KR20110130931A - Method for preparing surface modified nickel-based alloys - Google Patents

Method for preparing surface modified nickel-based alloys Download PDF

Info

Publication number
KR20110130931A
KR20110130931A KR1020100050495A KR20100050495A KR20110130931A KR 20110130931 A KR20110130931 A KR 20110130931A KR 1020100050495 A KR1020100050495 A KR 1020100050495A KR 20100050495 A KR20100050495 A KR 20100050495A KR 20110130931 A KR20110130931 A KR 20110130931A
Authority
KR
South Korea
Prior art keywords
nickel
based alloy
aluminum
modified nickel
modified
Prior art date
Application number
KR1020100050495A
Other languages
Korean (ko)
Inventor
장창희
김동훈
구자현
김민우
사인진
김대종
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to KR1020100050495A priority Critical patent/KR20110130931A/en
Publication of KR20110130931A publication Critical patent/KR20110130931A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

PURPOSE: A method of manufacturing surface-reformed nickel-base alloy is provided to enhance long-term oxidation resistance and corrosion resistance since aluminum can be continuously supplied. CONSTITUTION: A method of manufacturing surface-reformed nickel-base alloy comprises next steps. Aluminum or nickel aluminide is physically deposited on the surface of nickel-base alloy(a first step). An inter-diffusion thermal treating process is performed under a temperature of 550~650°C(a second step). The thickness of an aluminum or nickel aluminide deposited layer formed by the first step is 3 ~ 6μm. An inter-metal compound coated layer of Al3Ni2 is formed on the surface of the nickel-base alloy from the second step. The thickness of the inter-metal compound coated layer is 10 ~ 20μm.

Description

표면 개질된 니켈기 합금의 제조방법{METHOD FOR PREPARING SURFACE MODIFIED NICKEL-BASED ALLOYS}METHODS FOR PREPARING SURFACE MODIFIED NICKEL-BASED ALLOYS}

본 발명은 표면 개질된 니켈기 합금의 제조방법에 관한 것으로서, 보다 구체적으로 니켈기 합금의 산화저항성, 크립 특성 등을 향상시킬 수 있는 표면 개질된 니켈기 합금의 제조방법에 관한 것이다.The present invention relates to a method for producing a surface-modified nickel-based alloy, and more particularly to a method for producing a surface-modified nickel-based alloy that can improve the oxidation resistance, creep properties and the like of the nickel-based alloy.

니켈기 합금은 고온에서의 우수한 기계적 특성 및 내산화성 및 내부식성이 뛰어나기 때문에, 열교환기, 가스터빈, 화학공정 플랜트의 반응용기 등의 가혹한 환경에서 사용된다. 특히, 고온의 환경에서 사용되는 니켈기 합금의 경우 산소, 수증기, 탄소 등을 포함하고 있는 환경적인 영향으로 인하여, 재료 외부 혹은 내부에 산화 및 부식이 진행되어 재료의 기계적인 특성이 감소하게 된다. 이러한 고온 환경에 의한 재료의 특성 저하는 재료의 외부에 산화피막을 형성함으로써 외부환경과의 차단을 통하여 방지할 수 있다.Nickel-based alloys are used in harsh environments such as heat exchangers, gas turbines, and reaction vessels in chemical process plants because of their excellent mechanical properties at high temperatures, as well as excellent oxidation and corrosion resistance. In particular, in the case of nickel-based alloys used in a high temperature environment, due to the environmental effects including oxygen, water vapor, carbon, etc., oxidation and corrosion proceed to the outside or inside of the material, thereby reducing the mechanical properties of the material. Such degradation of the material due to the high temperature environment can be prevented by blocking the external environment by forming an oxide film on the outside of the material.

기존의 내산화성 및 내부식성을 향상 시키는 방법은, 첫째 합금원소인 크롬(Cr) 또는 알루미늄(Al)의 양을 증가시켜 외부에 Cr2O3, Al2O3를 형성시켜 재료의 기계적 특성 저하를 방지하는 방법이 있다. 둘째, 화학적 증착방법(Chemical Vapor Deposition), 용사코팅(thermal spray coating), 반응성 스퍼터링(reactive sputtering) 등의 다양한 코팅 방법을 이용하여 외부에 ZrO2, Al2O3, Y2O3 산화피막을 형성하거나 니켈기 합금과 산화피막 중간에 MCrAlY 본드코팅(bond coating)을 이용한 열차폐 코팅(Thermal Barrier Coating) 방법 등이 있다.Existing methods of improving oxidation resistance and corrosion resistance are firstly, by increasing the amount of chromium (Cr) or aluminum (Al), which is an alloying element, to form Cr 2 O 3 and Al 2 O 3 on the outside, thereby lowering the mechanical properties of the material. There is a way to prevent this. Second, ZrO 2 , Al 2 O 3 , and Y 2 O 3 oxides are coated on the outside using various coating methods such as chemical vapor deposition, thermal spray coating, and reactive sputtering. Or a thermal barrier coating method using MCrAlY bond coating between the nickel-based alloy and the oxide film.

이러한 기존의 방법 중 합금원소를 첨가한 방법의 경우에는 산화피막이 성장할수록 합금 최외각층에 합금원소 결핍영역이 발생하게 되며, 산화막에 균열이 발생할 경우 모재로부터 산화피막 형성 원소의 지속적인 공급이 불가능하게 된다. 그러므로, 산화피막을 통한 외부환경과의 지속적인 차단이 불가능하기 때문에 장기 건전성에 문제가 발생할 수 있다. 또한, 알루미늄(Al)의 경우 첨가량을 증가시키게 되면 크립 및 강도 등의 기계적 성질의 저하를 가져오며 용접 등의 가공성의 저하를 유발하는 단점이 있다.In the existing method, the alloying element is added, and as the oxide film grows, the alloy element deficiency region is generated in the outermost layer of the alloy, and when the oxide film is cracked, it is impossible to continuously supply the oxide film forming element from the base material. . Therefore, it is impossible to continuously block the external environment through the oxide film, which may cause long-term integrity. In addition, in the case of aluminum (Al), an increase in the amount of addition brings about a decrease in mechanical properties such as creep and strength and a disadvantage in causing workability such as welding.

산화피막 코팅방법의 경우 모재와 산화피막간의 결합강도가 낮기 때문에, 모재에 하중이 가해질 경우 산화피막의 안정성이 문제가 되며, 균열시 모재가 환경에 노출되기 때문에 장기적인 관점에서 적절하지 않은 문제점이 있다.In the case of anodized coating method, since the bond strength between the base material and the oxide film is low, the stability of the oxide film becomes a problem when a load is applied to the base material, and there is a problem that is not appropriate in the long term because the base material is exposed to the environment during cracking. .

마지막으로 열차폐 코팅의 경우 수백 ㎛에서 수십 mm의 두꺼운 코팅층으로 인하여 고온 및 반응성이 강한 기체 원소들의 외부환경이 모재에 미치지 못하게 하는 장점으로 인하여 가스터빈 등에 활용되고 있다. 하지만, 초고온가스로 중간 열교환기의 경우 1mm 내외의 미세채널(micro channel)을 갖는 형태이고, 우수한 열전달이 주목적이기 때문에 코팅층이 모재로의 열전달을 차단하는 열차폐 코팅은 내산화 및 내부식성을 향상시키기 위한 적합한 방법이라 할 수 없다.Finally, thermal barrier coatings are used in gas turbines due to the advantage of preventing the external environment of high temperature and highly reactive gas elements from reaching the base material due to the thick coating layer of several hundred μm to several tens of mm. However, in the case of an ultra-high temperature gas, an intermediate heat exchanger has a microchannel of about 1 mm and has excellent heat transfer. Therefore, a heat shield coating in which the coating layer blocks heat transfer to the base material improves oxidation resistance and corrosion resistance. This is not a suitable way to make it work.

따라서, 당 기술분야에서는 니켈기 합금의 산화저항성, 크립 특성 등을 보다 우수하게 향상시킬 수 있는 방법에 대하여 연구가 필요한 실정이다.Therefore, there is a need in the art for a method for improving the oxidation resistance, creep properties, and the like of nickel-based alloys more excellently.

본 발명은 초고온가스로 중간 열교환기, 고온가스로 등에 적용할 수 있는 니켈기 합금의 내산화성, 내부식성 등을 향상시키고, 우수한 열전도성을 나타낼 수 있는 방법을 제공하고자 한다.The present invention is to provide a method for improving the oxidation resistance, corrosion resistance, etc. of the nickel-based alloy that can be applied to an intermediate heat exchanger, a high temperature gas furnace, and the like, and exhibit excellent thermal conductivity.

이에, 본 발명은Thus, the present invention

1) 니켈기 합금의 표면에 알루미늄 또는 니켈 알루미나이드를 물리적 증착시키는 단계, 및1) physically depositing aluminum or nickel aluminide on the surface of the nickel-based alloy, and

2) 550 ~ 650℃의 온도하에서 상호확산 열처리(inter-diffusion heat treatment) 공정을 수행하는 단계2) performing an inter-diffusion heat treatment process at a temperature of 550 ~ 650 ℃

를 포함하는 표면 개질된 니켈기 합금의 제조방법을 제공한다.It provides a method for producing a surface-modified nickel-based alloy comprising a.

또한, 본 발명은 상기 표면 개질된 니켈기 합금의 제조방법으로부터 제조되는 표면 개질된 니켈기 합금을 제공한다.The present invention also provides a surface-modified nickel-based alloy prepared from the method for producing the surface-modified nickel-based alloy.

또한, 본 발명은 상기 표면 개질된 니켈기 합금을 포함하는 초고온가스로 중간 열교환기를 제공한다.In addition, the present invention provides an intermediate heat exchanger with ultra-high temperature gas containing the surface-modified nickel-based alloy.

본 발명에 따른 표면 개질된 니켈기 합금의 제조방법은 니켈기 합금 상에 수 ㎛의 얇은 코팅층을 형성함으로써 복잡한 형상에도 적용이 가능하며, 외부에 형성된 산화막의 균열이나 박리가 일어나더라도 하부층에 충분한 양의 알루미늄(Al)을 함유하고 있어 알루미늄의 지속적인 공급이 가능하여 장기적인 내산화성 및 내부식성 향상이 가능한 장점이 있다. 또한, 다른 코팅방법과 달리 외부로부터의 알루미늄 원소를 공급받아 간단한 열처리를 통한 얇은 코팅층으로 인하여 우수한 열전도도를 유지할 수 있기 때문에, 초고온가스로 중간 열교환기 등에 적용하면 고온 구조재료의 장수명 및 장기건전성을 확보할 수 있다.The method for producing a surface-modified nickel-based alloy according to the present invention can be applied to complex shapes by forming a thin coating layer of several μm on the nickel-based alloy, and a sufficient amount in the lower layer even if cracks or peeling of an oxide film formed on the outside occur. Because it contains aluminum (Al), it is possible to continuously supply aluminum, which has the advantage of improving long term oxidation resistance and corrosion resistance. In addition, unlike other coating methods, it is possible to maintain excellent thermal conductivity due to a thin coating layer through simple heat treatment by receiving aluminum elements from the outside. Therefore, when applied to an intermediate heat exchanger with ultra-high temperature gas, the long life and long-term integrity of high-temperature structural materials can be maintained. It can be secured.

도 1은 본 발명의 일구체예로서 니켈기 합금의 표면에 물리적 증착방법을 이용하여 알루미늄을 증착한 니켈기 합금의 주사전자현미경(Scanning Electron Microscopy) 이미지를 나타낸 도이다.
도 2는 본 발명의 일구체예로서 니켈기 합금의 표면에 물리적 증착방법을 이용하여 알루미늄을 증착한 니켈기 합금의 X선 회절(X-ray Diffraction) 피크를 나타낸 도이다.
도 3은 본 발명의 일구체예로서 니켈기 합금의 표면에 물리적 증착방법을 이용하여 알루미늄을 증착한 니켈기 합금의 EDS(Energy Dispersive Spectroscopy) 분석 스펙트럼 결과를 나타낸 도이다.
도 4는 본 발명의 일구체예로서 알루미늄 증착 후 상호확산 열처리를 수행한 표면 개질된 니켈기 합금의 주사전자현미경(Scanning Electron Microscopy) 이미지를 나타낸 도이다.
도 5는 본 발명의 일구체예로서 알루미늄 증착 후 상호확산 열처리를 수행한 표면 개질된 니켈기 합금의 X선 회절(X-ray Diffraction) 피크를 나타낸 도이다.
도 6은 본 발명의 일구체예로서 알루미늄 증착 후 상호확산 열처리를 수행한 표면 개질된 니켈기 합금의 EDS(Energy Dispersive Spectroscopy) 분석 스펙트럼 결과를 나타낸 도이다.
도 7은 본 발명의 일구체예에 따라 제조된 표면 개질 니켈기 합금을 900℃ 대기환경에서 550시간 산화시킨 표면 개질 니켈기 합금의 주사전자현미경(Scanning Electron Microscopy) 이미지를 나타낸 도이다.
도 8은 본 발명의 일구체예에 따라 제조된 표면 개질 니켈기 합금을 900℃ 대기환경에서 550시간 산화시킨 표면 개질 니켈기 합금과 일반 니켈기 합금의 무게 증감 그래프를 나타낸 도이다.
도 9는 본 발명의 일구체예에 따라 제조된 표면 개질 니켈기 합금을 900℃ 대기환경에서 550시간 산화시킨 표면 개질 니켈기 합금의 X선 회절(X-ray Diffraction) 피크를 나타낸 도이다.
도 10은 본 발명의 일구체예에 따라 제조된 표면 개질 니켈기 합금을 900℃ 대기환경에서 550시간 산화시킨 표면 개질 니켈기 합금의 EDS(Energy Dispersive Spectroscopy) 분석 스펙트럼 결과를 나타낸 도이다.
1 is a view showing a scanning electron microscope (Scanning Electron Microscopy) image of a nickel-based alloy in which aluminum is deposited using a physical vapor deposition method on the surface of the nickel-based alloy as an embodiment of the present invention.
FIG. 2 is a diagram showing an X-ray diffraction peak of a nickel-based alloy in which aluminum is deposited by using a physical vapor deposition method on the surface of the nickel-based alloy as one embodiment of the present invention.
FIG. 3 is a diagram showing an EDS (Energy Dispersive Spectroscopy) analysis spectrum result of a nickel-based alloy in which aluminum is deposited using a physical vapor deposition method on a surface of a nickel-based alloy as one embodiment of the present invention.
4 is a view showing a scanning electron microscope (Scanning Electron Microscopy) image of the surface-modified nickel-based alloy that is subjected to the interdiffusion heat treatment after aluminum deposition as an embodiment of the present invention.
FIG. 5 is a diagram showing an X-ray diffraction peak of a surface-modified nickel-based alloy subjected to interdiffusion heat treatment after aluminum deposition as an example of the present invention.
FIG. 6 is a diagram showing an energy dispersive spectroscopy (EDS) analysis spectrum result of a surface-modified nickel-based alloy subjected to interdiffusion heat treatment after aluminum deposition as an embodiment of the present invention.
7 is a view showing a scanning electron microscope (Scanning Electron Microscopy) image of the surface-modified nickel-based alloy prepared by oxidizing the surface-modified nickel-based alloy prepared in accordance with one embodiment of the present invention in 900 ℃ air environment for 550 hours.
FIG. 8 is a graph illustrating a weight increase and decrease graph of a surface-modified nickel-based alloy and a general nickel-based alloy obtained by oxidizing a surface-modified nickel-based alloy prepared according to one embodiment of the present invention at 900 ° C. for 550 hours.
9 is a diagram showing an X-ray diffraction peak of a surface-modified nickel-based alloy obtained by oxidizing the surface-modified nickel-based alloy prepared according to one embodiment of the present invention at 900 ° C. for 550 hours.
FIG. 10 is a graph showing EDS (Energy Dispersive Spectroscopy) analysis spectrum results of a surface modified nickel-based alloy prepared by oxidizing the surface-modified nickel-based alloy prepared according to one embodiment of the present invention at 900 ° C. for 550 hours.

이하, 본 발명을 보다 구체적으로 설명하기로 한다.Hereinafter, the present invention will be described in more detail.

본 발명에 따른 표면 개질된 니켈기 합금의 제조방법의 일구체예는 1) 니켈기 합금의 표면에 알루미늄 또는 니켈 알루미나이드를 물리적 증착시키는 단계, 및 2) 550 ~ 650℃의 온도하에서 상호확산 열처리(inter-diffusion heat treatment) 공정을 수행하는 단계를 포함한다.One embodiment of the method for producing a surface-modified nickel-based alloy according to the present invention is 1) physical deposition of aluminum or nickel aluminide on the surface of the nickel-based alloy, and 2) interdiffusion heat treatment at a temperature of 550 ~ 650 ℃ performing an inter-diffusion heat treatment process.

본 발명에 따른 표면 개질된 니켈기 합금의 제조방법에 있어서, 상기 1) 단계의 알루미늄 또는 니켈 알루미나이드의 물리적 증착은 당 기술분야에 알려진 방법을 이용할 수 있다. 상기 1) 단계로부터 형성되는 알루미늄 또는 니켈 알루미나이드 증착층의 두께는 3 ~ 6㎛ 일 수 있다.In the method for producing a surface-modified nickel-based alloy according to the present invention, physical deposition of aluminum or nickel aluminide of step 1) may use a method known in the art. The thickness of the aluminum or nickel aluminide deposited layer formed from the step 1) may be 3 ~ 6㎛.

본 발명에 따른 표면 개질된 니켈기 합금의 제조방법에 있어서, 상기 2) 단계 공정으로부터 니켈기 합금의 표면에는 Al3Ni2의 금속간 화합물(Intermetallic compound) 코팅층이 형성된다.In the method for producing a surface-modified nickel-based alloy according to the present invention, an intermetallic compound coating layer of Al 3 Ni 2 is formed on the surface of the nickel-based alloy from the step 2).

상기 금속간 화합물(Intermetallic compound) 코팅층의 두께는 10 ~ 20㎛인 것이 바람직하나, 이에만 한정되는 것은 아니다.The thickness of the intermetallic compound coating layer is preferably 10 ~ 20㎛, but is not limited thereto.

본 발명에 따른 표면 개질된 니켈기 합금의 제조방법에 있어서, 상기 2) 단계의 상호확산 열처리 공정은 550 ~ 650℃의 온도하에서 수행되는 것을 특징으로 한다. 상기 2) 단계의 상호확산 열처리 공정의 온도가 550℃ 미만인 경우에는 확산이 충분히 일어나지 않을 수 있고, 650℃를 초과하는 경우에는 알루미늄의 녹는점으로 인해 열교환기를 위한 표면 개질에 사용할 수 없는 조건이 될 수 있어 바람직하지 않다.In the method for producing a surface-modified nickel-based alloy according to the present invention, the step of cross-diffusion heat treatment step 2) is characterized in that it is carried out at a temperature of 550 ~ 650 ℃. If the temperature of the cross-diffusion heat treatment process of step 2) is less than 550 ° C., diffusion may not occur sufficiently, and if it exceeds 650 ° C., the melting point of aluminum may render it unusable for surface modification for a heat exchanger. It can be undesirable.

종래의 니켈기 합금의 열처리 공정은 약 800℃ 이상의 온도에서 수행되었다. 그러나, 본 발명은 550 ~ 650℃의 온도하에서 상호확산 열처리 공정을 수행함으로써, 공정비용, 시간 등을 절감할 수 있다.The heat treatment process of the conventional nickel-based alloy was carried out at a temperature of about 800 ℃ or more. However, the present invention can reduce the process cost, time, etc. by performing the interdiffusion heat treatment process at a temperature of 550 ~ 650 ℃.

상기 2) 단계의 상호확산 열처리 공정은 550 ~ 650℃의 온도하에서 24 ~ 48시간 동안 수행되는 것이 바람직하다.The interdiffusion heat treatment process of step 2) is preferably performed for 24 to 48 hours at a temperature of 550 ~ 650 ℃.

또한, 본 발명은 상기 표면 개질된 니켈기 합금의 제조방법으로 제조되는 표면 개질된 니켈기 합금을 제공한다.In addition, the present invention provides a surface-modified nickel-based alloy prepared by the method for producing a surface-modified nickel-based alloy.

본 발명에 따른 표면 개질된 니켈기 합금은 니켈기 합금 상에 수 ㎛의 얇은 코팅층을 포함함으로써 복잡한 형상에도 적용이 가능하며, 외부에 형성된 산화막의 균열이나 박리가 일어나더라도 하부층에 충분한 양의 알루미늄(Al)을 함유하고 있어 알루미늄의 지속적인 공급이 가능하여 장기적인 내산화성 및 내부식성을 향상시킬 수 있다.The surface-modified nickel-based alloy according to the present invention can be applied to complex shapes by including a thin coating layer of several μm on the nickel-based alloy, and a sufficient amount of aluminum in the lower layer even if cracking or peeling of an oxide film formed on the outside occurs. Al), which enables continuous supply of aluminum, improving long-term oxidation and corrosion resistance.

또한, 본 발명은 상기 표면 개질된 니켈기 합금을 포함하는 초고온가스로 중간 열교환기를 제공한다.In addition, the present invention provides an intermediate heat exchanger with ultra-high temperature gas containing the surface-modified nickel-based alloy.

종래의 다른 코팅방법과 달리 외부로부터의 알루미늄 원소를 공급받아 간단한 열처리를 통한 얇은 코팅층으로 인하여 우수한 열전도도를 유지할 수 있기 때문에, 초고온가스로 중간 열교환기 등에 적용하면 고온 구조재료의 장수명 및 장기건전성을 확보할 수 있다.Unlike other conventional coating methods, it is possible to maintain excellent thermal conductivity due to a thin coating layer through simple heat treatment by receiving aluminum elements from the outside. Therefore, when applied to an intermediate heat exchanger with ultra-high temperature gas, the long life and long-term integrity of high-temperature structural materials It can be secured.

이하, 바람직한 실시예를 들어 본 발명을 더욱 상세하게 설명한다. 그러나 이들 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이에 의하여 제한되지 않는다는 것은 당업계의 통상의 지식을 가진 자에게 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to preferred examples. However, these examples are intended to illustrate the present invention in more detail, it will be apparent to those skilled in the art that the scope of the present invention is not limited thereby.

<< 실시예Example 1> 표면  1> surface 개질된Modified 니켈기Nickel 합금의 제조 Manufacture of alloys

알루미늄(Al)을 니켈기 합금(Alloy 617) 위에 물리적 증착(Physical Vapor Deposition) 방법으로 코팅한 후, 진공로(vacuum furnace)에서의 열처리를 통하여 코팅층을 형성하였다. 이 때, 증착 조건 및 열처리 조건은 다음과 같다.Aluminum (Al) was coated on a nickel-based alloy (Alloy 617) by physical vapor deposition (Physical Vapor Deposition) method, and then a coating layer was formed by heat treatment in a vacuum furnace (vacuum furnace). At this time, deposition conditions and heat treatment conditions are as follows.

1) 증착 조건1) Deposition Conditions

- 증착 장비 진공도: 7 × 10-3 torrDeposition equipment vacuum degree: 7 × 10 -3 torr

- 직류 전원 출력: 120WDC power output: 120W

- 분위기: 아르곤(Ar), 10sccmAtmosphere: Argon (10 sccm)

2) 열처리 조건2) heat treatment condition

- 진공로(vacuum furnace) 진공도: 1 × 10-6 torr 이하-Vacuum furnace vacuum degree: below 1 × 10 -6 torr

- 온도: 600℃Temperature: 600 ℃

- 시간: 24시간-Time: 24 hours

<< 실험예Experimental Example 1> 1>

상기 실시예 1에서 제조한 표면 개질된 니켈기 합금의 특성을 평가하여, 하기 도 1 내지 도 10에 나타내었다.To evaluate the properties of the surface-modified nickel-based alloy prepared in Example 1, it is shown in Figures 1 to 10 below.

도 1은 물리적 증착(Physical Vapor Deposition) 방법을 이용한 알루미늄(Al) 코팅층의 주사전자현미경(Scanning Electron Microscopy) 이미지이다. 약 5㎛ 두께의 증착층을 얻었으며 조성분석을 위해 X선 회절(X-ray Diffraction), EDS(Energy Dispersive Spectroscopy) 분석을 실시하였다. 그 결과, 도 2 및 도 3에서 확인할 수 있듯이 형성된 코팅층은 순수한 알루미늄(Al)으로 이루어져 있음을 확인할 수 있다.FIG. 1 is a scanning electron microscopy image of an aluminum (Al) coating layer using a physical vapor deposition method. A deposition layer having a thickness of about 5 μm was obtained, and X-ray diffraction and energy dispersive spectroscopy (EDS) analysis were performed for composition analysis. As a result, it can be seen that the coating layer formed as shown in Figures 2 and 3 consists of pure aluminum (Al).

5㎛의 알루미늄(Al)이 증착된 시편을 진공로(vacuum furnace)에서 상호확산 열처리(inter-diffusion heat treatment) 하였으며, 그 결과를 도 4에서 확인할 수 있다. 증착 물질인 알루미늄(Al)과 모재인 니켈(Ni)이 계면에서 농도차이에 의해 서로 혼합된 층을 이룬 것을 확인할 수 있다. 조성분석 결과 도 4 및 도 5에서 확인할 수 있듯이 Al3Ni2 금속간 화합물(Intermetallic compound) 코팅층이 형성된 것을 확인할 수 있다.5 μm of aluminum (Al) deposited specimens were subjected to inter-diffusion heat treatment in a vacuum furnace, and the results can be seen in FIG. 4. It can be seen that the deposition material aluminum (Al) and the base material nickel (Ni) formed a layer mixed with each other by the difference in concentration at the interface. As a result of the composition analysis, as shown in FIGS. 4 and 5, it can be seen that an Al 3 Ni 2 intermetallic compound coating layer is formed.

Al3Ni2 금속간 화합물(Intermetallic compound) 코팅층의 산화저항성 평가를 위한 900℃ 대기환경에서의 550시간 산화실험을 수행한 결과, 도 7에 나타나듯이 균일한 코팅층과 산화막이 형성되었고, 도 8에 나타나듯이 코팅과 열처리를 실시하였을 때 그렇지 않은 것보다 무게증가가 현저히 감소하는 것을 확인할 수 있다. 도 9 및 도 10에서 보면, 고온에서 치밀하고 안정적인 Al2O3가 재료 표면에 형성됨으로서 산화 저항성을 크게 높인 것을 확인할 수 있다.As a result of performing a 550-hour oxidation experiment in an atmosphere of 900 ° C. to evaluate the oxidation resistance of the Al 3 Ni 2 intermetallic compound coating layer, a uniform coating layer and an oxide film were formed as shown in FIG. As can be seen, when the coating and heat treatment are performed, the increase in weight is significantly reduced. 9 and 10, it can be seen that Al 2 O 3, which is dense and stable at high temperatures, is formed on the surface of the material, thereby greatly increasing oxidation resistance.

상기와 같은 결과로부터, 본 발명에 따른 표면 개질된 니켈기 합금의 제조방법은 니켈기 합금 상에 수 ㎛의 얇은 코팅층을 형성함으로써 복잡한 형상에도 적용이 가능하며, 외부에 형성된 산화막의 균열이나 박리가 일어나더라도 하부층에 충분한 양의 알루미늄(Al)을 함유하고 있어 알루미늄의 지속적인 공급이 가능하여 장기적인 내산화성 및 내부식성 향상이 가능함을 알 수 있다. 또한, 다른 코팅방법과 달리 외부로부터의 알루미늄 원소를 공급받아 간단한 열처리를 통한 얇은 코팅층으로 인하여 우수한 열전도도를 유지할 수 있기 때문에, 초고온가스로 중간 열교환기 등에 적용하면 고온 구조재료의 장수명 및 장기건전성을 확보할 수 있다.From the above results, the method for producing a surface-modified nickel-based alloy according to the present invention can be applied to complex shapes by forming a thin coating layer of several μm on the nickel-based alloy, the cracks or peeling of the oxide film formed on the outside Even if it occurs, it contains a sufficient amount of aluminum (Al) in the lower layer can be seen that the continuous supply of aluminum can improve the long-term oxidation and corrosion resistance. In addition, unlike other coating methods, it is possible to maintain excellent thermal conductivity due to a thin coating layer through simple heat treatment by receiving aluminum elements from the outside. Therefore, when applied to an intermediate heat exchanger with ultra-high temperature gas, the long life and long-term integrity of high-temperature structural materials can be maintained. It can be secured.

Claims (6)

1) 니켈기 합금의 표면에 알루미늄 또는 니켈 알루미나이드를 물리적 증착시키는 단계, 및
2) 550 ~ 650℃의 온도하에서 상호확산 열처리(inter-diffusion heat treatment) 공정을 수행하는 단계
를 포함하는 표면 개질된 니켈기 합금의 제조방법.
1) physically depositing aluminum or nickel aluminide on the surface of the nickel-based alloy, and
2) performing an inter-diffusion heat treatment process at a temperature of 550 ~ 650 ℃
Method of producing a surface-modified nickel-based alloy comprising a.
제1항에 있어서,
상기 1) 단계로부터 형성되는 알루미늄 또는 니켈 알루미나이드 증착층의 두께는 3 ~ 6㎛인 것을 특징으로 하는 표면 개질된 니켈기 합금의 제조방법.
The method of claim 1,
The method of manufacturing a surface-modified nickel-based alloy, characterized in that the thickness of the aluminum or nickel aluminide deposited layer formed from the step 1) is 3 ~ 6㎛.
제1항에 있어서,
상기 2) 단계 공정으로부터 니켈기 합금의 표면에 Al3Ni2의 금속간 화합물(Intermetallic compound) 코팅층이 형성되는 것을 특징으로 하는 표면 개질된 니켈기 합금의 제조방법.
The method of claim 1,
Method for producing a surface-modified nickel-based alloy, characterized in that the intermetallic compound coating layer of Al 3 Ni 2 is formed on the surface of the nickel-based alloy from the step 2).
제3항에 있어서,
상기 금속간 화합물(Intermetallic compound) 코팅층의 두께는 10 ~ 20㎛인 것을 특징으로 하는 표면 개질된 니켈기 합금의 제조방법.
The method of claim 3,
Method for producing a surface-modified nickel-based alloy, characterized in that the thickness of the intermetallic compound coating layer is 10 ~ 20㎛.
제1항 내지 제4항 중 어느 한 항의 표면 개질된 니켈기 합금의 제조방법으로 제조되는 표면 개질된 니켈기 합금.Surface-modified nickel-based alloy prepared by the method for producing a surface-modified nickel-based alloy of any one of claims 1 to 4. 제5항의 표면 개질된 니켈기 합금을 포함하는 초고온가스로 중간 열교환기.Ultra-high temperature gas intermediate heat exchanger comprising the surface-modified nickel-based alloy of claim 5.
KR1020100050495A 2010-05-28 2010-05-28 Method for preparing surface modified nickel-based alloys KR20110130931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100050495A KR20110130931A (en) 2010-05-28 2010-05-28 Method for preparing surface modified nickel-based alloys

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100050495A KR20110130931A (en) 2010-05-28 2010-05-28 Method for preparing surface modified nickel-based alloys

Publications (1)

Publication Number Publication Date
KR20110130931A true KR20110130931A (en) 2011-12-06

Family

ID=45499540

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100050495A KR20110130931A (en) 2010-05-28 2010-05-28 Method for preparing surface modified nickel-based alloys

Country Status (1)

Country Link
KR (1) KR20110130931A (en)

Similar Documents

Publication Publication Date Title
Wang et al. Oxidation resistance improvement of Zr-4 alloy in 1000° C steam environment using ZrO2/FeCrAl bilayer coating
US5238752A (en) Thermal barrier coating system with intermetallic overlay bond coat
EP2083097B1 (en) Multilayer alloy coating film, heat-resistant metal member having the same, and method for producing multilayer alloy coating film
CN104401089B (en) High-temperature coating comprising nickel-chromium-oxygen active diffusion barrier layer and preparation method
JP6999810B2 (en) Zirconium alloy cladding tube with improved high temperature oxidation resistance and its manufacturing method
WO1998042888A1 (en) Spray coated member resistant to high temperature environment and method of production thereof
Li et al. An effective low-temperature strategy for sealing plasma sprayed Al2O3-based coatings
CN105734500A (en) High temperature oxidation-resistant thermal barrier coating layer with composite structure and preparation method thereof
US7138189B2 (en) Heat-resistant Ti alloy material excellent in resistance to corrosion at high temperature and to oxidation
KR102261029B1 (en) Nickel-based super alloy for diffusion bonding and method for diffusion bonding using the same
Wang et al. Effect of TiN diffusion barrier on elements interdiffusion behavior of Ni/GH3535 system in LiF-NaF-KF molten salt at 700℃
WO2009054536A1 (en) METHOD OF TREATING SURFACE OF Ti-Al ALLOY AND TI-AL ALLOY OBTAINED BY THE SAME
CN112853288A (en) Fe-Cr-Al-based protective coating with long-time high-temperature steam oxidation resistance and preparation method thereof
Li et al. High-performance Cr2AlC MAX phase coatings for ATF application: Interface design and oxidation mechanism
US7150924B2 (en) Metal based resistance heating element and method for preparation therefor
Tang et al. Improvement of the high-temperature oxidation resistance of Zr alloy cladding by surface modification with aluminum-containing ternary carbide coatings
CN113106393B (en) Molten salt corrosion-resistant coating containing nickel-tantalum active diffusion barrier layer and preparation method thereof
CN114959569A (en) Cr (chromium) 2 Preparation method of AlC diffusion impervious layer
JP3910588B2 (en) ReCr alloy coating for diffusion barrier
He et al. A novel method for preparing α-Al2O3 (Cr2O3)/Fe–Al composite coating with high hydrogen isotopes permeation resistance
KR20110130931A (en) Method for preparing surface modified nickel-based alloys
CN113042343A (en) Preparation method of super-hydrophobic intermetallic compound-based protective layer with high mechanical stability and corrosion resistance
KR20110130929A (en) Method for preparing surface modified nickel-based alloys
Gou et al. The oxidation behaviors of Cr2N and Cr/Cr2N multilayer coatings on Zircaloy-4 tubes in high temperature environment
Li et al. TiC and (Ti, Nb) 3SiC2 based dual-layer coating on SUS430 for solid oxide fuel cell interconnects

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application