KR20110134028A - Dehydration material of sludge with high water containing rate and method of the same using - Google Patents

Dehydration material of sludge with high water containing rate and method of the same using Download PDF

Info

Publication number
KR20110134028A
KR20110134028A KR1020100053776A KR20100053776A KR20110134028A KR 20110134028 A KR20110134028 A KR 20110134028A KR 1020100053776 A KR1020100053776 A KR 1020100053776A KR 20100053776 A KR20100053776 A KR 20100053776A KR 20110134028 A KR20110134028 A KR 20110134028A
Authority
KR
South Korea
Prior art keywords
sludge
high water
weight
parts
water content
Prior art date
Application number
KR1020100053776A
Other languages
Korean (ko)
Other versions
KR101182607B1 (en
Inventor
박원춘
이화영
이난희
문경주
조상민
Original Assignee
주식회사 씨엠디기술단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 씨엠디기술단 filed Critical 주식회사 씨엠디기술단
Priority to KR1020100053776A priority Critical patent/KR101182607B1/en
Publication of KR20110134028A publication Critical patent/KR20110134028A/en
Application granted granted Critical
Publication of KR101182607B1 publication Critical patent/KR101182607B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/14Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents
    • C02F11/143Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents using inorganic substances
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/14Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents
    • C02F11/143Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents using inorganic substances
    • C02F11/145Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents using inorganic substances using calcium compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing

Abstract

PURPOSE: A dehydrating material for sludge of a high water containing rate and a method for dehydrating the sludge of the high water containing rate are provided to reduce the generation of bad odor by effectively suppressing the generation of ammonia. CONSTITUTION: A dehydrating material for sludge of a high water containing rate includes 100 parts by weight of alkaline chemicals and 20-200 parts by weight of oxidizing chemicals. The alkaline chemicals are composed of calcined dolomite or quick lime. The oxidizing chemicals are composed of sodium alum, potassium alum, or aluminum sulfate. The dehydrating material for sludge of a high water containing rate further includes 250-1000 parts by weight of incineration residues based on 100 parts by weight of the alkaline chemicals. The calcium oxide content of the incineration residues is between 20 and 70%.

Description

고함수 슬러지 탈수재 및 이를 이용한 고함수 슬러지의 탈수방법{DEHYDRATION MATERIAL OF SLUDGE WITH HIGH WATER CONTAINING RATE AND METHOD OF THE SAME USING}High Water Sludge Dewatering Material and High Water Sludge Dewatering Method Using the Same

본 발명은 고함수 슬러지 탈수재 및 이를 이용한 탈수방법에 관한 것으로서, 보다 상세하게는 중화열과 CaO의 수화반응에 의한 발열 및 탈수 작용을 이용한 고함수 슬러지 탈수재 및 이를 이용한 탈수방법에 관한 것이다. The present invention relates to a high water content sludge dewatering material and a dewatering method using the same, and more particularly, to a high water content sludge dewatering material using exothermic and dewatering action by hydration reaction of neutralization heat and CaO.

함수율이 높은 하수슬러지, 폐수 슬러지, 정수 슬러지, 준설슬러지 및 진흙슬러지는 대표적인 환경오염물질로서, 종래에는 해양투기, 매립 등의 방법으로 처리되어 왔으며, 현재 그 오염물질들에 의해 오염된 환경을 복원시키는 여러 가지 방안이 현재 마련되고 있는 실정이다.Sewage sludge, wastewater sludge, purified water sludge, dredged sludge and mud sludge with high moisture content are representative environmental pollutants, which have been treated by ocean dumping, landfilling, etc., and now restore the environment contaminated by the pollutants. There are many ways to make it happen.

일례로 하루 6,000t 이상 배출되고 있는 생활하수 슬러지는 2003년 7월부터 일반 쓰레기 매립장 처리가 금지되었고, 가장 처리하기가 용이했던 해양투기마저 런던 덤핑 조약으로 2011년까지만 제한적으로 허용되고 있다.For example, sewage sludge discharged more than 6,000 tons per day has been banned from landfills since July 2003, and even the most easily disposed of dumping at sea is a London dumping treaty.

특히 국토가 좁은 우리나라는 주위환경의 오염을 방지시키고 슬러지에서 발생하는 침출수에 환경이 오염되지 않도록 효율적이고 안전한 처리방법이 시급히 모색되어야 한다.In particular, Korea, which has a narrow territory, should urgently seek efficient and safe treatment methods to prevent pollution of the surrounding environment and to prevent contamination of the leachate from sludge.

현재 수도권 매립지를 비롯한 전국의 지자체에서는 고함수 슬러지의 함수율을 저감시켜 복토재, 성토재, 차수재, 뒷채움재 등 다양한 지반용 재료로 사용할 수 있는 인공토양을 제조하는 탈수시설을 준비하고 있으며, 이와 관련하여 수분이 많은 슬러지의 탈수처리가 효율적으로 이루어지면서 생산성, 경제성의 측면에서 우수한 탈수재의 개발이 긴요한 실정이다.Currently, local governments around the country, including metropolitan landfills, are preparing a dehydration facility that manufactures artificial soil that can be used as a variety of ground materials such as cover soils, landfills, backfills, and backfills by reducing the water content of high-water sludges. As the dewatering treatment of the watery sludge is efficiently carried out, the development of excellent dehydrating materials in terms of productivity and economics is critical.

종래의 하수슬러지 탈수재의 연구는 생석회, 시멘트 등의 강알칼리성 재료를 주로 사용함에 따라 냄새 및 재슬러리화 문제점을 야기하였을 뿐만 아니라 이를 보완하기 위해 고가의 황산 및 황산철 등의 산성재료를 추가 투입하여 암모니아 방출 저감을 꾀하였으나 투입되는 원재료의 가격이 높아 경제성이 부족하다. 또한, 상기의 재료적 결함을 보완하기 위해 처리장치의 건조 및 양생을 통해 문제를 해결하려 시도하였으나 처리 자체가 고비용을 유발하는 구조를 가지고 있고 가열 양생 플랜트의 원활한 가동이 어려운 실정이다.Conventional research on sewage sludge dewatering materials has caused problems of odor and reslurrying due to the use of strong alkaline materials such as quicklime and cement, as well as the addition of expensive acidic materials such as sulfuric acid and iron sulfate to supplement them. Although it aims to reduce ammonia emissions, it is not economically viable due to the high price of raw materials. In addition, attempts to solve the problem through the drying and curing of the treatment apparatus to compensate for the above material defects, but the treatment itself has a structure that causes a high cost and it is difficult to operate the heating curing plant smoothly.

특히, 시멘트 및 생석회는 석회석(CaCO3, CaO·CO2)의 CO2 분해를 위한 하소공정에서 약 0.55톤, 소성 공정에서 화석 연료의 연소 시 약 0.40톤의 이산화탄소를 배출되므로 결국 1톤의 시멘트 및 생석회를 생산할 때마다 약 1톤의 이산화탄소가 배출되는 재료로 대기 중 CO2 농도와 시멘트 및 생석회 생산량은 매우 상관성이 높다. In particular, CO 2 of cement and calcium oxide is limestone (CaCO 3, CaO · CO 2 ) About 0.55 tons of carbon dioxide is emitted in the calcining process for decomposition, and about 0.40 tons of carbon dioxide is burned when burning fossil fuel in the firing process, and thus, about 1 ton of carbon dioxide is produced every time 1 ton of cement and quicklime is produced. 2 The concentration and the production of cement and quicklime are highly correlated.

본 발명은 상술한 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 목적은 중화열과 CaO의 수화반응에 의한 발열 및 탈수 작용을 이용한 고함수 슬러지 탈수재 및 이를 이용한 탈수방법를 제공함에 있다. The present invention has been made to solve the above-mentioned problems, an object of the present invention is to provide a high-functional sludge dehydrating material using the exothermic and dehydrating action by the hydration reaction of the heat of neutralization and CaO and a dewatering method using the same.

위와 같은 기술적 과제를 해결하기 위하여 본 발명에 의한 고함수 슬러지 탈수재는 경소백운석 또는 생석회 중 적어도 어느 하나로 이루어진 알칼리제 100중량부에 대하여, 나트륨 명반, 칼륨 명반, 황산반토 중 적어도 어느 하나로 이루어진 산화제 20~200중량부를 포함한다. In order to solve the above technical problem, the high water content sludge dewatering material according to the present invention is based on 100 parts by weight of an alkali agent made of at least one of light dolomite or quicklime, and an oxidizing agent made of at least one of sodium alum, potassium alum and alumina sulfate 20 to 200 It includes parts by weight.

또한 상기 알칼리제 100중량부에 대하여, 산화칼슘(CaO) 함량이 20%~70%인 소각잔재 250~1,000중량부가 더 포함되는 것이 바람직하다. In addition, it is preferable to further include 250 to 1,000 parts by weight of the incineration residue having a calcium oxide (CaO) content of 20% to 70% with respect to 100 parts by weight of the alkali chemicals.

또한 상기 소각잔재는 석탄재, 바이오매스 소각잔재, 하수슬러지 소각잔재, 제지 슬러지 소각잔재, RDF(Refuse Derived Fuel) 소각잔재 및 RPF(Refuse Plastic Fuel) 소각잔재로 이루어진 군에서 선택된 어느 하나이거나 둘 이상의 혼합물인 것이 바람직하다.In addition, the incineration residue is one or a mixture of two or more selected from the group consisting of coal ash, biomass incineration residue, sewage sludge incineration residue, paper sludge incineration residue, RDF (Refuse Derived Fuel) incineration residue and RPF (Refuse Plastic Fuel) incineration residue. Is preferably.

본 발명에 의한 고함수 슬러지 탈수방법은 1) 제1항 내지 제3항 중 어느 한 항의 탈수재를 제조하는 단계; 2) 고함수슬러지 100중량부에 대하여, 상기 탈수재 5~100중량부를 혼합하는 단계; 및 3) 상기 고함수슬러지와 탈수재의 혼합물을 양생하는 단계;를 포함한다. High water sludge dewatering method according to the present invention comprises the steps of 1) preparing the dehydrating material of any one of claims 1 to 3; 2) mixing 5 to 100 parts by weight of the dehydrating material with respect to 100 parts by weight of high water content sludge; And 3) curing the mixture of the high water content sludge and the dehydrating material.

또한 상기 3)단계는 상기 혼합물을 상온양생 또는 가열양생하여 수행되는 것이 바람직하다. In addition, step 3) is preferably carried out by room temperature curing or heating curing the mixture.

또한 상기 슬러지는 하수슬러지, 폐수슬러지, 정수슬러지, 진흙슬러지 및 준설슬러지 중 어느 하나이거나 또는 둘 이상의 혼합물인 것이 바람직하다. In addition, the sludge is preferably any one of sewage sludge, wastewater sludge, purified water sludge, mud sludge and dredging sludge or a mixture of two or more.

본 발명에 따르면, 알칼리제와 산화제의 반응에 의해 발생되는 중화열을 이용하여 고함수 슬러지의 함수율이 급격히 낮아지는 효과가 있다. According to the present invention, there is an effect that the water content of the high functional sludge is sharply lowered by using the heat of neutralization generated by the reaction of the alkali agent and the oxidant.

더욱이, 경소백운석 및 생석회, 또는 소각잔재 등에 함유된 CaO의 수화반응에 의한 발열 및 탈수 작용으로 함수율 저감효과가 증대된다. Furthermore, the effect of reducing moisture content is increased by the exothermic and dehydration action of CaO contained in light dolomite and quicklime or incineration residues.

또한 pH를 약알칼리로 조절하여 암모니아 발생을 효과적으로 억제함으로써 악취저감이 가능하다. In addition, by adjusting the pH to weak alkali effectively suppress the generation of ammonia is possible to reduce the odor.

도 1은 본 발명에 의한 탈수재와 고함수 슬러지의 혼합물을 나타낸 사진이다.
도 2는 비교예로서 산화제를 사용하지 않고 생석회와 소각잔재만을 사용한 탈수재와 고함수 슬러지의 혼합물을 나타낸 사진이다.
1 is a photograph showing a mixture of a dehydrating material and a high water content sludge according to the present invention.
2 is a photograph showing a mixture of a dehydrating material and a high function sludge using only quicklime and incineration residues without using an oxidizing agent as a comparative example.

이하, 본 발명에 의한 고함수 슬러지 탈수재 및 이를 이용한 탈수방법을 구체적으로 설명한다. Hereinafter, a high water content sludge dewatering material and a dewatering method using the same according to the present invention will be described in detail.

먼저, 본 발명에 의한 고함수 슬러지 탈수재의 구성성분 및 작용을 설명한다. First, the components and actions of the high water content sludge dewatering material according to the present invention will be described.

본 발명에 의한 고함수 슬러지 탈수재는 경소백운석 또는 생석회 중 적어도 어느 하나로 이루어진 알칼리제와 나트륨 명반, 칼륨 명반, 황산반토 중 적어도 어느 하나로 이루어진 산화제를 포함한다. The high water content sludge dewatering material according to the present invention includes an alkali agent made of at least one of light dolomite or quicklime and an oxidizing agent made of at least one of sodium alum, potassium alum and alumina sulfate.

상기 알칼리제와 산화제가 고함수 슬러지에 함유된 물과 반응하게 되면 중화반응이 일어난다. When the alkali and oxidants react with water contained in the high-functional sludge, a neutralization reaction occurs.

황산염 물질인 산화제와 생석회 및 경소 백운석 등의 알칼리제는 물과 접촉 시 급격한 반응을 일으키며 중화열이 발생되는데, 이러한 중화열에 의해 고함수 슬러지에 포함된 수분이 증발되어 함수율이 저하된다. Oxidizing agents such as sulphates, alkalis such as quicklime and light dolomite cause rapid reactions and generate heat of neutralization. These heats lower the water content due to evaporation of the water contained in the high functional sludge.

또한 상기 산화제는 알칼리제와의 중화반응을 일으키는 역할뿐 아니라 응집효과를 발휘하여 고함수 슬러지와 혼합시 설비에 부착되는 것을 방지하여 설비가동성을 향상시키는 역할도 한다. In addition, the oxidizing agent not only plays a role of causing a neutralization reaction with the alkaline agent, but also exerts a cohesive effect to prevent adhesion to the facility when mixed with high-functional sludge, thereby improving facility mobility.

상기 알칼리제와 산화제의 혼합비율은 알칼리제 100중량부에 대하여 20~200중량부가 바람직하다. 상기 산화제가 20중량부 미만이면 중화반응이 충분히 일어나지 않아 중화열 발생량이 적을 뿐만 아니라 pH의 저하효과도 나타나지 않는다. 또한 상기 산화제가 200중량부 초과인 경우에 중화열 발생량이 적어 수분증발 효과도 기대에 미치지 못하며, pH는 급격히 낮아져 암모니아 저감효과는 나타나지만 반대로 강산성을 띄는 문제가 있다. The mixing ratio of the alkali agent and the oxidant is preferably 20 to 200 parts by weight based on 100 parts by weight of the alkali agent. If the oxidizing agent is less than 20 parts by weight, the neutralization reaction does not occur sufficiently, so that the amount of neutralization heat is not generated and the effect of lowering the pH does not appear. In addition, when the oxidizing agent is more than 200 parts by weight, the amount of neutralization heat is generated so that the water evaporation effect is also less than expected, the pH is sharply lowered to reduce the ammonia, but on the contrary, it has a strong acidity.

본 발명에 의한 탈수재는 산화칼슘(CaO) 함량이 20%~70%인 소각잔재를 더 포함한다. The dehydrating material according to the present invention further includes an incineration residue having a calcium oxide (CaO) content of 20% to 70%.

소각잔재에 다량 함유된 산화칼슘은 물과 반응하여 흡수, 발열 및 팽창하여 수산화칼슘이 된다. 따라서 고함수 슬러지의 함수율을 저감시킬 수 있는 것이다. 이에 대한 반응식은 아래와 같다. Calcium oxide contained in a large amount in the incineration residue reacts with water to be absorbed, exothermic, and expand to form calcium hydroxide. Therefore, the water content of the high functional sludge can be reduced. The reaction scheme is as follows.

CaO+ H2O->Ca(OH)2+15.6kcal mol-1 CaO + H 2 O-> Ca (OH) 2 + 15.6kcal mol -1

이러한 산화칼슘은 상기 경소백운석과 생석회 등에도 함유되어 있지만, 산화칼슘 함유량이 20%이상인 소각잔재를 활용하는 것이 원가절감과 환경적 측면에서도 바람직하다. Although such calcium oxide is contained in the light dolomite, quicklime, and the like, it is preferable to utilize incineration residue having a calcium oxide content of 20% or more in terms of cost reduction and environmental aspects.

통상 소각잔재는 콘크리트 혼화재료로 재활용됨에도 불구하고, 위와 같이 산화칼슘이 다량 함유된 소각잔재는 흡수, 발열 및 팽창 특성이 있어 콘크리트 혼화재료로 활용이 불가능하다. Although incineration residues are generally recycled to concrete admixtures, incineration residues containing a large amount of calcium oxide are incapable of being used as concrete admixtures because of their absorption, heat generation, and expansion characteristics.

따라서 본 발명은 콘크리트 혼화재료로 활용이 불가능한 소각잔재들을 이용하는 것이다. Therefore, the present invention is to use incineration residues that can not be utilized as a concrete admixture.

즉, 함수율이 높은 슬러지에 산화칼슘이 다량 함유된 소각잔재를 혼합하면, 위의 반응으로 수산화칼슘이 생성되면서 슬러지의 수분이 저감되는 것이다. 또한 역시 위의 반응으로 발생되는 열이 슬러지의 수분을 증발시키기 때문에 더욱 더 슬러지의 함수율을 저감시킬 수 있게 되는 것이다. 한편, 산화칼슘이 20%이상 함유된 소각잔재는 석탄재, 바이오매스 소각잔재, 하수슬러지 소각잔재, 제지슬러지 소각잔재, RDF(Refuse Derived Fuel) 소각잔재 및 RPF(Refuse Plastic Fuel) 소각잔재 등이다. That is, when the incineration residue containing a large amount of calcium oxide is mixed with the sludge having a high water content, the water of the sludge is reduced while calcium hydroxide is produced by the above reaction. In addition, since the heat generated by the above reaction evaporates the water of the sludge, it is possible to further reduce the water content of the sludge. Incineration residues containing 20% or more of calcium oxide include coal ash, biomass incineration residue, sewage sludge incineration residue, paper sludge incineration residue, RDF (Refuse Derived Fuel) incineration residue and RPF (Refuse Plastic Fuel) incineration residue.

상기 석탄재는 발전소에서 많이 생성되는데, 특히, 노내 탈황방식을 갖는 발전소에서 생성되는 석탄재가 산화칼슘의 함유량이 높다. 노내 탈황방식의 경우, 석탄과 석회석을 혼합연소하기 때문에 석탄재에 다량의 Free CaO가 함유되게 된다. The coal ash is produced a lot in the power plant, in particular, the coal ash produced in the power plant having a desulfurization method in the furnace has a high content of calcium oxide. In the furnace desulfurization method, coal and limestone are mixed and burned, so the coal ash contains a large amount of free CaO.

이와 달리 별도의 탈황설비를 갖는 발전소에서 생성되는 석탄재는 산화칼슘이 약 7% 미만이다. In contrast, coal ash produced in power plants with separate desulfurization facilities has less than about 7% calcium oxide.

별도의 습식 탈황설비를 갖춘 발전소 석탄재와 노내 탈황방식에 의한 발전소 석탄재의 차이점을 표 1에 나타내었다. Table 1 shows the differences between coal ash in power plants with separate wet desulfurization equipment and coal ash in power plants by furnace desulfurization.

항 목Item 별도의 탈황설비를 갖춘 발전소 석탄재Power plant coal ash with separate desulfurization 노내Furnace 탈황방식을 하는 발전소 석탄재 Desulfurization Power Plant Coal Ash 연소 연료 Combustion fuel 석탄(수입 유연탄)Coal (Import Bituminous Coal) 석탄, 석회석, 폐타이어(일부발전소)Coal, limestone, waste tire (some power plants) 연소 온도Combustion temperature 약 1350℃
-연소효율이 높아 경제적 발전소 운전, 석탄재 발생비율 감소 및 고품질석탄재 배출
About 1350 ℃
-High combustion efficiency for economic power plant operation, reduction of coal ash generation rate and high quality coal ash discharge
약 850℃
-탈탄산반응 온도범위이면서 질산화물 배출 감소
About 850 ℃
-Nitrogen emission reduction while decarbonation temperature range
배기가스 탈황 설비Exhaust Gas Desulfurization Facility 별도 습식탈황설비 구비Separate wet desulfurization facility 석회석 혼소로 탈황반응Desulfurization Reaction with Limestone Mixture 배기가스 탈질 설비Exhaust gas denitrification plant 별도 탈질설비 구비Separate denitrification equipment 낮은 연소온도 유지 및 보일러에 암모니아 및 기타 약품 분무Maintain low combustion temperatures and spray ammonia and other chemicals into boilers 화학성분Chemical composition SiO2 , Al2O3 , Fe2O3 SiO 2 , Al 2 O 3 , Fe 2 O 3 석회석 혼소로 인해
Free CaO 성분이 높다.
Due to limestone mixing
High free CaO component.
유리화정도Vitrification Degree 높다high 낮다low 주 재활용 용도Main recycling purpose 콘크리트혼화재로 성수기
발생전량 재활용
Peak season with concrete admixture
Recycle all generation
점토 대체용 시멘트원료,
장거리 운송을 통한 폐기물처리장 매립
Clay substitute cement raw material,
Landfill of waste disposal site through long distance transportation
콘크리트혼화재로 사용시 장점 및 문제점 Advantages and problems of using concrete admixture - 포졸란활성으로 장기강도 증진
- 작업성개선
- 단위수량 감소(내구성, 강도 향상)
- 수화열 감소(구조물 크랙 방지)
-Increased long-term strength with pozzolanic activity
- Improved workability
-Reduced unit quantity (durability, improved strength)
-Reduced heat of hydration (structure crack prevention)
- Free CaO 발열반응
- 단위수량 증가(강도, 내구성 하락)
- 수화열 증가(구조물 크랙발생)
- 작업성 하락
-Free CaO exothermic reaction
-Unit quantity increase (strength, durability decline)
-Increased heat of hydration (structure cracking)
-Reduced workability
기타Etc KS L 5405 적합제품 발생KS L 5405 conformity product generation 가공을 해도 KS L 5405 화학성분, 물리성능을 만족하지 않음Do not satisfy the chemical composition and physical performance of KS L 5405

즉, 노내 탈황방식으로 생성되는 석탄재는 산화칼슘이 다량 함유되어 있으나, 별도의 탈황장치를 갖춘 설비에서 생성되는 석탄재는 산화칼슘이 매우 적은 양이 함유되어 있다. 따라서 상술한 바와 같이, 별도의 탈황장치를 갖춘 설비에서 생성되는 석탄재는 산화칼슘이 미량 함유되어 있어 발열 및 흡수 성질이 없어 콘크리트 혼화재료로서 재활용이 가능한 것이다. That is, the coal ash produced by the furnace desulfurization method contains a large amount of calcium oxide, but the coal ash produced in a facility equipped with a separate desulfurization device contains a very small amount of calcium oxide. Therefore, as described above, the coal ash produced in the facility equipped with a separate desulfurization device contains a small amount of calcium oxide, so that it does not have heat generation and absorption properties, and thus it can be recycled as a concrete admixture.

다시 말하면, 본 발명의 탈수재에 이용되는 소각잔재는 CaO함량이 많은 노내 탈황방식으로 생성되는 석탄재이다. In other words, the incineration residue used in the dehydrating material of the present invention is a coal ash produced by the desulfurization method with a high CaO content.

이 때, 상기 알칼리제 100중량부에 대하여, 상기 소각잔재는 250~1,000중량부가 혼입되는 것이 바람직하다. At this time, it is preferable that 250-1,000 weight part of said incineration residues mix with respect to 100 weight part of said alkali chemicals.

상기 소각잔재의 혼입량이 250중량부 미만이면 알칼리제 및 산화제의 혼입량이 상대적으로 증가하여 경제성이 부족하며, 특히, 미립분 형태인 소각잔재의 분체량이 부족함에 따라 탈수재와 고함수 슬러지 혼합물의 점성이 증가하여 설비에 부착되어 설비가동성에 영향을 미친다. If the amount of the incineration residue is less than 250 parts by weight, the amount of alkali and oxidant is relatively increased, and thus economic efficiency is insufficient. In particular, as the amount of powder of the incineration residue in the form of fine powder is insufficient, the viscosity of the dehydrating material and the high-functional sludge mixture It is increased and attached to the equipment, which affects the equipment mobility.

또한 상기 소각잔재의 혼입량이 1,000중량부 초과이면 알칼리제 및 산화제의 혼입량이 상대적으로 감소하여 중화열 발생이 적어 수분증발효과가 감소하여 설비 가동성에 영향을 미친다. In addition, when the mixing amount of the incineration residue is more than 1,000 parts by weight, the mixing amount of the alkali agent and the oxidizing agent is relatively reduced, so that the neutralization heat is generated less and the water evaporation effect is reduced, thereby affecting the facility operability.

한편, 상기 소각잔재는 연소환경에 따라 미연소탄소를 함유하게 되는데, 통상 1~20%함유한다. 이러한 미연소탄소는 다공성이어서 슬러지에 탈수재가 혼입될 때 발생되는 암모니아 가스 및 중금속을 흡착하는 성질을 갖는다.
On the other hand, the incineration residue will contain unburned carbon, depending on the combustion environment, it usually contains 1 to 20%. The unburned carbon has a property of adsorbing ammonia gas and heavy metal generated when the dehydrated material is incorporated into the sludge because it is porous.

이하에서는 본 발명에 의한 고함수 슬러지 탈수방법을 설명한다. Hereinafter, a high water content sludge dewatering method according to the present invention will be described.

먼저, 상술한 탈수재를 제조한 다음, 슬러지 100중량부에 대하여 탈수재 5~100중량부를 균일하게 혼합한다. 탈수재를 5중량부 미만으로 혼합하면 함수율이 충분히 저감되지 않고, 100중량부를 초과하여 혼합하면 함수율이 너무 낮아져 혼합물이 비산되고 이송 및 포설작업 등이 곤란해진다. First, the above-described dehydrating material is prepared, and then 5 to 100 parts by weight of the dehydrating material is uniformly mixed with respect to 100 parts by weight of the sludge. If the dehydrating material is mixed at less than 5 parts by weight, the moisture content is not sufficiently reduced. If it is mixed at more than 100 parts by weight, the moisture content is too low, and the mixture is scattered, and transportation and laying operations are difficult.

마지막으로 상기 슬러지와 탈수재의 혼합물의 함수율이 60%이하가 될 때까지 상온양생 또는 가열양생한다.
Finally, room temperature curing or heating curing until the water content of the mixture of the sludge and the dehydrating material is less than 60%.

실시예Example 1 One

경소백운석 100중량부에 대하여, 황산반토 70중량부 및 산화칼슘 함량이 42%인 RPF소각잔재 600중량부로 이루어진 탈수재를 제조하였다. With respect to 100 parts by weight of light dolomite, a dehydration material was prepared, which was composed of 70 parts by weight of alumina alumina and 600 parts by weight of RPF incineration residue having a calcium oxide content of 42%.

다음으로, 함수율이 83.2%인 염색폐수슬러지 100중량부에 대하여, 상기 탈수재 50중량부를 혼합하여 인공토양을 제조하였다.
Next, with respect to 100 parts by weight of the dyeing wastewater sludge having a water content of 83.2%, 50 parts by weight of the dehydrating material was mixed to prepare artificial soil.

실시예Example 2 2

생석회 100중량부에 대하여, 나트륨 명반 150중량부 및 산화칼슘 함량이 22%인 바이오매스 소각잔재 400중량부로 이루어진 탈수재를 제조하였다. With respect to 100 parts by weight of quicklime, a dewatering material was prepared, which was composed of 150 parts by weight of alum alum and 400 parts by weight of biomass incineration residue having a calcium oxide content of 22%.

다음으로, 함수율이 82.3%인 하수슬러지 100중량부에 대하여, 상기 탈수재 20중량부를 혼합하여 인공토양을 제조하였다.
Next, the artificial soil was prepared by mixing 20 parts by weight of the dehydrating material with respect to 100 parts by weight of sewage sludge having a water content of 82.3%.

비교예Comparative example 1 One

생석회 100중량부에 대하여, 산화칼슘 함량이 22%인 바이오매스 소각잔재 400중량부로 이루어진 탈수재를 제조하였다. With respect to 100 parts by weight of quicklime, a dehydration material was prepared, comprising 400 parts by weight of biomass incineration residue having a calcium oxide content of 22%.

다음으로, 함수율이 82.3%인 하수슬러지 100중량부에 대하여, 상기 탈수재 20중량부를 혼합하여 인공토양을 제조하였다.
Next, the artificial soil was prepared by mixing 20 parts by weight of the dehydrating material with respect to 100 parts by weight of sewage sludge having a water content of 82.3%.

인공토양의 성능시험방법 및 결과Performance Test Method and Result of Artificial Soil

아래 표 2에 나타낸 바와 같이 함수량 측정은 KS F 2306 방법에 의해 실시하고 압축강도시험은 KS F 2343 방법에 의해 실시하였다.
As shown in Table 2 below, the water content was measured by the KS F 2306 method and the compressive strength test was performed by the KS F 2343 method.

실험Experiment 방법Way 비고Remarks 함수량Water content KS F 2306KS F 2306 흙의 함수량 측정방법How to measure the water content of soil 압축강도Compressive strength KS F 2343KS F 2343 일축압축강도법Uniaxial compressive strength method

(1) 함수량 변화(1) water content change

시간경과에 따라 상기 실시예 1, 실시예 2 및 비교예 1에 의해 제조된 인공토양의 함수율을 아래 표 3에 나타내었다. 표 3에서 확인되는 바와 같이, 본 발명에 의한 탈수재가 혼합됨에 따라 염색폐수 슬러지의 함수율이 83.2%였으나, 시간이 지남에 따라 함수비가 급격히 저감된다는 것을 알 수 있다. 함수율이 큰 폭으로 저감되는 것은 상술한 바와 같이, 탈수재가 슬러지와 혼합되는 즉시 발열반응이 일어나고 수화반응이 동시에 진행되기 때문이다. 또한 시간이 경과함에 따라 수화물 생성 및 자연건조에 의해 서서히 함수율은 줄어드는 결과를 보여주고 있다. 도 1은 실시예 2에 의해 생성된 혼합물의 1일 경과후 모습을 나타낸 사진이고, 도 2는 비교예 1에 의해 생성된 혼합물의 1일 경과후 모습을 나타낸 사진이다. The moisture content of artificial soils prepared by Examples 1, 2 and Comparative Example 1 according to time is shown in Table 3 below. As confirmed in Table 3, as the dehydrating material according to the present invention is mixed, the water content of the dyeing wastewater sludge was 83.2%, but it can be seen that the water content decreases rapidly over time. The moisture content is greatly reduced because, as described above, the exothermic reaction occurs immediately after the dehydrating material is mixed with the sludge and the hydration reaction proceeds simultaneously. In addition, the water content gradually decreases due to hydrate formation and natural drying over time. 1 is a photograph showing the appearance after 1 day of the mixture produced by Example 2, Figure 2 is a photograph showing the appearance after 1 day of the mixture produced by Comparative Example 1.

실시예 2의 경우 자연 양생 1일 이후에 강한 응집성이 없어지고 수분이 약간 있는 천연흙과 같은 물리적인 상태로 전이되나 비교예 1은 여전히 슬러지 형태로 강한 응집성이 남아있으며 함수율이 높은 진흙 상태로 남아있다.
In Example 2, after one day of natural curing, strong cohesiveness disappeared and transferred to a physical state such as natural soil with a little moisture, but Comparative Example 1 still remained strong cohesive in sludge form and remained in a high water content mud state. have.

구분division 개량직후Immediately after improvement 3시간3 hours 1일1 day 3일3 days 5일5 days 7일7 days 실시예1Example 1 53.5%53.5% 49.1%49.1% 47.0%47.0% 44.1%44.1% 41.3%41.3% 38.3%38.3% 실시예2Example 2 62.9%62.9% 59.2%59.2% 51.3%51.3% 50.8%50.8% 47.5%47.5% 43.5%43.5% 비교예1Comparative Example 1 63.1%63.1% 61.3%61.3% 54.9%54.9% 54.6%54.6% 50.2%50.2% 47.2%47.2%

(2) (2) 일축압축강도의Uniaxial compressive strength 변화 change

표 4는 각각 실시예 1, 실시예 2 및 비교예 1에 의해 제조된 인공토양의 일축압축강도의 변화를 나타낸 것이다. 이를 통해 알 수 있는 바와 같이, 양생 7일에 실시예 1은 1.5kgf/cm2, 실시예 2는 1.21kgf/cm2, 비교예 1은 0.47kgf/cm2의 결과를 보였다. 실시예 1 및 실시예 2는 복토재 및 성토재의 강도 기준인 0.5kgf/cm2 및 1.0kgf/cm2를 상회하는 값이며 차수재 및 다양한 지반용 재료로도 활용할 수 있는 강도 발현을 보였다. 이것은 탈수재와 혼합시 흡수발열반응에 의해 수분절감 및 슬러지의 표면 개질이 일어나 입자의 단결화를 이루어 압밀 촉진 효과를 얻을 수 있어 강도를 증진시키기 때문이다. 이에 더하여 탈수재의 흡수성에 의해 슬러지의 함수율이 상대적으로 낮아지며 탈수재의 흡수성 및 이온교환, 포졸란 및 탄산화 반응에 의해 미립자인 점토, 콜로이드 성분이 단립화되고 이에 따라 입도분포가 변화하여 양질토로 개량되어 일축압축강도가 증가된다. Table 4 shows the change in uniaxial compressive strength of the artificial soil prepared by Example 1, Example 2 and Comparative Example 1, respectively. As it can be seen from Example 1, showed the results of 1.5kgf / cm 2, Example 2 is 1.21kgf / cm 2, Comparative Example 1 is 0.47kgf / cm 2 to cure 7 days. Example 1 and Example 2 is 0.5kgf / cm 2 which is the strength standard of cover and fill material And values exceeding 1.0 kgf / cm 2 and exhibited strength expressions that can be utilized as a lining material and various ground materials. This is because water absorption and the surface modification of the sludge occurs due to the absorption and heating reaction when mixed with the dehydrating material to achieve the consolidation promoting effect by the unity of the particles to enhance the strength. In addition, the water content of the sludge is relatively lowered by the absorbency of the dehydrated material, and the fine clay and colloidal components are separated by the absorbent and ion exchange, pozzolanic and carbonation reaction of the dehydrated material, and the particle size distribution is changed to improve the uniaxial compression. Strength is increased.

반면에 비교예 1에 산화제가 혼입되지 않은 탈수재는 중화열이 발생되지 않아 초기 수분의 증발량이 적고 응집효과가 없어 설비에 부착되어 생산성이 저하되고 여전히 진흙과 같은 상태를 유지하기 때문에 일축압축강도가 발현되지 못한 것으로 판단된다.
On the other hand, the dehydrating material in which the oxidant is not mixed in Comparative Example 1 does not generate heat of neutralization, so the initial moisture evaporation amount is small and there is no coagulation effect. I do not think it was.

구분division 압축강도(kgf/cmCompressive strength (kgf / cm 22 )) 3일3 days 7일7 days 28일28 days 실시예1Example 1 0.920.92 1.51.5 2.132.13 실시예2Example 2 0.890.89 1.211.21 1.931.93 비교예1Comparative Example 1 0.340.34 0.470.47 0.890.89

(3) 침수 전후의 (3) before and after immersion 일축압축강도의Uniaxial compressive strength 변화 change

본 발명에 의해 제조된 인공토양을 매립지의 일일복토재로 사용할 경우, 소요의 강도를 가져야 함과 동시에 우리나라의 기후 특성인 폭우, 폭설 등의 침수에 의한 재슬러리화 현상과 강도감소 현상이 발생하지 않아야 할 것이다. 따라서 본 실험에서는 7일간 양생한 인공토양에 대해서 1일 침수 전후의 일축압축강도 변화를 조사하였다.When the artificial soil manufactured by the present invention is used as a daily cover material for landfills, it must have the required strength and at the same time, the reslurrification phenomenon and the strength reduction phenomenon caused by the inundation such as heavy rain and heavy snow, which are the climatic characteristics of Korea, should not occur. something to do. Therefore, in this experiment, the uniaxial compressive strength changes before and after 1 day immersion were investigated for artificial soils cured for 7 days.

침수 전 후의 일축압축강도의 변화를 아래 표 5에 나타내었다. 이를 통해 알 수 있는 바와 같이, 실시예 1 및 실시예 2 의해 제조된 인공토양은 -0.10kg/kg/cm2, 실시예 2에 의해 제조된 인공토양은 -0.14kg/cm2 강도 변화율이 나타났다. 반면, 비교예 1은 -0.26kg/cm2의 본 발명에 의한 실시예와 비교하여 큰 강도저하를 나타냈다.The change in uniaxial compressive strength before and after immersion is shown in Table 5 below. As can be seen through this, the artificial soil prepared by Example 1 and Example 2 is -0.10kg / kg / cm 2 , and the artificial soil prepared by Example 2 is -0.14kg / cm 2. The rate of change of strength was shown. On the other hand, Comparative Example 1 showed a large decrease in strength compared to the Example according to the present invention of -0.26kg / cm 2 .

이상의 결과에서 알 수 있듯이 본 발명에 의해 제조된 인공토양의 침수 전후의 일축압축강도 변화가 비교적 적은 감소율을 보였는데 이것은 슬러지가 탈수처리에 의해 수화물을 생성하면서 치밀한 결정구조로 바뀌어 침수가 되어도 뚜렷한 수분의 흡수현상이 발생하지 않는 것으로 판단된다. 따라서 본 발명에 의해 제조된 혼합물을 매립지에 사용할 경우, 적설에 의한 침수에 재슬러리화나 강도저하 현상은 미미하여 매립지의 복토재로 활용하여도 우천 시 차량 및 장비의 작업에 큰 지장을 주지 않을 것으로 예상된다.
As can be seen from the above results, the change in uniaxial compressive strength before and after immersion of the artificial soil produced by the present invention showed a relatively small decrease rate, which is obvious even when the sludge is changed to a dense crystal structure while generating a hydrate by dehydration treatment. It seems that absorption does not occur. Therefore, when the mixture prepared according to the present invention is used in landfills, reslurrying or strength deterioration in flooding due to snowfall is insignificant, and even when used as a cover material of landfills, it is expected that it will not significantly affect the operation of vehicles and equipment during rainy weather. .

침수 전(kg/)Before immersion (kg /) 침수 후(kg/)After immersion (kg /) 강도변화Intensity change 실시예1Example 1 1.571.57 1.471.47 -0.10-0.10 실시예2Example 2 1.461.46 1.321.32 -0.14-0.14 비교예1Comparative Example 1 0.470.47 0.210.21 -0.26-0.26

(4) 중금속 용출(4) heavy metal elution

아래 표 6은 실시예 1에 의해 제조되는 인공토양의 중금속 용출실험 결과를 나타낸 것이다. 이를 통해 알 수 있는 바와 같이 대부분의 중금속이 용출되지 않았으며 우리나라의 폐기물용출시험법에 적용시 납과 수은, 비소는 미량 검출되었지만 환경 기준치를 만족하는 것으로 나타났다. 이는 수화반응에서 생성되는 수화물에 의해 고착되어 결정구조 내로 중금속이 치환 또는 고정되기 때문이다. 따라서 이 모든 실험에서의 용출농도는 판정기준치보다 훨씬 낮은 수치를 나타내거나 불검출되어 슬러지를 탈수 처리하여 매립지의 일일복토재로 사용하여도 중금속 용출로 인한 2차 오염은 우려되지 않을 것으로 판단된다.
Table 6 below shows the heavy metal elution test results of the artificial soil prepared by Example 1. As can be seen from this, most of heavy metals were not eluted, and when applied to the waste dissolution test method in Korea, trace amounts of lead, mercury, and arsenic were detected, but the environmental standards were satisfied. This is because the heavy metal is substituted or fixed into the crystal structure by being fixed by the hydrate generated in the hydration reaction. Therefore, the dissolution concentration in all these experiments is much lower than the standard value or is not detected. Therefore, even if the sludge is dehydrated and used as daily cover material for landfills, secondary contamination due to heavy metal leaching is not considered to be a concern.

유해물질  Hazardous Substances
용출방법 Dissolution method
CdCD AsAs PbPb HgHg CrCr 6+6+ CuCu Org.POrg.P TCETCE PCEPCE
폐기물용출시험법
(KSLP)
Waste Dissolution Test Method
(KSLP)
기준standard 0.30.3 1.51.5 3.03.0 0.050.05 1.51.5 3.03.0 1.01.0 0.10.1 0.30.3
혼합물mixture N.D.N.D. N.DN.D. N.DN.D. N.DN.D. N.DN.D. 0.260.26 N.D.N.D. N.D.N.D. N.D.N.D. US EPA
(TCLP)
US EPA
(TCLP)
기준standard 1.01.0 -- 5.05.0 0.20.2 5.05.0 -- -- -- --
혼합물mixture N.D.N.D. -- 0.0040.004 N.D.N.D. N.D.N.D. -- -- -- -- *N.D : Not Detected* N.D: Not Detected

Claims (6)

경소백운석 또는 생석회 중 적어도 어느 하나로 이루어진 알칼리제 100중량부에 대하여, 나트륨 명반, 칼륨 명반, 황산반토 중 적어도 어느 하나로 이루어진 산화제 20~200중량부를 포함하는 것을 특징으로 하는 고함수 슬러지 탈수재.
A high water content sludge dewatering material comprising 20 to 200 parts by weight of an oxidizing agent made of at least one of sodium alum, potassium alum and alumina sulfate, based on 100 parts by weight of an alkali agent composed of at least one of light dolomite or quicklime.
제1항에 있어서,
상기 알칼리제 100중량부에 대하여, 산화칼슘(CaO) 함량이 20%~70%인 소각잔재 250~1,000중량부가 더 포함되는 것을 특징으로 하는 고함수 슬러지 탈수재.
The method of claim 1,
A high water content sludge dewatering material, characterized in that it further comprises 250 to 1,000 parts by weight of incineration residue having a calcium oxide (CaO) content of 20% to 70% by weight based on the alkali agent.
제2항에 있어서,
상기 소각잔재는 석탄재, 바이오매스 소각잔재, 하수슬러지 소각잔재, 제지 슬러지 소각잔재, RDF(Refuse Derived Fuel) 소각잔재 및 RPF(Refuse Plastic Fuel) 소각잔재로 이루어진 군에서 선택된 어느 하나이거나 둘 이상의 혼합물인 것을 특징으로 하는 고함수 슬러지 탈수재.
The method of claim 2,
The incineration residue is any one or a mixture of two or more selected from the group consisting of coal ash, biomass incineration residue, sewage sludge incineration residue, paper sludge incineration residue, RDF (Refuse Derived Fuel) incineration residue and RPF (Refuse Plastic Fuel) incineration residue. High water sludge dewatering material characterized in that.
1) 제1항 내지 제3항 중 어느 한 항의 탈수재를 제조하는 단계;
2) 고함수슬러지 100중량부에 대하여, 상기 탈수재 5~100중량부를 혼합하는 단계; 및
3) 상기 고함수슬러지와 탈수재의 혼합물을 양생하는 단계;를 포함하는 것을 특징으로 하는 고함수 슬러지 탈수방법.
1) preparing a dehydrating material of any one of claims 1 to 3;
2) mixing 5 to 100 parts by weight of the dehydrating material with respect to 100 parts by weight of high water content sludge; And
3) curing the mixture of the high water content sludge and the dewatering material; high water content sludge dewatering method comprising a.
제4항에 있어서,
상기 3)단계는 상기 혼합물을 상온양생 또는 가열양생하여 수행되는 것을 특징으로 하는 고함수 슬러지 탈수방법.
The method of claim 4, wherein
Step 3) is a high water content sludge dewatering method characterized in that the mixture is carried out by heating or curing at room temperature.
제4항에 있어서,
상기 슬러지는 하수슬러지, 폐수슬러지, 정수슬러지, 진흙슬러지 및 준설슬러지 중 어느 하나이거나 또는 둘 이상의 혼합물인 것을 특징으로 하는 고함수 슬러지 탈수방법.
The method of claim 4, wherein
The sludge dewatering sludge, wastewater sludge, purified water sludge, mud sludge and dredging sludge any one or a mixture of two or more of the high water content sludge.
KR1020100053776A 2010-06-08 2010-06-08 Dehydration material of sludge with high water containing rate and method of the same using KR101182607B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100053776A KR101182607B1 (en) 2010-06-08 2010-06-08 Dehydration material of sludge with high water containing rate and method of the same using

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100053776A KR101182607B1 (en) 2010-06-08 2010-06-08 Dehydration material of sludge with high water containing rate and method of the same using

Publications (2)

Publication Number Publication Date
KR20110134028A true KR20110134028A (en) 2011-12-14
KR101182607B1 KR101182607B1 (en) 2012-09-12

Family

ID=45501503

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100053776A KR101182607B1 (en) 2010-06-08 2010-06-08 Dehydration material of sludge with high water containing rate and method of the same using

Country Status (1)

Country Link
KR (1) KR101182607B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107416956A (en) * 2017-06-14 2017-12-01 雷星宇 A kind of manufacture method of inorganic chlorine ion wastewater cleanser
CN111661993A (en) * 2019-03-06 2020-09-15 上海助瀛环保科技有限公司 Sludge curing agent and preparation method and use method thereof
CN116103070A (en) * 2022-09-13 2023-05-12 中南大学 Recycling treatment method for preparing high-heat-value fuel by using dehydrated organic sludge

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101876626B1 (en) * 2015-07-31 2018-08-09 주식회사 에이지 Method for manufacturing sludge solidification agent with high water content

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3739099B2 (en) 1992-02-13 2006-01-25 脇村 嘉郎 Processed sludge and sludge treatment method
KR100796722B1 (en) 2006-12-29 2008-01-24 한국지질자원연구원 Method for solidifying sewage sludge

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107416956A (en) * 2017-06-14 2017-12-01 雷星宇 A kind of manufacture method of inorganic chlorine ion wastewater cleanser
CN111661993A (en) * 2019-03-06 2020-09-15 上海助瀛环保科技有限公司 Sludge curing agent and preparation method and use method thereof
CN116103070A (en) * 2022-09-13 2023-05-12 中南大学 Recycling treatment method for preparing high-heat-value fuel by using dehydrated organic sludge
CN116103070B (en) * 2022-09-13 2024-04-12 中南大学 Recycling treatment method for preparing high-heat-value fuel by using dehydrated organic sludge

Also Published As

Publication number Publication date
KR101182607B1 (en) 2012-09-12

Similar Documents

Publication Publication Date Title
Chang et al. Valorization of sewage sludge in the fabrication of construction and building materials: A review
Wang et al. Green remediation of contaminated sediment by stabilization/solidification with industrial by-products and CO2 utilization
KR102125577B1 (en) Composition agent
KR101055317B1 (en) Sludge solidified agent and menufacturing method of artificial soil usign the same
Liu et al. Resource utilization of municipal solid waste incineration fly ash-cement and alkali-activated cementitious materials: A review
KR100860017B1 (en) Soil aggregate composition for civil engineering and construction materials using process sludge and manufacturing method thereof
KR101002547B1 (en) The greener clay brick recycling the dredged soils and sludge & manufacturing method thereof
KR101459990B1 (en) block composition using the sludge Ash and manufacturing method block
KR101289825B1 (en) Sludge solidified agent and menufacturing method of artificial soil usign the same
KR101795489B1 (en) Dehydration material of sludge and soil with high water containing rate
KR101244825B1 (en) High volume blast furnace slag concrete composition using waste ash and recycled aggregate
KR101168151B1 (en) Solidified agent to strengthen stratum
KR20140092699A (en) Sludge solidified agent and menufacturing method of artificial soil usign the same
KR102133152B1 (en) firming agent for civil enqineering of soft ground using blast furnace slag and fly ash and method for manufacturing thereof
KR101257447B1 (en) A method for preparing banking material using waste resources
KR101190195B1 (en) Solidifier of sludge with high water containing rate and method of the same using
KR101182607B1 (en) Dehydration material of sludge with high water containing rate and method of the same using
KR101876626B1 (en) Method for manufacturing sludge solidification agent with high water content
KR100790373B1 (en) Solidifying agent for improvement of soil
KR101200278B1 (en) Sewage sludge solidified agent and menufacturing method of artificial soil usign the same
KR100903604B1 (en) The soil composition the sludge of waste water treatment for recovering an abandoned stony mountain
KR101200280B1 (en) Dredging sludge solidified agent and menufacturing method of mixed soil usign the same
Xia et al. Value-added recycling of sludge and sludge ash into low-carbon construction materials: current status and perspectives
KR100713686B1 (en) Porous material of calcium silicate used waste concrete powder
KR100948658B1 (en) Method for solidifying sewage sludge

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150824

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160824

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180628

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20190826

Year of fee payment: 8