KR20120016932A - The structure of exhaust gas flow passage of engine in micro combined heat and power unit - Google Patents

The structure of exhaust gas flow passage of engine in micro combined heat and power unit Download PDF

Info

Publication number
KR20120016932A
KR20120016932A KR1020100079470A KR20100079470A KR20120016932A KR 20120016932 A KR20120016932 A KR 20120016932A KR 1020100079470 A KR1020100079470 A KR 1020100079470A KR 20100079470 A KR20100079470 A KR 20100079470A KR 20120016932 A KR20120016932 A KR 20120016932A
Authority
KR
South Korea
Prior art keywords
engine
exhaust gas
heat exchanger
latent heat
outlet
Prior art date
Application number
KR1020100079470A
Other languages
Korean (ko)
Other versions
KR101183777B1 (en
Inventor
박대웅
장덕표
Original Assignee
주식회사 경동나비엔
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 경동나비엔 filed Critical 주식회사 경동나비엔
Priority to KR1020100079470A priority Critical patent/KR101183777B1/en
Publication of KR20120016932A publication Critical patent/KR20120016932A/en
Application granted granted Critical
Publication of KR101183777B1 publication Critical patent/KR101183777B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • F02G1/053Component parts or details
    • F02G1/055Heaters or coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • F02G5/04Profiting from waste heat of exhaust gases in combination with other waste heat from combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2254/00Heat inputs
    • F02G2254/10Heat inputs by burners
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE: An emission structure of an engine outlet at a small heat supply and power generation plant is provided to induce side-stream heat exchange on the side rather than the central part and maximize heat exchange efficiency by diffusing exhaust gas with curvature. CONSTITUTION: An emission structure of an engine outlet at a small heat supply and power generation plant comprises a sterling engine, an auxiliary boiler, an engine head, and a outlet. The engine head discharges exhaust gas heated the sterling engine. The outlet connects the engine head to a latent heat exchanger. The outlet is formed so that exhaust gas flows from the upper part to the lower part of the latent heat exchanger for heat exchange. A slope inclined to the latent heat exchanger is formed on the inner surface on the upper end of the outlet to discharge exhaust gas to the side of the latent heat exchanger.

Description

소형 열병합발전기에서 엔진 배기유로의 배출구조{THE STRUCTURE OF EXHAUST GAS FLOW PASSAGE OF ENGINE IN MICRO COMBINED HEAT AND POWER UNIT}The exhaust structure of the engine exhaust passage in the small cogeneration unit {THE STRUCTURE OF EXHAUST GAS FLOW PASSAGE OF ENGINE IN MICRO COMBINED HEAT AND POWER UNIT}

본 발명은 소형 열병합발전기에서 엔진 배기유로의 배출구조에 관한 것으로, 보다 상세하게는 소형 열병합발전기의 스털링 엔진에서 배출되는 배기가스를 보조보일러의 잠열 열교환기를 거쳐 배출되게 하여 배기가스에 함유된 고열을 회수할 때 배기가스를 효율적으로 열교환시킬 수 있도록 배출유로의 구조가 개선된 소형 열병합발전기에서 엔진 배기유로의 배출구조에 관한 것이다.The present invention relates to an exhaust structure of an engine exhaust passage in a small cogeneration machine, and more particularly, to exhaust the exhaust gas discharged from a Stirling engine of a small cogeneration generator through a latent heat exchanger of an auxiliary boiler. The present invention relates to a discharge structure of an engine exhaust passage in a small cogeneration generator having an improved structure of the exhaust passage so that the exhaust gas can be efficiently heat exchanged during recovery.

근래 새로운 에너지 원의 발굴에 대한 관심이 높아지면서, 산업의 거의 모든 분야에서 발생된다고 할 수 있는 중,저온의 배기가스 또는, 냉각수의 잠열을 회수 및 재이용하는 것 중요성이 높아지고 있다.Recently, with increasing interest in the discovery of new energy sources, the importance of recovering and reusing the latent heat of medium and low temperature exhaust gas or cooling water, which can be generated in almost all fields of the industry, is increasing.

이와 같은 중, 저온의 열에너지를 고급 에너지인 축동력으로 전환할 때 주로 유기 랭킨 사이클이 적용되고 있다.The organic Rankine cycle is mainly applied when converting low-temperature heat energy into high-power axial power.

이러한 유기 랭킨 사이클은 물보다 증기압이 높은 유기 열매체를 작동유체로 사용함으로써, 낮은 온도의 열원 조건하에서도 상대적으로 높은 열효율로 축동력을 얻는 것을 가능하게 하는 동력 사이클의 한 형태이다.The organic Rankine cycle is a type of power cycle that makes it possible to obtain axial force with relatively high thermal efficiency even under low temperature heat source conditions by using an organic heat medium whose vapor pressure is higher than water as a working fluid.

예를 들어, 알려진 유기 랭킨 사이클은, 순환펌프, 터빈, 응축기 및 증발기 등의 독립된 구성 장치를 상호 연관구성한 것으로써, 작동유체가 증발기에서 기화된 후 터빈에서 팽창하면서 축동력을 발생시키며, 응축기에서 다시 액화된 다음 펌프에 의해서 증발기로 다시 공급되는 폐순환 사이클로 구성되게 된다.For example, known organic Rankine cycles correlate independent components such as circulating pumps, turbines, condensers and evaporators, where the working fluid evaporates in the evaporator and then expands in the turbine, generating axial force and then again in the condenser. It consists of a closed circulation cycle that is liquefied and then fed back to the evaporator by a pump.

그러나, 이와 같이 알려진 유기랭킨 시스템은 장치의 구성이 복잡하고 다량의 유기 열매체가 소요되는 것은 물론, 각 요소 장치에 대한 정밀한 제어가 요구되기 때문에 현재에는 기동 및 정지가 용이하지 않은 단점이 문제가 되어 왔다.However, the known organic Rankine system has a disadvantage that the start and stop is not easy at present because the configuration of the device is complicated, a large amount of organic heat medium is required, and precise control of each element device is required. come.

한편, 다른 예로 스털링 엔진(stirling Engine)이 있는데, 이는 동력사이클을 이루는 각 구성 요소가 하나의 엔진으로 집합되어 있고 작동유체로써 공기와 같은 기체를 사용하기 때문에, 장치가 매우 간단하고 운전이 용이한 이점을 제공한다.On the other hand, there is a stirling engine, which is a very simple and easy to operate device because each component of the power cycle is assembled into one engine and uses a gas such as air as a working fluid. Provide an advantage.

더욱이, 이와 같은 스털링 엔진은 동력 사이클 중 최고의 열효율을 가지기 때문에, 이를 이용하여 중저온 열에너지를 동력으로 전환할 경우 종래 유기 랭킨 시스템에 비하여 매우 구조가 간단한 반면에, 고효율적인 에너지의 전환을 가능하게 하는 이점을 제공한다.Moreover, since such a Stirling engine has the highest thermal efficiency during the power cycle, the use of the Stirling engine to convert low to low temperature thermal energy into power allows for the conversion of high efficiency energy while having a very simple structure compared to conventional organic Rankine systems. Provide an advantage.

최근에는 이를 이용하여 가정에서도 전기와 열을 동시에 생산하는 발전방식인 Micro CHP(Combined Heat and Power)가 개시된 바 있는데, 일 예로 공개특허 제2006-0013391호를 들 수 있다.Recently, Micro CHP (Combined Heat and Power), which is a power generation method for simultaneously producing electricity and heat at home, has been disclosed. For example, Korean Patent Application Publication No. 2006-0013391.

이때, 이러한 발전방식의 소형 열병합발전기는 스털링 엔진과, 보조보일러를 채용하여 스털링 엔진을 통해 교류전기를 생산하고, 보조보일러를 통해 난방을 할 수 있도록 구성된 가정용 보일러 설비의 일종이라고 볼 수 있다.In this case, the small cogeneration generator of the power generation method may be regarded as a kind of household boiler facility configured to produce an alternating current through a Stirling engine and a heating by using a Stirling engine and an auxiliary boiler.

그런데, 이와 같은 구조의 소형 열병합발전기에서는 스털링 엔진에 열을 공급하는 엔진버너 연소시 발생되는 배기가스가 곧바로 대기로 방출되는 구조로 구성되어 있기 때문에 고열이 함유된 배기가스 배출에 따른 에너지 낭비가 있었고, 또한 고열상태로 곧바로 배출되기 때문에 NOx 발생을 낮추기 어렵다는 문제도 있었다.However, in the small cogeneration system having such a structure, since the exhaust gas generated during combustion of the engine burner that supplies heat to the Stirling engine is immediately discharged to the atmosphere, there was energy waste due to the exhaust gas containing high heat. In addition, there is a problem that it is difficult to reduce the generation of NOx because it is discharged immediately in a high temperature state.

이를 개선하기 위해, 엔진 배기가스를 잠열 열교환기 쪽으로 유도하여 열교환시킨 후 대기로 배출하도록 한 구조가 본 출원인에 의해 시도되었다.In order to improve this, an attempt has been made by the applicant to direct the engine exhaust gas to the latent heat exchanger to heat exchange it and then discharge it to the atmosphere.

그런데, 시도된 구조는 엔진 배기가스를 유도한 뒤 잠열 열교환기 쪽으로 단순 배출하는 구조였기 때문에 열교환 효율을 높이는데 한계가 있었고, 이의 개선이 필요하였다.However, the attempted structure was limited to increase the heat exchange efficiency because the structure was simply discharged to the latent heat exchanger after inducing the engine exhaust gas, and an improvement was needed.

본 발명은 상술한 바와 같은 종래 기술상의 제반 문제점을 감안하여 이를 해결하고자 창출된 것으로, 스털링 엔진과 보조보일러를 포함하는 소형 열병합발전기에서 스털링 엔진 구동시 생기는 배기가스가 잠열 열교환기를 경유하여 충분히 열교환된 후 대기로 배출되게 유도하는 유로의 상단인 배출구를 경사지게 형성하여 중심부에서의 열교환보다 측류 열교환을 더욱 활발하게 하여 열교환 효율을 극대화시킬 수 있도록 한 소형 열병합발전기에서 엔진 배기유로의 배출구조를 제공함에 그 주된 목적이 있다.The present invention has been made in view of the above-described problems in the prior art, and the exhaust gas generated when the Stirling engine is driven in a small cogeneration generator including a Stirling engine and an auxiliary boiler is sufficiently heat exchanged through a latent heat exchanger. It provides a discharge structure of the engine exhaust flow path in a small cogeneration system that maximizes the heat exchange efficiency by activating side flow heat exchange more actively than the heat exchange in the center by inclining the discharge port, which is the upper end of the flow path leading to discharge to the atmosphere. There is a main purpose.

본 발명은 상기한 목적을 달성하기 위한 수단으로, 엔진버너로 가열되어 전기를 생산하는 스털링 엔진과, 상기 스털링 엔진 상부에 설치되고 현열 열교환기 및 잠열 열교환기를 구비하여 온수를 생산하는 보조보일러를 포함한 소형 열병합발전기에 있어서; 상기 스털링 엔진을 가열한 배기가스가 배출되는 엔진헤드와 상기 잠열 열교환기를 연결하는 유로를 형성하고, 상기 유로를 통해 배출된 배기가스가 잠열 열교환기의 상부에서 하부로 유동되면서 열교환하도록 구성되며, 상기 유로의 상단인 배출단 내면에는 상기 잠열 열교환기를 향해 경사진 경사면이 형성되어 배기가스를 잠열 열교환기의 측부까지 토출시키는 것을 특징으로 하는 소형 열병합발전기에서 엔진 배기유로의 배출구조를 제공한다.The present invention is a means for achieving the above object, including a Stirling engine heated by an engine burner to produce electricity, and an auxiliary boiler installed on top of the Stirling engine and having a sensible heat exchanger and a latent heat exchanger to produce hot water In a small cogeneration machine; And a flow path connecting the engine head to which the exhaust gas heated the Stirling engine is discharged and the latent heat exchanger, and the exhaust gas discharged through the flow path flows from the upper portion to the lower portion of the latent heat exchanger. An inclined surface inclined toward the latent heat exchanger is formed on an inner surface of the discharge end, which is an upper end of the flow path, to provide an exhaust structure of the engine exhaust passage in the compact cogeneration generator, wherein the exhaust gas is discharged to the side of the latent heat exchanger.

이때, 상기 경사면은 15~20°의 경사각을 갖는 것에도 그 특징이 있다.At this time, the inclined surface is also characterized by having an inclination angle of 15 ~ 20 °.

또한, 상기 경사면은 직선 또는 곡선으로 형성된 것에도 그 특징이 있다.In addition, the inclined surface is also characterized by being formed in a straight line or curve.

본 발명에 따르면, 스털링 엔진의 배기가스를 보조보일러의 잠열 열교환기에 경유시켜 배기가스에 포함된 고열을 회수하도록 유로를 형성할 때 이 유로의 상단인 배출구를 경사지게 형성하여 배출되는 배기가스가 곡률을 갖고 퍼지도록 하여 중심부에서 보다 측부에서 측류 열교환을 유도하고, 이를 통해 열교환 효율을 극대화시키는 효과를 얻을 수 있다.According to the present invention, when the flow path is formed to recover the high heat contained in the exhaust gas by passing the exhaust gas of the Stirling engine to the latent heat exchanger of the sub-boiler, the exhaust gas discharged by forming the inlet of the upper end of the flow path is inclined. By spreading with the induction side flow heat exchange in the side than from the center, through which the effect of maximizing the heat exchange efficiency can be obtained.

도 1은 본 발명에 따른 소형 열병합발전기의 스털링 엔진 배기가스 배기과정을 보인 모식도이다.
도 2는 본 발명에 따른 소형 열병합발전기의 보조보일러를 보인 예시적인 사시도이다.
도 3은 본 발명에 따른 보조보일러의 요부 개방 사시도이다.
도 4 및 도 5는 본 발명에 따른 보조보일러의 엔진 배기유로를 보인 정면도 및 요부 단면도이다.
도 6은 본 발명에 따른 보조보일러의 엔진 배기유로를 구성하는 커버의 예시도이다.
도 7은 본 발명에 따른 보조보일러의 엔진 배기유로를 구성하는 커버의 다른 예를 보인 예시도이다.
도 8은 본 발명에 따른 엔진 배기유로의 배출구조를 보인 예시도이다.
Figure 1 is a schematic diagram showing the exhaust gas of the Stirling engine exhaust gas of the small cogeneration generator according to the present invention.
2 is an exemplary perspective view showing an auxiliary boiler of a small cogeneration generator according to the present invention.
Figure 3 is a perspective view of the main opening of the auxiliary boiler according to the present invention.
4 and 5 are front and main cross-sectional views showing the engine exhaust passage of the auxiliary boiler according to the present invention.
6 is an exemplary view of a cover constituting the engine exhaust passage of the auxiliary boiler according to the present invention.
7 is an exemplary view showing another example of a cover constituting the engine exhaust passage of the auxiliary boiler according to the present invention.
8 is an exemplary view showing a discharge structure of the engine exhaust passage according to the present invention.

이하에서는, 첨부도면을 참고하여 본 발명에 따른 바람직한 실시예를 보다 상세하게 설명하기로 한다.Hereinafter, with reference to the accompanying drawings will be described in detail a preferred embodiment according to the present invention.

도 1 내지 도 3에 도시된 바와 같이, 본 발명에 따른 소형 열병합발전기는 하우징(100)을 포함하며, 상기 하우징(100) 내부에는 스털링 엔진(110)이 설치되고, 상기 스털링 엔진(110)의 상부에는 보조보일러(200)가 설치된다.As shown in FIGS. 1 to 3, the small cogeneration generator according to the present invention includes a housing 100, and a sterling engine 110 is installed inside the housing 100, and the sterling engine 110 of the The auxiliary boiler 200 is installed at the top.

이때, 상기 스털링 엔진(110)은 주보일러(미도시)에 의해 가동되는데, 주보일러에 구비된 엔진버너(120)가 스털링 엔진(110)의 엔진헤드(미도시)를 가열하면 내부에 밀봉된 작동유체가 온도차에 의해 팽창/수축하면서 작동하여 교류 전류를 생산하게 된다.In this case, the Stirling engine 110 is operated by a main boiler (not shown), and when the engine burner 120 provided in the main boiler heats the engine head (not shown) of the Stirling engine 110, The working fluid operates while expanding / contracting due to the temperature difference to produce alternating current.

그리고, 상기 보조보일러(200)는 현열 열교환기(210)와 잠열 열교환기(220)를 갖추고 평판형 버너(B, 도 4 참조)를 통해 공급되는 고열의 열교환을 통해 온수를 생산하게 된다.In addition, the auxiliary boiler 200 is equipped with a sensible heat exchanger 210 and a latent heat exchanger 220 to produce hot water through a high temperature heat exchanger supplied through a flat burner (B, FIG. 4).

이 과정에서 생산된 온수는 저장탱크(300)에 저장된 후 활용되게 되는데, 이 경우 상기 스털링 엔진(110)을 냉각하기 위해 냉각수관(130)이 스털링 엔진(110)을 경유한 후 상기 잠열 열교환기(220)와 현열 열교환기(210)를 순차로 거치도록 구성된다.The hot water produced in this process is used after being stored in the storage tank 300. In this case, the cooling water pipe 130 passes through the Stirling engine 110 to cool the Stirling engine 110 and then the latent heat exchanger. It is configured to pass through the 220 and the sensible heat exchanger 210 in sequence.

한편, 상기 보조보일러(200)는 도 2 내지 도 5에 도시된 바와 같이, 케이스(230) 내부에 잠열 열교환기(220)가 내장되고, 상기 케이스(230)의 상부에는 현열 열교환기(210)가 조립된다.On the other hand, the auxiliary boiler 200, as shown in Figures 2 to 5, the latent heat exchanger 220 is built in the case 230, the sensible heat exchanger 210 on the upper portion of the case 230 Is assembled.

아울러, 상기 케이스(230)의 전방은 일부 개방되고, 개방된 부분에는 엔진 배기가스의 유로를 형성하는 커버(240)로 밀폐된다.In addition, the front of the case 230 is partially opened, the open portion is sealed with a cover 240 to form a flow path of the engine exhaust gas.

이때, 상기 커버(240)의 하면에는 구멍(미도시)이 형성되고, 상기 구멍에는 연통관(250)이 연결되며, 상기 연통관(250)은 스털링 엔진(110)의 엔진헤드에 접속되어 엔진버너(120)로부터 연소된 후 스털링 엔진(110)을 가열한 다음 배기되는 배기가스를 유도배출하는 기능을 수행한다.At this time, a hole (not shown) is formed in the lower surface of the cover 240, the communication tube 250 is connected to the hole, the communication tube 250 is connected to the engine head of the Stirling engine 110 to burn the engine burner ( After the combustion from the 120 to heat the Stirling engine 110 and performs the function of induction discharge the exhaust gas is exhausted.

이 경우, 상기 연통관(250)은 플랜지 형태로 구성되어 조립의 용이성을 확보하도록 하며, 필요한 경우 단열재를 사용하여 단열성을 높임으로써 열손실을 최소화하고, 이를 통해 배기가스와 잠열 열교환기(220) 간의 열교환 효율을 높이도록 함이 더욱 바람직하다.In this case, the communication tube 250 is configured in the form of a flange to ensure ease of assembly, and if necessary to minimize the heat loss by increasing the thermal insulation by using a heat insulating material, through which the exhaust gas and the latent heat exchanger 220 between It is more preferable to increase the heat exchange efficiency.

특히, 본 발명에서는 상기 연통관(250)의 상단을 통해 배출되는 배기가스를 잠열 열교환기(220)로 유도하는 유로(246, 도 8 참조)를 형성할 수 있도록 커버(240) 내부에 도 5 및 도 6에서와 같이 격벽(260)을 형성하고, 상기 격벽(260)을 밀폐부재(280)로 막아 도 5에 도시된 바와 같은 배출가스의 배출 유동이 생기도록 구성된다.In particular, the present invention in Figure 5 and the inside of the cover 240 to form a flow path 246 (see Fig. 8) for inducing the exhaust gas discharged through the upper end of the communication tube 250 to the latent heat exchanger 220 As shown in FIG. 6, the partition wall 260 is formed, and the partition wall 260 is blocked by the sealing member 280 to generate a discharge flow of the exhaust gas as shown in FIG. 5.

즉, 엔진 배기가스를 곧바로 배출시키지 않고 잠열 열교환기(220) 상부로 유도한 다음 잠열 열교환기(220)를 거쳐 하부로 이동된 후 배기되도록 구성함으로써 배기가스에 포함된 버려지는 고열까지도 완벽하게 회수하여 열효율을 높이고, 배기가스의 온도를 낮춰 NOx 발생도 저감시킬 수 있도록 한 것이다.That is, the engine exhaust gas is directed to the upper portion of the latent heat exchanger 220 without being immediately discharged, and then moved downward through the latent heat exchanger 220 to exhaust the exhaust gas, thereby completely recovering even the high heat discarded in the exhaust gas. By increasing the thermal efficiency and lowering the temperature of the exhaust gas to reduce the generation of NOx.

이때, 도 6에서, 상기 격벽(260)과 밀폐부재(280) 사이에는 단열재(Insulator)(270)가 더 구비될 수도 있다.In this case, in FIG. 6, an insulator 270 may be further provided between the partition wall 260 and the sealing member 280.

다른 한편, 상기 커버(240)는 도 7에 도시된 바와 같이 앞서 설명한 밀폐부재(280)가 분리된 상태가 아닌 밀폐벽(242) 형태로 상기 커버(240)와 일체로 형성되어 유로(246)를 구성할 수도 있다.On the other hand, the cover 240 is formed integrally with the cover 240 in the form of a sealing wall 242 instead of the sealing member 280 described above, as shown in Figure 7 flow path 246 It can also be configured.

이 경우, 상기 유로(246)를 기준으로 이 유로(246)를 형성하는 벽면은 모두 커버(240)와 동일 재질, 바람직하기로는 모두 세라믹 단열재로 형성된다.In this case, all of the wall surfaces forming the flow path 246 based on the flow path 246 are made of the same material as the cover 240, preferably all of the ceramic heat insulating material.

아울러, 배기가스의 유동을 원활하게 하고, 열손실을 줄이며, 응축수의 온도 상승을 억제하면서 배기가스의 응축 조건을 높이기 위해 유로(246) 두께를 기존 10mm 대비 20mm로 높이고, 연통관(250)의 상단과 접속되는 유로(246) 입구를 상향 경사지게 구성하면 더욱 좋다.In addition, in order to smooth the flow of the exhaust gas, reduce the heat loss, and to suppress the rise of the condensate temperature while increasing the condensation conditions of the exhaust gas to increase the thickness of the flow path 246 to 20mm compared to the existing 10mm, the upper end of the communication tube 250 The inlet of the flow path 246 connected to the upper side may be further inclined upward.

그리고, 커버(240)의 배면에는 노출된 유로(246)를 밀폐하기 위해 덮개(248)가 씌워진다.In addition, a cover 248 is covered on the rear surface of the cover 240 to seal the exposed flow path 246.

또한, 본 발명에서는 측류 열교환을 촉진시켜 잠열 열교환기(220)의 열교환 효율을 극대화시키기 위해 상기 유로(246)의 상단, 즉 배출단 내면을 경사지게 형성할 수 있다.In addition, in the present invention, the upper end of the flow path 246, that is, the inner surface of the discharge end may be formed to be inclined to maximize the heat exchange efficiency of the latent heat exchanger 220 by promoting side heat exchange.

상기 배출단의 내면에 형성되는 경사면(S)의 경사각은 도 8에 도시된 바와 같이, 상기 잠열 열교환기(220)를 향해 대략 15~20°유지함이 바람직하다.As shown in FIG. 8, the inclination angle of the inclined surface S formed on the inner surface of the discharge end is preferably maintained at about 15 to 20 ° toward the latent heat exchanger 220.

이는 경사가 20°를 초과하게 되면 곡률이 큰 포물선을 이루게 되어 천정면에 부딪히게 되어 유동을 방해받게 되고, 15°미만으로 형성되면 거의 직선형태로 배기가스의 유동이 발생되므로 측류 열교환이 떨어져 잠열 열교환기(220)의 열교환 효율을 높일 수 없기 때문에 상기 범위로 경사각을 형성함이 바람직하다.When the inclination exceeds 20 °, the curvature becomes a large parabola and the ceiling surface is impeded, and when it is less than 15 °, the exhaust gas flows in a nearly straight form, so the side heat exchange heat is dropped. Since the heat exchange efficiency of the heat exchanger 220 cannot be increased, it is preferable to form an inclination angle in the above range.

또한, 상기 경사면(S)은 상기 경사각을 갖고 직선형태로 형성될 수도 있고, 또한 상기 경사각을 유지하도록 완만한 곡률을 가질 수도 있다.In addition, the inclined surface S may have the inclination angle and may be formed in a straight line shape, or may have a gentle curvature to maintain the inclination angle.

이러한 구성으로 이루어진 본 발명은 다음과 같은 작동관계를 갖는다.The present invention having such a configuration has the following operational relationship.

가스를 열원으로 하여 본 발명에 따른 소형 열병합발전기가 가동되어 전기 및 온수를 생산하게 된다.A small cogeneration generator according to the present invention is operated using gas as a heat source to produce electricity and hot water.

즉, 가스의 일부는 엔진버너(120)를 통해 스털링 엔진(110)을 가열함으로써 전기를 생산하고, 가스의 나머지 일부는 콘덴싱보일러인 보조보일러(200)로 공급되어 평판형 하향식 버너(B)를 가열하고 그때 발생되는 고열로 2 개의 열교환기를 통과하는 찬물을 열교환시킴으로서 온수를 생산하게 된다.That is, a part of the gas produces electricity by heating the Stirling engine 110 through the engine burner 120, and the remaining part of the gas is supplied to the auxiliary boiler 200, which is a condensing boiler, to provide a flat-top burner B. Hot water is produced by heat-exchanging the cold water passing through the two heat exchangers with the high heat generated.

이 과정에서, 엔진버너(120)를 가동하여 가스를 연소시킬 때 발생되는 배기가스는 엔진헤드(미도시)에 직접 연결된 연통관(240)을 통해 상승되고, 상승된 고열을 함유한 배기가스는 연통관(240)과 연결된 커버(240) 내부의 격벽(260)과 밀폐부재(280)에 의해 형성된 유로를 타고 잠열 열교환기(220)와 분리된 채 상승하게 된다.In this process, the exhaust gas generated when the engine burner 120 is operated to burn the gas is raised through the communication pipe 240 directly connected to the engine head (not shown), and the exhaust gas containing the elevated high temperature is connected to the communication pipe. Rising apart from the latent heat exchanger 220, the flow path formed by the partition wall 260 and the sealing member 280 in the cover 240 connected to the 240 is separated.

이어, 유로의 최상단까지 상승되면 최상단, 즉 배출단에서 경사면(S)의 경사각을 따라 일정한 곡률을 그리면서 토출되게 된다.Subsequently, ascending to the top end of the flow path is discharged while drawing a constant curvature along the inclination angle of the inclined surface (S) at the top end, that is, the discharge end.

이렇게 토출된 배기가스는 상기 잠열 열교환기(220)의 측방까지 멀리 토출되므로 중심부에서의 열교환보다 측류 열교환이 더 촉진되게 된다.Since the discharged gas is discharged far to the side of the latent heat exchanger 220, the side flow heat exchange is promoted more than the heat exchange at the center portion.

그리고, 토출된 배기가스는 잠열 열교환기(220) 사이 사이로 스며들고, 그 과정에서 열교환이 이루어지며, 열을 빼앗긴 배기가스는 잠열 열교환기(220)의 최하단에 구비된 배출유로(290)를 타고 상승된 후 대기중으로 배출되게 된다.Then, the discharged exhaust gas is infiltrated between the latent heat exchanger 220, the heat exchange is made in the process, the exhaust gas is taken out of the exhaust flow path 290 provided at the bottom of the latent heat exchanger 220 After it is elevated it is discharged into the atmosphere.

이와 같이, 보조보일러(200)의 응축잠열을 흡수하는 잠열 열교환기(220)에서 스털링 엔진(110)을 통해 배출되는 배기가스에 포함된 고열도 함께 흡수하도록 함으로써 열교환 효율 및 열효율을 높여 열병합발전기의 성능을 향상시키게 된다.As described above, the latent heat exchanger 220 absorbing the latent heat of condensation of the auxiliary boiler 200 also absorbs the high heat contained in the exhaust gas discharged through the Stirling engine 110 to increase the heat exchange efficiency and thermal efficiency of the cogeneration generator. It will improve performance.

또한, 열효율이 높아져 연료소비를 줄일 수 있고, 배출되는 배기가스의 온도를 충분히 낮출 수 있어 NOx 저감에도 일조하게 된다.In addition, the thermal efficiency can be increased to reduce fuel consumption, and the temperature of the exhaust gas discharged can be sufficiently lowered, thus contributing to NOx reduction.

100 : 하우징 110 : 스털링 엔진
120 : 엔진버너 130 : 냉각수관
200 : 보조보일러 210 : 현열 열교환기
220 : 잠열 열교환기 230 : 케이스
240 : 커버 242 : 밀폐벽
246 : 유로 250 : 연통관
260 : 격벽 270 : 단열재
280 : 밀폐부재 290 : 배출유로
100: housing 110: Stirling engine
120: engine burner 130: cooling water pipe
200: auxiliary boiler 210: sensible heat exchanger
220: latent heat exchanger 230: case
240: cover 242: sealing wall
246: Euro 250: Communication tube
260: partition 270: insulation
280: sealing member 290: discharge passage

Claims (3)

엔진버너로 가열되어 전기를 생산하는 스털링 엔진과, 상기 스털링 엔진 상부에 설치되고 현열 열교환기 및 잠열 열교환기를 구비하여 온수를 생산하는 보조보일러를 포함한 소형 열병합발전기에 있어서,
상기 스털링 엔진을 가열한 배기가스가 배출되는 엔진헤드와 상기 잠열 열교환기를 연결하는 유로를 형성하고, 상기 유로를 통해 배출된 배기가스가 잠열 열교환기의 상부에서 하부로 유동되면서 열교환하도록 구성되며,
상기 유로의 상단인 배출단 내면에는 상기 잠열 열교환기를 향해 경사진 경사면이 형성되어 배기가스를 잠열 열교환기의 측부까지 토출시키는 것을 특징으로 하는 소형 열병합발전기에서 엔진 배기유로의 배출구조.
In a small cogeneration machine including a Stirling engine heated by an engine burner to generate electricity, and an auxiliary boiler installed on the Stirling engine and having a sensible heat exchanger and a latent heat exchanger to produce hot water,
An engine head for discharging the exhaust gas heating the Stirling engine and the latent heat exchanger is formed, and the exhaust gas discharged through the flow path flows from the upper portion of the latent heat exchanger to the lower portion,
The inclined surface inclined toward the latent heat exchanger is formed on the inner surface of the discharge end, which is the upper end of the flow path, to discharge the exhaust gas to the side of the latent heat exchanger.
청구항 1에 있어서,
상기 경사면은 15~20°의 경사각을 갖는 것을 특징으로 하는 소형 열병합발전기에서 엔진 배기유로의 배출구조.
The method according to claim 1,
The inclined surface is a discharge structure of the engine exhaust passage in the small cogeneration machine, characterized in that having an inclination angle of 15 ~ 20 °.
청구항 2에 있어서.
상기 경사면은 직선 또는 곡선으로 형성된 것을 특징으로 하는 소형 열병합발전기에서 엔진 배기유로의 배출구조.
The method according to claim 2.
The inclined surface is a discharge structure of the engine exhaust passage in the small cogeneration machine, characterized in that formed in a straight line or curve.
KR1020100079470A 2010-08-17 2010-08-17 The structure of exhaust gas flow passage of engine in micro combined heat and power unit KR101183777B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100079470A KR101183777B1 (en) 2010-08-17 2010-08-17 The structure of exhaust gas flow passage of engine in micro combined heat and power unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100079470A KR101183777B1 (en) 2010-08-17 2010-08-17 The structure of exhaust gas flow passage of engine in micro combined heat and power unit

Publications (2)

Publication Number Publication Date
KR20120016932A true KR20120016932A (en) 2012-02-27
KR101183777B1 KR101183777B1 (en) 2012-09-17

Family

ID=45839053

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100079470A KR101183777B1 (en) 2010-08-17 2010-08-17 The structure of exhaust gas flow passage of engine in micro combined heat and power unit

Country Status (1)

Country Link
KR (1) KR101183777B1 (en)

Also Published As

Publication number Publication date
KR101183777B1 (en) 2012-09-17

Similar Documents

Publication Publication Date Title
CN101761392B (en) Heat and cool power cogeneration system of integrated multi-functional efficient mini-type gas turbine
RU2532635C2 (en) Electric energy accumulation by thermal accumulator and reverse electric energy production by thermodynamic cyclic process
KR101821315B1 (en) solar thermal and BIGCC-integrated combined power generation system
KR101393315B1 (en) Cover of latent heat exchanger having cooling line
RU2473847C1 (en) Minor cogenerator secondary boiler discharge device and assembly of casing making minor cogenerator secondary boiler discharge channel
RU99128094A (en) EXHAUST GAS HEAT REGENERATION IN AN ORGANIC ENERGY CONVERTER USING THE INTERMEDIATE LIQUID CYCLE
KR101660923B1 (en) Steam turbine plant
JP2023075231A (en) Evaporator with integrated heat recovery
KR101183815B1 (en) The structure of exhaust gas flow passage of engine in micro combined heat and power unit
CN102606237A (en) Open forward and inverse cycle coupling triple supply system of electricity, heat and cold based on combustion gas turbine
CN103161702A (en) Solar heat multistage power generation system
CN204003103U (en) A kind of distributed energy supply equipment that adopts rock gas and solar association circulation
CN208040541U (en) Gas turbine cycle flue gas waste heat recovery and inlet gas cooling association system
CN108843406A (en) A kind of flue gas reheat formula dish-style photo-thermal and gas combustion-gas vapor combined cycle system
KR101262669B1 (en) The structure of exhaust gas flow passage of supplementary boiler in micro combined heat and power unit
KR20100136654A (en) External combustion engine and output method thereof
CN207501486U (en) A kind of domestic freezing heating electricity combined supply system realized natural gas and solar energy and be combined
KR101183777B1 (en) The structure of exhaust gas flow passage of engine in micro combined heat and power unit
KR101191585B1 (en) Cover assembly for forming exhaust gas flow passage of supplementary boiler in micro combined heat and power unit
CN207750114U (en) A kind of low-temperature cogeneration device being vented using Landfill Gas Internal Combustion Engines
KR101612897B1 (en) Combined Heat and Power Co-generation System
CN216114154U (en) Combined boiler energy utilization device
CN114251863B (en) Distributed energy supply system and operation method thereof
CN102865113B (en) Steam and ammonia stair power generation system
Patel et al. A review: Utilization of waste energy to improve the efficiency of the systems

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150504

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160304

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170619

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190524

Year of fee payment: 8