KR20120003259A - Manufacturing method of highly electro-conductive carbon fibers using cobalt based reducing agent - Google Patents

Manufacturing method of highly electro-conductive carbon fibers using cobalt based reducing agent Download PDF

Info

Publication number
KR20120003259A
KR20120003259A KR1020100064021A KR20100064021A KR20120003259A KR 20120003259 A KR20120003259 A KR 20120003259A KR 1020100064021 A KR1020100064021 A KR 1020100064021A KR 20100064021 A KR20100064021 A KR 20100064021A KR 20120003259 A KR20120003259 A KR 20120003259A
Authority
KR
South Korea
Prior art keywords
carbon fiber
nickel
reducing agent
cobalt
plating
Prior art date
Application number
KR1020100064021A
Other languages
Korean (ko)
Other versions
KR101199305B1 (en
Inventor
박수진
김병주
Original Assignee
인하대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인하대학교 산학협력단 filed Critical 인하대학교 산학협력단
Priority to KR1020100064021A priority Critical patent/KR101199305B1/en
Publication of KR20120003259A publication Critical patent/KR20120003259A/en
Application granted granted Critical
Publication of KR101199305B1 publication Critical patent/KR101199305B1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/49Oxides or hydroxides of elements of Groups 8, 9, 10 or 18 of the Periodic System; Ferrates; Cobaltates; Nickelates; Ruthenates; Osmates; Rhodates; Iridates; Palladates; Platinates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/46Oxides or hydroxides of elements of Groups 4 or 14 of the Periodic System; Titanates; Zirconates; Stannates; Plumbates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/58Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with nitrogen or compounds thereof, e.g. with nitrides
    • D06M11/64Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with nitrogen or compounds thereof, e.g. with nitrides with nitrogen oxides; with oxyacids of nitrogen or their salts
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/40Fibres of carbon
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/30Flame or heat resistance, fire retardancy properties
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2209/00Properties of the materials
    • D06N2209/04Properties of the materials having electrical or magnetic properties
    • D06N2209/048Electromagnetic interference shielding
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/10Inorganic fibres based on non-oxides other than metals
    • D10B2101/12Carbon; Pitch
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/16Physical properties antistatic; conductive

Abstract

PURPOSE: A method for fabricating carbon fiber of high conductivity using cobalt reducing agent is provided to prevent resistivity increase and to ensure high conductivity. CONSTITUTION: A method for fabricating carbon fiber of high conductivity using cobalt reducing agent comprises: a step of dipping carbon fiber to a plating solution containing nickel salt, complex agent, stabilizing agent, and cobalt reducing agent for 1-30 minutes; and a step of plating the nickel to the carbon fiber. The nickel salt and complex agent are NiSO_46H_2O and NaC_6H_5O_7. The cobalt reducing agent is CoSO_47H_2O or cobalt-methyelen amine complex compound.

Description

코발트계 환원제를 사용하는 고전도성 탄소섬유의 제조 방법{Manufacturing Method of Highly Electro-conductive Carbon Fibers Using Cobalt Based Reducing Agent}Manufacturing Method of Highly Electro-conductive Carbon Fibers Using Cobalt Based Reducing Agent

본 발명은 고전도성 탄소섬유 및 그의 제조 방법에 관한 것이다.
The present invention relates to a highly conductive carbon fiber and a method for producing the same.

최근 거의 모든 기기들이 정보처리의 발생, 전달, 저장 등을 위한 전기, 전자 장비들을 탑재하고 최신기기로서의 효능을 향상시키고 있다. 그러나 이러한 전기, 전자 장비의 이용이 증대 될수록 기기와 기기 상호간의 전자적 간섭이 커지게 되어, 급기야 전자파 장해라는 커다란 사회문제까지 야기시키고, 심지어 인체에는 심각한 유해성이 있음이 검증되어 높은 관심을 불러일으키고 있다.Recently, almost all devices are equipped with electrical and electronic equipment for the generation, transmission, and storage of information processing, and improve the efficiency as a modern device. However, as the use of such electric and electronic equipment increases, the electromagnetic interference between devices and devices increases, causing even a large social problem such as electromagnetic disturbances in the air, and even causing serious attention to humans. .

특히 플라스틱은 성형성이 뛰어나고 가격이 저렴하다는 장점으로 여러 가지 정보통신 분야의 하우징으로서 수요가 폭발적으로 늘어나고 있지만 절연성과 전자파를 투과하는 단점 때문에 고기능적인 전자파 차폐효과가 필요하게 되었다.In particular, plastics are excellent in formability and low in price, and the demand for housing in various information and communication fields is exploding. However, due to insulation and electromagnetic wave transmission, a high functional electromagnetic shielding effect is required.

고전도성 탄소섬유는 내열성, 화학적 안정성, 전기전도성, 전자파 차폐성 유연성 등의 우수한 특성을 가지고 있어 고전도성을 갖는 플라스틱의 내부 충전물로 이용 가능하다.Highly conductive carbon fiber has excellent properties such as heat resistance, chemical stability, electrical conductivity, electromagnetic shielding flexibility, and can be used as an internal filler of plastic having high conductivity.

고전도성 탄소섬유를 제조하는 방법으로 무전해 도금이 가장 많이 사용되는데 무전해 도금의 경우 우수한 차폐효과를 가질 뿐만 아니라 섬유표면에 일정한 두께의 도금층을 형성시키는 장점이 있다.Electroless plating is most often used as a method of manufacturing high-conductivity carbon fibers. In the case of electroless plating, not only has an excellent shielding effect but also has the advantage of forming a plating layer having a constant thickness on the fiber surface.

하지만 종래의 무전해 도금법(한국등록특허 제 486,962호)은, 금속염과 환원제 및 착화제가 공존하는 금속도금용액으로 탄소섬유를 화학적 환원에 의해 니켈 도금 처리하여 탄소섬유 표면에 나노크기의 니켈-인 합금을 도입함으로써, 일정한 두께의 피막을 형성하도록 하여, 탄소섬유의 전도성을 향상시키는 방법이었으나, 합금 중 인 함량이 증가함에 따라 비저항이 도리어 상승하여 탄소섬유의 전도성이 감소하는 문제가 발생하였다.
However, the conventional electroless plating method (Korean Patent No. 486,962) is a metal plating solution in which a metal salt, a reducing agent and a complexing agent coexist, and the carbon fiber is nickel-plated on the surface of the carbon fiber by nickel plating of carbon fiber by chemical reduction. By introducing a, to form a film of a constant thickness, it was a method of improving the conductivity of the carbon fiber, but as the phosphorus content of the alloy increases, the specific resistance increases rather than the problem of reducing the conductivity of the carbon fiber.

이에 본 발명자들은, 상기 문제점을 해결하기 위해, 인을 함유하지 아니한 코발트계 환원제를 사용하여 고전도성 탄소섬유를 제조함으로써 본 발명을 성공적으로 완성하게 되었다. 결국, 본 발명의 목적은 코발트계 환원제의 이용에 의한 고전도성 탄소섬유의 제조방법을 제공하는데 그 주된 목적이 있다.
In order to solve the above problems, the present inventors have successfully completed the present invention by producing a highly conductive carbon fiber using a cobalt-based reducing agent that does not contain phosphorus. After all, the object of the present invention is to provide a method for producing a highly conductive carbon fiber by using a cobalt-based reducing agent.

상기 목적을 달성하기 위하여, 본 발명은 코발트계 환원제를 사용하는 니켈 무전해 도금 고전도성 탄소섬유의 제조방법을 제공한다.In order to achieve the above object, the present invention provides a method for producing a nickel electroless plating high conductive carbon fiber using a cobalt-based reducing agent.

구체적으로, 본 발명은 니켈 염, 착화제, 안정제 및 코발트계 환원제를 포함하는 도금액에 탄소섬유를 침지함으로써 탄소섬유에 니켈을 도금하는 고전도성 탄소섬유의 제조 방법을 제공한다.
Specifically, the present invention provides a method for producing highly conductive carbon fibers in which nickel is plated on carbon fibers by immersing the carbon fibers in a plating solution containing a nickel salt, a complexing agent, a stabilizer, and a cobalt-based reducing agent.

본 발명에 따른 니켈 무전해 도금 고전도성 탄소섬유의 제조방법은 코발트계 환원제를 사용함으로써 인(P) 성분에 의한 비저항의 상승을 방지하여 높은 전도성을 가질 수 있다. 또한 종래의 환원제를 사용하는 것에 비해 짧은 시간과 낮은 온도에서 도금하더라도 높은 함량의 니켈을 도금시킬 수 있어 도금의 효율이 높아진다.
Nickel electroless plating high conductivity carbon fiber manufacturing method according to the present invention can have a high conductivity by preventing the increase of the specific resistance by the phosphorus (P) component by using a cobalt-based reducing agent. In addition, even if the plating in a short time and low temperature compared to using a conventional reducing agent it is possible to plate a high content of nickel, thereby increasing the efficiency of the plating.

도 1은 비교예 1에 따른 무전해 니켈 도금된 탄소섬유의 X-선 회절(XRD) 분석 결과이다.
도 2는 실시예4에 따른 무전해 니켈 도금된 탄소섬유의 XRD 분석 결과이다.
도 3은 비교예 1에 따른 무전해 니켈 도금된 탄소섬유의 주사 전자 현미경(SEM) 분석 결과이다.
도 4는 실시예 5에 따른 무전해 니켈 도금된 탄소섬유의 SEM 분석결과이다.
1 is an X-ray diffraction (XRD) analysis result of an electroless nickel plated carbon fiber according to Comparative Example 1.
Figure 2 is an XRD analysis of the electroless nickel plated carbon fiber according to Example 4.
3 is a scanning electron microscope (SEM) analysis result of the electroless nickel plated carbon fiber according to Comparative Example 1.
Figure 4 is a SEM analysis of the electroless nickel plated carbon fiber according to Example 5.

본 발명은 코발트계 환원제를 사용하는 니켈 무전해 도금 고전도성 탄소섬유 및 그의 제조방법을 제공한다.The present invention provides a nickel electroless plating highly conductive carbon fiber using a cobalt-based reducing agent and a method of manufacturing the same.

구체적으로, 본 발명은 니켈 염, 착화제, 안정제 및 코발트계 환원제를 포함하는 도금액에 탄소섬유를 침지함으로써 탄소섬유에 니켈을 도금하는 고전도성 탄소섬유의 제조 방법을 제공한다.Specifically, the present invention provides a method for producing highly conductive carbon fibers in which nickel is plated on carbon fibers by immersing the carbon fibers in a plating solution containing a nickel salt, a complexing agent, a stabilizer, and a cobalt-based reducing agent.

본 발명에 있어서, 상기 무전해 니켈 도금용액의 주성분인 니켈 염으로는 NiSO4·6H2O가 바람직하다. NiSO4·6H2O는 낮은 온도에서 도금속도가 빠른 효과가 있기 때문이다. 상기 환원제로는 인이 첨가되지 않는 코발트(Co)계 환원제가 바람직하다. 코발트계 환원제는 종래의 환원제와는 달리 인(P)이 포함되지 않아 인 성분에 의한 비저항의 상승을 방지하는 효과가 있기 때문이다. 코발트계 환원제로는 구체적으로 CoSO4·7H2O 또는 코발트-에틸렌디아민(ethylenediamine) 착화합물을 사용할 수 있다. 착화제로는 NaC6H5O7를 사용할 수 있다. 착화제로 NaC6H5O7을 사용하였을 경우 염의 빠른 환원속도를 억제할 수 있다. 또한 안정제로 Pb(NO3)2을 사용할 수 있다. 안정제로 Pb(NO3)2를 사용할 경우 욕의 분해 방지, 조악한 니켈 석출 방지, 도금조의 석출 방지의 효과가 있다.In the present invention, the nickel salt as the main component of the electroless nickel plating solution is preferably NiSO 4 · 6H 2 O. This is because NiSO 4 · 6H 2 O has a fast plating speed at low temperatures. As the reducing agent, a cobalt (Co) -based reducing agent to which phosphorus is not added is preferable. This is because the cobalt-based reducing agent does not contain phosphorus (P), unlike the conventional reducing agent, and thus has an effect of preventing an increase in specific resistance due to the phosphorus component. Specifically, as the cobalt-based reducing agent, CoSO 4 · 7H 2 O or cobalt-ethylenediamine complex compound may be used. As the complexing agent, NaC 6 H 5 O 7 can be used. When NaC 6 H 5 O 7 is used as the complexing agent, it is possible to suppress the rapid reduction rate of the salt. In addition, Pb (NO 3 ) 2 may be used as a stabilizer. When Pb (NO 3 ) 2 is used as a stabilizer, it is effective to prevent decomposition of the bath, to prevent coarse nickel precipitation, and to prevent precipitation of the plating bath.

또한, 도금액의 온도는 30 ~ 90℃가 바람직하다. 30℃ 미만에서는 화학적 환원반응이 일어나기 어려우며, 90℃를 초과하면 섬유표면이 손상되어 섬유자체가 타버리는 현상이 발생될 수 있기 때문이다.Moreover, as for the temperature of a plating liquid, 30-90 degreeC is preferable. If it is less than 30 ℃ chemical reduction reaction is difficult to occur, and if it exceeds 90 ℃ may damage the fiber surface and burn the phenomenon of the fiber itself.

또한, 본 발명에 있어서, 탄소섬유의 도금액 침지 시간은 1 ~ 30 분이 바람직하다. 1 분 미만에서는 자가 촉매 반응시간이 너무 짧은 관계로 섬유 표면에 생성되는 니켈 피막의 양이 적기 때문에 바람직하지 못하며 30 분을 초과하면 피막의 양이 급격히 상승하여 가공성이 떨어지기 때문에 부적합하다.In the present invention, the plating liquid immersion time of the carbon fiber is preferably 1 to 30 minutes. Less than 1 minute is not preferable because the amount of nickel film formed on the surface of the fiber is too small because the reaction time of the autocatalytic reaction is too short. If the amount exceeds 30 minutes, the amount of the film rises rapidly, resulting in poor workability.

상기와 같이 도금액 온도와 도금액 침지 시간의 조절에 의해 니켈 도금막의 두께 및 니켈 도금양의 조절이 가능하다.As described above, the thickness of the nickel plating film and the amount of nickel plating can be adjusted by controlling the plating solution temperature and the plating solution immersion time.

상기 탄소섬유를 도금액에 침지시키기 전에 염화주석(SnCl2) 또는 염화팔라듐(PdCl2)으로 활성화 시킬 수 있다. 이 과정에 의해 주석 또는 팔라듐 핵이 탄소 표면에 형성되며 이러한 핵은 금속 석출을 촉매화 시키는 역할을 하게 된다.The carbon fiber may be activated with tin chloride (SnCl 2 ) or palladium chloride (PdCl 2 ) before immersion in the plating solution. By this process, tin or palladium nuclei are formed on the carbon surface, and these nuclei serve to catalyze metal precipitation.

본 발명에 있어서, 탄소섬유 표면에 도금되는 니켈 막의 두께는 0.08 ~ 6.0㎛인 것이 바람직하다. 0.08㎛ 미만에서는 금속막이 너무 얇아 전기전도성을 측정하기 어려울 뿐 아니라, 도금 시 탄소섬유 표면을 보호하기 어려운 문제가 발생하는 문제가 있을 수 있기 때문이다. 그리고 6.0㎛를 초과할 경우에는 금속막이 과도하게 두꺼워져서 탄소섬유의 우수한 성질을 잃어버릴 뿐만 아니라 가공성이 떨어지는 현상이 발생하기 때문에 부적합하다.In the present invention, the thickness of the nickel film plated on the surface of the carbon fiber is preferably 0.08 to 6.0 mu m. If the thickness of the metal film is less than 0.08 μm, it is difficult to measure the electrical conductivity, and there may be a problem that it is difficult to protect the surface of the carbon fiber during plating. When the thickness exceeds 6.0 µm, the metal film becomes excessively thick, which causes loss of excellent properties of the carbon fibers as well as poor workability.

또한, 니켈 함량은 5 ~ 60 중량%가 적합하다. 니켈의 함량이 5 중량% 미만일 경우 탄소섬유의 고른 전도성을 얻기 힘든 문제가 있을 수 있으며, 60 중량%를 초과할 경우 섬유의 성질을 잃어버리는 문제가 있을 수 있기 때문이다.In addition, the nickel content is suitable 5 to 60% by weight. If the content of nickel is less than 5% by weight, there may be a problem that it is difficult to obtain even conductivity of the carbon fiber, and if it exceeds 60% by weight, there may be a problem of losing the properties of the fiber.

또한, 상기 무전해 도금된 고전도성 탄소섬유의 비저항은 1 ×10-3Ωcm 이하인 것이 바람직하다. 1 ×10-3Ωcm을 초과할 경우 전도성이 너무 낮아 충전물로 사용하기 힘들기 때문이다.In addition, the specific resistance of the electroless plated highly conductive carbon fiber is preferably 1 × 10 -3 Ωcm or less. If it exceeds 1 × 10 -3 Ωcm, the conductivity is too low to be used as a filling.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

단, 하기의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의해 한정되는 것은 아니다.
However, the following examples are merely to illustrate the present invention, but the content of the present invention is not limited by the following examples.

실험예Experimental Example 1. 니켈  Nickel 무전해Electroless 도금된  Plated 탄소섬유의Carbon fiber 전기전도도 측정 Conductivity measurement

하기의 실시예에서 제조된 니켈 무전해 도금 탄소섬유의 전기전도도 측정을 위하여, 4-probe volum resistivity tester (Mituvishi Chemical Co., MCP-T610)을 이용하여 저항(V/I)을 측정한 후 시편의 치수 (W×T:섬유 측면의 단면적; L:전압 접촉부 사이의 거리)와의 관계를 이용하여 전기전도도(σ)를 계산하였다.
In order to measure the electrical conductivity of the nickel electroless plated carbon fiber prepared in the following examples, the specimen after measuring the resistance (V / I) using a 4-probe volum resistivity tester (Mituvishi Chemical Co., MCP-T610) The electrical conductivity σ was calculated using the relationship with the dimension (W × T: cross-sectional area of the fiber side surface; L: distance between voltage contacts).

실험예Experimental Example 2. 니켈  2. Nickel 무전해Electroless 도금된  Plated 탄소섬유의Carbon fiber 표면구조, 두께변화 및 특성 확인 Surface structure, thickness change and characteristic check

하기의 실시예에서 제조된 니켈 무전해 도금된 탄소섬유의 표면구조, 두께 변화 및 특성을 관찰하기 위하여 주사전자현미경(Scanning electron microscope, SEM JEOL JSM0840A)과 X선 회절(X-ray diffraction) 분석을 실시하였으며, 발생원으로는 CuKα를 장착한 Rigaku Model D/MAX-Ⅲ를 사용하였다.
Scanning electron microscope (SEM JEOL JSM0840A) and X-ray diffraction analysis were performed to observe the surface structure, thickness change and characteristics of the nickel electroless plated carbon fiber prepared in the following examples. As a generator, Rigaku Model D / MAX-III equipped with CuKα was used.

실시예Example 1.  One. 무전해Electroless 니켈 도금된  Nickel plated 탄소섬유의Carbon fiber 제조 Ⅰ Manufacture Ⅰ

본 발명에서 사용된 탄소섬유는 Formosa Platic Co.에서 생산된 폴리아크릴로니트릴(Polyacrylonitrile, PAN)계 고강도 탄소섬유 (TC-3K-36)로, 아세톤으로 2시간 동안 호발정련(desizing) 처리된 장섬유를 사용하여 금속 도금 전 표면의 불순물 제거를 위해 0.1M 농도의 질산(HNO3)으로 30분 동안 전처리한 다음 사용하였다.Carbon fiber used in the present invention is a polyacrylonitrile (PAN) -based high-strength carbon fiber (TC-3K-36) produced by Formosa Platic Co., which is desizing with acetone for 2 hours The fibers were pretreated with 0.1 M nitric acid (HNO 3 ) for 30 minutes to remove impurities on the surface before metal plating and then used.

탄소섬유의 니켈 도금은 무전해 도금방법을 사용하였으며, 염화주석(SnCl2)용액에서 10 분 동안 활성화 시킨 후 증류수에 세척하고 다시 염화팔라듐(PdCl2)을 이용하여 10 분 동안 활성화 시킨 후 증류수에 세척하였다.Nickel plating of carbon fiber was performed by electroless plating method, activated in tin chloride (SnCl 2 ) solution for 10 minutes, washed in distilled water, and activated again for 10 minutes using palladium chloride (PdCl 2 ). Washed.

또한, 무전해 도금액은 NiSO46H2O (20 g/L)을 사용하였으며 착화제로 NaC6H5O7 (27 g/L)을, 안정제로 Pb(NO3)2 (0.5 ppm)을 각각 사용하였다. 환원제는 코발트-에틸렌디아민 착화합물(27 g/L)을 사용하여 1 분 동안 30℃의 온도에서 무전해 도금 후 건조기에서 완전하게 건조시켜 니켈 도금된 탄소섬유를 제조하였다.In addition, the electroless plating solution was used NiSO 4 6H 2 O (20 g / L) and NaC 6 H 5 O 7 as a complexing agent Pb (NO 3 ) 2 (0.5 ppm) was used as a stabilizer (27 g / L), respectively. The reducing agent was electroless plated at a temperature of 30 ° C. for 1 minute using a cobalt-ethylenediamine complex compound (27 g / L) and then completely dried in a dryer to prepare nickel plated carbon fibers.

하기 표 1에는 본 발명에서 사용된 비인산계 환원제의 종류, 온도와 도금 시간에 따라 제조된 탄소섬유의 도금막 두께, 비저항, 니켈 함량의 결과를 나타내었다.
Table 1 below shows the results of plating film thickness, specific resistance, and nickel content of the carbon fiber prepared according to the type, temperature and plating time of the non-phosphoric reducing agent used in the present invention.

실시예Example 2.  2. 무전해Electroless 니켈 도금된  Nickel plated 탄소섬유의Carbon fiber 제조 Produce IIII

상기 실시예 1과 동일한 공정을 수행하되, 환원제로 코발트-에틸렌디아민 착화합물(27 g/L)을 사용하여 10 분 동안 60℃의 온도에서 무전해 도금 하였다.The same process as in Example 1 was carried out, but electroless plating was performed at a temperature of 60 ° C. for 10 minutes using a cobalt-ethylenediamine complex compound (27 g / L) as a reducing agent.

상기와 같이 제조된 니켈 무전해 도금 탄소섬유에서 도금막 두께, 비저항, 니켈 함량을 측정하고 그 결과를 하기 표 1에 나타내었다.
The plating film thickness, specific resistance, and nickel content of the nickel electroless plated carbon fiber prepared as described above were measured and the results are shown in Table 1 below.

실시예Example 3.  3. 무전해Electroless 니켈 도금된  Nickel plated 탄소섬유의Carbon fiber 제조 Produce IIIIII

상기 실시예 1과 동일한 공정을 수행하되, 환원제로 코발트-에틸렌디아민 착화합물(27 g/L)을 사용하여 20 분 동안 30℃의 온도에서 무전해 도금 하였다.The same process as in Example 1 was carried out, but using the cobalt-ethylenediamine complex compound (27 g / L) as a reducing agent was electroless plated at a temperature of 30 ℃ for 20 minutes.

상기와 같이 제조된 니켈 무전해 도금 탄소섬유에서 도금막 두께, 비저항, 니켈 함량을 측정하고 그 결과를 하기 표 1에 나타내었다.
The plating film thickness, specific resistance, and nickel content of the nickel electroless plated carbon fiber prepared as described above were measured and the results are shown in Table 1 below.

실시예Example 4.  4. 무전해Electroless 니켈 도금된  Nickel plated 탄소섬유의Carbon fiber 제조 Produce IVIV

상기 실시예 1과 동일한 공정을 수행하되, 환원제로 코발트-에틸렌디아민 착화합물(27 g/L)을 사용하여 25 분 동안 40℃의 온도에서 무전해 도금 하였다.The same process as in Example 1 was performed, but the electroless plating was performed at a temperature of 40 ° C. for 25 minutes using a cobalt-ethylenediamine complex compound (27 g / L) as a reducing agent.

상기와 같이 제조된 니켈 무전해 도금 탄소섬유에서 도금막 두께, 비저항, 니켈 함량을 측정하고 그 결과를 하기 표 1에 나타내었다.
The plating film thickness, specific resistance, and nickel content of the nickel electroless plated carbon fiber prepared as described above were measured and the results are shown in Table 1 below.

실시예Example 5.  5. 무전해Electroless 니켈 도금된  Nickel plated 탄소섬유의Carbon fiber 제조 Produce VV

상기 실시예 1과 동일한 공정을 수행하되, 환원제로 코발트-에틸렌디아민 착화합물(27 g/L)을 사용하여 30 분 동안 40℃의 온도에서 무전해 도금 하였다.The same process as in Example 1 was carried out, but electroless plating was performed at a temperature of 40 ° C. for 30 minutes using a cobalt-ethylenediamine complex compound (27 g / L) as a reducing agent.

상기와 같이 제조된 니켈 무전해 도금 탄소섬유에서 도금막 두께, 비저항, 니켈 함량을 측정하고 그 결과를 하기 표 1에 나타내었다.
The plating film thickness, specific resistance, and nickel content of the nickel electroless plated carbon fiber prepared as described above were measured and the results are shown in Table 1 below.

실시예Example 6.  6. 무전해Electroless 니켈 도금된  Nickel plated 탄소섬유의Carbon fiber 제조 Produce VIVI

상기 실시예 1과 동일한 공정을 수행하되, 환원제로 코발트-에틸렌디아민 착화합물(27 g/L)을 사용하여 10 분 동안 90℃의 온도에서 무전해 도금 하였다.The same process as in Example 1 was carried out, but electroless plating was performed at a temperature of 90 ° C. for 10 minutes using a cobalt-ethylenediamine complex compound (27 g / L) as a reducing agent.

상기와 같이 제조된 니켈 무전해 도금 탄소섬유에서 도금막 두께, 비저항, 니켈 함량을 측정하고 그 결과를 하기 표 1에 나타내었다.
The plating film thickness, specific resistance, and nickel content of the nickel electroless plated carbon fiber prepared as described above were measured and the results are shown in Table 1 below.

비교예Comparative example 1.  One.

상기 실시예 1과 동일한 공정으로 수행하되, 환원제로 NaH2PO2을 사용하여 30 분 동안 50℃의 온도에서 무전해 도금을 실시하고, 제조된 니켈 무전해 도금 탄소섬유에서 도금막 두께, 비저항, 니켈 함량을 측정하고 그 결과를 하기 표 1에 나타내었다.
Perform the same process as in Example 1, using an electroless plating for 30 minutes at a temperature of 50 ℃ using NaH 2 PO 2 as a reducing agent, the plating film thickness, specific resistance, Nickel content was measured and the results are shown in Table 1 below.

비교예Comparative example 2.  2.

상기 실시예 1과 동일한 공정으로 수행하되, 환원제로 NaH2PO2을 사용하여 30 분 동안 80℃의 온도에서 무전해 도금을 실시하고, 제조된 니켈 무전해 도금 탄소섬유에서 도금막 두께, 비저항, 니켈 함량을 측정하고 그 결과를 하기 표 1에 나타내었다.
Performed in the same process as in Example 1, using the NaH 2 PO 2 as a reducing agent to perform electroless plating for 30 minutes at a temperature of 80 ℃, in the prepared nickel electroless plating carbon fiber plated film thickness, resistivity, Nickel content was measured and the results are shown in Table 1 below.

구분division 환원제reducing agent 시간
(분)
time
(minute)
온도
(℃)
Temperature
(℃)
니켈함량
(%)
Nickel content
(%)
두께
(㎛)
thickness
(Μm)
비저항
(Ω㎝)
Resistivity
(Ωcm)
실시예1Example 1 코발트-에틸렌디아민 착화합물Cobalt-Ethylenediamine Complex 1One 3030 55 0.080.08 9.18×10-5 9.18 × 10 -5 실시예2Example 2 1010 6060 3535 1.611.61 3.37×10-5 3.37 × 10 -5 실시예3Example 3 2020 3030 4040 2.212.21 2.20×10-5 2.20 × 10 -5 실시예4Example 4 2525 4040 4545 3.683.68 1.83×10-6 1.83 × 10 -6 실시예5Example 5 3030 4040 5050 3.713.71 1.82×10-6 1.82 × 10 -6 실시예6Example 6 1010 9090 4040 3.553.55 2.81×10-5 2.81 × 10 -5 비교예1Comparative Example 1 NaH2PO2 NaH 2 PO 2 3030 5050 33 0.010.01 0.81×10-3 0.81 × 10 -3 비교예2Comparative Example 2 3030 8080 44 0.070.07 0.92×10-3 0.92 × 10 -3

상기와 같이 제조한 고전도성 탄소섬유는 코발트계 환원제를 사용한 도금액을 사용함으로써 탄소섬유 표면에 순수한 니켈을 도입시킴으로써 니켈-인(Ni-P)도금에 비해 높은 전도성향상이 가능함과 동시에 섬유 표면 형상의 두께가 일정하고 균일한 도금이 가능하였다.Highly conductive carbon fibers prepared as described above can be made of pure nickel on the surface of carbon fiber by using a plating solution using a cobalt-based reducing agent, thereby improving the conductivity compared to nickel-phosphorus (Ni-P) plating, and at the same time, The thickness was uniform and uniform plating was possible.

또한 상기 표 1에 나타나 듯이 코발트계 환원제를 사용한 경우 비교예 1, 2에 비해 낮은 온도, 짧은 시간에서 도금하더라도 니켈의 함량이 높아짐을 알 수 있다. 또한 실시예 1과 비교예 2를 비교해 볼 때 유사한 니켈 함량비와 니켈도금의 두께를 가지고 있으나, 인이 적게 포함된 실시예 1의 비저항이 비교예 2에 비해 훨씬 낮아 전기전도도가 높아짐을 확인할 수 있었다.In addition, when the cobalt-based reducing agent is used as shown in Table 1, it can be seen that the nickel content is increased even when the plating is performed at a low temperature and a short time, compared to Comparative Examples 1 and 2. In addition, when compared with Example 1 and Comparative Example 2 has a similar nickel content ratio and the thickness of the nickel plating, the specific resistance of Example 1 containing less phosphorus is much lower than that of Comparative Example 2 it can be confirmed that the electrical conductivity is increased. there was.

또한 비교예 1에 따른 무전해 니켈 도금된 탄소섬유의 x선 회절 분석기(XRD) 분석 결과(도 1)와 실시예 4에 따른 무전해 니켈 도금된 탄소섬유의 XRD 분석 결과(도 2)를 비교해 보면 비교예 1의 경우 NiP2피크가 관찰되는 반면 실시예 4의 경우는 Ni 피크만 관찰되는 것을 확인할 수 있다. 비교예 1에 따른 전자주사현미경(SEM) 분석 결과(도 3)와 실시예 5에 따른 무전해 니켈 도금된 탄소섬유의 SEM 분석 결과(도 4)를 비교해 보면 도금 두께 면에서 코발트계 환원제를 사용하였을 경우 두꺼운 니켈막이 형성되는 차이가 있는 것을 확인할 수 있다.In addition, X-ray diffraction analyzer (XRD) analysis results of the electroless nickel plated carbon fiber according to Comparative Example 1 (Fig. 1) and XRD analysis results of the electroless nickel plated carbon fiber according to Example 4 (Fig. 2) In the case of Comparative Example 1 NiP 2 peak is observed while in Example 4 it can be seen that only the Ni peak is observed. Comparing the SEM results (FIG. 3) of the scanning electron microscope (SEM) analysis according to Comparative Example 1 and the SEM analysis results (FIG. 4) of the electroless nickel plated carbon fibers according to Example 5, a cobalt-based reducing agent was used in terms of plating thickness. When it is confirmed that there is a difference that a thick nickel film is formed.

Claims (11)

니켈 염, 착화제, 안정제 및 코발트계 환원제를 포함하는 도금액에 탄소섬유를 침지함으로써 탄소섬유에 니켈을 도금하는 고전도성 탄소섬유의 제조방법.
A method for producing highly conductive carbon fibers in which nickel is plated on carbon fibers by immersing the carbon fibers in a plating solution containing a nickel salt, a complexing agent, a stabilizer, and a cobalt-based reducing agent.
제 1항에 있어서, 상기 니켈 염이 NiSO46H2O인 것을 특징으로 하는 고전도성 탄소섬유의 제조방법.
The method of claim 1, wherein the nickel salt is NiSO 4 6H 2 O.
제 1항에 있어서, 상기 착화제가 NaC6H5O7인 것을 특징으로 하는 고전도성 탄소섬유의 제조방법.
The method of producing a highly conductive carbon fiber according to claim 1, wherein the complexing agent is NaC 6 H 5 O 7 .
제 1항에 있어서, 상기 안정제가 Pb(NO3)2인 것을 특징으로 하는 고전도성 탄소섬유의 제조방법.
The method of manufacturing a highly conductive carbon fiber according to claim 1, wherein the stabilizer is Pb (NO 3 ) 2 .
제 1항에 있어서, 상기 코발트계 환원제는 CoSO4·7H2O 또는 코발트-에틸렌디아민 착화합물인 것을 특징으로 하는 고전도성 탄소섬유 제조 방법.
The method of claim 1, wherein the cobalt-based reducing agent is CoSO 4 · 7H 2 O or cobalt-ethylenediamine complex compound.
제 1항에 있어서, 상기 도금액의 온도는 30 ~ 90℃인 것을 특징으로 하는 고전도성 탄소섬유 제조방법.
The method of claim 1, wherein the temperature of the plating liquid is 30 ~ 90 ℃.
제 1항에 있어서, 상기 침지 시간은 1 ~ 30 분인 것을 특징으로 하는 고전도성 탄소섬유의 제조방법.
The method of claim 1, wherein the immersion time is 1 to 30 minutes.
제 1항에 있어서, 상기 탄소섬유를 침지하기 전에 염화주석(SnCl2) 또는 염화팔라듐(PdCl2)으로 탄소섬유를 활성화 시키는 것을 특징으로 하는 고전도성 탄소섬유의 제조방법.
The method of manufacturing a highly conductive carbon fiber according to claim 1, wherein the carbon fiber is activated with tin chloride (SnCl 2 ) or palladium chloride (PdCl 2 ) before the carbon fiber is immersed.
제 1항에 있어서, 상기 탄소섬유에 니켈을 0.08 ~ 6.0 ㎛의 두께로 도금하는 것을 특징으로 하는 고전도성 탄소섬유의 제조방법.
The method of manufacturing a highly conductive carbon fiber according to claim 1, wherein nickel is plated on the carbon fiber in a thickness of 0.08 to 6.0 µm.
제 1항에 있어서, 상기 탄소섬유에 도금되는 니켈함량이 5 내지 60 중량% 인 것을 특징으로 하는 고전도성 탄소섬유의 제조방법.
The method of manufacturing a highly conductive carbon fiber according to claim 1, wherein the nickel content plated on the carbon fiber is 5 to 60 wt%.
제 1항에 있어서, 상기 제조된 고전도성 탄소섬유의 비저항은 1 ×10-3Ωcm 이하인 것을 특징으로 하는 고전도성 탄소섬유의 제조방법.The method of claim 1, wherein the prepared high conductivity carbon fiber has a specific resistance of 1 × 10 −3 dBm or less.
KR1020100064021A 2010-07-02 2010-07-02 Manufacturing Method of Highly Electro-conductive Carbon Fibers Using Cobalt Based Reducing Agent KR101199305B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100064021A KR101199305B1 (en) 2010-07-02 2010-07-02 Manufacturing Method of Highly Electro-conductive Carbon Fibers Using Cobalt Based Reducing Agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100064021A KR101199305B1 (en) 2010-07-02 2010-07-02 Manufacturing Method of Highly Electro-conductive Carbon Fibers Using Cobalt Based Reducing Agent

Publications (2)

Publication Number Publication Date
KR20120003259A true KR20120003259A (en) 2012-01-10
KR101199305B1 KR101199305B1 (en) 2012-11-12

Family

ID=45610314

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100064021A KR101199305B1 (en) 2010-07-02 2010-07-02 Manufacturing Method of Highly Electro-conductive Carbon Fibers Using Cobalt Based Reducing Agent

Country Status (1)

Country Link
KR (1) KR101199305B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015093777A1 (en) * 2013-12-20 2015-06-25 주식회사 불스원신소재 Nonwoven fabric or nonwoven composite material for shielding and absorbing electromagnetic wave
KR20190026475A (en) * 2017-09-05 2019-03-13 인하대학교 산학협력단 Manufacturing method of nickel-plated CuS-PAN fibers for EMI-shielding

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200089170A (en) 2019-01-16 2020-07-24 주식회사 디앤씨테크 High-conductivity nickel-plated carbon fibers by non-electroplating process

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001262362A (en) * 2000-03-15 2001-09-26 Nippon Light Metal Co Ltd Electroless nickel-phosphorus plating liquid
KR100486962B1 (en) * 2001-12-17 2005-05-03 한국화학연구원 Manufacturing process of nanoscaled nickel-plated carbon fibers by non-electroplating method
KR100996189B1 (en) * 2008-01-04 2010-11-24 한국생산기술연구원 Autocatalytic-type electroless Ni-P-Co plating solution and method for producing thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015093777A1 (en) * 2013-12-20 2015-06-25 주식회사 불스원신소재 Nonwoven fabric or nonwoven composite material for shielding and absorbing electromagnetic wave
CN105829594A (en) * 2013-12-20 2016-08-03 劲牛王材料有限公司 Nonwoven Fabric Or Nonwoven Composite Material For Shielding And Absorbing Electromagnetic Wave
US10400370B2 (en) 2013-12-20 2019-09-03 Bullsone Material Co., Ltd. Nonwoven fabric or nonwoven composite material for shielding and absorbing electromagnetic wave
KR20190026475A (en) * 2017-09-05 2019-03-13 인하대학교 산학협력단 Manufacturing method of nickel-plated CuS-PAN fibers for EMI-shielding

Also Published As

Publication number Publication date
KR101199305B1 (en) 2012-11-12

Similar Documents

Publication Publication Date Title
Zhao et al. Electromagnetic interference shielding of layered linen fabric/polypyrrole/nickel (LF/PPy/Ni) composites
CN107354752B (en) Surface-coated silver F-12 conductive fiber and preparation method thereof
Tang et al. Achieving flexible and durable electromagnetic interference shielding fabric through lightweight and mechanically strong aramid fiber wrapped in highly conductive multilayer metal
CN104005224A (en) Method for preparing wave absorbing type high-elasticity electromagnetic shielding fabric
CN103757617B (en) A kind of Ni-Cu-La-B quaternary alloy plating solution and the method for the plating of glass fibre chemistry
KR101199305B1 (en) Manufacturing Method of Highly Electro-conductive Carbon Fibers Using Cobalt Based Reducing Agent
Hui et al. Electromagnetic shielding wood-based composite from electroless plating corrosion-resistant Ni–Cu–P coatings on Fraxinus mandshurica veneer
CN103215590A (en) Preparation method of conductive sponges
KR101197723B1 (en) Manufacturing process of nickel-plated carbon fibers by non-electroplating method
KR20180006523A (en) Manufacturing method of Nickel-plated and high-conductivity carbon fibers by non-electroplating process
Liu et al. Effect of organic additives on the corrosion resistance properties of electroless nickel deposits
RU2398049C2 (en) Improved stabilisation and working characteristics of auto-catalyst procedures of coating application by method of chemical reduction
Guo et al. Effects of deposition parameters of electroless copper plating on polyester fabric
Cissé et al. Corrosion resistance of electroless Ni-Cu-P ternary alloy coatings in acidic and neutral corrosive mediums
KR20110132894A (en) Manufacturing method of highly electro-conductive carbon fibers using boron based reducing agent
CN110195244B (en) Method for inhibiting growth of electrotinning tin whiskers of printed circuit board
Zhu et al. Cu–Ni–Gd coating with improved corrosion resistance on linen fabric by electroless plating for electromagnetic interference shielding
KR20100033625A (en) Manufacturing process of high conductive glass fibers by ni electroless plating
KR101093608B1 (en) Manufacturing method of high conductivity carbon fiber using hydrazine and carbon fiber manufactured by the same
CN114032531A (en) Polyetheretherketone surface chemical nickel plating solution and nickel plating process thereof
CN102797000B (en) Choline-chloride-based chemical silvering solution and application method thereof
Kou et al. Effect of buffer on electroless copper deposition
JP2013209708A (en) Product coated with black film
KR20070095060A (en) Method for coating mica powder with silver
Shao et al. Fabrication of highly conductive, flexible, and hydrophobic Kevlar®@ Ni-PB@ Cu@ CS fabric with excellent self-cleaning performance for electromagnetic interference shielding

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20151001

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170829

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190821

Year of fee payment: 8