KR20120000940A - Combustion apparatus for green house gases - Google Patents

Combustion apparatus for green house gases Download PDF

Info

Publication number
KR20120000940A
KR20120000940A KR1020100061480A KR20100061480A KR20120000940A KR 20120000940 A KR20120000940 A KR 20120000940A KR 1020100061480 A KR1020100061480 A KR 1020100061480A KR 20100061480 A KR20100061480 A KR 20100061480A KR 20120000940 A KR20120000940 A KR 20120000940A
Authority
KR
South Korea
Prior art keywords
chamber
tube
combustion apparatus
heating element
greenhouse gas
Prior art date
Application number
KR1020100061480A
Other languages
Korean (ko)
Other versions
KR101266920B1 (en
Inventor
오세유
허용인
Original Assignee
오세유
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 오세유 filed Critical 오세유
Priority to KR1020100061480A priority Critical patent/KR101266920B1/en
Priority to PCT/KR2011/004688 priority patent/WO2012002693A2/en
Publication of KR20120000940A publication Critical patent/KR20120000940A/en
Application granted granted Critical
Publication of KR101266920B1 publication Critical patent/KR101266920B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/06Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
    • F23G7/061Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/005Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/204Inorganic halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/206Organic halogen compounds
    • B01D2257/2066Fluorine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • B01D2257/7022Aliphatic hydrocarbons
    • B01D2257/7025Methane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2204/00Supplementary heating arrangements
    • F23G2204/20Supplementary heating arrangements using electric energy
    • F23G2204/203Microwave
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/20Capture or disposal of greenhouse gases of methane

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Constitution Of High-Frequency Heating (AREA)

Abstract

PURPOSE: A combustion apparatus for greenhouse gas is provided to maintain the high-temperature of a heating unit by arranging heat storage units, which generate near-infrared rays, on both sides of the heating unit. CONSTITUTION: A combustion apparatus for greenhouse gas comprises a chamber(110), a tube(120), an Ultra High Frequency(UHF) generator(130), and one or more heating bodies(140). The tube is installed inside the chamber and has a gas supply pipe(122) and a gas discharge pipe(124) extended to the outside the chamber. The UHF generator is installed outside the chamber and supplies UHF to the inner side of the chamber. The heating bodies cover a part of the outer surface of the tube and are heated with high-temperatures by absorbing the UHF.

Description

온실가스 연소장치{Combustion apparatus for green house gases}Combustion apparatus for green house gases

본 발명은 온실가스 연소장치에 관한 것으로서, 보다 상세하게는 극초단파를 이용해 높은 온도를 발생시켜 튜브의 내측을 통과하는 유해가스를 가열함으로써 연소성능을 향상시킬 수 있는 온실가스 연소장치에 관한 것이다.The present invention relates to a greenhouse gas combustion device, and more particularly, to a greenhouse gas combustion device capable of improving combustion performance by heating a harmful gas passing through the inside of a tube by generating a high temperature using microwaves.

최근 100년간 전 산업이 기하급수적으로 발전하면서 대기 중 온실 가스의 하나인 이산화탄소가 급격하게 증가하였다. 이로 인해 지구의 평균 온도가 100년 전보다 0.6도나 증가하였다. 이와 같은 온실 가스의 증가에 따라 빙하가 녹아내리고 해수면이 올라가서 섬이 가라앉으며, 태풍, 집중호우, 홍수 등의 기상 이변이 발생하여 인간의 생존을 위협하고 있다.In the last 100 years, all industries have grown exponentially, and carbon dioxide, one of the greenhouse gases in the atmosphere, has increased dramatically. This caused the average temperature of the earth to rise 0.6 degrees from 100 years ago. As the greenhouse gas increases, the glacier melts, the sea level rises, the island sinks, and weather abnormalities such as typhoons, torrential rain and floods threaten human survival.

이러한 온실가스의 영향 때문에 각국은 교토 의정서(Kyoto protocal)를 제정하고, 가입한 국가는 교토 의정서에 의해 온실 가스의 감축의 의무를 지니게 되었다. 온실가스는 이산화탄소(CO2)가 대표적이며, 메탄(CH4), 이산화질소(N20), 수소불화탄소(HFCs), 과불화탄소(PFCs), 육불화황(SF6) 등이 있다.Due to the impact of these greenhouse gases, each country has enacted the Kyoto Protocol, and countries that have joined are obliged to reduce greenhouse gases under the Kyoto Protocol. Greenhouse gases include carbon dioxide (CO2) and methane (CH4), nitrogen dioxide (N20), hydrogen fluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF6).

한편, 종래 용광로에서 용선(molten iron)을 생산할 때 발생되는 온실 가스는 먼지가 제거된 후, 연도를 통해 대기로 방출되거나, 수소 가스로 분해시켜 재사용하는 방법을 사용하고 있다. On the other hand, the greenhouse gas generated when the molten iron (molten iron) is produced in the conventional blast furnace is released to the atmosphere through the flue after the dust is removed, or using a method of decomposing the hydrogen gas to reuse.

또한, 전 세계적으로 발생되는 온실 가스의 약 10% 정도가 용선 생산 과정에서 발생하며, 그 대부분은 이산화탄소 가스(CO2)와 메탄 가스(CH4)이다.In addition, about 10% of the greenhouse gases generated worldwide are generated during the molten iron production process, most of which are carbon dioxide gas (CO2) and methane gas (CH4).

이러한 온실 가스는 이산화탄소 가스 또는 메탄 가스를 포집하여 일산화탄소나 수소로 변환시키는 공정이 복잡하여 운영이 어려운 문제점이 있다.These greenhouse gases have a problem that it is difficult to operate because the process of capturing carbon dioxide gas or methane gas is converted to carbon monoxide or hydrogen.

도 1은 종래의 용선 생산 장치에 대한 대략적인 구성을 나타낸다.1 shows a schematic configuration of a conventional molten iron production apparatus.

도 1을 참조하면, 용광로/고로(1)에서 용선 생산 과정에서 발생된 먼지와 온실 가스를 포함하고 있는 유해 가스를 먼지 포집기(3)와 미세먼지 분리기(4)를 통해 먼지를 제거시킨 후, 먼지가 제거된 가스를 연도(5)를 통해 대기로 방출한다.Referring to Figure 1, after removing the dust through the dust collector (3) and the fine dust separator (4), the harmful gas containing dust and greenhouse gases generated during the molten iron production process in the furnace / blast furnace (1), The dust-free gas is discharged through the flue 5 into the atmosphere.

도 1에 도시된 바와 같이, 유해 가스는 먼지만이 제거된 채로 대기로 방출되어, 온실 가스를 무방비로 배출되어, 지구 환경을 더욱 심각하게 하여 이를 줄이는 것이 요구된다.As shown in Fig. 1, noxious gases are discharged to the atmosphere with only dust removed, so that greenhouse gases are released unprotected, making the global environment more serious and reducing it.

종래에는 이러한 유해가스를 분해하여 무해한 가스로 배출하기 위한 방법으로 챔버를 통과하는 가스에 물을 분사시켜 정화 및 냉각을 행하는 습식 가스 처리장치가 이용되었다.Conventionally, a wet gas treatment apparatus has been used to purify and cool water by injecting water into a gas passing through a chamber in order to decompose such harmful gases and discharge them as harmless gases.

이러한 습식 가스 처리장치는 단순한 공정과 간단한 구조로 제작이 용이하고 대용량화 할 수 있는 장점이 있으나, 불용성 가스는 처리가 불가능하고 수소기를 포함하는 발화성 가스의 처리에 부적합한 단점이 있다. Such a wet gas treatment device has the advantage of being easy to manufacture and large-capacity in a simple process and simple structure, but insoluble gas is impossible to process and inadequate for the treatment of ignitable gas containing hydrogen groups.

또한 많은 양의 폐수를 발생시켜 별도의 폐수 처리 설비를 필요로 하기 때문에 운전 및 유지비용이 상승되어 경제적이지 못한 문제점이 있다.In addition, since a large amount of wastewater is generated to require a separate wastewater treatment facility, there is a problem in that the operation and maintenance costs are increased and it is not economical.

또한, 수소버너의 버너속에 유해 가스를 통과시키는 직접연소방식과 열원에 의해 형성된 고온의 챔버에 배기 가스를 통과시키는 간접연소방식으로 구분되는 연소식 가스 처리장치도 사용되고 있다.In addition, a combustion gas treatment apparatus is also used, which is classified into a direct combustion method through which harmful gas passes through a burner of a hydrogen burner and an indirect combustion method through which exhaust gas passes through a high temperature chamber formed by a heat source.

이러한 연소식 가스 처리장치는 발화성 가스의 처리성능은 우수하나 PFC 등의 안정한 물질을 분해하기에는 온도가 충분하지 않고, 높은 온도를 유지하기 위해 많은 에너지를 소모해야 하므로 에너지 이용 효율이 낮은 문제점이 있었다. The combustion gas treatment device has a problem in that the energy utilization efficiency is low because the combustion gas treatment device has excellent processing performance but does not have sufficient temperature to decompose stable substances such as PFC, and consumes a lot of energy to maintain a high temperature.

또한, 충분한 연소온도를 얻을 수 있도록 버닝 챔버의 내경을 작게 하고 길이가 길게 설계하고 있으나, 이러한 구조는 설치면적을 많이 차지하고 고온의 가스가 오랜 시간 버닝챔버에 머물러 부식에 매우 취약한 문제점이 있었다. In addition, although the inner diameter of the burning chamber is designed to be long enough to obtain a sufficient combustion temperature, such a structure occupies a large installation area and has a problem that the hot gas stays in the burning chamber for a long time and is very vulnerable to corrosion.

따라서, 본 발명의 목적은 이와 같은 종래의 문제점을 해결하기 위한 것으로서, 극초단파를 흡수하여 높은 온도로 발열하는 발열체를 유해 가스가 통과하는 튜브의 외측에 배치함으로써 종래와 같이 챔버의 내경을 작게 하거나 길이를 길게 하지 않아도 유해 가스를 분해시킬 수 있는 충분한 온도를 제공할 뿐만 아니라, 에너지 이용 효율이 우수한 온실가스 연소장치를 제공함에 있다.Accordingly, an object of the present invention is to solve such a conventional problem, by placing a heating element that absorbs microwaves and generates heat at a high temperature outside the tube through which noxious gas passes, so as to reduce the internal diameter of the chamber or length the conventional chamber. In addition to providing a sufficient temperature to decompose harmful gases without having to lengthen, it provides a greenhouse gas combustion device with excellent energy use efficiency.

또한, 발열부의 양측에 근적외선을 발생하는 축열부를 배치함으로써 우수한 에너지 효율을 제공하면서도 고온의 온도를 유지할 수 있는 온실가스 연소장치를 제공함에 있다.In addition, by providing a heat storage unit that generates near infrared rays on both sides of the heat generating portion to provide a greenhouse gas combustion apparatus that can maintain a high temperature while providing excellent energy efficiency.

또한, 발열체로부터 발생하는 열에너지가 챔버의 외측으로 손실되는 것을 방지할 수 있는 온실가스 연소장치를 제공함에 있다.In addition, it is to provide a greenhouse gas combustion apparatus that can prevent the heat energy generated from the heating element to be lost to the outside of the chamber.

또한, 상기 튜브를 발열체와 함께 극초단파를 흡수하는 재질로 구성하여 튜브 내측을 통과하는 유해가스를 직접 가열함으로써 가열성능을 향상시킬 수 있는 온실가스 연소장치를 제공함에 있다.In addition, the tube is composed of a material that absorbs microwaves with a heating element to provide a greenhouse gas combustion apparatus that can improve the heating performance by directly heating the harmful gas passing through the tube.

상기 목적은, 본 발명에 따라, 상기 튜브와 발열체를 감싸 밀폐공간을 형성하는 챔버;와, 상기 챔버의 내측에 설치되며 가스 공급관과 배출관이 상기 챔버의 외측으로 연장되는 튜브;와, 상기 챔버의 외측에 설치되어 상기 챔버의 내측을 향해 극초단파를 제공하는 극초단파 발생기; 및, 상기 튜브의 외측 일부를 감싸도록 배치되고, 상기 극초단파를 흡수하여 높은 온도로 발열하는 적어도 하나의 발열체;를 포함하는 온실가스 연소장치에 의해 달성된다.The object is, according to the present invention, a chamber surrounding the tube and the heating element to form a sealed space; and a tube which is installed inside the chamber and the gas supply pipe and the discharge pipe extends to the outside of the chamber; A microwave generator installed outside to provide microwaves toward the inside of the chamber; And at least one heating element disposed to surround an outer portion of the tube and absorbing the microwaves and generating heat at a high temperature.

여기서, 상기 발열체는 다수 마련되고, 상기 튜브의 외측면에 서로 이격 배치되는 것이 바람직하다.Here, a plurality of the heating element is provided, it is preferable to be spaced apart from each other on the outer surface of the tube.

또한, 상기 발열체의 양측에 배치되는 축열체를 더 포함하는 것이 바람직하다.In addition, it is preferable to further include a heat storage body disposed on both sides of the heating element.

또한, 상기 극초단파 발생기는 극초단파를 발생하는 마그네트론과, 상기 마그네트론에서 발생하는 극초단파를 챔버 내부공간으로 전달하는 도파관으로 이루어지는 것이 바람직하다.In addition, the microwave generator is preferably composed of a magnetron for generating microwaves, and a waveguide for transmitting the microwaves generated in the magnetron to the chamber interior space.

또한, 상기 챔버와 튜브 사이에 배치되는 단열재를 더 포함하는 것이 바람직하다.In addition, it is preferable to further include a heat insulating material disposed between the chamber and the tube.

또한, 상기 튜브는 금속 또는 탄화규소(SiC)로 이루어지는 것이 바람직하다.In addition, the tube is preferably made of metal or silicon carbide (SiC).

또한, 상기 발열체는 탄화규소(SiC)로 이루어지는 것이 바람직하다.In addition, the heating element is preferably made of silicon carbide (SiC).

본 발명에 따르면, 극초단파를 흡수하여 높은 온도로 발열하는 발열체를 유해 가스가 통과하는 튜브의 외측에 배치함으로써 종래와 같이 챔버의 내경을 작게 하거나 길이를 길게 하지 않아도 유해 가스를 분해시킬 수 있는 충분한 온도를 제공할 뿐만 아니라, 에너지 이용 효율이 우수한 온실가스 연소장치가 제공된다.According to the present invention, by placing a heating element that absorbs microwaves and generates heat at a high temperature outside the tube through which harmful gases pass, sufficient temperature to decompose noxious gas without reducing the inner diameter or length of the chamber as in the prior art. In addition to providing a GHG combustion device with excellent energy utilization efficiency is provided.

또한, 발열부의 양측에 근적외선을 발생하는 축열부를 배치함으로써 우수한 에너지 효율을 제공하면서도 고온의 온도를 유지할 수 있는 온실가스 연소장치가 제공된다.In addition, by arranging a heat storage unit that generates near infrared rays on both sides of the heat generating unit is provided a greenhouse gas combustion apparatus that can maintain a high temperature while providing excellent energy efficiency.

또한, 발열체로부터 발생하는 열에너지가 챔버의 외측으로 손실되는 것을 방지할 수 있는 온실가스 연소장치가 제공된다.In addition, there is provided a greenhouse gas combustion device which can prevent the heat energy generated from the heating element from being lost to the outside of the chamber.

또한, 상기 튜브를 발열체와 함께 극초단파를 흡수하는 재질로 구성하여 튜브 내측을 통과하는 유해가스를 직접 가열함으로써 가열성능을 향상시킬 수 있는 온실가스 연소장치가 제공된다. In addition, there is provided a greenhouse gas combustion apparatus that can be made of a material that absorbs microwaves with a heating element to directly heat the harmful gas passing through the tube inside to improve heating performance.

도 1은 종래의 용선 생산 장치에 대한 대략적인 구성도,
도 2는 본 발명 온실가스 연소장치의 사시도,
도 3은 본 발명 온실가스 연소장치의 분해사시도,
도 4는 본 발명 온실가스 연소장치의 단면도이다.
1 is a schematic configuration diagram of a conventional molten iron production apparatus,
2 is a perspective view of the present invention greenhouse gas combustion apparatus,
3 is an exploded perspective view of the present invention greenhouse gas combustion apparatus,
4 is a cross-sectional view of the greenhouse gas combustion apparatus of the present invention.

설명에 앞서, 여러 실시예에 있어서, 동일한 구성을 가지는 구성요소에 대해서는 동일한 부호를 사용하여 대표적으로 제1실시예에서 설명하고, 그 외의 실시예에서는 제1실시예와 다른 구성에 대해서 설명하기로 한다.Prior to the description, in the various embodiments, components having the same configuration will be representatively described in the first embodiment using the same reference numerals, and in other embodiments, different configurations from the first embodiment will be described. do.

이하, 첨부한 도면을 참조하여 본 발명의 제1실시예에 따른 온실가스 연소장치에 대하여 상세하게 설명한다.Hereinafter, a greenhouse gas combustion apparatus according to a first embodiment of the present invention will be described in detail with reference to the accompanying drawings.

첨부도면 중 도 2는 본 발명 온실가스 연소장치의 사시도이고, 도 3은 본 발명 온실가스 연소장치의 분해사시도이다.2 is a perspective view of the present invention greenhouse gas combustion apparatus, Figure 3 is an exploded perspective view of the present invention greenhouse gas combustion apparatus.

상기 도면에서 도시하는 바와 같은 본 발명 온실가스 연소장치는 크게 챔버(110)와, 튜브(120)와, 극초단파 발생기(130)와, 발열체(140)와, 축열체(150)와, 단열재(160)를 포함하여 구성된다. The greenhouse gas combustion apparatus of the present invention as shown in the drawing is largely a chamber 110, a tube 120, a microwave generator 130, a heating element 140, a heat storage body 150, a heat insulating material 160 It is configured to include).

상기 챔버(110)는 내측에 밀폐공간을 형성하는 것으로, 상단부와 하단부에 각각 관통공(112)이 형성된다. The chamber 110 is to form a closed space inside, through holes 112 are formed in the upper end and the lower end, respectively.

상기 튜브(120)는 원통형의 몸체 양단부에 가스 공급관(122)과 배출관(124)이 형성된 것으로, 상기 가스 공급관(122)과 가스 배출관(124)이 상기 챔버(110)의 관통공(112)을 통해 외측으로 연장되도록 상기 챔버(110)의 내측에 설치되며, 사용 목적에 따라 저온용으로 사용할 경우에는 금속재질로 이루어지고, 고온용으로 사용할 경우에는 탄화규소(SiC)를 포함하는 비철금속 재질로 이루어진다. The tube 120 has a gas supply pipe 122 and an exhaust pipe 124 formed at both ends of the cylindrical body, and the gas supply pipe 122 and the gas discharge pipe 124 form a through hole 112 of the chamber 110. It is installed inside the chamber 110 so as to extend outward, and when used for low temperature according to the purpose of use, it is made of a metal material, and when used for high temperature, it is made of a non-ferrous metal material containing silicon carbide (SiC). .

상기 극초단파 발생기(130)는 상기 챔버(110)의 외측에 설치되어 극초단파(ultrahigh frequency:UHF)를 발진하는 마그네트론(132)(magnetron)과, 상기 챔버(110)와 마그네트론(132)의 사이에 배치되어 상기 마그네트론(132)으로부터 발생하는 극초단파를 챔버(110)의 내부공간을 향해 전달하는 도파관(134)으로 이루어진다. 상기 마그네트론(132)와 도파관(134)의 구성은 공지의 것이므로, 이에 대한 상세한 설명은 생략한다. The microwave generator 130 is disposed outside the chamber 110 and is disposed between the magnetron 132 (magnetron) for oscillating an ultrahigh frequency (UHF) and the chamber 110 and the magnetron 132. And a waveguide 134 for transmitting microwaves generated from the magnetron 132 toward the inner space of the chamber 110. Since the configuration of the magnetron 132 and the waveguide 134 is well known, a detailed description thereof will be omitted.

상기 발열체(140)는 탄화규소(SiC)로 이루어져 상기 극초단파 발생기(130)에서 조사되는 극초단파를 흡수하여 높은 온도로 발열하는 것으로, 상기 튜브(120)의 외측을 감싸도록 배치되며, 다수 마련되어 상기 튜브(120)의 길이방향으로 소정간격 이격배치된다. The heating element 140 is made of silicon carbide (SiC) to absorb the microwaves emitted from the microwave generator 130 to generate heat at a high temperature, is arranged to surround the outside of the tube 120, a plurality of the tubes It is spaced a predetermined interval in the longitudinal direction of (120).

상기 축열체(150)는 상기 발열체(140)의 양측에 배치되는 것으로, 지르코늄(zirconium) 재질로 이루어지며, 상기 발열체(140)로부터 발생하는 열을 흡수하였다가 방출함으로써 높은 온도를 유지할 수 있도록 한다.The heat accumulator 150 is disposed on both sides of the heating element 140, and is made of zirconium material, so as to absorb and release heat generated from the heating element 140 to maintain a high temperature. .

본 실시예의 도면에서는 상기 축열체(150)가 다수의 조각으로 이루어져 발열체(140)의 양측에 등간격으로 배치되는 것으로 도시하였으나, 링형의 형태로 이루어지는 것도 가능할 것이다. In the drawings of the present embodiment, the heat storage body 150 is formed of a plurality of pieces are shown to be arranged at equal intervals on both sides of the heating element 140, it will be also possible to form a ring-shaped.

상기 단열재(160)는 발열체(140)로부터 발생하는 열이 외부로 손실되는 것을 방지하기 위해 상기 챔버(110)의 내측면에 배치되는 것으로, 세라믹으로 이루어져 상기 발열체(140)와 축열체(150)의 외측을 감싸는 제1단열층(162)과, 단열재(160) 보드로 구성되어 상기 제1단열층(162)의 외측을 감싸는 제2단열층(164)과, 내열성 발포수지로 이루어져 상기 제2단열층(164)과 챔버(110)의 내측면 사이에 배치되는 제3단열층(166)으로 이루어진다.
The heat insulator 160 is disposed on the inner surface of the chamber 110 in order to prevent the heat generated from the heat generator 140 from being lost to the outside. The first insulation layer 162 surrounding the outer side of the, the heat insulating material 160, the board is composed of a second insulation layer 164 surrounding the outer side of the first insulation layer 162, and the heat-resistant foam resin made of the second insulation layer 164 ) And a third insulating layer 166 disposed between the inner surface of the chamber 110.

지금부터는 상술한 온실가스 연소장치의 제1실시예의 작동에 대하여 설명한다.The operation of the first embodiment of the above-described greenhouse gas combustion apparatus will now be described.

첨부도면 중 도 4는 본 발명 온실가스 연소장치의 단면도이다.4 is a cross-sectional view of the greenhouse gas combustion apparatus of the present invention.

상기 도면에서 도시하는 바와 같이, 밀폐된 내부공간을 제공하는 챔버(110)의 내측에 원통형 몸체를 갖는 튜브(120)가 설치되고, 상기 튜브(120)의 가스 공급관(122)과 가스 배출관(124)은 튜브(120)의 상단부와 하단부에 각각 형성된 관통공(112)을 통해 외부로 연장된다. As shown in the figure, a tube 120 having a cylindrical body is installed inside the chamber 110 providing a closed inner space, and the gas supply pipe 122 and the gas discharge pipe 124 of the tube 120 are installed. ) Extends to the outside through the through holes 112 formed in the upper and lower ends of the tube 120, respectively.

상기 튜브(120)의 외측면에는 튜브(120)를 감싸는 링형의 발열체(140)가 튜브(120)의 길이방향을 따라 소정간격 이격되도록 다수 배치되고, 튜브(120)의 길이방향을 따라 발열체(140)의 양측으로 축열체(150)가 각각 배치된다. A plurality of ring-shaped heating elements 140 surrounding the tube 120 are disposed on the outer side surface of the tube 120 so as to be spaced apart by a predetermined distance along the longitudinal direction of the tube 120, and the heating element (along the longitudinal direction of the tube 120) The heat storage bodies 150 are disposed on both sides of the 140, respectively.

그리고, 상기 발열체(140)와 축열체(150)의 외측과 챔버(110)의 내측면 사이에는 단열재(160)가 배치되어 발열체(140)로부터 발생하는 열에너지가 챔버(110) 외측으로 손실되는 것을 방지한다. In addition, a heat insulating material 160 is disposed between the outside of the heating element 140 and the heat storage element 150 and the inner surface of the chamber 110 so that thermal energy generated from the heating element 140 is lost to the outside of the chamber 110. prevent.

이러한 단열재(160)는 단열성능을 향상시키기 위해 다수의 층으로 이루어지며, 세라믹 재질로 이루어지는 제1단열층(162)이 고온의 발열체(140)와 접하는 부분에 배치되고, 단열재(160) 보드로 구성되는 제2단열층(164)이 제1단열층(162)의 외측을 감싸도록 배치되고, 내열성 발포수지로 이루어지는 제3단열층(166)이 제2단열층(164)의 외측과 챔버(110)의 내측면 사이에는 배치된다. The heat insulator 160 is formed of a plurality of layers to improve the heat insulating performance, the first heat insulating layer 162 made of a ceramic material is disposed in contact with the high temperature heating element 140, the heat insulating material 160 is composed of a board The second insulating layer 164 is disposed so as to surround the outside of the first insulating layer 162, the third insulating layer 166 made of a heat-resistant foam resin is the outside of the second insulating layer 164 and the inner surface of the chamber 110. It is arranged in between.

상기 챔버(110)의 외측면에는 도파관(134)과 마그네트론(132)으로 구성되는 극초단파 발생기(130)가 다수 설치되어 챔버(110)의 내부공간을 향해 극초단파를 공급한다. On the outer surface of the chamber 110 is provided with a plurality of microwave generator 130 consisting of a waveguide 134 and a magnetron 132 to supply microwaves toward the inner space of the chamber 110.

즉, 마그네트론(132)에서 발생하는 극초단파는 도파관(134)을 통해 챔버(110) 내부공간으로 공급되는데, 이러한 극초단파는 탄화규소(SiC)재질로 이루어지는 발열체(140)가 흡수하여 고온으로 발열하면서 튜브(120)를 고온으로 가열한다. That is, microwaves generated from the magnetron 132 are supplied to the inner space of the chamber 110 through the waveguide 134, and the microwaves are absorbed by the heating element 140 made of silicon carbide (SiC) material and heated to a high temperature. Heat 120 to high temperature.

이때, 상기 탄화규소재질로 이루어지는 발열체(140)는 극초단파를 흡수하여 단시간에 약 1700~1800℃로 발열하므로, 종래와 같이 챔버(110)의 내경을 작게 하거나 길이를 길게 하지 않아도 되므로 설치공간을 최소화할 수 있을 뿐만 아니라, 에너지 이용효율을 향상시킬 수 있으므로, 유해가스 처리에 소요되는 비용을 절감할 수 있게 된다. At this time, the heating element 140 made of the silicon carbide material absorbs microwaves and generates heat at about 1700 to 1800 ° C. in a short time. In addition to improving energy efficiency, energy consumption can be reduced.

또한, 발열체(140)의 양측으로 각각 배치되는 축열체(150)는 발열체(140)에서 발생하는 열을 흡수하였다가 방출하는 것이므로, 높은 온도를 유지하는데 많은 에너지를 소모하지 않아도 되는 이점을 제공한다. 한편, 상기와 같은 축열체(150)는 지르코늄(zirconium)으로 이루어져 근적외선을 방출하므로 유해가스의 가열효율을 향상시킬 수 있다. In addition, since the heat accumulators 150 disposed on both sides of the heat generating element 140 absorb and release heat generated from the heat generating element 140, they provide an advantage of not having to consume a lot of energy to maintain a high temperature. . On the other hand, the heat accumulator 150 as described above is made of zirconium (zirconium) to emit near infrared rays can improve the heating efficiency of the harmful gas.

따라서, 가스 공급관(122)을 통해 튜브(120)의 내측으로 공급되는 유해 가스는 튜브(120)의 외측에 설치된 발열체(140)에 의해 고온으로 유지되는 튜브(120)의 내측을 통과하면서 연소되고, 무해한 가스 상태로 배출관(124)을 통해 배출된다. Therefore, the harmful gas supplied to the inside of the tube 120 through the gas supply pipe 122 is burned while passing through the inside of the tube 120 maintained at a high temperature by the heating element 140 installed outside the tube 120. , Is discharged through the discharge pipe 124 in a harmless gas state.

한편, 상기 튜브(120)는 사용 목적에 따라 저온용으로 사용하는 경우에는 튜브(120)를 금속재질로 구성하고, 고온용으로 사용하는 경우에는 탄화규소(SiC)를 포함하는 비철금속 재질로 구성하는 것이 가능하다. On the other hand, the tube 120 is composed of a non-ferrous metal material containing silicon carbide (SiC) when the tube 120 is made of a metal material when used for low temperature, and used for high temperature according to the purpose of use It is possible.

즉, 탄화규소를 포함하는 재질로 튜브(120)를 구성하는 경우, 튜브(120)가 극초단파를 흡수하면서 발열하여 튜브(120) 내측을 통과하는 유해가스를 직접 가열하게 되므로 가열효과를 향상시킬 수 있다.
That is, when the tube 120 is made of a material containing silicon carbide, the tube 120 absorbs microwaves and generates heat, thereby directly heating the harmful gas passing through the tube 120, thereby improving the heating effect. have.

본 발명의 권리범위는 상술한 실시예에 한정되는 것이 아니라 첨부된 특허청구범위 내에서 다양한 형태의 실시예로 구현될 수 있다. 특허청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 누구든지 변형 가능한 다양한 범위까지 본 발명의 청구범위 기재의 범위 내에 있는 것으로 본다.The scope of the present invention is not limited to the above-described embodiment, but may be embodied in various forms of embodiments within the scope of the appended claims. Without departing from the gist of the invention claimed in the claims, it is intended that any person skilled in the art to which the present invention pertains falls within the scope of the claims described in the present invention to various extents which can be modified.

110:챔버, 112:관통공, 120:튜브, 122:공급관, 124:배출관,
130:극초단파 발생기, 132:마그네트론, 134:도파관, 140:발열체,
150:축열체, 160:단열재, 162:제1단열층, 164:제2단열층, 166:제3단열층
110: chamber, 112: through-hole, 120: tube, 122: supply pipe, 124: discharge pipe,
130: microwave generator, 132: magnetron, 134: waveguide, 140: heating element,
150: heat storage body, 160: heat insulating material, 162: first heat insulating layer, 164: second heat insulating layer, 166: third heat insulating layer

Claims (7)

상기 튜브와 발열체를 감싸 밀폐공간을 형성하는 챔버;
상기 챔버의 내측에 설치되며 가스 공급관과 배출관이 상기 챔버의 외측으로 연장되는 튜브;
상기 챔버의 외측에 설치되어 상기 챔버의 내측을 향해 극초단파를 제공하는 극초단파 발생기;
상기 튜브의 외측 일부를 감싸도록 배치되고, 상기 극초단파를 흡수하여 높은 온도로 발열하는 적어도 하나의 발열체;를 포함하는 온실가스 연소장치.
A chamber surrounding the tube and the heating element to form a closed space;
A tube installed inside the chamber and having a gas supply pipe and a discharge pipe extending out of the chamber;
A microwave generator provided outside the chamber to provide microwaves toward the inside of the chamber;
And at least one heating element disposed to surround an outer portion of the tube and absorbing the microwaves and generating heat at a high temperature.
제 1항에 있어서,
상기 발열체는 다수 마련되고, 상기 튜브의 외측면에서 서로 이격 배치되는 것을 특징으로 하는 온실가스 연소장치.
The method of claim 1,
The heating element is provided with a plurality, greenhouse gas combustion apparatus, characterized in that spaced apart from each other on the outer surface of the tube.
제 2항에 있어서,
상기 발열체의 양측에 배치되는 축열체를 더 포함하는 것을 특징으로 하는 온실가스 연소장치.
The method of claim 2,
Greenhouse gas combustion apparatus further comprises a heat storage body disposed on both sides of the heating element.
제 3항에 있어서,
상기 극초단파 발생기는 극초단파를 발생하는 마그네트론과, 상기 마그네트론에서 발생하는 극초단파를 챔버 내부공간으로 전달하는 도파관으로 이루어지는 것을 특징으로 하는 온실가스 연소장치.
The method of claim 3,
The microwave generator is a greenhouse gas combustion apparatus comprising a magnetron for generating microwaves, and a waveguide for delivering microwaves generated from the magnetron to an interior space of the chamber.
제 4항에 있어서,
상기 챔버와 튜브 사이에 배치되는 단열재를 더 포함하는 것을 특징으로 하는 온실가스 연소장치.
The method of claim 4, wherein
Greenhouse gas combustion apparatus further comprises a heat insulating material disposed between the chamber and the tube.
제 3항에 있어서,
상기 튜브는 탄화규소(SiC)를 포함하는 비철금속 재질로 이루어지는 것을 특징으로 하는 온실가스 연소장치.
The method of claim 3,
The tube is a greenhouse gas combustion apparatus, characterized in that made of a non-ferrous metal material containing silicon carbide (SiC).
제 3항에 있어서,
상기 발열체는 탄화규소(SiC)로 이루어지는 것을 특징으로 하는 온실가스 연소장치.
The method of claim 3,
The heating element is a greenhouse gas combustion apparatus, characterized in that made of silicon carbide (SiC).
KR1020100061480A 2010-06-28 2010-06-28 Combustion apparatus for green house gases KR101266920B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020100061480A KR101266920B1 (en) 2010-06-28 2010-06-28 Combustion apparatus for green house gases
PCT/KR2011/004688 WO2012002693A2 (en) 2010-06-28 2011-06-28 Apparatus for burning greenhouse gases

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100061480A KR101266920B1 (en) 2010-06-28 2010-06-28 Combustion apparatus for green house gases

Publications (2)

Publication Number Publication Date
KR20120000940A true KR20120000940A (en) 2012-01-04
KR101266920B1 KR101266920B1 (en) 2013-05-28

Family

ID=45402538

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100061480A KR101266920B1 (en) 2010-06-28 2010-06-28 Combustion apparatus for green house gases

Country Status (2)

Country Link
KR (1) KR101266920B1 (en)
WO (1) WO2012002693A2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101231614B1 (en) * 2012-09-25 2013-02-13 주식회사 세종플랜트 Microwave-induced volatile organic compound quality removal device
KR101440142B1 (en) * 2013-03-27 2014-09-12 김필성 thermal decomposition apparatus with microwave
KR101476270B1 (en) * 2013-05-13 2014-12-24 주식회사 엔바이온 Regenerative Thermal Oxidizer
WO2015186866A1 (en) * 2014-06-05 2015-12-10 김필성 Dry distillation gas fluidized bed pyrolysis gasification combustion device using microwaves
KR20210051791A (en) 2019-10-31 2021-05-10 성신양회 주식회사 Greenhouse Gas Decomposition and Immobilization System Including Cement Kiln
KR20210051796A (en) 2019-10-31 2021-05-10 성신양회 주식회사 Greenhouse Gas Decomposition and Immobilization System Using Waste Derived Liquid Fuel

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2734823B2 (en) * 1991-08-28 1998-04-02 松下電器産業株式会社 Noxious gas heating purification equipment
JPH05315070A (en) * 1992-05-01 1993-11-26 Ryoji Watabe Deodorizing smoke consumer using dielectric heating element
JPH06235312A (en) * 1992-07-31 1994-08-23 Matsushita Electric Ind Co Ltd Exhaust gas purifying facility
KR100794236B1 (en) * 2005-10-21 2008-01-15 (주)제이디이엔지 Exahaust gas processing device for Energy Efficient using of Microwave electric heating element

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101231614B1 (en) * 2012-09-25 2013-02-13 주식회사 세종플랜트 Microwave-induced volatile organic compound quality removal device
KR101440142B1 (en) * 2013-03-27 2014-09-12 김필성 thermal decomposition apparatus with microwave
KR101476270B1 (en) * 2013-05-13 2014-12-24 주식회사 엔바이온 Regenerative Thermal Oxidizer
WO2015186866A1 (en) * 2014-06-05 2015-12-10 김필성 Dry distillation gas fluidized bed pyrolysis gasification combustion device using microwaves
KR20210051791A (en) 2019-10-31 2021-05-10 성신양회 주식회사 Greenhouse Gas Decomposition and Immobilization System Including Cement Kiln
KR20210051796A (en) 2019-10-31 2021-05-10 성신양회 주식회사 Greenhouse Gas Decomposition and Immobilization System Using Waste Derived Liquid Fuel

Also Published As

Publication number Publication date
WO2012002693A3 (en) 2012-05-03
KR101266920B1 (en) 2013-05-28
WO2012002693A2 (en) 2012-01-05

Similar Documents

Publication Publication Date Title
KR101266920B1 (en) Combustion apparatus for green house gases
ES2653255T3 (en) Biomass gasifier flushed with microwave plasma and its process
RU2613378C1 (en) Self-regenerative integrated device for synergetic oxidation of low concentration gas and ventilation gas in coal mine
KR100822048B1 (en) Apparatus using plasma torch to treat the hazadous waste gas
KR100965491B1 (en) Complex plasma generating device
RU2573872C1 (en) Barrel-type device for decomposition of coal material
KR101879244B1 (en) Plasma system for treatment of semiconductor waste gas CF4
CN104437065B (en) A kind for the treatment of system of heating using microwave ammoniacal liquor reduction denitration and denitration method for flue gas thereof
KR102567698B1 (en) Plasma scrubber having insulation structure on the inner surface of the reaction chamber and method for manufacturing the same
KR101832666B1 (en) Plasma torch for treatment of semiconductor waste gas
RU2015120352A (en) THERMAL TREATMENT OF CARBON-CONTAINING WASTE IMPROVED BY THE INJECTED GASES
CN103272464B (en) A kind of processing method of ozone tail gas and device
KR101427301B1 (en) Moisture removing apparatus for scrubber and scrubber including the same
RU2398810C1 (en) Pyrolysis reactor
KR101099133B1 (en) Combustible gas scrubber using gliding plasma
KR101440142B1 (en) thermal decomposition apparatus with microwave
CN102494543A (en) Tunnel kiln waste heat recovery device and method
KR101142184B1 (en) Plasma torch
RU2012132753A (en) INSTALLATION OF THERMAL CATALYTIC WASTE DISPOSAL
JP2009210210A (en) Exhaust gas decomposing device
CN204275805U (en) A kind for the treatment of system of heating using microwave ammoniacal liquor reduction denitration
KR101227441B1 (en) System for scrubing exhausted gas
RU2009113873A (en) PYROLYSIS COMPLEX FOR DISPOSAL OF SOLID DOMESTIC WASTE
CN204544956U (en) The equipment of a kind of heat accumulating type microwave treatment rubbish or coal
CN203586777U (en) Wind separating device for movable tunnel kiln

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
N231 Notification of change of applicant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160418

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170418

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180411

Year of fee payment: 6