KR20120023746A - Copper foil composite - Google Patents

Copper foil composite Download PDF

Info

Publication number
KR20120023746A
KR20120023746A KR20117029034A KR20117029034A KR20120023746A KR 20120023746 A KR20120023746 A KR 20120023746A KR 20117029034 A KR20117029034 A KR 20117029034A KR 20117029034 A KR20117029034 A KR 20117029034A KR 20120023746 A KR20120023746 A KR 20120023746A
Authority
KR
South Korea
Prior art keywords
copper foil
resin layer
composite
foil composite
thickness
Prior art date
Application number
KR20117029034A
Other languages
Korean (ko)
Other versions
KR101270324B1 (en
Inventor
가즈키 간무리
Original Assignee
제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 filed Critical 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤
Publication of KR20120023746A publication Critical patent/KR20120023746A/en
Application granted granted Critical
Publication of KR101270324B1 publication Critical patent/KR101270324B1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0084Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising a single continuous metallic layer on an electrically insulating supporting structure, e.g. metal foil, film, plating coating, electro-deposition, vapour-deposition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/09Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/212Electromagnetic interference shielding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0355Metal foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0358Resin coated copper [RCC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

가공성을 향상시킨 구리박 복합체를 제공한다. 구리박과 수지층을 적층하여 이루어지는 구리박 복합체로서, 구리박의 파단 변형이 5 % 이상이고, 구리박의 두께 (t), 인장 변형 4 % 에 있어서의 구리박의 응력 (f), 수지층의 두께 (T), 인장 변형 4 % 에 있어서의 수지층의 응력 (F) 으로 했을 때, (F × T)/(f × t) ≥ 1 을 만족시킨다.Provided is a copper foil composite having improved workability. As a copper foil composite body which laminates copper foil and a resin layer, the breaking strain of copper foil is 5% or more, the thickness (t) of copper foil, the stress (f) of copper foil in 4% of tensile strain, and a resin layer When (FxT) / (fxt)> 1 is satisfied when it is set as the thickness (T) of the resin layer and the stress (F) of the resin layer in 4% of tensile strain.

Description

구리박 복합체{COPPER FOIL COMPOSITE}Copper foil composites {COPPER FOIL COMPOSITE}

본 발명은 전자파 실드재, FPC 용 구리 적층체, 방열을 필요로 하는 기판으로서 바람직한 구리박 복합체에 관한 것이다.The present invention relates to a copper foil composite material suitable as an electromagnetic shielding material, a copper laminate for FPC, and a substrate requiring heat dissipation.

구리박과 수지 필름을 적층하여 이루어지는 구리박 복합체가 전자파 실드재로서 사용되고 있다 (예를 들어, 특허문헌 1). 구리박은 전자파 실드성을 갖고, 수지 필름은 구리박의 보강을 위해 적층된다. 수지 필름을 구리박에 적층하는 방법으로는, 수지 필름을 접착제로 구리박에 라미네이트하는 방법, 수지 필름 표면에 구리를 증착시키는 방법 등이 있다. 전자파 실드성을 확보하기 위해서는 구리박의 두께를 수 ㎛ 이상으로 할 필요가 있다는 점에서, 구리박에 수지 필름을 라미네이트하는 방법이 저렴하다.The copper foil composite which laminates copper foil and a resin film is used as an electromagnetic shielding material (for example, patent document 1). Copper foil has electromagnetic shielding property, and a resin film is laminated | stacked for reinforcement of copper foil. As a method of laminating | stacking a resin film on copper foil, the method of laminating a resin film to copper foil with an adhesive agent, the method of depositing copper on the resin film surface, etc. are mentioned. In order to ensure electromagnetic shielding property, since the thickness of copper foil needs to be several micrometers or more, the method of laminating a resin film on copper foil is inexpensive.

또, 구리박은 전자파 실드성이 우수하고, 피실드체를 덮음으로써 피실드체의 전체면을 실드할 수 있다. 이에 대해, 구리의 편조 (編組) 등으로 피실드체를 덮은 경우, 그물 부분에서 피실드체가 노출되어 전자파 실드성이 떨어진다.Moreover, copper foil is excellent in electromagnetic shielding property and can shield the whole surface of a shielded body by covering a shielded body. On the other hand, in the case where the shielded body is covered with braided copper or the like, the shielded body is exposed in the net portion and the electromagnetic shielding property is inferior.

또, 전자파 실드재 외에도, FPC (플렉시블 프린트 기판) 용으로서 구리박과 수지 필름 (PET, PI (폴리이미드), LCP (액정 폴리머) 등) 과의 복합체가 사용되고 있다. 특히, FPC 에서는 PI 가 주로 사용된다.In addition to the electromagnetic shielding material, a composite of a copper foil and a resin film (PET, PI (polyimide), LCP (liquid crystal polymer), etc.) is used for FPC (flexible printed circuit board). In particular, in FPC, PI is mainly used.

FPC 에서도 굴곡이나 절곡과 같이 변형되는 경우가 있어, 굴곡성이 우수한 FPC 가 개발되어, 핸드폰 등에 채용되고 있다 (특허문헌 2). 통상적으로, FPC 가 굴곡 부위에서 받는 굴곡이나 절곡은 일 방향의 굽힘 변형이고, 전선 등에 감긴 전자파 실드재가 구부러질 때의 변형과 비교하면 단순하여, FPC 용 복합체는 가공성이 그다지 요구되고 있지 않았다.The FPC may be deformed like bending or bending, and an FPC having excellent bendability has been developed and employed in a mobile phone or the like (Patent Document 2). Usually, the bending and bending which FPC receives in a bending part are bending deformation of one direction, and are simple compared with the deformation | transformation when the electromagnetic shielding material wound on an electric wire etc., and the FPC composite did not require much workability.

일본 공개특허공보 평7-290449호Japanese Laid-Open Patent Publication No. 7-290449 일본 특허공보 제3009383호Japanese Patent Publication No. 3009383

그런데, 구리박 복합체는 케이블 등의 피실드체의 외측에 감겨 실드재로서 사용되는 경우가 있는데, 구리박은 찢어지거나 균열을 일으키기 쉽기 때문에, 절곡이나 굴곡성을 필요로 하는 용도로 사용하기 곤란하였다. 또, FPC 용 구리박 복합체에서도 설치 장소에 따라서는 가공성이 요구되는 경우가 있다.By the way, although a copper foil composite body may be used as a shielding material by winding it to the outer side of shielded bodies, such as a cable, since copper foil is easy to tear or produce a crack, it was difficult to use it for the use which requires bending and bendability. Moreover, workability may be calculated | required also in a copper foil composite for FPC depending on an installation place.

또, 구리박 두께는 두꺼우면 연신율이 향상되지만, 얇아지면 연성이 극단적으로 저하된다는 성질이 있다. 한편, 구리박을 두껍게 하면 강성이 높아지기 때문에, 예를 들어 전선 등의 피실드체에 구리박 복합체를 감는 실드 가공이 곤란해진다는 문제가 있다. 요컨대, 구리박 복합체의 굴곡성과 가공성을 양립시키는 것은 어렵다.Moreover, when the thickness of copper foil is thick, elongation improves, but when it is thin, there exists a characteristic that ductility falls extremely. On the other hand, when copper foil is thickened, since rigidity becomes high, there exists a problem that the shielding process which winds a copper foil composite to shielded bodies, such as an electric wire, becomes difficult, for example. In short, it is difficult to achieve both the flexibility and the workability of the copper foil composite.

따라서, 본 발명의 목적은, 가공성을 향상시킨 구리박 복합체를 제공하는 것에 있다. Therefore, the objective of this invention is providing the copper foil composite which improved the workability.

본 발명자들은 구리박 복합체를 구성하는 구리박과 수지층의 두께나 변형을 규정함으로써, 가공성을 저해하지 않고 절곡성을 향상시킬 수 있다는 것을 알아내어 본 발명에 이르렀다.MEANS TO SOLVE THE PROBLEM The present inventors discovered that bendability can be improved without impairing workability by defining the thickness and distortion of the copper foil and resin layer which comprise a copper foil composite_body | complex, and came to this invention.

즉, 본 발명의 구리박 복합체는, 구리박과 수지층을 적층하여 이루어지고, 상기 구리박의 파단 변형이 5 % 이상이고, 상기 구리박의 두께 (t), 인장 변형 4 % 에 있어서의 상기 구리박의 응력 (f), 상기 수지층의 두께 (T), 인장 변형 4 % 에 있어서의 상기 수지층의 응력 (F) 으로 했을 때, (F × T)/(f × t) ≥ 1 을 만족시킨다.That is, the copper foil composite of this invention is made by laminating | stacking a copper foil and a resin layer, and the breaking strain of the said copper foil is 5% or more, and the said in thickness (t) of the said copper foil and 4% of tensile strain. (F × T) / (f × t) ≧ 1 when the stress (f) of the copper foil, the thickness (T) of the resin layer, and the stress (F) of the resin layer in the tensile strain 4% are set. Satisfy.

상기 구리박 복합체의 파단 변형이 30 % 이상인 것이 바람직하다.It is preferable that the breaking strain of the said copper foil composite_body is 30% or more.

(F × T) ≤ 3.1 (N/㎜) 을 만족시키는 것이 바람직하다.It is preferable to satisfy (F × T) ≦ 3.1 (N / mm).

상기 구리박이 Sn, Mn, Cr, Zn, Zr, Mg, Ni, Si 및 Ag 의 군에서 선택되는 적어도 1 종을 합계로 200 ? 2000 질량ppm 함유하는 것이 바람직하다.The copper foil is 200? In total at least one selected from the group consisting of Sn, Mn, Cr, Zn, Zr, Mg, Ni, Si, and Ag. It is preferable to contain 2000 mass ppm.

본 발명에 의하면, 가공성을 향상시킨 구리박 복합체를 얻을 수 있다.According to this invention, the copper foil composite which improved the workability can be obtained.

본 발명의 구리박 복합체는, 구리박과 수지층을 적층하여 이루어진다.The copper foil composite of the present invention is obtained by laminating a copper foil and a resin layer.

〈구리박〉<Copper gourd>

구리박의 파단 변형을 5 % 이상으로 한다. 파단 변형이 5 % 미만이면, 후술하는 구리박 복합체의 (F × T)/(f × t) ≥ 1 을 만족시키고 있어도 구리박 복합체의 연신율이 저하된다. (F × T)/(f × t) ≥ 1 을 만족시키고 있으면 구리박의 파단 변형은 클수록 바람직하다.The breaking strain of copper foil is made into 5% or more. If the breaking strain is less than 5%, even if (F × T) / (f × t) ≧ 1 of the copper foil composite described later is satisfied, the elongation of the copper foil composite decreases. As long as (FxT) / (fxt)> 1 is satisfied, the breaking strain of copper foil is so preferable that it is large.

구리박의 도전성이 60 %IACS 이상인 높은 것에서 실드 성능이 향상된다는 점에서, 구리박의 조성으로는 순도가 높은 것이 바람직하고, 순도는 바람직하게는 99.5 % 이상, 보다 바람직하게는 99.8 % 이상으로 한다. 바람직하게는 굴곡성이 우수한 압연 구리박이 좋지만, 전해 구리박이어도 된다.Since the shield performance improves with the thing with the electroconductivity of copper foil being 60% IACS or more, it is preferable that purity is high as a composition of copper foil, Preferably, purity is 99.5% or more, More preferably, it is 99.8% or more. . Preferably the rolled copper foil which is excellent in bendability is good, but an electrolytic copper foil may be sufficient.

구리박 중에 다른 원소를 함유해도 되고, 이들 원소와 불가피한 불순물의 합계 함유량이 0.5 질량% 미만이면 된다. 특히, 구리박 중에 Sn, Mn, Cr, Zn, Zr, Mg, Ni, Si, Ag 의 군에서 선택되는 적어도 1 종을 합계로 200 ? 2000 ppm 함유하면, 동일한 두께의 순구리박보다 연신율이 향상되기 때문에 바람직하다.Other elements may be contained in copper foil, and the sum total content of these elements and an unavoidable impurity should just be less than 0.5 mass%. In particular, in the copper foil, at least 1 type selected from the group of Sn, Mn, Cr, Zn, Zr, Mg, Ni, Si, Ag is 200? When it contains 2000 ppm, since elongation improves rather than pure copper foil of the same thickness, it is preferable.

또, 전자파 실드재 용도의 경우, 구리박의 두께 (t) 를 4 ? 12 ㎛ 로 하면 바람직하다. 두께 (t) 가 4 ㎛ 미만이면, 실드성이나 파단 변형이 저하됨과 함께, 구리박의 제조나 수지층과 적층할 때에 취급하기 곤란해지는 경우가 있다. 한편, 두께 (t) 가 두꺼운 편이 파단 변형은 상승되지만, 두께 (t) 가 12 ㎛ 를 초과하면 강성이 높아져, 가공성이 저하되는 경우가 있다. 또, 두께 (t) 가 12 ㎛ 를 초과하면, 후술하는 구리박 복합체의 (F × T)/(f × t) ≥ 1 을 만족시키지 못하여, 구리박 복합체의 파단 변형이 오히려 저하되는 경향이 있다. 특히, 두께 (t) 가 12 ㎛ 를 초과하면, (F × T)/(f × t) ≥ 1 을 만족시키기 위해 T 를 두껍게 할 필요가 있으며, (F × T) 가 3.1 을 초과하는 경우가 있다.Moreover, in the case of an electromagnetic shielding material use, the thickness t of copper foil is 4? It is preferable to set it as 12 micrometers. When thickness t is less than 4 micrometers, while shielding property and breaking strain fall, it may become difficult to handle when manufacturing copper foil and laminating | stacking with a resin layer. On the other hand, the one where the thickness t is thicker increases the breaking strain. However, when the thickness t exceeds 12 µm, the rigidity is increased and workability may decrease. Moreover, when thickness t exceeds 12 micrometers, (F * T) / (f * t) ≥1 of the copper foil composite_body | complex mentioned later does not satisfy | fill, and it exists in the tendency for the fracture strain of a copper foil composite to fall rather. . In particular, when the thickness t exceeds 12 μm, it is necessary to thicken T in order to satisfy (F × T) / (f × t) ≥ 1, and when (F × T) exceeds 3.1, have.

한편, FPC 용 또는 방열을 필요로 하는 기판에 사용하는 경우, 구리박의 두께 (t) 를 4 ? 40 ㎛ 로 하면 바람직하다. FPC 또는 방열을 필요로 하는 기판의 경우, 전자파 실드재에 비해 구리박 복합체에 유연성이 요구되지 않기 때문에, 두께 (t) 의 최대값을 40 ㎛ 로 할 수 있다. 또, 수지층으로서 PI 를 사용하는 경우에는, PI 의 강도가 높으므로, 구리박의 두께 (t) 가 두꺼워도 (F × T)/(f × t) ≥ 1 을 만족시킬 수 있다. 또한, 방열을 필요로 하는 기판은, FPC 의 구리박에 회로를 형성하지 않고, 피방열체에 구리박을 밀착시켜 사용되는 것이다.On the other hand, when using it for the board | substrate for FPC or heat dissipation, thickness (t) of copper foil is 4? It is preferable to set it as 40 micrometers. In the case of a substrate requiring FPC or heat dissipation, since flexibility is not required for the copper foil composite in comparison with the electromagnetic shielding material, the maximum value of the thickness t can be 40 m. Moreover, when using PI as a resin layer, since PI intensity is high, even if thickness t of copper foil is thick, (F * T) / (f * t) ≧ 1 can be satisfied. In addition, the board | substrate which requires heat dissipation is used, without making a circuit in the copper foil of FPC, making copper foil adhere to a heat-radiating body.

〈수지층〉<Resin layer>

수지층으로는 특별히 제한되지 않고, 수지 재료를 구리박에 도포하여 수지층을 형성해도 되지만, 구리박에 첩부 (貼付) 할 수 있는 수지 필름이 바람직하다. 수지 필름으로는 PET (폴리에틸렌테레프탈레이트) 필름, PI (폴리이미드) 필름, LCP (액정 폴리머) 필름, PP (폴리프로필렌) 필름을 들 수 있으며, 특히 PET 필름을 바람직하게 사용할 수 있다. 특히, PET 필름으로서 2 축 연신 필름을 사용함으로써 강도를 높일 수 있다.Although it does not restrict | limit especially as a resin layer, Although a resin material may be apply | coated to copper foil and a resin layer may be formed, the resin film which can be affixed on copper foil is preferable. As a resin film, PET (polyethylene terephthalate) film, PI (polyimide) film, LCP (liquid crystal polymer) film, PP (polypropylene) film is mentioned, Especially PET film can be used preferably. In particular, strength can be raised by using a biaxially stretched film as a PET film.

수지층의 두께 (T) 는 특별히 제한되지 않지만, 전자파 실드재 용도의 경우, 통상적으로 7 ? 25 ㎛ 정도이다. 두께 (T) 가 7 ㎛ 보다 얇으면 후술하는 (F × T) 의 값이 낮아져, (F × T)/(f × t) ≥ 1 을 만족시키지 못하여, 구리박 복합체의 (연신) 파단 변형이 저하되는 경향이 있다. 한편, 두께 (T) 가 25 ㎛ 를 초과해도 구리박 복합체의 (연신) 파단 변형이 저하되는 경향이 있으며, 특히 (F × T) 가 3.1 을 초과하는 경우가 있다.Although the thickness (T) of a resin layer is not specifically limited, In the case of an electromagnetic shielding material use, it is normally 7? It is about 25 micrometers. When thickness T is thinner than 7 micrometers, the value of (F * T) mentioned later will become low, and (F * T) / (f * t) ≥ 1 will not be satisfied, and the (stretching) fracture strain of a copper foil composite will be It tends to be lowered. On the other hand, even if thickness T exceeds 25 micrometers, the (stretching) breaking strain of a copper foil composite tends to fall, and (FxT) may especially exceed 3.1.

수지 필름과 구리박의 적층 방법으로는, 수지 필름과 구리박 사이에 접착제를 사용해도 되고, 접착제를 사용하지 않고 수지 필름을 구리박에 열 압착시켜도 된다. 단, 수지 필름에 여분의 열을 가하지 않는다는 점에서는, 접착제를 사용하는 것이 바람직하다. 접착제층의 두께는 6 ㎛ 이하인 것이 바람직하다. 접착제층의 두께가 6 ㎛ 를 초과하면, 구리박 복합체에 적층한 후에 구리박만이 파단되기 쉬워진다.As a lamination | stacking method of a resin film and copper foil, an adhesive agent may be used between a resin film and copper foil, and a resin film may be thermocompression-bonded to copper foil without using an adhesive agent. However, it is preferable to use an adhesive agent from the point which does not apply extra heat to a resin film. It is preferable that the thickness of an adhesive bond layer is 6 micrometers or less. When the thickness of an adhesive bond layer exceeds 6 micrometers, after laminating to a copper foil composite_body | complex, it will become easy to break only copper foil.

한편, FPC 용 또는 방열을 필요로 하는 기판에 사용하는 경우, 수지층의 두께 (T) 는, 통상적으로 7 ? 70 ㎛ 정도이다. 두께 (T) 가 7 ㎛ 보다 얇으면 후술하는 (F × T) 의 값이 낮아져, (F × T)/(f × t) ≥ 1 을 만족시키지 못해, 구리박 복합체의 (연신) 파단 변형이 저하되는 경향이 있다. 한편, 수지층으로서 PI 를 사용하는 경우, PI 는 PET 와 비교하면 밀착성을 높일 수 있기 때문에, (F × T) = 3.1 을 초과해도 특별히 연성이 떨어지는 경우는 없다.On the other hand, when used for the board | substrate for FPC or requiring heat radiation, the thickness T of a resin layer is 7? It is about 70 micrometers. When thickness T is thinner than 7 micrometers, the value of (F * T) mentioned later will become low and it will not satisfy (F * T) / (f * t) ≥1, and the (stretching) fracture strain of a copper foil composite will It tends to be lowered. On the other hand, when using PI as a resin layer, since PI can improve adhesiveness compared with PET, even if it exceeds (FxT) = 3.1, ductility does not fall especially.

또한, 수지층과 접착제층을 구별할 수 있으며, 이들을 분리할 수 있는 경우에는, 본 발명의 「수지층」의 F 및 T 는 접착제층을 제외한 수지층의 값을 말한다. 단, 수지층과 접착제층의 구별이 불가능한 경우에는, 구리박 복합체로부터 구리박만을 용해시키고, 접착제층도 포함하여 「수지층」으로서 측정해도 된다. 이것은, 통상적으로 수지층은 접착제층보다 두꺼워, 접착제층을 수지층에 포함시켜도 수지층만인 경우와 비교하여 F 나 T 의 값이 크게 다르지 않은 경우도 있기 때문이다.In addition, when a resin layer and an adhesive bond layer can be distinguished and these can be isolate | separated, F and T of the "resin layer" of this invention say the value of the resin layer except an adhesive bond layer. However, when distinguishing between a resin layer and an adhesive bond layer is possible, only copper foil may be melt | dissolved from a copper foil composite, and you may measure as a "resin layer" including an adhesive bond layer. This is because the resin layer is usually thicker than the adhesive layer, and even if the adhesive layer is included in the resin layer, the values of F and T may not be significantly different as compared with the case of only the resin layer.

FPC 의 경우, 커버레이 필름을 부착시켜 구리박의 양면이 수지층이 되는 경우가 있는데, 이 경우, 수지층의 F, T 는 커버레이분(分)의 강도, 두께를 더한 것으로 한다.In the case of FPC, although a coverlay film is affixed and both surfaces of copper foil may become a resin layer, in this case, F and T of a resin layer shall add the strength and thickness of a coverlay powder.

또한, 구리박 중 수지층의 형성면과 반대면에, 내식성 (내염해성) 을 향상시키기 위해, 1 ㎛ 두께 정도의 Sn 도금층을 형성해도 된다.Moreover, you may form Sn plating layer about 1 micrometer thickness in order to improve corrosion resistance (salt resistance) on the surface opposite to the formation surface of the resin layer in copper foil.

또, 수지층과 구리박의 밀착성을 향상시키기 위해, 구리박에 조화 (粗化) 처리 등의 표면 처리를 실시해도 된다. 이 표면 처리로는, 예를 들어 일본 공개특허공보 제2002-217507호, 일본 공개특허공보 제2005-15861호, 일본 공개특허공보 제2005-4826호, 일본 특허공보 평7-32307호 등에 기재되어 있는 것을 채용할 수 있다.Moreover, in order to improve the adhesiveness of a resin layer and copper foil, you may give surface treatment, such as a roughening process, to copper foil. As this surface treatment, it is described in Unexamined-Japanese-Patent No. 2002-217507, Unexamined-Japanese-Patent No. 2005-15861, Unexamined-Japanese-Patent No. 2005-4826, 7-32307, etc., for example. We can adopt thing which there is.

본 발명자들은 구리박 복합체를 구성하는 구리박과 수지층의 두께나 변형을 규정함으로써, 가공성을 저해하지 않고 절곡성을 향상시킬 수 있다는 것을 알아냈다.MEANS TO SOLVE THE PROBLEM The present inventors discovered that bendability can be improved, without impairing workability by defining the thickness and distortion of the copper foil and resin layer which comprise a copper foil composite_body | complex.

요컨대, 구리박의 두께 (t), 인장 변형 4 % 에 있어서의 구리박의 응력 (f), 수지층의 두께 (T), 인장 변형 4 % 에 있어서의 수지층의 응력 (F) 으로 했을 때, (F × T)/(f × t) ≥ 1 을 만족시키는 구리박 복합체는, 연성이 높아져 절곡성이 향상되는 것이 판명되었다.That is, when it is set as the thickness (t) of copper foil, the stress (f) of the copper foil in 4% of tensile strain, the thickness (T) of the resin layer, and the stress (F) of the resin layer in 4% of tensile deformation. The copper foil composite which satisfies (FxT) / (fxt) ≥ 1 has been found to have high ductility and improve bendability.

그 이유는 명확하지는 않지만, (F × T) 및 (f × t) 는 모두 단위폭 당 응력 (예를 들어, (N/㎜)) 을 나타내고, 또한 구리박과 수지층은 적층되어 동일한 폭을 갖는 점에서, (F × T)/(f × t) 는 구리박 복합체를 구성하는 구리박과 수지층에 가해지는 힘의 비를 나타내고 있다. 따라서, 이 비가 1 이상인 것은, 수지층측에 보다 많은 힘이 가해지는 것이며, 수지층측이 구리박보다 강한 것이 된다. 이로써 구리박은 수지층의 영향을 받기 쉬워져, 구리박이 균일하게 연신되게 되기 때문에, 구리박 복합체 전체의 연성도 높아지는 것으로 생각된다.Although the reason is not clear, (FxT) and (fxt) both show stress per unit width (for example, (N / mm)), and the copper foil and the resin layer are laminated to have the same width. (FxT) / (fxt) has shown the ratio of the force applied to the copper foil and resin layer which comprise a copper foil composite from the point which has. Therefore, when this ratio is one or more, more force is added to the resin layer side, and the resin layer side becomes stronger than copper foil. Since copper foil is easy to be influenced by a resin layer by this, and copper foil becomes uniformly stretched, it is thought that the ductility of the whole copper foil composite_body also increases.

여기서, F 및 f 는, 소성 변형이 일어난 후의 동일한 변형량에서의 응력이면 되는데, 구리박의 파단 변형과, 수지층 (예를 들어, PET 필름) 의 소성 변형이 시작되는 변형을 고려하여 인장 변형 4 % 의 응력으로 하고 있다. 또, F 의 측정은, 구리박 복합체로부터 수지층을 용제 등에 의해 제거하고 남은 구리박의 인장 시험에 의해 실시할 수 있다. 마찬가지로, f 의 측정은, 구리박 복합체로부터 구리박을 산 등에 의해 제거하고 남은 수지층의 인장 시험에 의해 실시할 수 있다. 구리박과 수지층이 접착제를 개재하여 적층되어 있는 경우에는, F 및 f 의 측정시에 접착제층을 용제 등에 의해 제거하면 구리박과 수지층이 박리되어, 구리박과 수지층을 별개로 인장 시험에 사용할 수 있다. T 및 t 는, 구리박 복합체의 단면을 각종 현미경 (광학 현미경 등) 으로 관찰하여 측정할 수 있다.Here, F and f should just be a stress in the same amount of deformation after plastic deformation, but the tensile strain 4 in consideration of the breaking strain of copper foil and the deformation which plastic deformation of a resin layer (for example, PET film) starts. It is made into% stress. In addition, the measurement of F can be performed by the tensile test of the copper foil which remained after removing the resin layer from the copper foil composite_body | complex with a solvent. Similarly, f can be measured by the tensile test of the resin layer which removed the copper foil from the copper foil composite_body | complex by acid etc. In the case where the copper foil and the resin layer are laminated via the adhesive, when the adhesive layer is removed by a solvent or the like during the measurement of F and f, the copper foil and the resin layer are peeled off and the tensile test is performed separately from the copper foil and the resin layer. Can be used for T and t can measure the cross section of a copper foil composite body by observing with various microscopes (optical microscope etc.).

또, 구리박 복합체를 제조하기 전의 구리박과 수지층의 F 및 f 의 값이 이미 공지된 경우로서, 구리박 복합체를 제조할 때에 구리박 및 수지층의 특성이 크게 변화되는 열 처리를 실시하지 않는 경우에는, 구리박 복합체를 제조하기 전의 상기 이미 공지된 F 및 f 값을 채용해도 된다.Moreover, when the values of F and f of the copper foil and resin layer before manufacturing a copper foil composite are already known, the heat treatment which changes the characteristic of a copper foil and a resin layer largely when manufacturing a copper foil composite is not performed. If not, the above known F and f values before the copper foil composite is produced may be employed.

이상과 같이, 구리박 복합체의 (F × T)/(f × t) ≥ 1 을 만족시킴으로써, 구리박 복합체의 연성이 높아져 파단 변형도 향상된다. 바람직하게는 구리박 복합체의 파단 변형이 30 % 이상이면, 케이블 등의 피실드체의 외측에 구리박 복합체를 감아 실드재로 한 후, 케이블의 주회 등에 수반하여 구리박 복합체가 절곡되었을 때의 균열이 잘 발생하지 않는다.As described above, by satisfying (F × T) / (f × t) ≧ 1 of the copper foil composite, the ductility of the copper foil composite is increased, and the breaking strain is also improved. Preferably, when the breaking strain of the copper foil composite is 30% or more, the copper foil composite is wound around the outside of shielded bodies such as cables to form a shielding material, and then cracks are generated when the copper foil composite is bent along with the circumference of the cable. This does not happen well.

여기서, 구리박 복합체의 파단 변형의 값은, 인장 시험에 의해 구리박과 수지층이 동시에 파단되는 경우에는 그 변형을 채용하고, 구리박에만 먼저 균열이 발생한 경우에는 구리박에 균열이 생겼을 때의 변형을 채용한다.Here, the value of the breaking strain of the copper foil composite is that when the copper foil and the resin layer are broken at the same time by a tensile test, the deformation is adopted. Adopt a variant.

(F × T) ≤ 3.1 (N/㎜) 을 만족시키면, 수지층의 강성이 낮아져, 구리박 복합체의 가공성이 향상된다. 또, 구리박과 PET 가 잘 박리되지 않게 되어, 복합체의 연성이 향상되기 때문에, 케이블 등에 구리박 복합체를 감아 구부렸을 때에 균열이 잘 생기지 않게 된다. 한편, (F × T) 가 3.1 (N/㎜) 을 초과하면, 수지층의 강성이 높아질 뿐만 아니라 수지층의 강도가 높아지기 때문에, 구리박 복합체에 인장이나 굽힘 등의 변형을 가했을 때에 수지층이 구리박으로부터 박리되기 쉬워져, 복합체의 파단 변형이 저하되는 경우가 있다.When (FxT)? 3.1 (N / mm) is satisfied, the rigidity of the resin layer is lowered, and the workability of the copper foil composite is improved. Moreover, since copper foil and PET do not peel easily, and ductility of a composite improves, when a copper foil composite is wound and bent to a cable etc., a crack does not arise easily. On the other hand, when (F × T) exceeds 3.1 (N / mm), not only the rigidity of the resin layer is increased, but also the strength of the resin layer is increased, so that when the strain such as tensile or bending is applied to the copper foil composite, It is easy to peel from copper foil, and the breaking strain of a composite may fall.

실시예Example

1. 전자파 실드재1. Electromagnetic shielding material

〈구리박 복합체의 제조〉<Production of Copper Foil Composite>

터프 피치 구리 잉곳을 열간 압연하고, 표면 절삭에 의해 산화물을 제거한 후, 냉간 압연, 소둔과 산세를 반복하여 소정 두께까지 얇게 하고, 마지막으로 소둔을 실시하여 가공성을 확보한 구리박을 얻었다. 구리박이 폭 방향으로 균일한 조직이 되도록, 냉간 압연시의 텐션 및 압연재의 폭 방향의 압하 조건을 균일하게 하였다. 다음 소둔에서는 폭 방향으로 균일한 온도 분포가 되도록 복수의 히터를 사용하여 온도 관리를 실시하고, 구리의 온도를 측정하여 제어하였다. 구리 잉곳 몇 개에는 Sn 또는 Ag 를 소정량 첨가하여 구리박을 얻었다.After the tough pitch copper ingot was hot rolled and the oxide was removed by surface cutting, the cold rolling, annealing and pickling were repeated to thin down to a predetermined thickness, and finally annealing was performed to obtain a copper foil having workability. Tension at the time of cold rolling and the rolling reduction conditions of the width direction of a rolling material were made uniform so that copper foil might become a uniform structure in the width direction. In the next annealing, temperature management was performed using a plurality of heaters so as to have a uniform temperature distribution in the width direction, and the temperature of copper was measured and controlled. To some copper ingots, a predetermined amount of Sn or Ag was added to obtain a copper foil.

시판되는 소정 두께의 2 축 연신 PET 필름을, 두께 3 ㎛ 의 우레탄계 접착제로 상기 구리박에 첩부하여 구리박 복합체를 제조하였다.A commercially available biaxially stretched PET film having a predetermined thickness was affixed to the copper foil with a urethane-based adhesive having a thickness of 3 µm to prepare a copper foil composite.

〈인장 시험〉〈Tensile test〉

구리박 복합체로부터 폭 12.7 ㎜ 인 직사각 형상의 인장 시험편을 복수 제작하였다. 또, 이 인장 시험편 몇 개를 아세트산에틸 등의 용제에 침지하여 접착제층을 용해시키고, PET 필름과 구리박을 박리하여, 각각 PET 필름만인 시험편, 구리박만인 시험편을 얻었다.Plural tensile test pieces having a rectangular shape having a width of 12.7 mm were produced from the copper foil composite. Moreover, some of these tensile test pieces were immersed in solvents, such as ethyl acetate, the adhesive bond layer was melt | dissolved, the PET film and copper foil were peeled off, and the test piece which is only PET film and the test piece which is only copper foil, respectively was obtained.

인장 시험은 게이지 길이 100 ㎜, 인장 속도 10 ㎜/min 의 조건에서 실시하여, N10 의 평균값을 강도 (응력) 및 연신율의 값으로서 채용하였다.The tensile test was performed under conditions of a gauge length of 100 mm and a tensile speed of 10 mm / min, and the average value of N10 was employed as the values of the strength (stress) and the elongation.

〈구리박 복합체의 절곡성〉<Foldability of Copper Foil Complex>

구리박 복합체를 각각 직경 5 ㎜, 직경 2.5 ㎜ 인 케이블의 외측에 감아 세로 부착 실드선을 제작하였다. 이 실드선을 ±180°, 굽힘 반경 2.5 ㎜ 에서 1 회 절곡시켜, 구리박 복합체의 균열을 육안으로 판정하였다. 구리박 복합체에 균열이 없는 것을 ○ 로 하였다.The copper foil composite was wound around the outside of a cable having a diameter of 5 mm and a diameter of 2.5 mm, respectively, to prepare a shield wire with a vertical length. This shield wire was bent once at ± 180 ° and a bending radius of 2.5 mm, and the cracks of the copper foil composite were visually determined. The thing without a crack in a copper foil composite was made into (circle).

또한, 세로 부착 실드선이란, 구리박 복합체 길이 방향을 케이블의 축 방향을 따라 감은 것을 말한다.In addition, a vertically-attached shield wire means what wound the copper foil composite longitudinal direction along the axial direction of a cable.

〈구리박 복합체의 가공성〉<Processability of Copper Foil Composite>

상기한 세로 부착 실드선을 제작했을 때, 구리박 복합체를 감는 작업이 용이한 것을 ○ 로 하였다.When the above-mentioned vertical shielding wire was produced, the thing which was easy to wind a copper foil composite was made into (circle).

2. FPC 용 구리박 복합체2. Copper foil composite for FPC

〈구리박 복합체의 제조〉<Production of Copper Foil Composite>

터프 피치 구리 잉곳을 열간 압연하고, 표면 절삭으로 산화물을 제거한 후, 냉간 압연, 소둔과 산세를 반복하여 소정 두께까지 얇게 하고, 마지막으로 소둔을 실시하여 가공성을 확보한 구리박을 얻었다. 구리박이 폭 방향으로 균일한 조직이 되도록, 냉간 압연시의 텐션 및 압연재의 폭 방향의 압하 조건을 균일하게 하였다. 다음 소둔에서는 폭 방향으로 균일한 온도 분포가 되도록 복수의 히터를 사용하여 온도 관리를 실시하고, 구리의 온도를 측정하여 제어하였다. 구리 잉곳 몇 개에는 Sn 또는 Ag 를 소정량 첨가하여 구리박을 얻었다.After the tough pitch copper ingots were hot rolled and the oxides were removed by surface cutting, cold rolling, annealing and pickling were repeated to thin down to a predetermined thickness, and finally annealing was performed to obtain a copper foil having workability. Tension at the time of cold rolling and the rolling reduction conditions of the width direction of a rolling material were made uniform so that copper foil might become a uniform structure in the width direction. In the next annealing, temperature management was performed using a plurality of heaters so as to have a uniform temperature distribution in the width direction, and the temperature of copper was measured and controlled. To some copper ingots, a predetermined amount of Sn or Ag was added to obtain a copper foil.

구리박 표면에 CCL 에서 사용되는 일반적인 표면 처리를 실시하였다. 처리 방법은 일본 특허공보 평7-3237호에 기재되어 있는 것을 채용하였다. 표면 처리 후, 라미네이트법에 의해 수지층인 PI 층을 구리박에 적층하여 CCL 을 제작하였다. 또한, PI 층을 구리박에 적층시킬 때, 열 가소성의 PI 계 접착층을 개재시켰는데, 이 접착층과 PI 필름을 포함하여 수지층으로 하였다.The general surface treatment used by CCL was given to the copper foil surface. As a treatment method, what is described in Unexamined-Japanese-Patent No. 7-3237 was employ | adopted. After surface treatment, the PI layer which is a resin layer was laminated | stacked on copper foil by the lamination method, and CCL was produced. In addition, when laminating | stacking a PI layer on copper foil, although the thermoplastic PI type adhesive layer was interposed, this adhesive layer and PI film were included as the resin layer.

〈인장 시험〉〈Tensile test〉

구리박 복합체로부터 폭 12.7 ㎜ 인 직사각 형상의 인장 시험편을 복수 제작하였다. 또, 이 인장 시험편 몇 개를 용제 (토레이 엔지니어링 제조의 TPE3000) 에 침지하여 접착제층과 PI 필름을 용해시켜, 구리박만인 시험편을 얻었다. 몇 개의 시험편은 염화제2철 등으로 구리박을 용해시켜 PI 만인 시험편을 얻었다. Plural tensile test pieces having a rectangular shape having a width of 12.7 mm were produced from the copper foil composite. Moreover, some of these tensile test pieces were immersed in the solvent (TPE3000 by Toray Engineering), the adhesive bond layer and PI film were dissolved, and the test piece only copper foil was obtained. Some test pieces were melt | dissolved copper foil with ferric chloride, etc., and the test piece only PI was obtained.

인장 시험은 게이지 길이 100 ㎜, 인장 속도 10 ㎜/min 인 조건에서 실시하여, N10 의 평균값을 강도 (응력) 및 연신율의 값으로서 채용하였다.The tensile test was carried out under conditions of a gauge length of 100 mm and a tensile speed of 10 mm / min, and the average value of N10 was employed as the values of strength (stress) and elongation.

〈구리박 복합체의 가공성〉<Processability of Copper Foil Composite>

굽힘 반경 (R) = 0 ㎜ 인 W 굽힘 시험 (닛폰 신동 (伸銅) 협회 기술 표준 JCBA T307 에 준함) 에 의해 구리박에 균열이 생기지 않는 것을 ○ 로 하고, 균열된 것을 × 로 하였다. The crack which did not generate | occur | produce in copper foil by (circle) Nippon Shin-Kyokai technical standard JCBA T307) of bending radius (R) = 0mm was made into (circle), and the cracked thing was made into x.

전자파 실드재에 대하여 얻어진 결과를 표 1 에 나타내고, FPC 용 구리박 복합체에 대하여 얻어진 결과를 표 2 에 나타낸다.The results obtained for the electromagnetic shielding material are shown in Table 1, and the results obtained for the copper foil composite for FPC are shown in Table 2.

Figure pct00001
Figure pct00001

Figure pct00002
Figure pct00002

표 1 로부터 분명한 바와 같이, 실시예 1 ? 12 의 경우, (F × T)/(f × t) ≥ 1 을 만족시켜, 구리박 복합체의 절곡성과 가공성이 모두 양호하였다. 단, (F × T) 가 3.1 (N/㎜) 을 초과한 실시예 1 ? 3 의 경우, 직경 2.5 ㎜ 인 케이블에 감았을 때의 절곡성이 열화되었지만, 직경 5 ㎜ 인 케이블에 대한 절곡성은 양호하여, 용도에 따라서는 충분한 실용성이 얻어진다. 또, 구리박 복합체의 파단 변형이 30 % 미만인 실시예 4 의 경우, 직경 2.5 ㎜ 인 케이블에 감았을 때의 절곡성이 열화되었지만, 직경 5 ㎜ 인 케이블에 대한 절곡성은 양호하여, 용도에 따라서는 충분한 실용성이 얻어진다.As is apparent from Table 1, Example 1? In the case of 12, (F × T) / (f × t) ≥ 1 was satisfied, and both the bendability and workability of the copper foil composite were satisfactory. However, Example 1? (F x T) exceeding 3.1 (N / mm)? In the case of 3, although the bendability when winding up to the cable of diameter 2.5mm deteriorated, the bendability with respect to the cable of diameter 5mm is favorable, and sufficient practicality is acquired according to a use. In addition, in the case of Example 4 in which the breaking strain of the copper foil composite was less than 30%, the bendability when the coil was wound around a 2.5 mm diameter was deteriorated, but the bendability to the cable having a diameter of 5 mm was good, depending on the application. Sufficient practicality is obtained.

또한, 실시예 4 이외의 각 실시예의 경우, 구리박 복합체의 파단 변형이 모두 30 % 이상이고, 구리박 복합체의 연성이 우수하다.In addition, in the case of each Example except Example 4, the breaking strain of a copper foil composite_body is all 30% or more, and the ductility of a copper foil composite is excellent.

또, 각 실시예의 구리박 복합체를 세로로 부착한 실드선을, ±90°이고 굽힘 반경 30 ㎜ 에서 반복적으로 굽힘 번형을 가하여 굴곡 시험을 실시한 결과, 굴곡성에 있어서도 비교예보다 우수하였다.Moreover, when the shielding wire which attached the copper foil composite_body | complex of each Example longitudinally was bent repeatedly at the bending radius of +/- 90 degree and 30 mm, and the bending test was done, it was excellent in flexibility also compared with the comparative example.

한편, 파단 변형이 5 % 미만인 구리박을 사용한 비교예 1 의 경우, 구리박의 강도가 저하되었기 때문에 응력 (f) 을 측정할 수 없고, 굽힘성도 열화되었다.On the other hand, in the case of the comparative example 1 using the copper foil whose breaking strain is less than 5%, since the intensity | strength of copper foil fell, stress (f) could not be measured and bendability also deteriorated.

또, (F × T)/(f × t) 가 1 미만인 비교예 2 ? 5 의 경우, 파단 변형이 5 % 이상인 구리박을 사용했음에도 불구하고, 구리박 복합체의 파단 변형은 20 % 이하가 되어, 굽힘성이 열화되었다.Moreover, the comparative example 2 which (F * T) / (f * t) is less than 1? In the case of 5, although the copper foil whose breaking strain was 5% or more was used, the breaking strain of the copper foil composite_body became 20% or less, and bending property deteriorated.

또, 비교예 1 ? 5 의 경우, 구리박 복합체의 파단 변형이 모두 30 % 미만으로, 구리박 복합체의 연성이 떨어졌다.In addition, Comparative Example 1? In the case of 5, the breaking strain of the copper foil composite was less than 30% in all, and the ductility of the copper foil composite was inferior.

표 2 로부터 분명한 바와 같이, 실시예 13 ? 24 의 경우에도 (F × T)/(f × t) ≥ 1 을 만족시켜, 구리박 복합체의 가공성이 양호하였다.As is apparent from Table 2, Example 13? Also in the case of 24, (F × T) / (f × t) ≥ 1 was satisfied, and the workability of the copper foil composite was good.

또한, 실시예 13 ? 24 는, 구리박 복합체의 파단 변형이 모두 30 % 이상으로, 구리박 복합체의 연성이 우수하다.Also, Example 13? 24 is 30% or more in all the breaking strains of the copper foil composite, and is excellent in the ductility of the copper foil composite.

한편, 비교예 6 ? 9 의 경우, (F × T)/(f × t) 가 1 미만으로, 파단 변형이 5 % 이상인 구리박을 사용했음에도 불구하고, 구리박 복합체의 파단 변형은 20 % 이하가 되어, 가공성이 열화되었다.On the other hand, Comparative Example 6? In the case of 9, although (FxT) / (fxt) is less than 1, although the copper foil whose breaking strain is 5% or more was used, the breaking strain of a copper foil composite body becomes 20% or less, and workability deteriorates. It became.

또, 비교예 6 ? 9 의 경우, 구리박 복합체의 파단 변형이 모두 30 % 미만이었다.In addition, Comparative Example 6? In the case of 9, the breaking strain of the copper foil composite was all less than 30%.

Claims (4)

구리박과 수지층을 적층하여 이루어지는 구리박 복합체로서,
상기 구리박의 파단 변형이 5 % 이상이고,
상기 구리박의 두께 (t), 인장 변형 4 % 에 있어서의 상기 구리박의 응력 (f), 상기 수지층의 두께 (T), 인장 변형 4 % 에 있어서의 상기 수지층의 응력 (F) 으로 했을 때, (F × T)/(f × t) ≥ 1 을 만족시키는 구리박 복합체.
As a copper foil composite formed by laminating a copper foil and a resin layer,
The breaking strain of the said copper foil is 5% or more,
In the thickness (t) of the said copper foil, the stress (f) of the said copper foil in 4% of tensile strain, the thickness (T) of the said resin layer, and the stress (F) of the said resin layer in 4% of tensile deformation. The copper foil composite which satisfies (F x T) / (f x t)?
제 1 항에 있어서,
상기 구리박 복합체의 파단 변형이 30 % 이상인 구리박 복합체.
The method of claim 1,
The copper foil composite whose breaking strain of the said copper foil composite is 30% or more.
제 1 항 또는 제 2 항에 있어서,
(F × T) ≤ 3.1 (N/㎜) 을 만족시키는 구리박 복합체.
The method according to claim 1 or 2,
Copper foil composite material which satisfy | fills (F * T) <3.1 (N / mm).
제 1 항 내지 제 3 항 중 어느 한 항에 있어서,
상기 구리박이 Sn, Mn, Cr, Zn, Zr, Mg, Ni, Si 및 Ag 의 군에서 선택되는 적어도 1 종을 합계로 200 ? 2000 질량ppm 함유하는 구리박 복합체.
The method according to any one of claims 1 to 3,
The copper foil is at least 200? Copper foil composite containing 2000 mass ppm.
KR1020117029034A 2009-07-07 2010-06-03 copper foil composite KR101270324B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2009-161068 2009-07-07
JP2009161068 2009-07-07
PCT/JP2010/059416 WO2011004664A1 (en) 2009-07-07 2010-06-03 Copper foil composite

Publications (2)

Publication Number Publication Date
KR20120023746A true KR20120023746A (en) 2012-03-13
KR101270324B1 KR101270324B1 (en) 2013-05-31

Family

ID=43429090

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020117029034A KR101270324B1 (en) 2009-07-07 2010-06-03 copper foil composite

Country Status (7)

Country Link
US (1) US20120141809A1 (en)
EP (1) EP2439063B1 (en)
JP (1) JP4859262B2 (en)
KR (1) KR101270324B1 (en)
CN (1) CN102481759B (en)
TW (1) TWI400161B (en)
WO (1) WO2011004664A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2416639B1 (en) 2009-03-31 2018-11-28 JX Nippon Mining & Metals Corporation Electromagnetic shielding material and process for producing electromagnetic shielding material
JP5325175B2 (en) * 2010-07-15 2013-10-23 Jx日鉱日石金属株式会社 Copper foil composite and method for producing molded body
US8497423B2 (en) * 2010-08-20 2013-07-30 Honeywell International, Inc High voltage DC tether
CN103429424B (en) * 2011-03-31 2015-12-02 Jx日矿日石金属株式会社 Metal forming complex and use its flexible printing substrate and formed body and manufacture method thereof
EP2695733B1 (en) * 2011-05-13 2020-09-16 JX Nippon Mining & Metals Corporation Copper foil composite, copper foil used for the same, formed product and method of producing the same
JP5694094B2 (en) * 2011-09-01 2015-04-01 Jx日鉱日石金属株式会社 Copper foil for flexible printed wiring board, copper-clad laminate, flexible printed wiring board, and electronic device
KR101635692B1 (en) * 2012-01-13 2016-07-01 제이엑스금속주식회사 Copper foil composite, molded body, and method for producing same
CN104010810B (en) * 2012-01-13 2016-03-23 Jx日矿日石金属株式会社 Copper foil composite and formed body and manufacture method thereof
BR112014017075A2 (en) * 2012-01-13 2017-06-13 Jx Nippon Mining & Metals Corp copper foil, product formed and method of production thereof
JP5770113B2 (en) * 2012-01-13 2015-08-26 Jx日鉱日石金属株式会社 Metal foil composite, molded body and method for producing the same
WO2017085849A1 (en) * 2015-11-19 2017-05-26 三井金属鉱業株式会社 Production method for printed wiring board having dielectric layer
JP6883449B2 (en) * 2017-03-13 2021-06-09 Jx金属株式会社 Electromagnetic wave shield material
CN113792516A (en) * 2021-08-13 2021-12-14 深圳市志凌伟业光电有限公司 Method for optimizing electromagnetic shielding member circuit and electromagnetic shielding member

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3301197A1 (en) * 1983-01-15 1984-07-19 Akzo Gmbh, 5600 Wuppertal POLYIMIDE LAMINATES WITH HIGH STRENGTH RESISTANCE
JPH073237B2 (en) 1986-10-20 1995-01-18 株式会社ユニシアジェックス Turbin type fuel pump
JPH01150748A (en) 1987-12-08 1989-06-13 Rinnai Corp Surplus heat discharging mechanism for heating device
JPH03112643A (en) * 1989-09-27 1991-05-14 Hitachi Chem Co Ltd Copper clad laminate and manufacture thereof
JPH0793496B2 (en) * 1990-10-04 1995-10-09 日立化成工業株式会社 Copper foil resin adhesive layer for copper clad laminates
JPH0732307B2 (en) 1991-12-17 1995-04-10 日鉱グールド・フォイル株式会社 Surface treatment method for copper foil for printed circuits
JPH07290449A (en) 1994-04-27 1995-11-07 Matsushita Electric Works Ltd Sheet like electromagnetic shield molding material and production thereof
JPH1058593A (en) * 1996-08-27 1998-03-03 Hitachi Chem Co Ltd Copper-clad laminate
JP3346265B2 (en) * 1998-02-27 2002-11-18 宇部興産株式会社 Aromatic polyimide film and laminate thereof
JP4147639B2 (en) * 1998-09-29 2008-09-10 宇部興産株式会社 Flexible metal foil laminate
JP2002144510A (en) * 2000-11-08 2002-05-21 Toray Ind Inc Resin sheet and metal laminate sheet
JP3768104B2 (en) 2001-01-22 2006-04-19 ソニーケミカル株式会社 Flexible printed circuit board
JP2002249835A (en) * 2001-02-26 2002-09-06 Nippon Mining & Metals Co Ltd Copper alloy foil for lamination
JP3879850B2 (en) 2003-06-10 2007-02-14 ソニー株式会社 Optical pickup device and manufacturing method thereof
JP4202840B2 (en) 2003-06-26 2008-12-24 日鉱金属株式会社 Copper foil and method for producing the same
JP2005191443A (en) * 2003-12-26 2005-07-14 Hitachi Chem Co Ltd Lamination for anti-magnetic wave shield
JP4695421B2 (en) * 2005-03-29 2011-06-08 新日鐵化学株式会社 Manufacturing method of laminate
JP4629717B2 (en) * 2006-11-11 2011-02-09 ジョインセット株式会社 Soft metal laminated film and method for producing the same
JP5055088B2 (en) * 2007-10-31 2012-10-24 Jx日鉱日石金属株式会社 Copper foil and flexible printed circuit board using the same

Also Published As

Publication number Publication date
CN102481759B (en) 2014-10-08
EP2439063B1 (en) 2015-02-25
TW201109167A (en) 2011-03-16
EP2439063A1 (en) 2012-04-11
WO2011004664A1 (en) 2011-01-13
KR101270324B1 (en) 2013-05-31
JPWO2011004664A1 (en) 2012-12-20
US20120141809A1 (en) 2012-06-07
CN102481759A (en) 2012-05-30
JP4859262B2 (en) 2012-01-25
EP2439063A4 (en) 2013-05-01
TWI400161B (en) 2013-07-01

Similar Documents

Publication Publication Date Title
KR101270324B1 (en) copper foil composite
JP5705311B2 (en) Copper foil composite, copper foil used therefor, molded body and method for producing the same
KR101363183B1 (en) Composite for electromagnetic shielding
KR101528995B1 (en) Metal foil composite, flexible printed circuit, formed product, and method of producing the same
JP5124039B2 (en) Copper foil and copper-clad laminate using the same
JP4716520B2 (en) Rolled copper foil
JP6379071B2 (en) Electromagnetic shielding material
JP6294257B2 (en) Copper alloy foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
KR102098479B1 (en) Copper foil for flexible printed circuit, copper clad laminate using the same, flexible printed circuit and electronic device
KR20190133736A (en) Rolled copper foil
JP5753115B2 (en) Rolled copper foil for printed wiring boards
KR101539839B1 (en) Copper foil, copper-clad laminate, flexible printed circuits and three-dimensional molded article
KR20160136805A (en) Rolled copper foil, copper clad laminate, and flexible printed board and electronic device

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160427

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170504

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180427

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190429

Year of fee payment: 7