport block size determination
WO2011049401A2 (ko) 2009-10-25 2011-04-28 엘지전자 주식회사 중계국의 백홀 하향링크 신호 디코딩 방법 및 상기 방법을 이용하는 중계국
WO2011053009A2 (ko) * 2009-10-28 2011-05-05 엘지전자 주식회사 기지국으로부터 제어정보를 수신하는 중계기 장치 및 그 방법
US9014080B2 (en) 2009-10-30 2015-04-21 Qualcomm Incorporated Apparatus and method for providing relay backhaul communications in a wireless communication system
US20110164577A1 (en) * 2010-01-06 2011-07-07 Research In Motion Limited Intra-Donor Cell Coordinated Multi-Point Transmission with Type 1 Relay
KR101733489B1 (ko) * 2010-01-17 2017-05-24 엘지전자 주식회사 무선 통신 시스템에서 제어 정보의 전송 방법 및 장치
KR101799272B1 (ko) * 2010-02-03 2017-11-20 엘지전자 주식회사 무선 통신 시스템에서 제어 정보의 전송 방법 및 장치
US9210736B2 (en) * 2010-04-22 2015-12-08 Lg Electronics Inc. Method for transceiving signals between a base station and a relay node in a wireless communication system, and apparatus for same
CN105634708B (zh) * 2010-04-22 2019-01-18 Lg电子株式会社 用于基站与中继站之间的无线链路的信道估计的方法和设备
AU2011243372B2 (en) * 2010-04-23 2014-10-23 Lg Electronics Inc. Method for transceiving signals between a base station and a relay node in a multiuser multi-antenna wireless communication system, and apparatus for same
US9237583B2 (en) * 2010-05-03 2016-01-12 Qualcomm Incorporated Resource availability for PDSCH in relay backhaul transmissions
US8831119B2 (en) * 2010-06-28 2014-09-09 Lg Electronics Inc. Method and apparatus for transmitting synchronization signal in multi-node system
US9380567B2 (en) * 2010-08-16 2016-06-28 Qualcomm Incorporated Search space design for relay physical downlink control channel (R-PDCCH)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014014164A1 (en) * 2012-07-15 2014-01-23 Lg Electronics Inc. Method and apparatus for subset network coding with multiple antennas by relay node in wireless communication system
US9350440B2 (en) 2012-07-15 2016-05-24 Lg Electronics Inc. Method and apparatus for subset network coding with multiple antennas by relay node in wireless communication system

Also Published As

Publication number Publication date
EP2630737A4 (en) 2014-09-24
AU2011318816B2 (en) 2014-11-06
EP2630737A1 (en) 2013-08-28
MX2012013171A (es) 2012-11-29
KR101769375B1 (ko) 2017-08-18
JP2013534075A (ja) 2013-08-29
JP5612760B2 (ja) 2014-10-22
CN102986148B (zh) 2016-05-04
EP2630737B1 (en) 2019-07-31
AU2011318816A1 (en) 2012-12-13
CA2799132A1 (en) 2012-04-26
CA2799132C (en) 2016-02-02
US8923304B2 (en) 2014-12-30
US20150036585A1 (en) 2015-02-05
WO2012053715A1 (en) 2012-04-26
CN102986148A (zh) 2013-03-20
US9148883B2 (en) 2015-09-29
US20130064174A1 (en) 2013-03-14

Similar Documents

Publication Publication Date Title
KR101769375B1 (ko) 무선 통신 시스템에서 릴레이 노드가 기지국으로부터 데이터를 수신하는 방법 및 이를 위한 장치
KR101871719B1 (ko) 무선 통신 시스템에서 릴레이 노드가 채널 품질 지시자를 보고하는 방법 및 이를 위한 장치
KR101964648B1 (ko) 무선 통신 시스템에서 하향링크 제어 정보를 송수신하는 방법 및 이를 위한 장치
KR101053635B1 (ko) 다중 안테나 무선 통신 시스템에서 기지국이 릴레이 노드로 제어 신호를 송신하는 방법 및 이를 위한 장치
US10390332B2 (en) Method for transceiving signals between a base station and a relay node in a multiuser multi-antenna wireless communication system, and apparatus for same
KR101792508B1 (ko) 무선 통신 시스템에서 릴레이 노드를 위한 검색 영역 설정 방법 및 이를 위한 장치
KR101964647B1 (ko) 무선 통신 시스템에서 상향링크 제어 정보를 전송하는 방법 및 이를 위한 장치
KR20200004434A (ko) 다중 셀 기반 무선 통신 시스템에서 하향링크 데이터 채널 수신 방법 및 이를 위한 장치
KR102001931B1 (ko) 무선 통신 시스템에서 기지국과 릴레이 노드 간의 신호 송수신 방법 및 이를 위한 장치
KR20140084097A (ko) 무선 통신 시스템에서 기지국이 제어 정보를 다중화하는 방법 및 이를 위한 장치
US9294311B2 (en) Method of performing resource specific channel estimation in heterogeneous network system and apparatus thereof
US20140153426A1 (en) Method and apparatus for performing a channel measurement through a receiving end in a wireless communication system
KR20140019386A (ko) 다중 안테나 무선 통신 시스템에서 기지국이 단말로 제어 신호를 송신하는 방법 및 이를 위한 장치
KR101805534B1 (ko) 이종 네트워크 시스템에서 셀 간 간섭을 방지하는 방법 및 이를 위한 장치
KR101838072B1 (ko) 무선 통신 시스템에서 단말이 릴레이 노드로 ack/nack 신호를 송신하는 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant