KR101244825B1 - High volume blast furnace slag concrete composition using waste ash and recycled aggregate - Google Patents

High volume blast furnace slag concrete composition using waste ash and recycled aggregate Download PDF

Info

Publication number
KR101244825B1
KR101244825B1 KR20120101557A KR20120101557A KR101244825B1 KR 101244825 B1 KR101244825 B1 KR 101244825B1 KR 20120101557 A KR20120101557 A KR 20120101557A KR 20120101557 A KR20120101557 A KR 20120101557A KR 101244825 B1 KR101244825 B1 KR 101244825B1
Authority
KR
South Korea
Prior art keywords
blast furnace
furnace slag
aggregate
concrete
high volume
Prior art date
Application number
KR20120101557A
Other languages
Korean (ko)
Inventor
정현석
이향재
한천구
한민철
손호정
김영희
Original Assignee
신성종합건축사사무소(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 신성종합건축사사무소(주) filed Critical 신성종합건축사사무소(주)
Priority to KR20120101557A priority Critical patent/KR101244825B1/en
Application granted granted Critical
Publication of KR101244825B1 publication Critical patent/KR101244825B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • C04B18/062Purification products of smoke, fume or exhaust-gases
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/14Waste materials; Refuse from metallurgical processes
    • C04B18/141Slags
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D47/00Separating dispersed particles from gases, air or vapours by liquid as separating agent
    • B01D47/06Spray cleaning
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PURPOSE: High volume blast furnace slag concrete using incineration plant ash and recycled aggregate is provided to increase strength of concrete by accelerating a latent hydraulic activity of ground powder of blast furnace slag using the incineration plant ash and the recycled aggregate. CONSTITUTION: High volume blast furnace slag concrete comprises: a binding material; water; recycled small aggregate; and recycled big aggregate. The binding material comprises: 70-90wt% of ground powder of blast furnace slag; and 10-30wt% of normal Portland cement. The incineration plant ash substitutes for the cement, and is included in 0.5-2.0wt% to the binding material. A manufacturing method for the incineration plant ash comprises the following steps: Dust is collected by spraying milky lime to exhaust gas generated while incinerating city life garbage.; The milky lime is sprayed in a semi-dry alkali reaction tower in a form of lime slurry.; The high volume blast furnace slag concrete is mixed in a water binder ratio of 40-65wt% and a fine aggregate modulus of 35-50vol%. [Reference numerals] (AA) Compressive intensity(MPa); (BB) Material age(days)

Description

소각장 애시와 순환골재를 이용한 하이볼륨 고로슬래그 콘크리트{High Volume Blast Furnace Slag Concrete Composition Using Waste Ash and Recycled Aggregate} High Volume Blast Furnace Slag Concrete Composition Using Waste Ash and Recycled Aggregate}

본 발명은 순환골재 콘크리트 배합에서 결합재로 고로슬래그를 다량 사용한 하이볼륨 고로슬래그 콘크리트에 관한 것으로, 더욱 상세하게는 도시 생활쓰레기의 소각시 발생하는 배출가스에 액상소석회를 분사하여 집진한 소각장 애시를 순환골재와 함께 고로슬래그 미분말의 잠재수경성을 촉진하기 위한 알칼리 자극제로 사용하면서 배합한 하이볼륨 고로슬래그 콘크리트에 관한 것이다.
The present invention relates to a high-volume blast furnace slag concrete using a large amount of blast furnace slag as a binder in circulating aggregate concrete, and more particularly, to circulate incineration ash ash collected by spraying liquid lime on the exhaust gas generated during incineration of urban garbage. The present invention relates to high-volume blast furnace slag concrete blended with aggregate while being used as an alkali stimulant to promote latent hydraulic properties of blast furnace slag fine powder.

최근 지구환경보전 및 자원재활용 측면에서 산업부산물과 건설폐기물을 콘크리트에 활용하기 위한 연구가 다각적으로 이루어지고 있다. 산업부산물과 건설폐기물의 대표적인 재활용 예로 고로슬래그 미분말과 순환골재가 있다.Recently, in order to conserve the global environment and recycle resources, various studies have been conducted to utilize industrial by-products and construction waste in concrete. Examples of typical recycling of industrial by-products and construction waste are blast furnace slag powder and recycled aggregates.

선철 제조과정에서 발생되는 고로슬래그 미분말은 콘크리트에 적용시 시멘트의 수화생성물인 수산화칼슘과 황산염의 작용에 의해 경화가 촉진되어 압축강도 증대에 효과가 있으며, 다만 자체 수경성이 없음에 따라 시멘트를 사용하지 않는 경우에는 알칼리 자극제와 함께 사용해야 한다.The blast furnace slag powder produced during pig iron manufacturing process is effective in increasing the compressive strength by promoting the hardening by the action of calcium hydroxide and sulphate, which is the hydration product of cement when applied to concrete. If used, it should be used with alkali stimulant.

또한 폐콘크리트에서 발생되는 순환골재는 천연골재에 비해 표면에 미립분 및 각종 이물질 등이 다량 함유되어 있어 품질적인 측면에서 매우 열약하고, 생산과정에서 순환골재의 균질성 확보가 곤란하여 압축강도가 저하하는 문제 등으로 인해 널리 보급되지 않고 있는 실정이다. 최근에는 순환골재를 사용한 고로슬래그 기반 무시멘트 모르타르에 배합에 대한 연구가 진행되고 있다. In addition, circulating aggregates generated from waste concrete contain very fine particles and various foreign substances on the surface compared to natural aggregates, which is very poor in terms of quality and difficult to secure homogeneity of circulating aggregates during production. The situation is not widely spread due to problems. Recently, research on the formulation of blast furnace slag-based cement mortar using recycled aggregate has been conducted.

한편 또 다른 산업부산물로서 쓰레기 소각과정 중에 발생되는 배출가스의 경우는 대기오염을 방지하기 위해 각각 소각로에서 액상소석회(Ca(OH)2), 활성탄 등을 사용하여 바닥재 및 비산재로 배출하게 되는데, 이들은 산업폐기물로 분류되어 고가의 비용으로 지정폐기물 처리장소에 매립되므로 매립지 선정 및 처리비용과 환경문제 등 여러 가지 방면에서 문제가 된다.
Meanwhile, as other industrial by-products, the exhaust gas generated during the waste incineration process is discharged to the bottom ash and fly ash by using liquid lime (Ca (OH) 2 ) and activated carbon in the incinerator to prevent air pollution. Since it is classified as industrial waste and is buried at a designated waste disposal site at a high cost, it is a problem in various aspects such as landfill selection, disposal cost, and environmental issues.

본 발명은 산업부산물과 건설폐기물을 적극 재활용하기 위해 개발된 것으로, 결합재로 고로슬래그를 다량 사용한 하이볼륨 고로슬래그 콘크리트에서 도시 생활쓰레기의 소각시 발생하는 배출가스에 액상소석회를 분사하여 집진한 소각장 애시를 순환골재와 함께 고로슬래그 미분말의 잠재수경성을 촉진하기 위한 알칼리 자극제로 사용한 콘크리트 배합을 제공하는데 기술적 과제가 있다.
The present invention was developed to actively recycle industrial by-products and construction waste, incineration ash ash collected by spraying liquid lime on the exhaust gas generated during incineration of municipal waste in high-volume blast furnace slag concrete using a large amount of blast furnace slag as a binder There is a technical problem to provide a concrete mixture used as an alkaline stimulant to promote the latent hydraulic properties of blast furnace slag fine powder together with the circulating aggregate.

상기한 기술적 과제를 해결하기 위해 본 발명은, 고로슬래그 미분말 70~90중량%;와 보통 포틀랜드 시멘트 10~30중량%;를 포함하여 조성된 결합재와 순환골재를 이용하면서 배합하되, 상기 결합재는 쓰레기의 소각시 발생하는 배출가스에 액상소석회를 분사하여 집진한 소각장 애시가 시멘트를 치환하여 결합재에 대하여 0.5~2.0중량% 포함되도록 조성되는 것을 특징으로 하는 하이볼륨 고로슬래그 콘크리트를 제공한다. 여기서 소각장 애시는, 소각로에서 배출된 배출가스가 보일러를 거쳐 이동되는 반건식알칼리반응탑에서 액상소석회를 물에 녹인 소석회슬러리를 분사하여 집진한 것을 바이패스(By-Pass)하여 수집한 것이 적당하다.
In order to solve the above technical problem, the present invention, the blast furnace slag fine powder 70 ~ 90% by weight; and usually 10 to 30% by weight of Portland cement; including a binder and recycled aggregates, including the composition, the binder is waste Incineration plant ash collected by spraying the liquid lime in the discharge gas generated during the incineration of the cement to replace the cement provides a high-volume blast furnace slag concrete, characterized in that it is configured to contain 0.5 to 2.0% by weight. Here, the incinerator ash is collected by bypassing the dust collected by discharging the liquid lime in the semi-dry alkali reaction tower in which the exhaust gas discharged from the incinerator is moved through the boiler.

본 발명에 따르면 다음과 같은 효과를 기대할 수 있다.According to the present invention, the following effects can be expected.

첫째, 고로슬래그를 다량 사용한 하이볼륨 고로슬래그 콘크리트 배합에서 소각장 애시를 결합재의 하나로 사용한 결과, 고로슬래그 미분말의 잠재수경성을 촉진시켜 콘크리트의 강도를 증진시킬 수 있다.First, as a result of using incinerator ash as one of the binders in high volume blast furnace slag concrete mixture using blast furnace slag, it is possible to enhance the strength of the concrete by promoting the latent hydraulic properties of the blast furnace slag fine powder.

둘째, 본 발명에 따르면 산업부산물과 건설폐기물인 고로슬래그 미분말, 소각장 애시, 순환골재를 적극 이용할 수 있으며, 이에 따라 자원재활용에 따른 비용절감과 자원고갈 방지에 기여할 수 있다. 특히 시멘트를 대체하여 고로슬래그 미분말의 사용성을 크게 향상시킬 수 있기 때문에 건설산업분야에서 시멘트 사용량을 줄여 시멘트 생산시 발생되는 탄소 배출량을 크게 줄일 수 있다.
Second, the present invention can actively use industrial by-products and construction waste blast furnace slag fine powder, incinerator ash, recycled aggregates, thereby contributing to cost reduction and resource depletion due to resource recycling. In particular, since the usability of blast furnace slag fine powder can be greatly improved by replacing cement, the amount of cement generated in cement production can be greatly reduced by reducing the amount of cement used in the construction industry.

도 1은 쓰레기 소각 공정도이다.
도 2와 도 3은 소각장 애시의 치환율에 따른 하이볼륨 고로슬래그 콘크리트의 압축강도를 나타낸 그래프이다.
1 is a waste incineration process chart.
2 and 3 are graphs showing the compressive strength of high volume blast furnace slag concrete according to the substitution rate of the incinerator ash.

본 발명은 고로슬래그를 다량 사용한 하이볼륨 고로슬래그 콘크리트에서 고로슬래그의 알칼리 자극제로 소각장 애시와 순환골재를 이용하여 배합한다는데 특징이 있다. 고로슬래그 미분말 그 자체는 경화하는 성질이 미약하나, 잠재수경성에 의해 알칼리 자극제가 있으면 물과 반응하여 경화하는 성질을 가지는데, 본 발명에서는 고로슬래그 미분말의 잠재수경성을 촉진하기 위한 알칼리 자극제로 소각장 애시와 순환골재를 제안한다. 아래 [실시예]에서 통해 하이볼륨 고로슬래그 콘크리트 배합에서 소각장 애시와 순환골재를 함께 이용할 때 강도 개선에 효과가 있는 것을 확인할 수 있었다.The present invention is characterized in that the high volume blast furnace slag concrete using a large amount of blast furnace slag is formulated using an incinerator ash and recycled aggregate as an alkali stimulant of the blast furnace slag. The blast furnace slag powder itself has a poor curing property, but when there is an alkali stimulant due to latent hydrophobicity, the blast furnace slag powder has a property of curing by reacting with water. And propose circular aggregates. In the following [Example] it was confirmed that in combination with the incinerator ash and recycled aggregate in high-volume blast furnace slag concrete formulation, it is confirmed that the effect is improved in strength.

본 발명에서 소각장 애시는 도시 생활쓰레기의 소각시 발생하는 배출가스에 액상소석회를 분사하여 집진한 것을 의미한다. 소각로에서 배출되는 배출가스에는 질소산화물, 산성가스 등 각종 인체 유해물질이 함유되어 있기 때문에 그대로 배출되지 않고 처리공정을 거쳐 배출되는데, 염화수소(HCl), 황산화물(SOx) 등의 유해 가스를 제거하기 위해 액상소석회를 분사하여 처리하는 공정을 거친다. 이 과정에서 집진한 소각장 애시에는 액상소석회에 의해 다량의 알칼리가 함유하게 되는바, 본 발명은 이와 같은 소각장 애시를 순환골재와 함께 고로슬래그 미분말의 알칼리 자극제로서 제안하고 있는 것이다. 다만 소각장 애시가 고로슬래그 미분말의 알칼리 자극제로서 유리하게 역할하기 위해서는 소각장 애시는 아래 [표 1]과 같은 특성을 만족하는 것이 바람직하다. Incineration plant ash in the present invention means that the dust collected by spraying the liquid lime in the exhaust gas generated during incineration of municipal waste. Exhaust gas emitted from incinerator contains various harmful substances such as nitrogen oxide and acid gas, so it is not discharged as it is and is discharged through the treatment process. To remove harmful gas such as hydrogen chloride (HCl) and sulfur oxide (SOx) In order to process the liquid lime lime by spraying. The incinerator ash collected in this process contains a large amount of alkali by liquid lime, and the present invention proposes such an incinerator ash as an alkali stimulator of blast furnace slag fine powder together with circulating aggregate. However, in order for the incinerator ash to serve advantageously as an alkali stimulator of the blast furnace slag fine powder, the incinerator ash preferably satisfies the characteristics as shown in Table 1 below.

소각장 애시의 특성Characteristics of Incinerator Ashes 밀도 (g/cm3)Density (g / cm 3) 분말도(cm3/g)Powder level (cm 3 / g) 주요 화학성분 (%)Main Chemical Composition (%) SiO2 SiO 2 Fe2O3 Fe 2 O 3 Al2O3 Al 2 O 3 CaOCaO MgOMgO LOILOI 2.3~2.72.3 ~ 2.7 1,800~7,0001,800-7,000 2.0~8.02.0-8.0 0.5~2.50.5-2.5 0.5~5.00.5 ~ 5.0 31.0~42.031.0-42.0 0.5~2.50.5-2.5 18.0~32.018.0-32.0

한편 도 1은 통상의 쓰레기 소각공정도인데, 이 공정에 따라 소각하는 경우에는 소각로에서 배출된 배출가스가 보일러를 거쳐 이동되는 반건식알칼리반응탑에서 20% 정도의 액상소석회를 물에 녹여 농도 약 16% 정도로 만든 소석회슬러리를 분사하여 집진한 것을 바이패스(By-Pass)하여 수집한 것이 곧 본 발명에서 고로슬래그 미분말의 알칼리 자극제로 제안하는 소각장 애시가 된다.
On the other hand, Figure 1 is a general waste incineration process, in the case of incineration according to this process by dissolving 20% of the liquid lime in a semi-dry alkali reaction tower in which the exhaust gas discharged from the incinerator is moved through the boiler in a concentration of about 16% By-passing and collecting the dust collected by the injection of the slaked lime slurry made to a degree is an incinerator ash proposed by the present invention as an alkali stimulator of blast furnace slag fine powder.

특히 본 발명은 고로슬래그 미분말 70~90중량%;와 보통 포틀랜드 시멘트 10~30중량%;를 포함하여 조성된 결합재로 배합할 때, 이러한 결합재에서 시멘트를 치환하여 소각장 애시를 결합재(고로슬래그 미분말+보통 포틀랜드 시멘트)에 대하여 0.5~2.0중량% 조성할 것을 제안한다. 이 범위에서 사용할 때 소각장 애시에 의한 고로슬래그 미분말의 알칼리 자극 효과를 효과적으로 기대할 수 있다. 다시 말해 0.5중량% 미만으로 치환하면 고로슬래그 미분말의 알칼리 자극효과가 미미하고, 2.0중량% 초과하여 치환하면 상대적으로 시멘트량이 줄어듦으로써 잠재수경성 반응을 하기 위한 시멘트량이 상대적으로 감소하여 오히려 알칼리 자극효과가 떨어진다. In particular, the present invention, when formulated with a binder comprising 70 to 90% by weight of fine blast furnace slag; and 10 to 30% by weight of ordinary Portland cement; to replace the cement in such a binder to replace the incinerator ash binder (blast furnace slag fine powder + It is suggested to make 0.5 ~ 2.0% by weight based on (usually Portland cement). When used in this range, the alkali-stimulating effect of blast furnace slag fine powder by incinerator ash can be expected effectively. In other words, if it is substituted by less than 0.5% by weight, the alkali stimulation effect of the fine blast furnace slag powder is insignificant, and when it is substituted by more than 2.0% by weight, the amount of cement is relatively decreased. Falls.

위와 같은 결합재를 이용한 하이볼륨 고로슬래그 콘크리트 배합에서 굵은골재와 잔골재는 순환골재를 이용한다. 순환골재에서 용출되는 알칼리 침출수가 고로슬래그 미분말의 잠재수경성 반응을 더욱 촉진하여 강도 증진에 기여하기 때문이다. 나아가 물결합재비 40~65%, 잔골재율 35~50용적%로 배합하는 것이 적당한데, 이러한 배합에서 소정의 유동성과 강도를 확보할 수 있다.
In the high-volume blast furnace slag concrete mixture using the binder as described above, coarse aggregate and fine aggregate use circulating aggregate. This is because the alkaline leachate eluted from the circulating aggregate further promotes the latent hydraulic reaction of the blast furnace slag fine powder, thereby contributing to the increase in strength. Furthermore, it is suitable to mix at 40 to 65% of water binder content and 35 to 50% by volume of fine aggregate, and it is possible to secure predetermined fluidity and strength in such a combination.

이하에서는 실시예에 의거하여 본 발명을 상세히 살펴본다. 다만, 하기의 실험시는 본 발명을 예시하기 위한 것일 뿐이며, 본 발명의 범위가 이로써 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to Examples. However, the following experiment is only for illustrating the present invention, and the scope of the present invention is not limited thereto.

[[ 실시예Example ] 소각장 Incinerator 애시Ash 치환율에 따른 콘크리트의 특성 Properties of Concrete According to Substitution Rate

1. 재료준비1. Material Preparation

소각장 애시 및 순환골재에 의한 콘크리트의 특성을 확인하기 위해 아래 [표 2] 내지 [표 5]와 같은 재료들을 준비하였다. 소각장 애시는 청주시 소각장에서 입수하였다.In order to confirm the characteristics of the concrete by the incinerator ash and recycled aggregates, materials such as the following [Table 2] to [Table 5] were prepared. Incineration ash was obtained from the incinerator in Cheongju.

고로슬래그 미분말의 특성Characteristics of blast furnace slag fine powder 밀도
(g/cm3)
density
(g / cm 3)
분말도 (cm2/g)Powder level (cm 2 / g) L.O.I (%)L.O.I (%) 습분 (%)Moisture (%) 주요 화학성분 (%)Main Chemical Composition (%)
ClCl SO3 SO 3 MgOMgO SiO2 SiO 2 CaOCaO 2.902.90 4 2544 254 1.911.91 0.230.23 0.0020.002 1.951.95 5.265.26 34.234.2 42.542.5

소각장 애시의 특성Characteristics of Incinerator Ashes 밀도 (g/cm3)Density (g / cm 3) 분말도 (cm3/g)Powder level (cm 3 / g) 주요 화학성분 (%)Main Chemical Composition (%) SiO2 SiO 2 Fe2O3 Fe 2 O 3 Al2O3 Al 2 O 3 CaOCaO MgOMgO LOILOI 2.642.64 1,9301,930 7.67.6 2.42.4 4.94.9 39.539.5 2.12.1 18.218.2

순환 잔골재의 특성Characteristics of Circulating Fine Aggregate 밀도 (g/cm3)Density (g / cm 3) 조립률Assembly rate 흡수율 (%)Absorption rate (%) 0.08 mm체 통과량 (%)0.08 mm sieve passage (%) 2.202.20 2.602.60 6.206.20 2.402.40

순환 굵은골재의 특성Characteristics of Circulating Coarse Aggregate 밀도(g/cm3)Density (g / cm 3 ) 조립률Assembly rate 흡수율 (%)Absorption rate (%) 2.342.34 7.097.09 3.13.1

2. 콘크리트 배합2. Concrete Mixing

아래 [표 6]과 같은 배합으로 소각장 애시의 치환율에 따른 하이볼륨 고로슬래그 콘크리트의 특성을 확인할 수 있도록 실험계획을 수립하였다. 즉, W/B 50 % 한 수준에 대하여 목표 슬럼프 120±25mm에 만족하도록 배합 설계하고, 고로슬래그 미분말과 보통 포틀랜드 시멘트를 중량비로 3:1로 결합재를 구성하되 이러한 결합재에서 시멘트를 치환하여 소각장 애시를 결합재에 0(Plain), 0.5, 1.0, 1.5, 2.0중량% 조성하는 것으로 결합재를 구성하였다.Experimental plan was established to confirm the characteristics of high-volume blast furnace slag concrete according to the substitution rate of incinerator ash by the combination as shown in [Table 6]. In other words, it is designed to meet the target slump 120 ± 25mm for one level of 50% of W / B, and the binder is composed of 3: 1 blast furnace slag powder and ordinary portland cement by weight ratio. The binder was composed of 0 (Plain), 0.5, 1.0, 1.5, 2.0% by weight to the binder.

콘크리트 배합Concrete mix 구분division W/B
(%)
W / B
(%)
치환율
(%)
Substitution rate
(%)
W
(kg/m3)
W
(kg / m 3 )
질량배합 (kg/m3)Mass mix (kg / m 3 )
OPCOPC BSBS WAWA SS GG PlainPlain 5050 00 180180 9090 270270 00 668668 818818 WA 0.5WA 0.5 0.50.5 180180 8888 270270 22 668668 818818 WA 1.0WA 1.0 1.01.0 180180 8686 270270 44 668668 817817 WA 1.5WA 1.5 1.51.5 180180 8585 270270 55 668668 817817 WA 2.0WA 2.0 2.02.0 180180 8383 270270 77 667667 817817

3. 굳지않은 콘크리트의 특성3. Characteristics of Unconsolidated Concrete

위 [표 6]의 배합에 따른 굳지않은 콘크리트에 대해 플로우(KS F 2594)와 공기량(KS F 2421) 측정하였으며, 그 결과 아래 [표 7]과 같이 나타냈다.Flow (KS F 2594) and air volume (KS F 2421) were measured for the concrete that is not hardened according to the formulation of the above [Table 6], and the results are shown in the following [Table 7].

굳지않은 콘크리트의 특성Characteristics of Uncured Concrete 구 분division 슬럼프 (mm)Slump (mm) 공기량 (%)Air volume (%) 단위용적질량 (kg/m3)Unit volume mass (kg / m 3 ) W/B (%)W / B (%) 치환율 (%)Substitution rate (%) 5050 0 (Plain)0 (Plain) 9595 4.24.2 18,15218,152 0.50.5 8080 4.04.0 18,07218,072 1.01.0 7070 3.83.8 18,06618,066 1.51.5 7575 3.83.8 17,95917,959 2.02.0 8585 3.83.8 18,05518,055

위의 [표 7]에서와 같이 슬럼프의 경우 소각장 애시(WA)의 치환율이 증가함에 따라 슬럼프는 Plain에 비해 다소 저하하는 것이 확인되었다.
As shown in [Table 7], the slump of the incinerator ash (WA) was found to decrease slightly compared to the plain as the substitution rate of the incinerator ash (WA) increased.

4. 경화 모르타르의 특성4. Characteristics of Hardened Mortar

위 [표 6]의 배합에 따른 경화 콘크리트에 대해 압축강도(KS F 2405)를 측정하였으며, 그 결과 도 2 및 도 3과 같이 나타냈다. 도 2와 도 3은 각각 소각장 애시(WA)의 치환율 별 재령경과에 따른 콘크리트 압축강도와 강도발현율을 나타낸 그래프이다. 도 2에서 보는 바와 같이 전반적으로 재령에 상관없이 강도는 포물선 경향으로 증가하는 경향을 나타냈는데, 소각장 애시(WA) 치환율이 1% 까지는 치환율이 증가함에 따라 오히려 Plain보다 압축강도가 증가한 반면 소각장 애시(WA) 치환율이 1.0% 이상인 경우는 오히려 강도가 저하하는 것으로 나타냈다. 이러한 결과는 쓰레기 소각 처리과정 중에서 분사되는 액상소석회(Ca(OH)2)가 고로슬래그 미분말의 잠재수경성 반응을 어느 정도 촉진하나 소각장 애시(WA)를 1% 이상 치환하면 오히려 잠재수경성 반응을 하기 위한 시멘트량이 감소하기 때문인 것으로 사료된다.Compressive strength (KS F 2405) was measured for the cured concrete according to the formulation of Table 6 above, and the results are shown in FIGS. 2 and 3. 2 and 3 are graphs showing the compressive strength and the strength expression rate of the concrete according to the aging of each incineration rate of the incinerator ash (WA). As shown in FIG. 2, the strength tended to increase as a parabolic tendency regardless of the age, and as the substitution rate increased up to 1%, the compressive strength increased rather than plain, whereas the ash incineration ash ( It was shown that intensity | strength rather dropped when WA) substitution rate is 1.0% or more. These results suggest that the liquid lime (Ca (OH) 2 ) injected during the waste incineration process promotes the hydrophobic reaction of the blast furnace slag to a certain extent, but when the incinerator ash (WA) is replaced by 1% or more, This may be because the amount of cement decreases.

Claims (3)

고로슬래그 미분말 70~90중량%;와 보통 포틀랜드 시멘트 10~30중량%;를 포함하여 조성된 결합재, 물, 순환잔골재 및 순환굵은골재를 이용하면서 배합하되,
상기 결합재는, 도시 생활쓰레기의 소각시 발생하는 배출가스에 액상소석회를 분사하여 집진한 소각장 애시가 시멘트를 치환하여 결합재에 대하여 0.5~2.0중량% 포함되도록 조성되는 것을 특징으로 하는 하이볼륨 고로슬래그 콘크리트.
70-90% by weight of blast furnace slag; and 10-30% by weight of ordinary Portland cement; including a binder, water, circulating aggregate and circulating coarse aggregate,
The binder is high-volume blast furnace slag concrete, characterized in that the incinerator ash dust collected by injecting liquid lime into the exhaust gas generated during incineration of municipal household waste is contained 0.5 to 2.0% by weight relative to the binder. .
제1항에서,
상기 소각장 애시는, 소각로에서 배출된 배출가스가 보일러를 거쳐 이동되는 반건식알칼리반응탑에서 액상소석회를 물에 녹인 소석회슬러리를 분사하여 집진한 것을 바이패스하여 수집한 것임을 특징으로 하는 하이볼륨 고로슬래그 콘크리트.
In claim 1,
The incinerator ash is a high-volume blast furnace slag concrete, characterized in that the exhaust gas discharged from the incinerator is collected by injecting dust collected by discharging the hydrated lime slurry dissolved in water in a semi-dry alkali reaction tower moved through a boiler. .
제1항 또는 제2항에서,
물결합재비 40~65중량%, 잔골재율 35~50용적%로 배합하는 것을 특징으로 하는 하이볼륨 고로슬래그 콘크리트.
3. The method according to claim 1 or 2,
High-volume blast furnace slag concrete, characterized in that it is blended in water binder ratio of 40 to 65% by weight, fine aggregate ratio of 35 to 50% by volume.
KR20120101557A 2012-09-13 2012-09-13 High volume blast furnace slag concrete composition using waste ash and recycled aggregate KR101244825B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20120101557A KR101244825B1 (en) 2012-09-13 2012-09-13 High volume blast furnace slag concrete composition using waste ash and recycled aggregate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20120101557A KR101244825B1 (en) 2012-09-13 2012-09-13 High volume blast furnace slag concrete composition using waste ash and recycled aggregate

Publications (1)

Publication Number Publication Date
KR101244825B1 true KR101244825B1 (en) 2013-03-18

Family

ID=48182095

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20120101557A KR101244825B1 (en) 2012-09-13 2012-09-13 High volume blast furnace slag concrete composition using waste ash and recycled aggregate

Country Status (1)

Country Link
KR (1) KR101244825B1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109369117A (en) * 2018-12-26 2019-02-22 陕西天石实业有限责任公司 Mass concrete
KR101948627B1 (en) * 2017-09-07 2019-04-12 원광대학교산학협력단 High strength lightweight concrete composition including artificial lightweight aggregates
CN112125604A (en) * 2020-09-14 2020-12-25 五邑大学 Recycled concrete with high strength
KR102305160B1 (en) 2020-03-13 2021-09-27 주식회사 한나눔산업 Concrete composition and the manufacturing method thereof
KR20220169802A (en) 2021-06-21 2022-12-28 주식회사 위드엠텍 Hybrid Functional Additive for Slag Cement and Slag Cement Concrete Using the Same
KR102513692B1 (en) 2022-08-26 2023-03-27 주식회사 위드엠텍 Additive for Improving Durability of Concrete Using Eco-friendly Binder, Manufacturing Method of the Additive and Eco-friendly Concrete Contained the Additive
KR102513686B1 (en) 2022-06-17 2023-03-28 주식회사 위드엠텍 Additive for Durable Slag Cement Concrete, and Durable Slag Cement Concrete Contained the Same
KR102551892B1 (en) 2022-11-30 2023-07-06 주식회사 위드엠텍 Additive for Strength Development of Type Ⅰ Slag Cement and Slag Cement Concrete Using the Same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050011477A (en) * 2003-07-23 2005-01-29 윤영중 Method of Stabilizing Treatment for Flying Ash in Incineration
KR20090049799A (en) * 2007-11-14 2009-05-19 박노일 Recycling method of construction waste material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050011477A (en) * 2003-07-23 2005-01-29 윤영중 Method of Stabilizing Treatment for Flying Ash in Incineration
KR20090049799A (en) * 2007-11-14 2009-05-19 박노일 Recycling method of construction waste material

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101948627B1 (en) * 2017-09-07 2019-04-12 원광대학교산학협력단 High strength lightweight concrete composition including artificial lightweight aggregates
CN109369117A (en) * 2018-12-26 2019-02-22 陕西天石实业有限责任公司 Mass concrete
KR102305160B1 (en) 2020-03-13 2021-09-27 주식회사 한나눔산업 Concrete composition and the manufacturing method thereof
CN112125604A (en) * 2020-09-14 2020-12-25 五邑大学 Recycled concrete with high strength
KR20220169802A (en) 2021-06-21 2022-12-28 주식회사 위드엠텍 Hybrid Functional Additive for Slag Cement and Slag Cement Concrete Using the Same
KR102513686B1 (en) 2022-06-17 2023-03-28 주식회사 위드엠텍 Additive for Durable Slag Cement Concrete, and Durable Slag Cement Concrete Contained the Same
KR102513692B1 (en) 2022-08-26 2023-03-27 주식회사 위드엠텍 Additive for Improving Durability of Concrete Using Eco-friendly Binder, Manufacturing Method of the Additive and Eco-friendly Concrete Contained the Additive
KR102551892B1 (en) 2022-11-30 2023-07-06 주식회사 위드엠텍 Additive for Strength Development of Type Ⅰ Slag Cement and Slag Cement Concrete Using the Same

Similar Documents

Publication Publication Date Title
KR101244825B1 (en) High volume blast furnace slag concrete composition using waste ash and recycled aggregate
KR102125577B1 (en) Composition agent
KR100693950B1 (en) Process for preparing concrete admixture for construction utilizing waste concrete sludge
KR101055317B1 (en) Sludge solidified agent and menufacturing method of artificial soil usign the same
KR101459990B1 (en) block composition using the sludge Ash and manufacturing method block
KR101289825B1 (en) Sludge solidified agent and menufacturing method of artificial soil usign the same
KR102024579B1 (en) Eco-friendly and High Early Strength Solidifying Composition Using Supercritical Fluidized Bed Combustion Boiler Flyash
KR101168151B1 (en) Solidified agent to strengthen stratum
KR20140092699A (en) Sludge solidified agent and menufacturing method of artificial soil usign the same
KR20180109377A (en) Surface solidification and soil pavement method
KR101272761B1 (en) Activator for latent hydraulic property of blast furnace slag powder by waste ash and recycled aggregate, and non-cement mortar composition using the same
KR20180027888A (en) Soft ground surface mixing and soil pavement process
KR101371701B1 (en) Solidification brick
KR101190195B1 (en) Solidifier of sludge with high water containing rate and method of the same using
KR20170118991A (en) Soil stabilizer
KR101182607B1 (en) Dehydration material of sludge with high water containing rate and method of the same using
KR100470676B1 (en) Concrete composition using of bottom ash as replacement of aggregate for concrete mixing
KR102265152B1 (en) Eco-friendly Binder Composition for Construction
KR101188498B1 (en) Composition for non-cement concrete using bottom ash and manufacturing method thereof
KR101468363B1 (en) Solidifiying Composion Using Subbituminous Coal
KR100526037B1 (en) Concret compositions having high compression intensity by using bottom-ash
KR100549973B1 (en) A sidewalk block and method of making it with waste concrete
KR101185428B1 (en) Sludge solidified agent and menufacturing method of artificial soil usign the same
KR101917820B1 (en) Binder composition
KR101045341B1 (en) Method for stabilizing burned ash using carbon dioxide

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160111

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170221

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180312

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20191226

Year of fee payment: 8