KR20120003637A - Solar cell and method for fabricating the same - Google Patents

Solar cell and method for fabricating the same Download PDF

Info

Publication number
KR20120003637A
KR20120003637A KR1020100064350A KR20100064350A KR20120003637A KR 20120003637 A KR20120003637 A KR 20120003637A KR 1020100064350 A KR1020100064350 A KR 1020100064350A KR 20100064350 A KR20100064350 A KR 20100064350A KR 20120003637 A KR20120003637 A KR 20120003637A
Authority
KR
South Korea
Prior art keywords
film
semiconductor layer
reflection
refractive index
silicon
Prior art date
Application number
KR1020100064350A
Other languages
Korean (ko)
Other versions
KR101138554B1 (en
Inventor
허종규
안수범
송석현
양수미
이형내
Original Assignee
현대중공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대중공업 주식회사 filed Critical 현대중공업 주식회사
Priority to KR1020100064350A priority Critical patent/KR101138554B1/en
Publication of KR20120003637A publication Critical patent/KR20120003637A/en
Application granted granted Critical
Publication of KR101138554B1 publication Critical patent/KR101138554B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Abstract

PURPOSE: A solar battery and a manufacturing method thereof are provided to arrange an anti-reflection coating structure by successively laminating a plurality of thin films with different refractive indices, thereby minimizing a surface reflection rate. CONSTITUTION: An n-type semiconductor layer(203) is arranged on a first conductive type substrate(201). A first, second, and third anti-reflection films(204,205,206) are successively laminated on the n-type semiconductor layer. A front surface electrode(207) is arranged in a shape penetrating the first, second, and third anti-reflection films. The front surface electrode is arranged in a structure touching the n-type semiconductor layer. A rear surface electrode(208) is arranged on the rear surface of the substrate.

Description

태양전지 및 그 제조방법{Solar cell and method for fabricating the same}Solar cell and its manufacturing method {Solar cell and method for fabricating the same}

본 발명은 태양전지 및 그 제조방법에 관한 것으로서, 보다 상세하게는 굴절률이 서로 다른 박막을 조합하여 표면 반사율을 최소화함과 함께 캐리어 재결합률을 저하시킬 수 있는 태양전지 및 그 제조방법에 관한 것이다.
The present invention relates to a solar cell and a method for manufacturing the same, and more particularly, to a solar cell and a method for manufacturing the same, which can reduce the carrier recombination rate while minimizing surface reflectance by combining thin films having different refractive indices.

태양전지는 태양광을 직접 전기로 변환시키는 태양광 발전의 핵심소자로서, 기본적으로 p-n 접합으로 이루어진 다이오드(diode)라 할 수 있다. 태양광이 태양전지에 의해 전기로 변환되는 과정을 살펴보면, 태양전지의 p-n 접합부에 태양광이 입사되면 전자-정공 쌍이 생성되고, 전기장에 의해 전자는 n층으로, 정공은 p층으로 이동하게 되어 p-n 접합부 사이에 광기전력이 발생되며, 이 때 태양전지의 양단에 부하나 시스템을 연결하면 전류가 흐르게 되어 전력을 생산할 수 있게 된다. A solar cell is a key element of photovoltaic power generation that converts sunlight directly into electricity, and is basically a diode composed of a p-n junction. In the process of converting sunlight into electricity by solar cells, when solar light is incident on the pn junction of solar cells, electron-hole pairs are generated, and electrons move to n layers and holes move to p layers by the electric field. Photovoltaic power is generated between the pn junctions, and when a load or a system is connected to both ends of the solar cell, current flows to generate power.

한편, 태양전지는 p-n 접합층인 광흡수층의 물질, 형태에 따라 다양하게 구분되는데 광흡수층으로는 대표적으로 실리콘(Si)을 들 수 있으며, 이와 같은 실리콘계 태양전지는 형태에 따라 실리콘 웨이퍼를 광흡수층으로 이용하는 기판형과, 실리콘을 박막 형태로 증착하여 광흡수층을 형성하는 박막형으로 구분된다. On the other hand, solar cells are classified into various types according to the material and the shape of the light absorption layer, which is a pn junction layer. Examples of the light absorption layer include silicon (Si). And a thin film type for forming a light absorption layer by depositing silicon in a thin film form.

실리콘계 태양전지 중 기판형의 구조를 살펴보면 다음과 같다. 도 1에 도시한 바와 같이 p형 반도체층(101) 상에 n형 반도체층(102)이 구비되며, 상기 n형 반도체층(102)의 상부 및 p형 반도체층의 하부에 각각 전면전극(105)과 후면전극(106)이 구비된다. 이 때, 상기 p형 반도체층(101) 및 n형 반도체층(102)은 하나의 기판에 구현되는 것으로서, 기판의 하부는 p형 반도체층(101), 기판의 상부는 n형 반도체층(102)이라 할 수 있으며, 일반적으로 p형 실리콘 기판이 준비된 상태에서 p형 실리콘 기판의 상층부에 n형 불순물 이온을 주입, 확산(diffusion)시켜 n형 반도체층(102)을 형성한다. The structure of the substrate type of the silicon-based solar cell is as follows. As shown in FIG. 1, an n-type semiconductor layer 102 is provided on the p-type semiconductor layer 101, and the front electrode 105 is disposed above the n-type semiconductor layer 102 and below the p-type semiconductor layer, respectively. ) And a back electrode 106 is provided. In this case, the p-type semiconductor layer 101 and the n-type semiconductor layer 102 is implemented in one substrate, the lower portion of the substrate is a p-type semiconductor layer 101, the upper portion of the substrate is an n-type semiconductor layer 102 In general, an n-type semiconductor layer 102 is formed by implanting and diffusing n-type impurity ions into an upper layer of a p-type silicon substrate in a state where a p-type silicon substrate is prepared.

한편, 상기 n형 반도체층(102) 상에는 표면 반사를 최소화하기 위한 반사방지막(104)이 구비된다. 통상, 반사방지막(104)은 SiNx 재질의 단일층으로 형성되는데, 이와 같은 단일층 구조의 반사방지막을 적용하는 경우 표면 반사율이 기대치에 못 미치는 단점과 함께 반사방지막 내의 캐리어(carrier)가 n형 반도체층(102)으로 이동하여 재결합(recombination)되는 문제점이 있다.
Meanwhile, an anti-reflection film 104 is provided on the n-type semiconductor layer 102 to minimize surface reflection. In general, the anti-reflection film 104 is formed of a single layer of SiN x material. When the anti-reflection film of such a single layer structure is applied, the surface reflectance does not meet expectations, and the carrier in the anti-reflection film is n-type. There is a problem of recombination by moving to the semiconductor layer 102.

본 발명은 상기와 같은 문제점을 해결하기 위해 안출한 것으로서, 굴절률이 서로 다른 박막을 조합하여 표면 반사율을 최소화함과 함께 캐리어 재결합률을 저하시킬 수 있는 태양전지 및 그 제조방법을 제공하는데 그 목적이 있다.
The present invention has been made to solve the above problems, to provide a solar cell and a method of manufacturing the same that can reduce the carrier recombination rate while minimizing the surface reflectance by combining a thin film having a different refractive index. have.

상기의 목적을 달성하기 위한 본 발명에 따른 태양전지는 제 2 도전형의 반도체층을 구비하여 p-n 접합구조를 이루는 제 1 도전형의 결정질 실리콘 기판 및 상기 반도체층 상에 순차적으로 적층된 제 1, 제 2 및 제 3 반사방지막을 포함하여 이루어지며, 상기 제 1 반사방지막은 실리콘 질화막, 상기 제 2 반사방지막은 실리콘 산화질화막, 상기 제 3 반사방지막은 실리콘 산화막으로 이루어지는 것을 특징으로 한다. The solar cell according to the present invention for achieving the above object comprises a first conductive crystalline silicon substrate having a second conductive semiconductor layer to form a pn junction structure and the first, sequentially stacked on the semiconductor layer, And a second and third antireflection film, wherein the first antireflection film is formed of silicon nitride, the second antireflection film is formed of silicon oxynitride, and the third antireflection film is formed of silicon oxide.

본 발명에 따른 태양전지의 제조방법은 제 1 도전형의 결정질 실리콘 기판을 준비하는 단계와, 상기 기판 상부에 제 2 도전형의 반도체층을 형성하는 단계 및 상기 반도체층 상에 굴절률이 서로 다른 제 1, 제 2 및 제 3 반사방지막을 순차적으로 적층하는 단계를 포함하여 이루어지며, 상기 제 1 반사방지막은 실리콘 질화막, 상기 제 2 반사방지막은 실리콘 산화질화막, 상기 제 3 반사방지막은 실리콘 산화막으로 구성되는 것을 특징으로 한다. A solar cell manufacturing method according to the present invention comprises the steps of preparing a crystalline silicon substrate of the first conductivity type, the step of forming a second conductive semiconductor layer on the substrate and a second refractive index on the semiconductor layer And sequentially stacking first, second and third antireflection films, wherein the first antireflection film is formed of silicon nitride, the second antireflection film is formed of silicon oxynitride, and the third antireflection film is formed of silicon oxide It is characterized by.

상기 제 1, 제 2 및 제 3 반사방지막의 순서로 굴절률이 작아지며, 상기 제 1 반사방지막의 굴절률은 1.9∼2.5, 상기 제 2 반사방지막의 굴절률은 1.45∼1.9, 상기 제 3 반사방지막의 굴절률은 0.5∼1.45일 수 있다. The refractive index decreases in the order of the first, second and third antireflection films, the refractive index of the first antireflection film is 1.9 to 2.5, the refractive index of the second antireflection film is 1.45 to 1.9, and the refractive index of the third antireflection film May be 0.5 to 1.45.

상기 반도체층 상에 굴절률이 서로 다른 제 1, 제 2 및 제 3 반사방지막을 순차적으로 적층하는 단계는, 챔버 내에 SiH4와 NH3 가스를 공급하여 반도체층 상에 실리콘 질화막으로 이루어지는 제 1 반사방지막을 형성하는 제 1 공정과, 상기 실리콘 질화막이 형성된 상태에서, 챔버 내에 SiH4, NH3 및 N2O 가스를 공급하여 상기 실리콘 질화막 상에 실리콘 산화질화막으로 이루어지는 제 2 반사방지막을 형성하는 제 2 공정과, 챔버 내에 SiH4 및 N2O 가스를 공급하여 상기 실리콘 산화질화막 상에 실리콘 산화막으로 이루어지는 제 3 반사방지막을 형성하는 제 3 공정을 포함하여 구성된다.
The step of sequentially stacking the first, second and third anti-reflection film having different refractive indices on the semiconductor layer may include supplying SiH 4 and NH 3 gas into the chamber to form a first anti-reflection film on the semiconductor layer. A second process of forming a second anti-reflection film made of a silicon oxynitride film on the silicon nitride film by supplying SiH 4 , NH 3 and N 2 O gas into the chamber in a state in which the silicon nitride film is formed; And a third step of supplying SiH 4 and N 2 O gas into the chamber to form a third antireflection film made of a silicon oxide film on the silicon oxynitride film.

본 발명에 따른 태양전지 및 그 제조방법은 다음과 같은 효과가 있다. The solar cell and its manufacturing method according to the present invention has the following effects.

굴절률이 서로 다른 복수의 박막을 순차적으로 적층하여 반사방지막 구조를 형성함으로써 표면 반사율을 최소화할 수 있으며, 외부 환경으로부터 태양전지를 효과적으로 보호할 수 있게 된다.
By sequentially stacking a plurality of thin films having different refractive indices to form an anti-reflection film structure, the surface reflectance can be minimized and the solar cell can be effectively protected from the external environment.

도 1은 종래 기술에 따른 태양전지의 단면도.
도 2는 본 발명의 일 실시예에 따른 태양전지의 단면도.
도 3a 내지 도 3f는 본 발명의 일 실시예에 따른 태양전지의 제조방법을 설명하기 위한 순서도.
1 is a cross-sectional view of a solar cell according to the prior art.
2 is a cross-sectional view of a solar cell according to an embodiment of the present invention.
3A to 3F are flowcharts illustrating a method of manufacturing a solar cell according to an embodiment of the present invention.

이하, 도면을 참조하여 본 발명의 일 실시예에 따른 태양전지 및 그 제조방법을 상세히 설명하기로 한다. Hereinafter, a solar cell and a method of manufacturing the same according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.

먼저, 본 발명의 일 실시예에 따른 태양전지의 구조를 살펴보면, 도 2에 도시한 바와 같이 제 1 도전형의 결정질 실리콘 기판(201)을 구비한다. 여기서, 상기 제 1 도전형은 p형 또는 n형일 수 있으며, 후술하는 제 2 도전형은 제 1 도전형의 반대이며, 이하의 설명에서는 제 1 도전형은 p형, 제 2 도전형은 n형인 것을 기준으로 한다. First, referring to a structure of a solar cell according to an embodiment of the present invention, as shown in FIG. 2, a crystalline silicon substrate 201 of a first conductivity type is provided. Here, the first conductivity type may be p type or n type, the second conductivity type described later is the opposite of the first conductivity type, in the following description, the first conductivity type is p type, the second conductivity type is n type On the basis of

상기 제 1 도전형의 기판(201) 상부에는 제 2 도전형의 반도체층(203) 즉, n형 반도체층(203)이 구비된다. 또한, 상기 n형 반도체층(203) 상에는 제 1, 제 2 및 제 3 반사방지막(204)(205)(206)이 순차적으로 적층된다. 상기 제 1, 제 2 및 제 3 반사방지막(204)(205)(206)에 있어서, 굴절률은 제 1, 제 2, 제 3 반사방지막(204)(205)(206)의 순서이며, 상기 제 1 반사방지막(204)은 1.9∼2.5, 상기 제 2 반사방지막(205)은 1.45∼1.9, 상기 제 3 반사방지막(206)은 0.5∼1.45의 굴절률을 갖는 것이 바람직하다. 또한, 상기 제 1 반사방지막(204)은 실리콘 질화막(SiNx), 상기 제 2 반사방지막(205)은 실리콘 산화질화막(SiON), 상기 제 3 반사방지막(206)은 실리콘 산화막(SiOx)으로 구성될 수 있으며, 각 반사방지막의 두께는 상술한 굴절률을 갖도록 조절될 수 있다. The second conductive semiconductor layer 203, that is, the n-type semiconductor layer 203 is provided on the first conductive substrate 201. In addition, first, second and third anti-reflection films 204, 205 and 206 are sequentially stacked on the n-type semiconductor layer 203. In the first, second and third anti-reflection films 204, 205 and 206, the refractive index is in the order of the first, second and third anti-reflection films 204, 205 and 206. The antireflection film 204 preferably has a refractive index of 1.9 to 2.5, the second antireflection film 205 is 1.45 to 1.9, and the third antireflection film 206 is 0.5 to 1.45. In addition, the first antireflection film 204 is a silicon nitride film (SiN x ), the second antireflection film 205 is a silicon oxynitride film (SiON), and the third antireflection film 206 is a silicon oxide film (SiO x ). It can be configured, the thickness of each anti-reflection film can be adjusted to have the above refractive index.

한편, 상기 제 1 내지 제 3 반사방지막(204)(205)(206)을 관통하는 형태로 전면전극(207)이 구비되며, 상기 제 1 내지 제 3 반사방지막(204)(205)(206)을 관통한 전면전극(207)은 상기 n형 반도체층(203)과 접촉하는 구조를 갖는다. 또한, 상기 기판(201)의 후면 상에는 후면전극(208)이 구비된다. Meanwhile, the front electrode 207 is provided to penetrate the first to third antireflection films 204, 205 and 206, and the first to third antireflection films 204, 205 and 206 are provided. The front electrode 207 penetrates the n-type semiconductor layer 203 and has a structure in contact with the n-type semiconductor layer 203. In addition, a rear electrode 208 is provided on the rear surface of the substrate 201.

다음으로, 본 발명의 일 실시예에 따른 태양전지의 제조방법을 살펴보기로 한다. Next, a method of manufacturing a solar cell according to an embodiment of the present invention will be described.

먼저, 도 3a에 도시한 바와 같이 제 1 도전형(예를 들어, p형)의 결정질 실리콘 기판(201)을 준비하고, 상기 p형 실리콘 기판(201)의 상부면에 요철(202)이 형성되도록 텍스쳐링(texturing) 공정을 진행한다. 상기 텍스쳐링 공정은 기판(201) 표면에서의 광흡수를 극대화하기 위한 것이며, 습식 식각 또는 반응성 이온 식각(reactive ion etching) 등의 건식 식각 방법을 이용하여 진행할 수 있다.First, as shown in FIG. 3A, a crystalline silicon substrate 201 of a first conductivity type (eg, p-type) is prepared, and irregularities 202 are formed on an upper surface of the p-type silicon substrate 201. The texturing process proceeds as much as possible. The texturing process is for maximizing light absorption on the surface of the substrate 201 and may be performed using a dry etching method such as wet etching or reactive ion etching.

텍스쳐링 공정이 완료된 상태에서, 도 3b에 도시한 바와 같이 확산공정을 실시하여 n형 반도체층(203)을 형성한다. 구체적으로, 챔버 내에 상기 실리콘 기판(201)을 구비시키고 상기 챔버 내에 제 2 도전형 불순물 이온 즉, n형 불순물 이온을 포함하는 가스(예를 들어, POCl3)를 공급하여 인(P) 이온이 기판(201) 내부로 확산(diffusion)되도록 한다. 이에 따라, 기판(201) 둘레를 따라 일정 깊이로 n형 반도체층(203)이 형성된다. In the state where the texturing process is completed, as shown in FIG. 3B, a diffusion process is performed to form an n-type semiconductor layer 203. Specifically, the silicon substrate 201 is provided in a chamber, and a gas (for example, POCl 3 ) containing a second conductivity type impurity ion, that is, an n-type impurity ion, is supplied into the chamber to form phosphorus (P) ions. Diffusion is allowed into the substrate 201. As a result, the n-type semiconductor layer 203 is formed at a predetermined depth along the periphery of the substrate 201.

기판(201) 전면 상에 n형 반도체층(203)이 형성된 상태에서, 상기 n형 반도체층(203) 상에 제 1, 제 2 및 제 3 반사방지막(204)(205)(206)을 순차적으로 형성한다. 상기 제 1, 제 2 및 제 3 반사방지막(204)(205)(206)은 PECVD(plasma enhanced chemical vapor deposition)을 통해 동일 챔버 내에서 연속적으로 형성할 수 있다. With the n-type semiconductor layer 203 formed on the entire surface of the substrate 201, the first, second and third anti-reflection films 204, 205, and 206 are sequentially formed on the n-type semiconductor layer 203. To form. The first, second and third anti-reflection films 204, 205 and 206 may be continuously formed in the same chamber through plasma enhanced chemical vapor deposition (PECVD).

구체적으로, 챔버 내에 기판(201)을 장착시킨 상태에서 챔버 내에 일정 공정 조건 하에서 SiH4와 NH3 가스를 공급하면, 상기 n형 반도체층(203) 상에 실리콘 질화막(SiNx) 즉, 제 1 반사방지막(204)이 형성된다(도 3c 참조). 상기 실리콘 질화막이 일정 두께 형성된 상태에서, 상기 NH3 가스의 공급량을 줄임과 함께 산소(O2)를 포함한 가스 예를 들어, N2O 가스를 챔버 내에 공급하면 상기 실리콘 질화막 상에 제 2 반사방지막(205)을 구성하는 실리콘 산화질화막(SiON)이 형성된다(도 3d 참조). 이 때, SiH4 가스는 계속적으로 공급된다. 최종적으로, 상기 실리콘 산화질화막이 일정 두께 형성된 상태에서 NH3 가스의 공급을 중단하고 N2O 가스와 SiH4 가스를 챔버 내에 공급하면 상기 실리콘 산화질화막 상에 제 3 반사방지막(206)을 구성하는 실리콘 산화막(SiOx)이 형성된다(도 3e 참조). Specifically, when SiH 4 and NH 3 gas are supplied into the chamber under a predetermined process condition while the substrate 201 is mounted in the chamber, a silicon nitride film (SiN x ), that is, a first, is formed on the n-type semiconductor layer 203. An antireflection film 204 is formed (see FIG. 3C). In a state in which the silicon nitride film is formed to have a predetermined thickness, supplying a gas containing oxygen (O 2 ), for example, N 2 O gas into the chamber while reducing the supply amount of the NH 3 gas, provides a second anti-reflection film on the silicon nitride film. A silicon oxynitride film (SiON) constituting 205 is formed (see FIG. 3D). At this time, SiH 4 gas is continuously supplied. Finally, when the supply of the NH 3 gas is stopped and the N 2 O gas and the SiH 4 gas are supplied into the chamber while the silicon oxynitride film is formed to have a predetermined thickness, a third anti-reflection film 206 is formed on the silicon oxynitride film. A silicon oxide film (SiO x ) is formed (see FIG. 3E).

상기 제 1, 제 2 및 제 3 반사방지막(204)(205)(206)을 각각 구성하는 상기 실리콘 질화막(SiNx), 상기 실리콘 산화질화막(SiON), 상기 실리콘 산화막(SiOx)의 형성 두께는 공정가스의 공급량 제어를 통해 조절할 수 있으며, 이 때의 각 박막의 형성두께는 굴절률을 고려하여 설계된다. 즉, 상기 제 1 반사방지막(204)은 1.9∼2.5, 상기 제 2 반사방지막(205)은 1.45∼1.9, 상기 제 3 반사방지막(206)은 0.5∼1.45의 굴절률을 갖도록 형성두께가 조절되어야 한다. Formation thicknesses of the silicon nitride film (SiN x ), the silicon oxynitride film (SiON), and the silicon oxide film (SiO x ) constituting the first, second and third anti-reflection films 204, 205 and 206, respectively. Can be adjusted by controlling the supply amount of the process gas, and the formation thickness of each thin film is designed in consideration of the refractive index. That is, the thickness of the first anti-reflection film 204 should be adjusted to have a refractive index of 1.9 to 2.5, the second anti-reflection film 205 to 1.45 to 1.9, and the third anti-reflection film 206 to have a refractive index of 0.5 to 1.45. .

상기 n형 반도체층(203) 상에 상기 제 1 내지 제 3 반사방지막(204)(205)(206)이 순차적으로 형성된 상태에서, 상기 기판(201) 전면의 제 3 반사방지막(206) 및 기판(201) 후면 상에 도전성 물질을 스크린 인쇄법 등을 통해 도포한 후, 소성 공정을 진행하면 도 3f에 도시한 바와 같이 전면전극(207)과 후면전극(208)이 형성되며, 본 발명의 일 실시예에 따른 태양전지의 제조방법은 완료된다.
In the state where the first to third anti-reflection films 204, 205, and 206 are sequentially formed on the n-type semiconductor layer 203, the third anti-reflection film 206 and the substrate on the entire surface of the substrate 201 are provided. After the conductive material is coated on the back surface through a screen printing method or the like, the firing process is performed to form the front electrode 207 and the rear electrode 208 as shown in FIG. 3F. The manufacturing method of the solar cell according to the embodiment is completed.

201 : 기판 202 : 요철
203 : n형 반도체층 204 : 제 1 반사방지막
205 : 제 2 반사방지막 206 : 제 3 반사방지막
207 : 전면전극 208 : 후면전극
201: substrate 202: irregularities
203: n-type semiconductor layer 204: first antireflection film
205: second antireflection film 206: third antireflection film
207: front electrode 208: rear electrode

Claims (6)

제 1 도전형의 결정질 실리콘 기판을 준비하는 단계;
상기 기판 상부에 제 2 도전형의 반도체층을 형성하는 단계; 및
상기 반도체층 상에 굴절률이 서로 다른 제 1, 제 2 및 제 3 반사방지막을 순차적으로 적층하는 단계를 포함하여 이루어지며,
상기 제 1 반사방지막은 실리콘 질화막, 상기 제 2 반사방지막은 실리콘 산화질화막, 상기 제 3 반사방지막은 실리콘 산화막으로 구성되는 것을 특징으로 하는 태양전지의 제조방법.
Preparing a crystalline silicon substrate of a first conductivity type;
Forming a second conductive semiconductor layer on the substrate; And
Sequentially stacking first, second and third anti-reflection films having different refractive indices on the semiconductor layer,
The first anti-reflection film is a silicon nitride film, the second anti-reflection film is a silicon oxynitride film, the third anti-reflection film is a manufacturing method of a solar cell, characterized in that the silicon oxide film.
제 1 항에 있어서, 상기 제 1, 제 2 및 제 3 반사방지막의 순서로 굴절률이 작아지는 것을 특징으로 하는 태양전지의 제조방법.
The method of claim 1, wherein the refractive index decreases in the order of the first, second, and third anti-reflection films.
제 1 항에 있어서, 상기 제 1 반사방지막의 굴절률은 1.9∼2.5, 상기 제 2 반사방지막의 굴절률은 1.45∼1.9, 상기 제 3 반사방지막의 굴절률은 0.5∼1.45인 것을 특징으로 하는 태양전지의 제조방법.
The method of claim 1, wherein the refractive index of the first anti-reflection film is 1.9 to 2.5, the refractive index of the second anti-reflection film is 1.45 to 1.9, and the refractive index of the third anti-reflection film is 0.5 to 1.45. Way.
제 1 항에 있어서, 상기 반도체층 상에 굴절률이 서로 다른 제 1, 제 2 및 제 3 반사방지막을 순차적으로 적층하는 단계는,
챔버 내에 SiH4와 NH3 가스를 공급하여 반도체층 상에 실리콘 질화막으로 이루어지는 제 1 반사방지막을 형성하는 제 1 공정과,
상기 실리콘 질화막이 형성된 상태에서, 챔버 내에 SiH4, NH3 및 N2O 가스를 공급하여 상기 실리콘 질화막 상에 실리콘 산화질화막으로 이루어지는 제 2 반사방지막을 형성하는 제 2 공정과,
챔버 내에 SiH4 및 N2O 가스를 공급하여 상기 실리콘 산화질화막 상에 실리콘 산화막으로 이루어지는 제 3 반사방지막을 형성하는 제 3 공정을 포함하여 구성되는 것을 특징으로 하는 태양전지의 제조방법.
The method of claim 1, wherein sequentially stacking the first, second, and third antireflection films having different refractive indices on the semiconductor layer include:
A first step of supplying SiH 4 and NH 3 gas into the chamber to form a first antireflection film made of a silicon nitride film on the semiconductor layer;
A second process of supplying SiH 4 , NH 3 and N 2 O gas into the chamber in the state where the silicon nitride film is formed to form a second anti-reflection film comprising a silicon oxynitride film on the silicon nitride film;
And a third step of supplying SiH 4 and N 2 O gas into the chamber to form a third antireflection film comprising a silicon oxide film on the silicon oxynitride film.
제 2 도전형의 반도체층을 구비하여 p-n 접합구조를 이루는 제 1 도전형의 결정질 실리콘 기판; 및
상기 반도체층 상에 순차적으로 적층된 제 1, 제 2 및 제 3 반사방지막을 포함하여 이루어지며,
상기 제 1 반사방지막은 실리콘 질화막, 상기 제 2 반사방지막은 실리콘 산화질화막, 상기 제 3 반사방지막은 실리콘 산화막으로 이루어지는 것을 특징으로 하는 태양전지.
A first conductivity type crystalline silicon substrate having a second conductivity type semiconductor layer to form a pn junction structure; And
It comprises a first, second and third anti-reflection film sequentially stacked on the semiconductor layer,
The first anti-reflection film is a silicon nitride film, the second anti-reflection film is a silicon oxynitride film, the third anti-reflection film is a solar cell, characterized in that the silicon oxide film.
제 5 항에 있어서, 상기 제 1 반사방지막의 굴절률은 1.9∼2.5, 상기 제 2 반사방지막의 굴절률은 1.45∼1.9, 상기 제 3 반사방지막의 굴절률은 0.5∼1.45인 것을 특징으로 하는 태양전지. The solar cell of claim 5, wherein the refractive index of the first antireflection film is 1.9 to 2.5, the refractive index of the second antireflection film is 1.45 to 1.9, and the refractive index of the third antireflection film is 0.5 to 1.45.
KR1020100064350A 2010-07-05 2010-07-05 Solar cell and method for fabricating the same KR101138554B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100064350A KR101138554B1 (en) 2010-07-05 2010-07-05 Solar cell and method for fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100064350A KR101138554B1 (en) 2010-07-05 2010-07-05 Solar cell and method for fabricating the same

Publications (2)

Publication Number Publication Date
KR20120003637A true KR20120003637A (en) 2012-01-11
KR101138554B1 KR101138554B1 (en) 2012-05-08

Family

ID=45610530

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100064350A KR101138554B1 (en) 2010-07-05 2010-07-05 Solar cell and method for fabricating the same

Country Status (1)

Country Link
KR (1) KR101138554B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101363103B1 (en) * 2012-06-29 2014-02-18 주식회사 신성솔라에너지 Solar cell and method of manufacturing the same
KR101500942B1 (en) * 2014-07-29 2015-03-16 충남대학교산학협력단 Manufacturing Method of Solar Cell
KR20180000156A (en) * 2016-06-22 2018-01-02 현대중공업그린에너지 주식회사 Solar cell and method for fabricating the same
KR20180013787A (en) * 2016-07-28 2018-02-07 한양대학교 에리카산학협력단 Silicon solar cell, and method for manufacturing same
CN110391304A (en) * 2019-07-02 2019-10-29 天津爱旭太阳能科技有限公司 A kind of solar battery multilayer antireflective graded films and its preparation process

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050087248A (en) * 2004-02-26 2005-08-31 삼성에스디아이 주식회사 Solar cell using double anti-reflection coatings and fabrication method thereof
KR101213470B1 (en) * 2008-09-08 2012-12-20 한국전자통신연구원 Antireflection coating for solar cell, solar cell, and manufacturing method for solar cell

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101363103B1 (en) * 2012-06-29 2014-02-18 주식회사 신성솔라에너지 Solar cell and method of manufacturing the same
KR101500942B1 (en) * 2014-07-29 2015-03-16 충남대학교산학협력단 Manufacturing Method of Solar Cell
KR20180000156A (en) * 2016-06-22 2018-01-02 현대중공업그린에너지 주식회사 Solar cell and method for fabricating the same
KR20180013787A (en) * 2016-07-28 2018-02-07 한양대학교 에리카산학협력단 Silicon solar cell, and method for manufacturing same
CN110391304A (en) * 2019-07-02 2019-10-29 天津爱旭太阳能科技有限公司 A kind of solar battery multilayer antireflective graded films and its preparation process

Also Published As

Publication number Publication date
KR101138554B1 (en) 2012-05-08

Similar Documents

Publication Publication Date Title
US20140251424A1 (en) Solar cell
CN102468365B (en) Manufacturing method for double-face solar cell
KR20110071375A (en) Back contact type hetero-junction solar cell and method of fabricating the same
TWI673883B (en) Solar cell element and method for manufacturing solar cell element
US20110114147A1 (en) Method of manufacturing photovoltaic cells, photovoltaic cells produced thereby and uses thereof
WO2011023701A2 (en) Passivation layer for wafer based solar cells and method of manufacturing thereof
CA2780913A1 (en) Method of manufacturing photovoltaic cells, photovoltaic cells produced thereby and uses thereof
KR20110075200A (en) Method for fabricating back contact solar cell
KR20120129264A (en) Solar cell and method of manufacturing the same
KR101138554B1 (en) Solar cell and method for fabricating the same
JP2023038133A (en) Solar battery, method for manufacturing the same, and photovoltaic module
US20110114152A1 (en) Method of manufacturing photovoltaic cells, photovoltaic cells produced thereby and uses thereof
KR101089416B1 (en) Solar cell and method for fabricating the same
US20120255608A1 (en) Back-surface-field type of heterojunction solar cell and a production method therefor
KR20110078549A (en) Method for forming selective emitter in a solar cell
KR101146782B1 (en) Method for Fabricating Solar Cell
KR101089485B1 (en) Solar cell and method for fabricating the same
KR101155192B1 (en) Method for fabricating solar cell
KR101115104B1 (en) Solar cell and method for fabricating the same
KR101145472B1 (en) Method for fabricating solar cell
KR101329855B1 (en) Method for fabricating bi-facial solar cell
KR20130048975A (en) Method for fabricating solar cell
KR20110004213A (en) Solar cell and method for manufacturing the same
KR20100127105A (en) Method for fabricating solar cell
KR101335082B1 (en) Method for fabricating bi-facial solar cell

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee