KR20120038793A - D-NVI attached to the surface of iron sulfide sediment and method for purifying polluted soil and groundwater environmental pollutants - Google Patents

D-NVI attached to the surface of iron sulfide sediment and method for purifying polluted soil and groundwater environmental pollutants Download PDF

Info

Publication number
KR20120038793A
KR20120038793A KR1020100100443A KR20100100443A KR20120038793A KR 20120038793 A KR20120038793 A KR 20120038793A KR 1020100100443 A KR1020100100443 A KR 1020100100443A KR 20100100443 A KR20100100443 A KR 20100100443A KR 20120038793 A KR20120038793 A KR 20120038793A
Authority
KR
South Korea
Prior art keywords
nzvi
iron
ferrous sulfide
attached
environmental pollutants
Prior art date
Application number
KR1020100100443A
Other languages
Korean (ko)
Other versions
KR101241377B1 (en
Inventor
조성국
임기석
이진욱
김정년
최홍권
김은주
장윤석
Original Assignee
효림산업주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 효림산업주식회사 filed Critical 효림산업주식회사
Priority to KR1020100100443A priority Critical patent/KR101241377B1/en
Publication of KR20120038793A publication Critical patent/KR20120038793A/en
Application granted granted Critical
Publication of KR101241377B1 publication Critical patent/KR101241377B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/08Reclamation of contaminated soil chemically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0225Compounds of Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt
    • B01J20/0229Compounds of Fe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Soil Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PURPOSE: Dithionite-mediated nanoscale zerovalent iron(D-nZVI) with ferrous sulfide precipitate on the surface and a method for purifying polluted soil and underground environmental pollutants using the same are provided to synthesize nanoscale zerovalent iron by adding dithionite to a sodium borohydride method. CONSTITUTION: Ferrous sulfide precipitate is deposited on the surface of D-nZVI. The specific surface are of the D-nZVI is larger than the specific surface are of nZVI and is between 4 and 60m^2/g. The surface roughness of the D-nZVI is between 40 and 50nm and is larger than the surface roughness of the nZVI. The electric conductivity of the D-nZVI is 6times more than the electric conductivity of the nZVI. A method for manufacturing the D-nZVI includes a process in which sodium dithionite is added into a sodium borohydride reducing agent to deposit the ferrous sulfide precipitate on the surface of nZVI.

Description

황화철 침전물이 표면에 부착된 D-nZVI 및 이를 이용한 오염토양 및 지하수 환경오염물질의 정화처리방법{omitted}D-NVI attached to the surface of iron sulfide sediment and method for purifying polluted soil and groundwater environmental pollutants using the same

본 발명은 토양/지하수 내 유기오염물질 및 중금속의 정화처리를 위한 나노 영가철(Nanoscale ZeroValent Iron; nZVI)에 관한 것으로, 보다 상세하게는 기존의 Sodium Borohydride를 이용한 환원법에 그 자체가 환원제이자 다양한 황 함유 물질의 공급원인 Dithionite를 첨가하여 Ferrous sulfide 침전물로 표면 부착된 나노영가철(Dithionite-mediated nZVI; D-nZVI) 및 이를 이용한 환경오염물질 정화처리방법에 관한 것이다. 이러한 D-nZVI는 토양과 지하수 내의 Trichloroethylene(TCE)과 같은 유기오염물질 및 중금속 등 환경오염물질의 탈염화 및 고정화 처리에 적용된다.
The present invention relates to Nanoscale Zero Valent Iron (NZVI) for the purification of organic pollutants and heavy metals in soil / groundwater, and more particularly, the reducing agent itself is a reducing agent and various sulfur in the conventional method using Sodium Borohydride. The present invention relates to nano-ferrous iron (Dithionite-mediated nZVI; D-nZVI) surface-attached with a ferrous sulfide precipitate by adding Dithionite as a source of a substance, and a method for purifying environmental pollutants using the same. The D-nZVI is applied to desalination and immobilization of organic pollutants such as trichloroethylene (TCE) in soil and groundwater and environmental pollutants such as heavy metals.

나노크기 철입자는 환경오염물 제거 이외에도 다양한 응용성 때문에 환경 과학자와 기술자에게 가장 관심있는 분야로서 나노기술의 발달에 따라 최근 환경분야에서 토양/지하수 내 유기오염물질의 처리를 위하여 nZVI의 활용방안이 많은 주목을 받고 있다.
Nano-sized iron particles are the fields of most interest to environmental scientists and engineers because of their various applications besides the removal of environmental pollutants. As nanotechnology is developed, there are many applications of nZVI for the treatment of organic pollutants in soil / groundwater. It is getting attention.

먼저 영가철에 의한 염화유기물의 제거 메커니즘을 살펴보면, 영가철로 존재하는 철(Fe0)은 다음 반응식과 같이 산화를 일으키며 산화환원쌍(redox couple)을 형성한다. 이는 영가 금속이 전자를 잃으며 양이온 형태로 존재하려는 경향에 의하여 자발적 산화에 의해 발생하는 부식반응과 유사하다.First of all, the mechanism of removing chlorinated organic matter by iron ions is as follows. Iron (Fe 0 ), which is present as iron, is oxidized and forms a redox couple. This is similar to the corrosion reaction caused by spontaneous oxidation due to the tendency of the noble metal to lose electrons and to exist in cation form.

Fe0 ↔ Fe2 + + 2e-
Fe 0 ↔ Fe 2 + + 2e -

즉, 염화유기화합물과 반응 가능한 주요 환원제는 Fe0, Fe2 +,이다. 부식반응의 경우로는 Fe0 로부터 표면에 흡착된 염화 알킬로의 직접적인 전자교환에 의한 것이 주종을 이루나, 이외에도 부식반응으로 생성된 Fe2 + 의 탈염소화에 의한 탈염소화 작용 등이 있다. 이들 철 환원제에 의한 알킬 할라이드(alkyl halide: RX)의 탈염과정은 다음 식과 같이 나타낼 수 있다.That is, the main reducing agent that can react with the organic chloride compound is Fe 0 , Fe 2 + ,. In the case of the corrosion reaction and the like dechlorination operation by the dechlorination of the Fe 2 + is a yiruna predominantly, in addition to generating the corrosion reaction by direct electron exchange with the alkyl chloride adsorbed to the surface from Fe 0. The desalination process of alkyl halides (RXs) by these iron reducing agents can be expressed as follows.

Fe0+ RX + H+ ↔ Fe2 + + RH + X- Fe 0 + RX + H + ↔ Fe 2 + + RH + X -

2Fe2 + + RX + H+ ↔ 2Fe3 + + RH + X-
2Fe 2 + + RX + H + ↔ 2Fe 3 + + RH + X -

또한, 다양한 전이금속 중에서도 철은 비교적 높은 환원력(-0.3~-0.7V)을 가지고 있으면서 저렴하고 구하기가 쉬워 가장 널리 사용되고 있다. 영가철에 의한 탈염화 환원반응이 일어나기 위해서는 오염물질의 철 표면으로의 흡착과 전자전달반응이 유기적으로 연계되어야 한다. 전자 전달반응은 철 표면의 defects로부터 나온 전자가 직접 전달되거나, 반도체(Semi-conductor)의 역할을 하는 산화막 또는 산화막에 존재하는 Fe-H, Fe-OH bond들의 coordination에 의해 간접적으로 전달된다고 알려져 있다. 결국, 영가철 표면을 매개로 하는 오염물질의 환원반응은 영가철 표면 형태와 특성에 영향을 받는다.
In addition, among various transition metals, iron has a relatively high reducing power (-0.3 to -0.7 V) and is most widely used because it is inexpensive and easy to obtain. In order for dechlorination and reduction reactions to occur due to zero iron, the adsorption of pollutants to the iron surface and the electron transfer reaction must be organically linked. Electron transfer reaction is known to transfer electrons from defects on the surface of iron directly or indirectly by coordination of Fe-H and Fe-OH bonds in oxide or oxide film that acts as a semi-conductor. . As a result, the reduction reaction of contaminants through the surface of zero iron is affected by the shape and characteristics of the surface of zero iron.

특히, nZVI는 넓은 비표면적으로 인한 높은 반응성으로 인해 트리클로로에틸렌(Trichloroethylene; TCE), 테트라클로로에틸렌(Tetrachloroethylene; PCE) 등의 할로겐 유기용매; 염화페놀, Polychlorinated Biphenyl(PCBs), Polychlorinated Dibenzodioxins(PCDDs), Polybrominated diphenyl ethers(PBDEs) 등의 할로겐 방향족 물질; 크롬, 납, 비소 등의 중금속; 질산염; 제초제; Polycyclic aromatic hydrocarbon(PAH); 트리클로로에탄(Trichoroethane; TCA); 테트라클로로에탄(Tetrachloroethane; PCA); 클로로포름; 니트로벤젠; 니트로톨루엔; 디니트로벤젠; 디니트로톨루엔; 염소화메탄 등과 같은 환경오염물질의 산화/환원처리에 의한 폭넓은 다양한 변환(Transformation)과 무독화(Detoxification) 반응에 매우 효과적이라고 알려져 있다.
In particular, nZVI is a halogen organic solvent such as trichloroethylene (TCE), tetrachloroethylene (PCE) due to the high reactivity due to the large specific surface area; Halogen aromatic substances such as phenol chloride, Polychlorinated Biphenyl (PCBs), Polychlorinated Dibenzodioxins (PCDDs), and Polybrominated diphenyl ethers (PBDEs); Heavy metals such as chromium, lead and arsenic; nitrate; Herbicides; Polycyclic aromatic hydrocarbons (PAH); Trichloroethane (TCA); Tetrachloroethane (PCA); chloroform; Nitrobenzene; Nitrotoluene; Dinitrobenzene; Dinitrotoluene; It is known to be very effective for a wide variety of transformation and detoxification reactions by oxidation / reduction treatment of environmental pollutants such as chlorinated methane.

이러한 nZVI는 합성방법이나 조건에 따라 입자 자체의 환원 반응성이 크게 달라질 수 있기 때문에 현재까지, 반응성 향상을 위한 새로운 합성방법에 대한 연구가 지속적으로 이루어지고 있는 실정이다.
Since the reduction reactivity of the particles themselves may vary greatly depending on the synthesis method or conditions, such a study has been continuously conducted on a new synthesis method for improving the reactivity.

한편, 철 투수성 반응벽체(Permeable Reactive Barriers: PRBs)나 주입정(Injection well) 주변에는 Iron oxides, Iron carbonates, Iron sulfides와 같은 영가철의 산화로 야기되는 다양한 미네랄 물질들이 발견된다. 이러한 반응벽체 주변에서 영가철의 완전한 산화 후에도 지속적으로 오염물질의 제거 현상이 보고 되면서 철 표면에 침전물의 형태로 존재하는 미네랄 물질들의 환원능력이 많은 관심을 받고 있다. 이 중에서, 혐기 조건에서 황 환원 박테리아(Sulfate Reducing Bacteria: SRB)에 의해 만들어지는 황화수소가 철 이온과 반응하면서 만들어지는 Iron sulfide(FeSx)는 문헌상에서 철보다 단위면적당 높은 반응성을 가지고 있다고 알려져 있다 (Butler, E. C. et al., Environ . Sci . Technol ., 35:3884-3891, 2001).
On the other hand, a variety of minerals are found around the permeable reactive barriers (PRBs) or injection wells that are caused by the oxidation of ferrous iron such as iron oxides, iron carbonates and iron sulfides. As the removal of contaminants has been reported continuously after the complete oxidation of the ferrous iron around the reaction wall, the reduction ability of the mineral substances in the form of sediment on the iron surface is receiving much attention. Among these, iron sulfide (FeS x ) produced by hydrogen sulfide produced by Sulfur Reducing Bacteria (SRB) under anaerobic reaction with iron ions is known to have higher reactivity per unit area than iron in the literature ( Butler, EC et al ., Environ . Sci . Technol . , 35: 3884-3891, 2001).

특히, Iron sulfides는 결정구조에 따라 반응성과 용해도가 다르며, 무정형에 가까운 구조일수록 할로겐 오염물질의 처리에 더 큰 효율을 보인다 (He, Y. T. et al., Environ . Sci . Technol ., 42:6690-6696, 2008). 그러므로 영가철과 Ferrous sulfide 물질이 함께 존재하는 나노입자를 만드는 것은 전체적인 분해 능력을 향상시킬 수 있는 유용한 방법이 될 것이다.
In particular, iron sulfides have different reactivity and solubility depending on the crystal structure, and the nearer the amorphous structure, the more efficient the treatment of halogen pollutants (He, YT et al ., Environ . Sci . Technol . , 42: 6690-). 6696, 2008). Therefore, making nanoparticles with covalent iron and ferrous sulfide materials would be a useful way to improve the overall degradation capacity.

이와 같이, 영가철과 Ferrous sulfide 물질이 함께 존재하는 나노입자를 만드는 관점에서, Sodium dithionite는 그 자체가 강력하고 값싼 환원제로 염료 산업 등에서 광범위하게 사용되고 있다. Dithionite는 수용액 상에서 불안정하여 빠르게 분해된다. 그러나, pH, 온도, 산소농도 등과 같은 반응조건에 따라서 다양한 황 함유 화합물이 만들어지기 때문에 정확한 분해 메카니즘에 대해서는 이견이 있다.
As such, in view of making nanoparticles in which both ferrous iron and ferrous sulfide materials are present, sodium dithionite is a powerful and inexpensive reducing agent in itself and is widely used in the dye industry. Dithionite is unstable in aqueous solution and quickly decomposes. However, since various sulfur-containing compounds are produced according to reaction conditions such as pH, temperature and oxygen concentration, there is a difference in the exact decomposition mechanism.

Dithionite를 토양에 처리했을 때, 그 자체와 분해 부산물의 환원 능력으로 중금속을 비롯한 오염물질의 제거가 가능하다고 보고가 된 바 있다 (Ludwig, R. D. et al., Environ . Sci . Technol ., 41:5299-5305, 2007). 예를 들어, Dithionite의 분해 부산물 중의 하나인 Sulfoxyl radical은 환경 내에 존재하는 산화(III)철을 고반응성 2가철의 화합물로 전환할 수 있다 (반응식 (1), (2)참조).When Dithionite is treated in soil, it has been reported that the removal of contaminants, including heavy metals, by itself and by its ability to reduce decomposition byproducts (Ludwig, RD et al ., Environ . Sci . Technol . , 41: 5299) -5305, 2007). For example, one of the decomposition by-products of Dithionite, Sulfoxyl radical, can convert iron (III) oxide in the environment into a highly reactive divalent compound (see Schemes (1) and (2)).

S2O4 2 - → 2SO2 - (1) S 2 O 4 2 - → 2SO 2 - (1)

SO2 - + Fe3 + + H2O → Fe2 + + SO3 - + 2H+ (2)
SO 2 - + Fe 3 + + H 2 O → Fe 2 + + SO 3 - + 2H + (2)

본 발명에서는 nZVI 합성과정에서 아래와 같은 반응에 의해 sulfide 이온을 공급하기 위하여 dithionite를 첨가하였다(De Carvalho, L. M. et al., Anal . Chim. Acta ., 436:293-300, 2001). In the present invention, dithionite was added to supply sulfide ions by the following reaction in the synthesis of nZVI (De Carvalho, LM et al ., Anal . Chim. Acta . , 436: 293-300, 2001).

2S2O4 2 - + H2O → 2HSO3 - + S2O3 2 - (3) 2S 2 O 4 2 - + H 2 O → 2HSO 3 - + S 2 O 3 2 - (3)

S2O4 2 - + S2O3 2 - + 2H2O + H+ → H2S + 2HSO3 - (4)
S 2 O 4 2 - + S 2 O 3 2 - + 2H 2 O + H + → H 2 S + 2HSO 3 - (4)

본 발명자들은 종래의 합성방법에 Dithionite를 첨가하는 간편한 합성방법의 개발을 통해 표면에 Ferrous sulfide로 표면 부착된 나노영가철(Dithionite-mediated Nanoscale ZeroValent Iron, D-nZVI)을 합성하였다. 이를 통해 표면 거칠기와 전기 전도도가 증가하여 오염물질의 초기 접촉률과 철 표면에서의 전자전달이 향상됨을 확인하였다. 이에 대표적인 유기오염물질 중 하나인 TCE에 대한 분해효율을 테스트한 결과, 기존의 합성된 nZVI에 비해서 그 반응성이 크게 향상된 것을 확인하고, 본 발명을 완성하게 되었다.
The present inventors synthesized a nanoitemium (Dithionite-mediated Nanoscale ZeroValent Iron, D-nZVI) surface-attached to the surface with a ferrous sulfide through the development of a simple synthesis method to add Dithionite to the conventional synthesis method. Through this, the surface roughness and the electrical conductivity were increased to improve the initial contact rate of pollutants and the electron transfer on the iron surface. As a result of testing the decomposition efficiency of TCE, one of the representative organic pollutants, it was confirmed that the reactivity is significantly improved compared to the conventional synthesized nZVI, and completed the present invention.

본 발명은 종래의 나노 영가철의 합성방법인 borohydride방법에 dithionite를 첨가하는 합성방법의 개발을 통해 반응성이 향상된 새로운 나노영가철을 합성하는 것을 해결하려는 과제로 한다.
The present invention aims to solve the synthesis of new nano-ferrous iron with improved reactivity through the development of a synthetic method of adding dithionite to the borohydride method, which is a conventional method for synthesizing nano-iron iron.

상기 과제를 해결하기 위하여 본 발명은 Ferrous sulfide 침전물이 표면 부착된 D-nZVI 제조를 과제의 해결수단으로 한다.
In order to solve the above problems, the present invention is to prepare a D-nZVI surface-attached Ferrous sulfide precipitate as a means of solving the problem.

또한, 상기 Ferrous sulfide 침전물로 표면 부착된 D-nZVI의 비표면적은 40~60 m2/g으로 종래 nZVI의 비표면적 20~30 m2/g 보다 큰 것을 과제의 해결수단으로 한다.
In addition, the specific surface area of the D-nZVI surface-attached with the ferrous sulfide precipitate is 40 ~ 60 m 2 / g and larger than the specific surface area of the conventional nZVI 20 ~ 30 m 2 / g as a solution to the problem.

또한, 상기 Ferrous sulfide 침전물로 표면 부착된 D-nZVI의 표면거칠기값(Rrms)은 40~50nm로 종래 nZVI의 표면거칠기값(Rrms) 20~30nm 보다 큰 것을 과제의 해결수단으로 한다.
In addition, the surface roughness value (Rrms) of D-nZVI surface-attached with the ferrous sulfide precipitate is 40 ~ 50nm and larger than the surface roughness value (Rrms) 20-30nm of conventional nZVI as a means of solving the problem.

또한, 상기 Ferrous sulfide 침전물로 표면 부착된 D-nZVI의 전기전도도는 종래 nZVI 보다 6배 이상 큰 것을 과제의 해결수단으로 한다.
In addition, the electrical conductivity of D-nZVI surface-attached with the ferrous sulfide precipitate is 6 times larger than the conventional nZVI as a means of solving the problem.

또한, 본 발명은 나노영가철 합성 방법인 Sodium borohydride 방법에 Dithionite를 첨가하여 나노영가철 합성 과정에서 황화수소 이온(HS-)을 공급함으로써 표면에 Ferrous sulfide 침전물이 부착된 D-nZVI 제조방법을 과제의 해결수단으로 한다.
The invention also nano zero-valent iron synthetic process by addition of Dithionite hydrogen sulphide ions (HS -) in the nano-zero-valent iron Synthesis of Sodium borohydride way of the D-nZVI production method Ferrous sulfide precipitate attached to the surface by feeding challenge It is a solution.

또한, 상기 제조방법중 Dithionite의 첨가농도를 0.1 g/L ~ 5.0 g/L로 조정하여 표면에 Ferrous sulfide 침전물이 부착된 D-nZVI 제조방법을 과제의 해결수단으로 한다.
In addition, the concentration of Dithionite in the production method is adjusted to 0.1 g / L ~ 5.0 g / L D-nZVI production method is attached to the ferrous sulfide precipitate on the surface to solve the problem.

또한, 본 발명은 상기 Ferrous sulfide 침전물이 표면 부착된 D-nZVI로 환경오염물질을 환원 처리하는 것을 포함하는 오염토양 및 지하수 환경오염물질의 정화처리방법을 과제의 해결수단으로 한다.
In addition, the present invention provides a method for purifying polluted soil and groundwater environmental pollutants, including reducing the environmental pollutants with D-nZVI on which the ferrous sulfide precipitates are attached to the surface.

또한, 상기 환경오염물질은 트리클로로에틸렌(Trichloroethylene; TCE), 테트라클로로에틸렌(Tetrachloroethylene; PCE)의 할로겐 유기용매; 염화페놀, Polychlorinated Biphenyl(PCBs), Polychlorinated Dibenzodioxins(PCDDs), Polybrominated diphenyl ethers(PBDEs)의 할로겐 방향족 물질; 크롬, 납, 비소, 니켈의 중금속; 질산염(NO3-); 황산염(SO4-2); Polycyclic aromatic hydrocarbon(PAH); 트리클로로에탄(Trichoroethane; TCA); 테트라클로로에탄(Tetrachloroethane; PCA); 클로로포름; 니트로벤젠; 니트로톨루엔; 디니트로벤젠; 디니트로톨루엔; 염소화메탄인 것을 과제의 해결수단으로 한다.
In addition, the environmental pollutants include a trichloroethylene (TCE), a halogen organic solvent of tetrachloroethylene (TCE); Halogen aromatics such as phenol chloride, Polychlorinated Biphenyl (PCBs), Polychlorinated Dibenzodioxins (PCDDs), and Polybrominated diphenyl ethers (PBDEs); Heavy metals of chromium, lead, arsenic, nickel; Nitrate (NO3 -); Sulfate (SO 4 -2 ); Polycyclic aromatic hydrocarbons (PAH); Trichloroethane (TCA); Tetrachloroethane (PCA); chloroform; Nitrobenzene; Nitrotoluene; Dinitrobenzene; Dinitrotoluene; Chlorinated methane is the solution to the problem.

본 발명에 따르면, 간편한 방법으로 표면에 Ferrous sulfide 침전물이 부착된 새로운 나노영가철인, D-nZVI을 합성할 수 있으며, 이는 TCE 등 유기오염물질 및 중금속 등 환경오염물질의 정화처리에 있어 기존에 문헌상으로 보고된 nZVI에 비해 최대 16배가 향상된 처리효율을 보이는 획기적인 효과가 있다.
According to the present invention, it is possible to synthesize D-nZVI, a new nano-ferrous iron with a ferrous sulfide precipitate attached to the surface, in a simple manner, which is known in the literature for the purification of organic pollutants such as TCE and environmental pollutants such as heavy metals. In comparison with nZVI reported, there is a dramatic effect of up to 16 times better processing efficiency.

도 1은 본 발명에 따른 D-nZVI의 제조공정도
도 2는 본 발명에 따른 D-nZVI의 SEM 분석결과
도 3은 본 발명에 따른 D-nZVI의 XRD 분석결과
도 4는 본 발명에 따른 D-nZVI와 nZVI의 XPS 분석결과 (a: nZVI, b: D-nZVI)
도 5는 본 발명에 따른 D-nZVI와 nZVI의 AFM 이미지 (a: nZVI, b: D-nZVI)
도 6은 본 발명에 따른 D-nZVI와 nZVI의 EFM 이미지 (a: nZVI, b: D-nZVI)
도 7은 Dithionite의 첨가량에 따른 TCE 환원분해정도 비교 그래프
도 8은 D-nZVI와 nZVI, RNIP의 TCE 환원분해 비교 그래프
1 is a manufacturing process diagram of D-nZVI according to the present invention
2 is a SEM analysis result of D-nZVI according to the present invention
Figure 3 XRD analysis of D-nZVI according to the present invention
4 is XPS analysis results of D-nZVI and nZVI according to the present invention (a: nZVI, b: D-nZVI)
5 is an AFM image of D-nZVI and nZVI according to the present invention (a: nZVI, b: D-nZVI)
6 is an EFM image of D-nZVI and nZVI according to the present invention (a: nZVI, b: D-nZVI)
7 is a graph comparing the degree of TCE reduction with the addition amount of dithionite
8 is a graph comparing TCE reduction of D-nZVI with nZVI and RNIP.

본 발명은 FeS(Ferrous sulfide) 침전물이 표면 부착된 D-nZVI을 기술구성의 특징으로 한다.
The present invention features D-nZVI having a surface attached with FeS (Ferrous sulfide) precipitate.

또한, 상기 Ferrous sulfide 침전물이 표면 부착된 D-nZVI의 비표면적은 40~60m2/g으로 종래 nZVI의 비표면적 20~30 m2/g 보다 큰 것을 기술구성의 특징으로 한다.
In addition, the specific surface area of the above-Ferrous sulfide precipitate the surface-mount D-nZVI is characterized by the technical construction that is greater than 40 ~ 60m 2 / g in specific surface area of 20 ~ 30 m 2 / g of a conventional nZVI.

또한, 상기 Ferrous sulfide 침전물이 표면 부착된 D-nZVI의 표면거칠기값(Rrms)은 40~50nm로 종래 nZVI의 표면거칠기값(Rrms) 20~30nm 보다 큰 것을 기술구성의 특징으로 한다.
In addition, the surface roughness value (Rrms) of the D-nZVI on which the ferrous sulfide precipitate is attached to the surface is 40-50 nm, which is larger than the surface roughness value (Rrms) 20-30 nm of the conventional nZVI.

또한, 상기 Ferrous sulfide 침전물이 표면 부착된 D-nZVI의 전기전도도는 종래 nZVI 보다 6배 이상 큰 것을 기술구성의 특징으로 한다.
In addition, the electrical conductivity of D-nZVI having the surface of the ferrous sulfide precipitate attached is 6 times larger than conventional nZVI.

또한, 본 발명은 나노영가철 합성 방법인 Sodium borohydride 방법에 Dithionite를 첨가하여 나노영가철 합성 과정에서 황화수소 이온(HS-)을 공급함으로써 표면에 Ferrous sulfide 침전물이 부착된 D-nZVI 제조방법을 기술구성의 특징으로 한다.
The invention also nano zero-valent iron Synthesis of Sodium borohydride method nano zero-valent iron synthesis of hydrogen sulphide ions (HS -) in the addition of Dithionite the configuration described this Ferrous sulfide precipitate attached D-nZVI method for manufacturing a surface by supplying It is characterized by.

또한, 상기 제조방법중 Dithionite의 첨가농도를 0.1 g/L ~ 5.0 g/L로 조정하여 표면에 Ferrous sulfide 침전물이 부착된 D-nZVI 제조방법을 기술구성의 특징으로 한다.
In addition, by adjusting the concentration of Dithionite added 0.1 g / L ~ 5.0 g / L in the above production method characterized in that the D-nZVI manufacturing method is attached to the ferrous sulfide precipitate on the surface.

또한, 본 발명은 상기 Ferrous sulfide 침전물이 표면 부착된 D-nZVI로 환경오염물질을 산화/환원 처리하는 것을 포함하는 오염토양 및 지하수 환경오염물질의 정화처리방법을 기술구성의 특징으로 한다.
In addition, the present invention is characterized by a method of purifying polluted soil and groundwater environmental pollutants, including oxidizing / reducing environmental pollutants with D-nZVI having the surface of the ferrous sulfide precipitate attached thereto.

또한, 상기 환경오염물질은 트리클로로에틸렌(Trichloroethylene; TCE), 테트라클로로에틸렌(Tetrachloroethylene; PCE)의 할로겐 유기용매; 염화페놀, Polychlorinated Biphenyl(PCBs), Polychlorinated Dibenzodioxins(PCDDs), Polybrominated diphenyl ethers(PBDEs)의 할로겐 방향족 물질; 크롬, 납, 비소, 니켈의 중금속; 질산염(NO3-); 황산염(SO4-2); Polycyclic aromatic hydrocarbon(PAH); 트리클로로에탄(Trichoroethane; TCA); 테트라클로로에탄(Tetrachloroethane; PCA); 클로로포름; 니트로벤젠; 니트로톨루엔; 디니트로벤젠; 디니트로톨루엔; 염소화메탄인 것을 기술구성의 특징으로 한다.
In addition, the environmental pollutants include a trichloroethylene (TCE), a halogen organic solvent of tetrachloroethylene (TCE); Halogen aromatics such as phenol chloride, Polychlorinated Biphenyl (PCBs), Polychlorinated Dibenzodioxins (PCDDs), and Polybrominated diphenyl ethers (PBDEs); Heavy metals of chromium, lead, arsenic, nickel; Nitrate (NO3 -); Sulfate (SO 4 -2 ); Polycyclic aromatic hydrocarbons (PAH); Trichloroethane (TCA); Tetrachloroethane (PCA); chloroform; Nitrobenzene; Nitrotoluene; Dinitrobenzene; Dinitrotoluene; Chlorinated methane is characterized by a technical configuration.

이하, 본 발명을 상세히 설명한다.
Hereinafter, the present invention will be described in detail.

본원에서 사용된 용어 'nZVI'는 Dithionite 첨가 없이 Fe용액을 NaBH4로 환원하여 얻은 나노영가철을 의미하며, 'D-nZVI'는 Fe용액을 Dithionite를 첨가한 NaBH4로 환원하여 얻은 나노영가철을 의미한다.
The term 'nZVI' as used herein, by reduction of the Fe solution without Dithionite added NaBH 4 means a nano zero-valent iron obtained and, 'D-nZVI' nano zero-valent iron is obtained by reduction with NaBH 4 was added to Dithionite the Fe solution Means.

본 발명에서, D-nZVI에 의한 환경오염물질 환원분해는 금속의 표면을 매개로 하여 진행되며, 나노영가철의 환원능력 증가를 위해서는 오염물질의 영가철 표면으로의 흡착과 철의 산화로 발생되는 전자전달반응이 촉진되어야 한다.
In the present invention, the reduction of environmental pollutants by D-nZVI is carried out through the surface of the metal, in order to increase the reduction capacity of the nano-ferrous iron is generated by the adsorption of contaminants to the surface of the non-ferrous iron and oxidation of iron. Electron transfer reaction should be promoted.

흡착반응은 비표면적과 표면 거칠기에 의해 달라질 수 있는데, 본 발명에서 합성된 D-nZVI의 비표면적은 40~60 m2/g으로 기존 문헌상에 보고된 나노영가철의 비표면적 20-30 m2/g보다 훨씬 큰 값을 지닌다. D-nZVI는 넓은 비표면적으로 인해 초기 흡착속도를 증가시킬 수 있으며, 결국 전체 환원분해 속도의 향상을 가능하게 할 수 있다.
The adsorption reaction may vary depending on the specific surface area and surface roughness. The specific surface area of D-nZVI synthesized in the present invention is 40-60 m 2 / g, and the specific surface area of nano-ferrous iron reported in the literature is 20-30 m 2. It is much larger than / g. D-nZVI can increase the initial adsorption rate due to the large specific surface area, which in turn can enable an improvement in the overall rate of reduction.

따라서 D-nZVI 표면은 Ferrous sulfide의 침전으로 인해 Dithionite의 첨가 없이 동일한 조건으로 합성한 nZVI보다 약 2배 정도 표면 거칠기가 증가한다. 이는 AFM(Atomic Force Microscopy)분석에 의해 D-nZVI의 표면거칠기값(Rrms)이 40~50nm로 종래 nZVI의 표면거칠기값(Rrms) 20~30nm 보다 크다는 것이 확인되었다. 거친 표면에는 다수의 모서리(edge) 부분이 존재하고, 이러한 모서리 부분은 편평한 면에 비해 오염물질의 흡착능력이 더 좋다고 알려져 있다 (Tansel, B. et al., Adv . Environ . Res ., 8:411-415, 2004). 또한, 수용액 상에서 Ferrous sulfide는 산화철에 비해 수화(hydration)되는 경향이 적어 표면에 소수성 부위를 많이 보유하기 때문에 환경오염물질의 흡착이 더 촉진될 수 있는 장점이 있다.
Therefore, the surface roughness of D-nZVI surface is increased by about twice that of nZVI synthesized under the same conditions without the addition of dithionite due to the precipitation of ferrous sulfide. It was confirmed by AFM (Atomic Force Microscopy) analysis that the surface roughness (Rrms) of D-nZVI is 40-50 nm, which is larger than the surface roughness (Rrms) of conventional nZVI 20-30nm. There are many edges on rough surfaces, which are known to have better adsorption of contaminants than flat surfaces (Tansel, B. et. al ., Adv . Environ . Res . , 8: 411-415, 2004). In addition, the ferrous sulfide in the aqueous solution has a tendency to hydration (hydration) less than iron oxide has a number of hydrophobic sites on the surface has the advantage that the adsorption of environmental pollutants can be further promoted.

더욱이 EFM(Electrostatic Force Microscopy) 측정 결과, 상기 합성된 D-nZVI는 nZVI에 비해 전기 전도도가 적어도 6배 이상 증가함을 알 수 있다. 이는 D-nZVI표면에서 전자의 움직임이 더욱 활발하다는 것을 의미한다. Iron sulfide는 실제로 비 국소 전자쌍의 존재로 인해 전도성이 좋은 물질로 알려져 있다. 오염물질의 환원처리과정은 금속의 표면에서 전자를 전달받아 일어나는 반응이므로 이를 통해 D-nZVI의 표면에 흡착된 환경오염물질로의 전자전달이 용이해짐을 알 수 있다.
Furthermore, as a result of Electrostatic Force Microscopy (EMF) measurement, it can be seen that the synthesized D-nZVI has at least 6 times more electrical conductivity than nZVI. This means that the movement of electrons is more active on the surface of D-nZVI. Iron sulfide is actually known to be a highly conductive material due to the presence of non-local electron pairs. Since the reduction process of pollutants is a reaction that takes place by receiving electrons from the surface of the metal, it can be seen that it is easy to transfer electrons to the environmental pollutants adsorbed on the surface of D-nZVI.

결론적으로, D-nZVI의 환경오염물질 환원분해 속도 향상은 (1) 비표면적 증가, (2) 영가철 표면의 ferrous sulfide 침전으로 인한 표면거칠기의 증가, (3) 표면 전기전도도의 증가에 기인한 흡착과 전자전달 반응속도의 증가 때문이라는 것을 알 수 있다.
In conclusion, the reduction rate of D-nZVI's reduction of environmental pollutants can be attributed to (1) increased specific surface area, (2) increased surface roughness due to ferrous sulfide precipitation on the surface of ductile iron, and (3) increased surface conductivity. It can be seen that it is due to the increase in the adsorption and electron transfer reaction rate.

이하 실시예를 통하여 본 발명을 보다 상세히 설명한다. 이들 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다는 것은 당 업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
Hereinafter, the present invention will be described in more detail by way of examples. These examples are intended to illustrate the present invention in more detail, and it will be apparent to those skilled in the art that the scope of the present invention is not limited to these examples.

실험재료 준비
Preparation of Experimental Materials

환경오염물질로서 TCE(Trichloroethylene, Sigma Aldrich, USA)를 준비하였다. nZVI와 D-nZVI제조를 위하여 Ferric chloride(FeCl3?6H2O, Sigma Aldrich, USA), Sodium borohydride(NaBH4, Sigma Aldrich, USA)와 Sodium dithionite(Na2S2O4, Sigma Aldrich, USA)를 준비하였다. 상기 제조된 나노영가철에 대한 비교실험에 사용하기 위하여, RNIP(Reactive Nanoscale Iron Particles, Toda Corp., Japan)을 준비하였다. RNIP는 반응 전에 표면 불순물을 제거하기 위하여 N2로 purging한 증류수로 3회 세척하여 사용하였다.
TCE (Trichloroethylene, Sigma Aldrich, USA) was prepared as an environmental pollutant. Ferric chloride (FeCl 3 -6H 2 O, Sigma Aldrich, USA), Sodium borohydride (NaBH 4 , Sigma Aldrich, USA) and Sodium dithionite (Na 2 S 2 O 4 , Sigma Aldrich, USA) for the preparation of nZVI and D-nZVI ) Was prepared. In order to use in the comparative experiments on the nano-ferrous iron prepared above, RNIP (Reactive Nanoscale Iron Particles, Toda Corp., Japan) was prepared. RNIP was used three times with distilled water purged with N 2 to remove surface impurities before the reaction.

D-nZVI의 제조
Preparation of D-nZVI

증류수는 N2로 1시간 퍼징(purging)시킨 3차 증류수(18MO cm)를 사용하였으며, 하기 2-1 및 2-2공정은 모두 N2 퍼징상태에서 진행하였다.
Distilled water was used as the third distilled water (18MO cm) purged with N 2 for 1 hour, the following 2-1 and 2-2 process is all N 2 The purge was performed.

2-1. 2-1. FeFe 용액제조 Solution manufacturing

FeCl3?6H2O 13.5 g을 증류수 100 ml에 녹여 0.5 M Fe3 +용액을 제조하였다.
FeCl 3? 6H 2 O 13.5 g to prepare a 0.5 M solution of Fe + 3 is dissolved in distilled water to 100 ml.

2-2. 환원제 첨가2-2. Reducing agent added

NaBH4 3.0 g을 100 ml의 증류수에 녹여 0.8M의 NaBH4용액을 제조하였다. 상기 용액에 0.2 g의 sodium dithionite를 첨가하여 sodium dithionite-NaBH4 수용액을 제조한 후, 2-1에서 제조된 Fe 용액 3 ml에 상기 용액 9 ml을 1 ml/min의 속도로 적가한다. 이를 통해 0.08 g의 D-nZVI를 제조하였다. (반응식 (5) 참조)3.0 g of NaBH 4 was prepared in a solution of 0.8M NaBH 4 dissolved in 100 ml of distilled water. After adding 0.2 g of sodium dithionite to the solution to prepare an aqueous solution of sodium dithionite-NaBH 4 , 9 ml of the solution was added dropwise to 3 ml of the Fe solution prepared in 2-1 at a rate of 1 ml / min. This produced 0.08 g of D-nZVI. (See Scheme (5))

Fe(H2O)6 3+ ( aq ) + 3BH4 - + 3H2O → Fe0 (s) + 3B(OH)3 + 10.5H2 (g) (5) Fe (H 2 O) 6 3+ (aq) + 3BH 4 - + 3H 2 O → Fe 0 (s) + 3B (OH) 3 + 10.5H 2 (g) (5)

여기서, sodium dithionite를 첨가하여 sodium dithionite-NaBH4 환원제 용액을 제조할 경우 sodium dithionite와 NaBH4의 비율을 조정하여 sodium dithionite 첨가량 만큼 고가의 NaBH4 사용량을 줄임으로써 전체 나노영가철의 합성비용이 감소될 수 있다.
Here, in the case of preparing sodium dithionite-NaBH 4 reductant solution by adding sodium dithionite, the synthesis cost of total nanocomposite can be reduced by adjusting the ratio of sodium dithionite and NaBH 4 to reduce the use of expensive NaBH 4 by the amount of sodium dithionite added. Can be.

2-3. 초음파 건조 및 세척2-3. Ultrasonic Drying and Washing

2-2에서 제조된 D-nZVI에 초음파를 10분 동안 가한 후, N2로 purging한 증류수로 3회 세척하여 표면의 불순물을 제거하였다 (도 1).
Ultrasonic waves were added to D-nZVI prepared in 2-2 for 10 minutes, and then washed three times with distilled water purged with N 2 to remove impurities from the surface (FIG. 1).

D-nZVI 입자특성 분석
D-nZVI particle characterization

3-1. D-3-1. D- nZVInZVI 의 표면형상Surface shape of

FE-SEM/EDX(Field emission scanning electron microscopy/energy dispersive X-ray) (JSM-7401F, JEOL, Japan)를 이용하여 상기 D-nZVI의 표면형상과 원소구성을 분석하였다.
The surface shape and elemental composition of the D-nZVI were analyzed using FE-SEM / EDX (Field emission scanning electron microscopy / energy dispersive X-ray) (JSM-7401F, JEOL, Japan).

그 결과, 도 2의 (a)에 나타난 바와 같이, 상기 D-nZVI 입자는 기존에 보고된 nZVI와 마찬가지로 구형의 철 입자가 사슬구조로 연결되어 있음을 확인할 수 있다.
As a result, as shown in (a) of FIG. 2, the D-nZVI particles can be confirmed that spherical iron particles are connected in a chain structure similarly to previously reported nZVI.

또한, 표면 EDX 분석(도 2의 (b))에서 iron(Fe), oxygen(O) 이외에 sulfur(S) signal이 관찰이 되었고, X-ray mapping 결과, sulfur는 철 표면에 균질하게 분포하고 있음을 확인할 수 있었다(도 2의 (c)).
In addition, sulfur (S) signals were observed in addition to iron (Fe) and oxygen (O) in the surface EDX analysis (FIG. 2 (b)). As a result of X-ray mapping, sulfur is uniformly distributed on the iron surface. It could be confirmed (Fig. 2 (c)).

3-2. D-3-2. D- nZVInZVI 의 성분분석Component Analysis of

XRD(X-ray diffraction)(MXP18 HF, MAC science co., Japan)분석을 통해서 D-nZVI의 주된 성분이 Fe0임을 확인하였다 (도 3). 그러나, 황 함유 화합물은 발견되지 않았는데, 이는 물질의 결정구조를 밝히는 XRD 분석의 특성상, D-nZVI에 존재하는 황 화합물이 비결정성 구조를 가지고 있을 것이라고 판단되었다.
XRD (X-ray diffraction) (MXP18 HF, MAC science co., Japan) analysis confirmed that the main component of D-nZVI is Fe 0 (Fig. 3). However, no sulfur-containing compound was found, which was determined by the XRD analysis of the crystal structure of the material that the sulfur compound present in D-nZVI would have an amorphous structure.

3-3. D-3-3. D- nZVInZVI 표면 특성 분석 Surface characterization

D-nZVI에 존재하는 원소구성비와 Sulfur의 화학결합상태를 측정하기 위해서 Mg Ka(1253.6 eV)선을 사용하는 XPS(x-ray photoelectron spectroscopy) 분석기(ESCA Lab 220iXL, VG scientific, USA)를 이용하였다.
An x-ray photoelectron spectroscopy (XPS) analyzer using an Mg Ka (1253.6 eV) line (ESCA Lab 220iXL, VG scientific, USA) was used to measure the chemical composition of Sulfur and the chemical composition of D-nZVI. .

표 1에 나타난 것과 같이 nZVI의 Fe, S, B의 구성비와 비교한 결과, D-nZVI의 원소비율에는 변화가 있었다.
As shown in Table 1, when compared with the composition ratios of Fe, S, and B of nZVI, there was a change in the element ratio of D-nZVI.

D-nZVI와 nZVI의 표면특성 분석Surface Characterization of D-nZVI and nZVI XPS 표면조성XPS surface composition atom%atom% Fe(Iron)Fe (Iron) B(Boron)B (Boron) S(Sulfur)S (Sulfur) nZVInZVI 43.943.9 56.156.1 0.00.0 D-nZVID-nZVI 57.257.2 36.836.8 6.06.0

공통적으로, nZVI와 D-nZVI의 Fe(2p) 스펙트럼에서 적은 양의 Fe0 만이 발견되었는데, 이는 시료 준비과정에서의 산화로 인한 것이라고 판단되었다 (도 4(a)).
Commonly, only a small amount of Fe 0 was found in the Fe (2p) spectra of nZVI and D-nZVI, which was determined to be due to oxidation during sample preparation (FIG. 4 (a)).

또한, 도 4(b)의 B(1s) 스펙트럼에서 borate와 boride의 피크가 모두 발견된 nZVI와는 달리 D-nZVI에서는 borate의 피크만 관찰되었으며 그 감도 역시 크게 줄어들었음을 확인하였다.
In addition, unlike nZVI in which both peaks of borate and boride were found in B (1s) spectrum of FIG. 4 (b), only peaks of borate were observed in D-nZVI and the sensitivity was also greatly reduced.

D-nZVI에 존재하는 sulfur 성분은 S(2p)에서 관찰된 피크의 결합에너지 값에 따라 sulfide(S2 -)라는 것을 알 수 있었다 (도 4(c)). 피크의 감도와 원소 구성비를 고려했을 때, 적은 양이기 때문에 Fe(2p)의 결합에너지 범위에서 Ferrous sulfide(707.0 eV)에 해당되는 피크가 검출되지 않은 것으로 생각되었다. 그러나, (3), (4)의 반응식과 SEM/EDX, XPS 분석결과는 적은 양이지만 D-nZVI 표면에는 Ferrous sulfide침전물이 존재하고 있다는 것을 나타낸다.
The sulfur component present in D-nZVI was found to be sulfide (S 2 ) depending on the binding energy value of the peak observed in S (2p) (FIG. 4 (c)). Considering the sensitivity of the peak and the elemental composition ratio, it was considered that the peak corresponding to Ferrous sulfide (707.0 eV) was not detected in the binding energy range of Fe (2p) because of the small amount. However, although the reaction equations (3) and (4) and SEM / EDX and XPS analysis results are small, ferrous sulfide precipitates are present on the surface of D-nZVI.

철 표면의 Ferrous sulfide의 침전으로 야기되는 표면특성의 변화를 분석하기 위해 Dimension 3100 (Veeco, USA)을 이용하여 AFM/EFM 분석을 수행하였다.AFM / EFM analysis was performed using Dimension 3100 (Veeco, USA) to analyze the surface characteristics caused by precipitation of ferrous sulfide on the iron surface.

AFM을 이용하여 표면 거칠기를 비교한 결과, 도 5에 나타난 바와 같이, D-nZVI는 nZVI에 비해 훨씬 거친 표면을 갖는다. 표면의 거칠기를 나타내는 R rms 값에서도 D-nZVI는 44.9 nm로 24.5 nm를 갖는 nZVI보다 약 2배 정도 크다.
As a result of comparing surface roughness using AFM, as shown in FIG. 5, D-nZVI has a much rougher surface than nZVI. In R rms value indicating the roughness of the surface D-nZVI it is greater than about twice nZVI having 24.5 nm to 44.9 nm.

EFM은 정전기력을 이용하여 샘플 표면의 전하, 전도도와 같은 전기적 특성을 측정하는 장치로, 이를 위해 팁에 +5 V의 전압을 걸어주었다. 표면의 전도도 차이는 이미지의 명암과 진동값을 나타내는 R rms 상수를 통해 알 수 있다. 도 6에 나타난 바와 같이 D-nZVI의 EFM이미지는 nZVI에 비해 훨씬 밝으며, R rms 값 역시 1.60°로 nZVI의 0.26°보다 약 6배 이상 크다. 이는 D-nZVI 표면의 전자의 움직임이 더 활발함을 나타낸다. 실제로, ferrous sulfide는 비 국소 전자쌍 (delocalized electrons)의 존재로 인해 전도성이 좋은 물질로 알려져 있다.
EFM is a device that uses electrostatic force to measure electrical properties such as charge and conductivity on the sample surface. To do this, a voltage of +5 V is applied to the tip. The difference in conductivity of the surface is shown by the R rms constant, which represents the contrast and vibration of the image. As shown in FIG. 6, the EFM image of D-nZVI is much brighter than nZVI, and the R rms value is 1.60 °, which is about 6 times larger than 0.26 ° of nZVI. This indicates that the movement of electrons on the D-nZVI surface is more active. In fact, ferrous sulfide is known to be a highly conductive material due to the presence of delocalized electrons.

이와 같이 Dithionite의 첨가를 통해 합성된 D-nZVI를 nZVI와 비교했을 때, 표면 거칠기와 전도도 모두 증가하였다. 나노영가철에 의한 오염물질의 분해반응은 표면을 매개로 하여 진행되기 때문에 ferrous sulfide에 의해 변화된 표면특성은 환경오염물질 분해에 큰 영향을 미칠 것으로 기대된다.
As compared with nZVI, D-nZVI synthesized through the addition of Dithionite increased both surface roughness and conductivity. Since the decomposition reaction of contaminants by nano-ferrous iron proceeds through the surface, the surface properties changed by ferrous sulfide are expected to have a great influence on the degradation of environmental pollutants.

대표적인 환경오염물질 정화처리 시험
Representative environmental pollutant purification test

4-1. 4-1. SodiumSodium dithionitedithionite 첨가량에 따른  According to the added amount TCETCE 환원분해실험 Reduction decomposition test

TCE 분해실험은 N2로 퍼징한 deionized water를 사용하여 15 ppm의 TCE용액을 제조한 다음, 0.08 g의 D-nZVI와 혼합하여 rolling mixer (15 rpm)에서 움직이는 40 ml의 amber vial에서 실험을 실시하였다. 동일한 실험 조건에서 철을 포함하지 않는 vial을 대조군으로 하였다.
TCE digestion was carried out using 40 ml of amber vial running in a rolling mixer (15 rpm) by preparing 15 ppm of TCE solution using deionized water purged with N 2 and then mixing with 0.08 g of D-nZVI. It was. Under the same experimental conditions, a vial containing no iron was used as a control.

반응기에서 각 시간별로 0.1 ml의 용액을 수집하여 9.9 ml의 deionized water를 섞어 헤드스페이스 vial에 옮겨 담는다. TCE 정량은 DB-624(Alltech)컬럼과 헤드스페이스-가스크로마토그래피-전자포획형검출기(headspace GC/ECD, HP6890)를 사용하여 수행하였다.
Collect 0.1 ml of solution each hour in the reactor, mix 9.9 ml of deionized water and transfer to the headspace vial. TCE quantification was performed using a DB-624 (Alltech) column and a headspace-gas chromatography-electron capture detector (headspace GC / ECD, HP6890).

상기와 같이 TCE에 대한 환원분해실험을 진행하되, 합성 과정에서 첨가되는 dithionite양을 각각 0.1, 0.5, 1.0, 2.0 및 5.0 g/L로 다르게 하여 실험결과를 비교하였다. 그 결과, 도 7에 나타난 바와 같이 0.1 ~ 2.0 g/L범위에서 Dithionite의 양이 증가할수록 TCE 분해속도가 빨라지나, 5.0 g/L에서는 그 속도가 약간 감소함을 확인할 수 있었다. 이는 표면에 침적되는 Ferrous sulfide의 양이 증가하면서 철의 산화를 저해하기 때문이라고 생각되며, 상기 결과를 토대로 가장 좋은 TCE 분해효율을 보이는 D-nZVI를 얻기 위해서는 합성과정에서 2.0 g/L의 Dithionite를 사용하는 것이 바람직하다는 것을 알 수 있다.
As described above, the reduction decomposition test for TCE was carried out, but the dithionite amount added in the synthesis was 0.1, 0.5, 1.0, 2.0, and 5.0 g / L, respectively, to compare the experimental results. As a result, as shown in FIG. 7, as the amount of Dithionite increases in the range of 0.1 to 2.0 g / L, the rate of TCE decomposition increases, but at 5.0 g / L, the rate decreases slightly. This is thought to be due to the inhibition of iron oxidation as the amount of ferrous sulfide deposited on the surface increases. Based on the above results, 2.0 g / L of dithionite was synthesized to obtain D-nZVI having the best TCE decomposition efficiency. It can be seen that it is preferable to use.

4-2. 4-2. 나노영가철Nano Young Iron 종류에 따른  By type TCETCE 분해속도 비교 Decomposition Rate Comparison

다른 종류의 나노영가철 0.08 g를 15 ppm의 TCE용액과 반응시킨 후 분해속도를 비교하였다 (도 8).
After dissolving 0.08 g of different types of nano-ferrous iron with 15 ppm of TCE solution, the decomposition rate was compared (FIG. 8).

RNIP의 경우, 별도의 측정 없이 판매처인 Toda group에 의해 공개된 BET surface area값을 사용하였으며, nZVI와 D-nZVI에 한해서 ASAP 2010 analyzer BET(Micromeritics, USA)를 이용하여 비표면적을 측정하였다. D-nZVI의 비표면적은 43.4 m2/g로 기존에 문헌상에서 보고된 나노영가철의 비표면적 값 23-37 m2/g보다 훨씬 큼을 알 수 있었다. 비표면적 속도상수(k sa )를 비교했을 때, D-nZVI는 RNIP보다는 2배, 합성된 nZVI에 비해서는 최대 16배 큰 속도상수 값을 갖는다 (표 2).
In the case of RNIP, the BET surface area value published by the Toda group, which was sold without any measurement, was used, and the specific surface area was measured using the ASAP 2010 analyzer BET (Micromeritics, USA) for nZVI and D-nZVI only. The specific surface area of D-nZVI was 43.4 m 2 / g, which is much larger than the specific surface area of 23-37 m 2 / g of nano permanent iron reported in the literature. When comparing the specific surface area rate constant ( k sa ), D-nZVI has a rate constant value that is twice as large as RNIP and up to 16 times larger than the synthesized nZVI (Table 2).

다양한 나노영가철과의 반응속도상수 비교Comparison of reaction rate constants with various nano-ferrous irons Fe typesFe types BET surface area
(m2/g)
BET surface area
(m 2 / g)
k obs
(h-1)
k obs
(h -1 )
k sa
(L?m-2?h-1)
k sa
(L? M -2 ? H -1 )
RNIPRNIP 2323 0.411 ±0.0840.411 ± 0.084 0.008 ±0.0020.008 ± 0.002 nZVInZVI 33.2 ±0.233.2 ± 0.2 0.080 ±0.0020.080 ± 0.002 0.001 ±0.000.001 ± 0.00 D-nZVID-nZVI 43.4 ±0.143.4 ± 0.1 1.59 ±0.0591.59 ± 0.059 0.016 ±0.0010.016 ± 0.001

이는, 새롭게 합성된 D-nZVI가 TCE에 대해 높은 반응성을 가지고 있다는 것을 나타낸다. 앞의 표면분석 결과를 토대로, 이러한 향상된 TCE 환원반응성은 증가된 표면 거칠기와 전기전도도와 관련성이 있다.
This indicates that the newly synthesized D-nZVI has high reactivity with TCE. Based on the previous surface analysis results, this improved TCE reactivity is related to increased surface roughness and electrical conductivity.

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다. The specific parts of the present invention have been described in detail above, and it is apparent to those skilled in the art that such specific descriptions are merely preferred embodiments, and thus the scope of the present invention is not limited thereto. something to do. Thus, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

Claims (10)

황화철(FeS; Ferrous sulfide) 침전물이 표면에 부착된 D-nZVI(Dithionite mediated nZVI)
Dionion mediated nZVI (D-nZVI) with ferrous sulfide (FeS) precipitate attached to the surface
제1항에 있어서,
상기 황화철(FeS; Ferrous sulfide) 침전물이 표면에 부착된 D-nZVI의 비표면적은 40~60m2/g으로 종래 nZVI의 비표면적 보다 큰 것을 특징으로 하는 D-nZVI
The method of claim 1,
The specific surface area of D-nZVI having the ferrous sulfide (FeS) precipitate attached to the surface is 40 to 60 m 2 / g, which is larger than that of conventional nZVI.
제1항에 있어서,
상기 황화철(FeS; Ferrous sulfide) 침전물이 표면에 부착된 D-nZVI의 표면거칠기값(Rrms)은 40~50nm로 종래 nZVI의 표면거칠기값(Rrms) 보다 큰 것을 특징으로 하는 D-nZVI
The method of claim 1,
The surface roughness (Rrms) of D-nZVI having the ferrous sulfide (FeS) precipitate attached to the surface is 40-50 nm, which is larger than the surface roughness (Rrms) of conventional nZVI.
제1항에 있어서,
상기 황화철(FeS; Ferrous sulfide) 침전물이 표면에 부착된 D-nZVI의 전기전도도는 종래 nZVI 보다 6배 이상 큰 것을 특징으로 하는 D-nZVI
The method of claim 1,
The electrical conductivity of D-nZVI having the ferrous sulfide (FeS) precipitate attached to the surface thereof is about 6 times greater than that of conventional nZVI.
나노영가철 합성에 사용되는 수소화붕소나트륨(Sodium borohydride) 환원제에 디티온산나트륨(Sodium dithionite)를 첨가하여 나노영가철 표면에 황화철(FeS; Ferrous sulfide) 침전물이 부착된 D-nZVI 제조방법
Method of preparing D-nZVI having a ferrous sulfide (FeS) precipitate attached to the surface of nanoferrous iron by adding sodium dithionite to sodium borohydride reducing agent used for nano-ferrous iron synthesis
제5항에 있어서,
상기 제조방법은 염화제이철(Ferric chloride; FeCl3)을 물에 녹여 Fe3 +용액을 제조하는 단계와;
수소화붕소나트륨(Sodium borohydride; NaBH4)를 물에 녹여 수소화붕소나트륨 용액을 제조하고, 상기 수소화붕소나트륨 용액에 디티온산나트륨(Sodium dithionite; Na2S2O4)를 첨가하여 NaBH4-Na2S2O4 수용액을 제조하는 단계와;
상기 Fe3 +용액에 상기 NaBH4-Na2S2O4 수용액을 적가하여 표면에 황화철(Ferrous sulfide) 침전물이 코팅된 D-nZVI을 제조하는 단계와;
상기 제조된 D-nZVI에 초음파를 가한 후, 질소(N2)로 purging한 증류수로 세척하여 표면의 불순물을 제거하는 단계;를 포함하여 구성되는 것을 특징으로 하는 D-nZVI 제조방법
The method of claim 5,
The manufacturing method comprises the steps of preparing a Fe 3 + solution by dissolving ferric chloride (FeCl 3 ) in water;
Sodium borohydride (NaBH 4 ) was dissolved in water to prepare a sodium borohydride solution, and sodium dithionite (Na 2 S 2 O 4 ) was added to the sodium borohydride solution to give NaBH 4 -Na 2. S 2 O 4 Preparing an aqueous solution;
The NaBH 4 -Na 2 S 2 O 4 in the Fe 3 + solution Preparing D-nZVI coated with ferrous sulfide precipitate on the surface by dropwise adding an aqueous solution;
The ultrasonic wave is applied to the prepared D-nZVI, followed by washing with distilled water purged with nitrogen (N 2 ) to remove impurities from the surface. D-nZVI manufacturing method comprising the
제6항에 있어서,
상기 디티온산나트륨(Sodium dithionite; Na2S2O4)의 첨가농도를 0.1 g/L ~ 5.0 g/L으로 조정하는 것을 특징으로 하는 D-nZVI 제조방법
The method of claim 6,
D-nZVI manufacturing method characterized in that the concentration of the sodium dithionite (Sodium dithionite; Na 2 S 2 O 4 ) is adjusted to 0.1 g / L ~ 5.0 g / L
제7항에 있어서,
상기 디티온산나트륨(Sodium dithionite; Na2S2O4)의 첨가농도를 2.0 g/L로 조정하여 오염물질의 최대분해효율을 나타내도록 하는 것을 특징으로 하는 D-nZVI 제조방법
The method of claim 7, wherein
D-nZVI manufacturing method characterized in that to adjust the addition concentration of the sodium dithionite (Na 2 S 2 O 4 ) to 2.0 g / L to show the maximum decomposition efficiency of the pollutant
황화철(FeS; Ferrous sulfide) 침전물이 표면 부착된 D-nZVI로 환경오염물질을 환원 처리하는 단계를 포함하는 것을 특징으로 하는 오염토양 및 지하수 환경오염물질의 정화처리방법
Method for purifying polluted soil and groundwater environmental pollutants, comprising reducing the environmental pollutants with D-nZVI on which ferrous sulfide (FeS) precipitate is attached to the surface.
제9항에 있어서,
상기 환경오염물질은 트리클로로에틸렌(Trichloroethylene; TCE), 테트라클로로에틸렌(Tetrachloroethylene; PCE) 염화페놀, Polychlorinated Biphenyl(PCBs), Polychlorinated Dibenzodioxins(PCDDs), Polybrominated diphenyl ethers(PBDEs), 트리클로로에탄(Trichoroethane; TCA); 테트라클로로에탄(Tetrachloroethane; PCA), 염소화메탄의 유기할로겐물질; 크롬, 납, 비소, 니켈의 중금속; 질산염(NO3-); 황산염(SO4-2); Polycyclic aromatic hydrocarbon(PAH); 클로로포름; 니트로벤젠; 니트로톨루엔; 디니트로벤젠; 디니트로톨루엔으로 이루어 진 군으로부터 선택되는 것을 특징으로 하는 오염토양 및 지하수 환경오염물질의 정화처리방법
10. The method of claim 9,
The environmental pollutants include trichloroethylene (TCE), tetrachloroethylene (PCE) chloride, polychlorinated biphenyl (PCBs), polychlorinated dibenzodioxins (PCDDs), polybrominated diphenyl ethers (PBDEs), trichloroethane (Trichoroethane; TCA); Tetrachloroethane (PCA), organic halogenated material of chlorinated methane; Heavy metals of chromium, lead, arsenic, nickel; Nitrate (NO3 -); Sulfate (SO 4 -2 ); Polycyclic aromatic hydrocarbons (PAH); chloroform; Nitrobenzene; Nitrotoluene; Dinitrobenzene; Method for purifying polluted soil and groundwater environmental pollutants, characterized in that selected from the group consisting of dinitrotoluene
KR1020100100443A 2010-10-14 2010-10-14 D-NVI attached to the surface of iron sulfide sediment and method for purifying polluted soil and groundwater environmental pollutants KR101241377B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100100443A KR101241377B1 (en) 2010-10-14 2010-10-14 D-NVI attached to the surface of iron sulfide sediment and method for purifying polluted soil and groundwater environmental pollutants

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100100443A KR101241377B1 (en) 2010-10-14 2010-10-14 D-NVI attached to the surface of iron sulfide sediment and method for purifying polluted soil and groundwater environmental pollutants

Publications (2)

Publication Number Publication Date
KR20120038793A true KR20120038793A (en) 2012-04-24
KR101241377B1 KR101241377B1 (en) 2013-03-11

Family

ID=46139403

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100100443A KR101241377B1 (en) 2010-10-14 2010-10-14 D-NVI attached to the surface of iron sulfide sediment and method for purifying polluted soil and groundwater environmental pollutants

Country Status (1)

Country Link
KR (1) KR101241377B1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104528909A (en) * 2014-12-24 2015-04-22 南京大学 Conducting glass loading cubic-crystal nano zero-valent iron and preparation method and application of conducting glass loading cubic-crystal nano zero-valent iron
CN105859015A (en) * 2016-05-27 2016-08-17 山东大学 Method for removing orange yellow I in printing and dyeing wastewater by using sulfurized modified zero-valent iron material under effect of low-intensity magnetic field
CN110156133A (en) * 2019-05-13 2019-08-23 中国科学院广州地球化学研究所 A kind of vulcanization nanometer zero-valent iron particle and its preparation method and application
CN110208061A (en) * 2019-06-21 2019-09-06 辽宁石油化工大学 Phenol and make to acquire the method that phenol is stabilized in a kind of quantitative collection water environment
KR20190114324A (en) * 2018-03-29 2019-10-10 서울과학기술대학교 산학협력단 Method for preparation of uniformly distributed and air stable nanoscale zerovalent iron
CN111097449A (en) * 2019-12-11 2020-05-05 中国科学院生态环境研究中心 Nano zero-valent iron composite material with super-strong reducibility and photocatalytic performance
CN111392844A (en) * 2020-02-18 2020-07-10 山东大学 Method and system for accelerating removal of Cr (VI) in water body by using zero-valent iron sulfide based on surface functional group regulation
KR20210141826A (en) * 2020-05-13 2021-11-23 광운대학교 산학협력단 A denitrification catalyst, a manufacturing method thereof and a denitrification method using thereof
CN116603501A (en) * 2023-04-26 2023-08-18 山东大学 Vulcanized synergistic active carbon modified micron-sized zero-valent iron composite material and preparation method and application thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105174414B (en) * 2015-09-28 2017-11-21 中国地质大学(武汉) A kind of FeS/Fe0Composite and its preparation method and application
KR102439862B1 (en) * 2020-12-10 2022-09-02 광운대학교 산학협력단 FLY ASH-BASED GRANULAR ZEOLITE ADSORBENT CONTAINING BIMETALLIC ZEROVALENT-IRON/Ni AND THE MANUFACTURING METHOD THEREOF

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100397234B1 (en) * 2000-11-16 2003-09-19 한라산업개발 주식회사 A remediation method of contaminated materials by using pyrite, zero-valent iron and graphite as reactive material for the reactive wall
KR100913615B1 (en) * 2007-10-12 2009-08-26 포항공과대학교 산학협력단 Preparing method of purifying agent for purifying soil or ground water, and purifying agent prepared thereby
KR101027139B1 (en) * 2009-10-29 2011-04-05 효림산업주식회사 Polyphenol-coated nano-scale zero valent iron for restoring soil and underground water and a method for preparing the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104528909A (en) * 2014-12-24 2015-04-22 南京大学 Conducting glass loading cubic-crystal nano zero-valent iron and preparation method and application of conducting glass loading cubic-crystal nano zero-valent iron
CN105859015A (en) * 2016-05-27 2016-08-17 山东大学 Method for removing orange yellow I in printing and dyeing wastewater by using sulfurized modified zero-valent iron material under effect of low-intensity magnetic field
KR20190114324A (en) * 2018-03-29 2019-10-10 서울과학기술대학교 산학협력단 Method for preparation of uniformly distributed and air stable nanoscale zerovalent iron
CN110156133A (en) * 2019-05-13 2019-08-23 中国科学院广州地球化学研究所 A kind of vulcanization nanometer zero-valent iron particle and its preparation method and application
CN110156133B (en) * 2019-05-13 2021-07-27 中国科学院广州地球化学研究所 Vulcanized nano zero-valent iron particles and preparation method and application thereof
CN110208061A (en) * 2019-06-21 2019-09-06 辽宁石油化工大学 Phenol and make to acquire the method that phenol is stabilized in a kind of quantitative collection water environment
CN111097449A (en) * 2019-12-11 2020-05-05 中国科学院生态环境研究中心 Nano zero-valent iron composite material with super-strong reducibility and photocatalytic performance
CN111392844A (en) * 2020-02-18 2020-07-10 山东大学 Method and system for accelerating removal of Cr (VI) in water body by using zero-valent iron sulfide based on surface functional group regulation
CN111392844B (en) * 2020-02-18 2021-07-02 山东大学 Method and system for accelerating removal of Cr (VI) in water body by using zero-valent iron sulfide based on surface functional group regulation
KR20210141826A (en) * 2020-05-13 2021-11-23 광운대학교 산학협력단 A denitrification catalyst, a manufacturing method thereof and a denitrification method using thereof
CN116603501A (en) * 2023-04-26 2023-08-18 山东大学 Vulcanized synergistic active carbon modified micron-sized zero-valent iron composite material and preparation method and application thereof
CN116603501B (en) * 2023-04-26 2024-04-02 山东大学 Vulcanized synergistic active carbon modified micron-sized zero-valent iron composite material and preparation method and application thereof

Also Published As

Publication number Publication date
KR101241377B1 (en) 2013-03-11

Similar Documents

Publication Publication Date Title
KR101241377B1 (en) D-NVI attached to the surface of iron sulfide sediment and method for purifying polluted soil and groundwater environmental pollutants
Garcia et al. Recent advances in sulfidated zerovalent iron for contaminant transformation
Xu et al. Sulfidized nanoscale zero-valent iron: tuning the properties of this complex material for efficient groundwater remediation
Rajajayavel et al. Enhanced reductive dechlorination of trichloroethylene by sulfidated nanoscale zerovalent iron
Xu et al. Reactivity, selectivity, and long-term performance of sulfidized nanoscale zerovalent iron with different properties
Su et al. Enhanced oxidative and adsorptive removal of diclofenac in heterogeneous Fenton-like reaction with sulfide modified nanoscale zerovalent iron
Yan et al. Degradation of trichloroethylene by activated persulfate using a reduced graphene oxide supported magnetite nanoparticle
Wu et al. Degradation of tetrabromobisphenol A by sulfidated nanoscale zerovalent iron in a dynamic two-step anoxic/oxic process
Kim et al. Facile synthesis and characterization of Fe/FeS nanoparticles for environmental applications
Dong et al. Activation of persulfate and hydrogen peroxide by using sulfide-modified nanoscale zero-valent iron for oxidative degradation of sulfamethazine: a comparative study
KR101190287B1 (en) Synthesis of nano-ferrous iron coated with iron sulfide sediment on the surface by hydrogen sulfide ion and method for purifying polluted soil and groundwater environmental pollutants
Lin et al. Target-directed design of dual-functional Z-scheme AgIn5S8/SnS2 heterojunction for Pb (II) capture and photocatalytic reduction of Cr (VI): Performance and mechanism insight
Lee et al. Permanganate oxidation of arsenic (III): Reaction stoichiometry and the characterization of solid product
Xu et al. Boosting the activity and environmental stability of nanoscale zero-valent iron by montmorillonite supporting and sulfidation treatment
Li et al. The alkaline photo-sulfite system triggers Fe (IV/V) generation at hematite surfaces
Liu et al. Arsenic detoxification by iron-manganese nodules under electrochemically controlled redox: Mechanism and application
Penke et al. Insights of arsenic (III/V) adsorption and electrosorption mechanism onto multi synergistic (redox-photoelectrochemical-ROS) aluminum substituted copper ferrite impregnated rGO
Jin et al. Dechlorination of carbon tetrachloride by sulfide-modified nanoscale zerovalent iron
Wu et al. Photocatalytic reduction of Cr (vi) by graphene oxide materials under sunlight or visible light: the effects of low-molecular-weight chemicals
Fang et al. Enhanced reactivity and mechanisms of copper nanoparticles modified green rust for p-nitrophenol reduction
Zhu et al. Novel core-shell sulfidated nano-Fe (0) particles for chromate sequestration: Promoted electron transfer and Fe (II) production
Wang et al. Mechanism analysis of MnFe2O4/FeSX for removal of Cr (VI) from aqueous phase
Gil-Díaz et al. Iron nanoparticles are efficient at removing mercury from polluted waters
Kong et al. Oxidative degradation of phenol by sulfidated zero valent iron under aerobic conditions: The effect of oxalate and tripolyphosphate ligands
Chen et al. Efficient removal of Cr (VI) from aqueous solution by natural pyrite/rhodochrosite derived materials: Performance, kinetic and mechanism

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
N231 Notification of change of applicant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160325

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170210

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180126

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee