KR20110130929A - Method for preparing surface modified nickel-based alloys - Google Patents

Method for preparing surface modified nickel-based alloys Download PDF

Info

Publication number
KR20110130929A
KR20110130929A KR1020100050493A KR20100050493A KR20110130929A KR 20110130929 A KR20110130929 A KR 20110130929A KR 1020100050493 A KR1020100050493 A KR 1020100050493A KR 20100050493 A KR20100050493 A KR 20100050493A KR 20110130929 A KR20110130929 A KR 20110130929A
Authority
KR
South Korea
Prior art keywords
nickel
based alloy
modified nickel
aluminum
producing
Prior art date
Application number
KR1020100050493A
Other languages
Korean (ko)
Inventor
장창희
사인진
김동훈
김민우
구자현
김대종
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to KR1020100050493A priority Critical patent/KR20110130929A/en
Publication of KR20110130929A publication Critical patent/KR20110130929A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • C21D1/09Surface hardening by direct application of electrical or wave energy; by particle radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • C23C14/5813Thermal treatment using lasers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE: A method for preparing a nickel-based alloy having a modified surface is provided to improve the oxidation-resistance and corrosion-resistance of a nickel-based alloy by consecutively supplying a large amount of aluminum to a cracked oxide film. CONSTITUTION: A method for preparing a nickel-based alloy having a modified surface is as follows. Aluminum or nickel aluminide is physically plated on the surface of a nickel based alloy. A laser beam is irradiated to the nickel based alloy plated with the aluminum or nickel aluminide.

Description

표면 개질된 니켈기 합금의 제조방법{METHOD FOR PREPARING SURFACE MODIFIED NICKEL-BASED ALLOYS}METHODS FOR PREPARING SURFACE MODIFIED NICKEL-BASED ALLOYS}

본 발명은 표면 개질된 니켈기 합금의 제조방법에 관한 것으로서, 보다 구체적으로 니켈기 합금의 산화저항성, 크립 특성 등을 향상시킬 수 있는 표면 개질된 니켈기 합금의 제조방법에 관한 것이다.The present invention relates to a method for producing a surface-modified nickel-based alloy, and more particularly to a method for producing a surface-modified nickel-based alloy that can improve the oxidation resistance, creep properties and the like of the nickel-based alloy.

니켈기 합금은 고온에서의 우수한 크립, 기계적 저항성 및 내산화성으로 인해 차세대 초고온가스로(VHTR, Very High Temperature Reactor)의 열교환기(IHX, Intermediate Heat Exchanger) 및 고온가스로(Hot Gas Duct)에 사용될 예정이다. 이러한 우수한 성질에도 불구하고, 재료가 처하게 될 장시간 고온 환경하에서의 가스 불순물 및 기타 환경적인 영향으로 재료의 기계적인 특성이 크게 감소될 수 있다. 기계적 특성을 유지하면서, 부식 및 산화저항성을 향상시키기 위해 궁극적으로 환경과 반응하게 될 재료의 표면에 다양한 처리를 통해 재료를 보호하고자 하는 연구가 진행되고 있다.Nickel-based alloys are used in heat exchangers (IHX, Intermediate Heat Exchanger) and Hot Gas Ducts in Very High Temperature Reactors (VHTRs) due to their excellent creep, mechanical resistance and oxidation resistance at high temperatures. Is expected. Despite these excellent properties, the mechanical properties of the material can be greatly reduced due to gas impurities and other environmental influences under prolonged high temperature environments where the material will be subjected. Research is underway to protect the material through various treatments on the surface of the material that will ultimately react with the environment in order to improve the corrosion and oxidation resistance while maintaining mechanical properties.

기존의 내산화성 및 내부식성을 향상 시키는 방법은, 첫째 합금원소인 크롬(Cr) 또는 알루미늄(Al)의 양을 증가시켜 외부에 Cr2O3, Al2O3를 형성시켜 재료의 기계적 특성 저하를 방지하는 방법이 있다. 둘째, 화학적 증착방법(Chemical Vapor Deposition), 용사코팅(thermal spray coating), 반응성 스퍼터링(reactive sputtering) 등의 다양한 코팅 방법을 이용하여 외부에 ZrO2, Al2O3, Y2O3 산화피막을 형성하거나 니켈기 합금과 산화피막 중간에 MCrAlY 본드코팅(bond coating)을 이용한 열차폐 코팅(Thermal Barrier Coating) 방법 등이 있다.Existing methods of improving oxidation resistance and corrosion resistance are firstly, by increasing the amount of chromium (Cr) or aluminum (Al), which is an alloying element, to form Cr 2 O 3 and Al 2 O 3 on the outside, thereby lowering the mechanical properties of the material. There is a way to prevent this. Second, ZrO 2 , Al 2 O 3 , and Y 2 O 3 oxides are coated on the outside using various coating methods such as chemical vapor deposition, thermal spray coating, and reactive sputtering. Or a thermal barrier coating method using MCrAlY bond coating between the nickel-based alloy and the oxide film.

이러한 기존의 방법 중 합금원소를 첨가한 방법의 경우에는 산화피막이 성장할수록 합금 최외각층에 합금원소 결핍영역이 발생하게 되며, 산화막에 균열이 발생할 경우 모재로부터 산화피막 형성 원소의 지속적인 공급이 불가능하게 된다. 그러므로, 산화피막을 통한 외부환경과의 지속적인 차단이 불가능하기 때문에 장기 건전성에 문제가 발생할 수 있다. 또한, 알루미늄(Al)의 경우 첨가량을 증가시키게 되면 크립 및 강도 등의 기계적 성질의 저하를 가져오며 용접 등의 가공성의 저하를 유발하는 단점이 있다.In the existing method, the alloying element is added, and as the oxide film grows, the alloy element deficiency region is generated in the outermost layer of the alloy, and when the oxide film is cracked, it is impossible to continuously supply the oxide film forming element from the base material. . Therefore, it is impossible to continuously block the external environment through the oxide film, which may cause long-term integrity. In addition, in the case of aluminum (Al), an increase in the amount of addition brings about a decrease in mechanical properties such as creep and strength and a disadvantage in causing workability such as welding.

산화피막 코팅방법의 경우 모재와 산화피막간의 결합강도가 낮기 때문에, 모재에 하중이 가해질 경우 산화피막의 안정성이 문제가 되며, 균열시 모재가 환경에 노출되기 때문에 장기적인 관점에서 적절하지 않은 문제점이 있다.In the case of anodized coating method, since the bond strength between the base material and the oxide film is low, the stability of the oxide film becomes a problem when a load is applied to the base material, and there is a problem that is not appropriate in the long term because the base material is exposed to the environment during cracking. .

마지막으로 열차폐 코팅의 경우 수백 ㎛에서 수십 mm의 두꺼운 코팅층으로 인하여 고온 및 반응성이 강한 기체 원소들의 외부환경이 모재에 미치지 못하게 하는 장점으로 인하여 가스터빈 등에 활용되고 있다. 하지만, 초고온가스로 중간 열교환기의 경우 1mm 내외의 미세채널(micro channel)을 갖는 형태이고, 우수한 열전달이 주목적이기 때문에 코팅층이 모재로의 열전달을 차단하는 열차폐 코팅은 내산화 및 내부식성을 향상시키기 위한 적합한 방법이라 할 수 없다.Finally, thermal barrier coatings are used in gas turbines due to the advantage of preventing the external environment of high temperature and highly reactive gas elements from reaching the base material due to the thick coating layer of several hundred μm to several tens of mm. However, in the case of an ultra-high temperature gas, an intermediate heat exchanger has a microchannel of about 1 mm and has excellent heat transfer. Therefore, a heat shield coating in which the coating layer blocks heat transfer to the base material improves oxidation resistance and corrosion resistance. This is not a suitable way to make it work.

따라서, 당 기술분야에서는 니켈기 합금의 산화저항성, 크립 특성 등을 보다 우수하게 향상시킬 수 있는 방법에 대하여 연구가 필요한 실정이다.Therefore, there is a need in the art for a method for improving the oxidation resistance, creep properties, and the like of nickel-based alloys more excellently.

본 발명은 초고온가스로 중간 열교환기, 고온가스로 등에 적용할 수 있는 니켈기 합금의 내산화성, 내부식성 등을 향상시키고, 우수한 열전도성을 나타낼 수 있는 방법을 제공하고자 한다.The present invention is to provide a method for improving the oxidation resistance, corrosion resistance, etc. of the nickel-based alloy that can be applied to an intermediate heat exchanger, a high temperature gas furnace, and the like, and exhibit excellent thermal conductivity.

이에, 본 발명은Thus, the present invention

1) 니켈기 합금의 표면에 알루미늄 또는 니켈 알루미나이드를 물리적 증착시키는 단계, 및1) physically depositing aluminum or nickel aluminide on the surface of the nickel-based alloy, and

2) 레이저빔을 조사하는 단계2) irradiating a laser beam

를 포함하는 표면 개질된 니켈기 합금의 제조방법을 제공한다.It provides a method for producing a surface-modified nickel-based alloy comprising a.

또한, 본 발명은 상기 표면 개질된 니켈기 합금의 제조방법으로부터 제조되는 표면 개질된 니켈기 합금을 제공한다.The present invention also provides a surface-modified nickel-based alloy prepared from the method for producing the surface-modified nickel-based alloy.

또한, 본 발명은 상기 표면 개질된 니켈기 합금을 포함하는 초고온가스로 중간 열교환기를 제공한다.In addition, the present invention provides an intermediate heat exchanger with ultra-high temperature gas containing the surface-modified nickel-based alloy.

본 발명에 따른 표면 개질된 니켈기 합금의 제조방법은 공업에서 유용하게 사용되고 있는 레이저빔을 대기 환경에서 이용하여 표면 재용해 처리를 통해 산화거동을 향상시킬 수 있다. 재용해 시편의 경우 내부산화가 이루어지지 않은 점은 니켈기 합금의 인장 실험 데이터에 긍정적인 영향을 미칠 수 있다. 한편, 물리적 증착 이후 표면 합금화 처리를 통해 표면 근처에 알루미늄 함량을 높임으로써 산화막의 균열시 하부층에 존재하던 다량의 알루미늄(Al)이 지속적으로 공급되어 장기적인 내산화성 및 내부식성을 향상시킬 수 있다.The method for producing a surface-modified nickel-based alloy according to the present invention can improve the oxidation behavior through the surface remelting treatment using a laser beam which is useful in the industry in the air environment. In the case of remelted specimens, the lack of internal oxidation can have a positive effect on the tensile test data of nickel-based alloys. Meanwhile, by increasing the aluminum content near the surface through surface alloying after physical deposition, a large amount of aluminum (Al), which was present in the lower layer during the cracking of the oxide film, is continuously supplied to improve long-term oxidation resistance and corrosion resistance.

도 1은 본 발명의 일구체예에 따른 표면 개질된 니켈기 합금의 주사전자현미경(scanning electron microscopy) 사진을 나타낸 도이다.
도 2는 본 발명의 일구체예에 따른 표면 개질된 니켈기 합금의 합금화 영역을 확대한 도이다.
도 3은 본 발명의 일구체예에 따른 표면 개질된 니켈기 합금의 합금화 영역의 EDS(Energy Dispersive Spectroscopy) 분석결과를 나타낸 도이다.
도 4 및 도 5는 본 발명의 일구체예에 따른 표면 개질된 니켈기 합금의 합금화 영역에 대한 주사전자현미경 사진을 나타낸 도이다.
도 6은 종래의 니켈기 합금의 900℃ 대기 환경에 100시간 동안 노출시킨 시편의 산화거동을 나타낸 도이다.
1 is a view showing a scanning electron micrograph (scanning electron microscopy) of the surface-modified nickel-based alloy according to an embodiment of the present invention.
2 is an enlarged view of an alloying region of a surface-modified nickel-based alloy according to one embodiment of the present invention.
3 is a view showing the results of Energy Dispersive Spectroscopy (EDS) analysis of the alloying region of the surface-modified nickel-based alloy according to one embodiment of the present invention.
4 and 5 are scanning electron micrographs of the alloying region of the surface-modified nickel-based alloy according to an embodiment of the present invention.
6 is a view showing the oxidation behavior of the specimen exposed to the 900 ℃ atmospheric environment of the conventional nickel-based alloy for 100 hours.

이하, 본 발명을 보다 구체적으로 설명하기로 한다.Hereinafter, the present invention will be described in more detail.

본 발명에 따른 표면 개질된 니켈기 합금의 제조방법은 1) 니켈기 합금의 표면에 알루미늄 또는 니켈 알루미나이드를 물리적 증착시키는 단계, 및 2) 레이저빔을 조사하는 단계를 포함한다.The method for producing a surface-modified nickel-based alloy according to the present invention includes 1) physically depositing aluminum or nickel aluminide on the surface of the nickel-based alloy, and 2) irradiating a laser beam.

본 발명에 따른 표면 개질된 니켈기 합금의 제조방법에 있어서, 상기 1) 단계의 알루미늄 또는 니켈 알루미나이드의 물리적 증착은 당 기술분야에 알려진 방법을 이용할 수 있다. 상기 1) 단계로부터 형성되는 알루미늄 또는 니켈 알루미나이드 증착층의 두께는 3 ~ 5㎛ 일 수 있다.In the method for producing a surface-modified nickel-based alloy according to the present invention, physical deposition of aluminum or nickel aluminide of step 1) may use a method known in the art. The thickness of the aluminum or nickel aluminide deposited layer formed from the step 1) may be 3 ~ 5㎛.

본 발명에 따른 표면 개질된 니켈기 합금의 제조방법에 있어서, 상기 2) 단계의 레이저빔의 조사는 빔 직경이 Φ 0.6 내지 Φ 0.9 인 레이저빔을 이용하고, 1.00 ~ 1.12㎛의 파장으로 수행되는 것이 바람직하다.In the method for producing a surface-modified nickel-based alloy according to the present invention, the irradiation of the laser beam of step 2) is performed using a laser beam having a beam diameter of Φ 0.6 to Φ 0.9, the wavelength of 1.00 ~ 1.12㎛ It is preferable.

상기 2) 단계로부터 니켈기 합금의 표면이 재용해 및 합금화되어 합금화 영역이 형성된다. 상기 합금화 영역의 두께는 50 ~ 100㎛ 인 것이 바람직하나, 이에만 한정되는 것은 아니다.From step 2), the surface of the nickel-based alloy is redissolved and alloyed to form an alloying region. The thickness of the alloying region is preferably 50 ~ 100㎛, but is not limited thereto.

상기 합금화 영역은 Ni, Cr, W, Fe, Mn, Al 등을 포함할 수 있고, 특히 상기 합금화 영역 내 Al의 함량은 3 ~ 5 중량%인 것이 바람직하다.The alloying region may include Ni, Cr, W, Fe, Mn, Al, and the like, in particular, the content of Al in the alloying region is preferably 3 to 5% by weight.

또한, 본 발명은 상기 표면 개질된 니켈기 합금의 제조방법으로 제조되는 표면 개질된 니켈기 합금을 제공한다.In addition, the present invention provides a surface-modified nickel-based alloy prepared by the method for producing a surface-modified nickel-based alloy.

본 발명에 따른 표면 개질된 니켈기 합금은 니켈기 합금 상에 수 ㎛의 얇은 코팅층을 포함함으로써 복잡한 형상에도 적용이 가능하며, 외부에 형성된 산화막의 균열이나 박리가 일어나더라도 하부층에 충분한 양의 알루미늄(Al)을 함유하고 있어 알루미늄의 지속적인 공급이 가능하여 장기적인 내산화성 및 내부식성을 향상시킬 수 있다.The surface-modified nickel-based alloy according to the present invention can be applied to complex shapes by including a thin coating layer of several μm on the nickel-based alloy, and a sufficient amount of aluminum in the lower layer even if cracking or peeling of an oxide film formed on the outside occurs. Al), which enables continuous supply of aluminum, improving long-term oxidation and corrosion resistance.

또한, 본 발명은 상기 표면 개질된 니켈기 합금을 포함하는 초고온가스로 중간 열교환기를 제공한다.In addition, the present invention provides an intermediate heat exchanger with ultra-high temperature gas containing the surface-modified nickel-based alloy.

종래의 다른 코팅방법과 달리 외부로부터의 알루미늄 원소를 공급받아 간단한 열처리를 통한 얇은 코팅층으로 인하여 우수한 열전도도를 유지할 수 있기 때문에, 초고온가스로 중간 열교환기 등에 적용하면 고온 구조재료의 장수명 및 장기건전성을 확보할 수 있다.Unlike other conventional coating methods, it is possible to maintain excellent thermal conductivity due to a thin coating layer through simple heat treatment by receiving aluminum elements from the outside. Therefore, when applied to an intermediate heat exchanger with ultra-high temperature gas, the long life and long-term integrity of high-temperature structural materials It can be secured.

이하, 바람직한 실시예를 들어 본 발명을 더욱 상세하게 설명한다. 그러나 이들 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이에 의하여 제한되지 않는다는 것은 당업계의 통상의 지식을 가진 자에게 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to preferred examples. However, these examples are intended to illustrate the present invention in more detail, it will be apparent to those skilled in the art that the scope of the present invention is not limited thereby.

<< 실시예Example 1> 표면  1> surface 개질된Modified 니켈기Nickel 합금의 제조 Manufacture of alloys

물리적 증착을 통해 니켈기 합금(Haynes 230) 위에 알루미늄(Al)을 4㎛ 증착한 후 레이저빔을 이용하여 합금화시켜 표면의 미세구조 뿐만 아니라 화학조성을 변화시켰다.By depositing aluminum (Al) 4㎛ on the nickel-based alloy (Haynes 230) through physical deposition and alloying by using a laser beam to change the surface microstructure and chemical composition.

재용해와 합금화에 이용한 레이저빔의 조건은 다음과 같다.The conditions of the laser beam used for re-dissolution and alloying are as follows.

1) 레이저빔 조건1) Laser beam condition

- 레이저 모델: L150(Alpha Laser Corporation)Laser model: L150 from Alpha Laser Corporation

- 레이저 크리스탈: Nd : YAGLaser Crystal: Nd: YAG

- 파장: 1.06㎛Wavelength: 1.06 mu m

- 직류 전원 출력: 500W(164V)DC power output: 500W (164V)

- 빔 직경: Φ 0.9Beam diameter: 0.9

- 증착 환경: 대기Deposition Environment: Atmosphere

- 스캔 속도: 약 1 cm/sScan speed: about 1 cm / s

합금화에 앞서 니켈기 합금의 표면에 알루미늄(Al)을 물리적 증착(Physical Vapor Deposition) 방법으로 코팅하였다. 이 때, 증착 조건은 다음과 같다.Prior to alloying, aluminum (Al) was coated on the surface of the nickel-based alloy by physical vapor deposition (Physical Vapor Deposition) method. At this time, the deposition conditions are as follows.

2) 증착 조건2) deposition conditions

- 증착 장비 진공도: 5 × 10-3 torrDeposition equipment vacuum degree: 5 × 10 -3 torr

- 직류 전원 출력: 180WDC power output: 180W

- 분위기: 아르곤(Ar), 10sccmAtmosphere: Argon (10 sccm)

<< 실험예Experimental Example 1> 1>

상기 실시예 1에서 제조한 표면 개질된 니켈기 합금의 특성을 평가하여, 하기 표 1, 및 도 1 내지 도 6에 나타내었다.The properties of the surface-modified nickel-based alloys prepared in Example 1 were evaluated, and are shown in Table 1 below and FIGS. 1 to 6.

도 1은 니켈기 합금의 표면에 물리적 증착(Physical Vapor Deposition) 방법을 이용하여 약 4㎛의 알루미늄(Al) 코팅을 한 다음 Φ 0.9의 레이저빔을 조사시켜 약 100㎛의 합금화 영역을 얻은 주사전자현미경(Scanning Electron Microscopy) 사진이다.FIG. 1 is a scanning electron obtained by coating an aluminum (Al) layer of about 4 μm on a surface of a nickel-based alloy using a physical vapor deposition method and then irradiating a laser beam of Φ 0.9 to obtain an alloying region of about 100 μm. Scanning Electron Microscopy.

도 2는 합금화 영역의 일부를 확대하여 세포상(cellular) 및 수지상(dendrite) 구조를 보여주고 있다. Haynes 230 as-received 시편에 비해 결정립계 탄화물과 결정립내 탄화물이 존재하지 않는 것을 확인할 수 있다.FIG. 2 shows an enlarged portion of the alloying region to show cellular and dendrite structures. Compared to Haynes 230 as-received specimens, it can be seen that no grain boundary carbides and no grain carbides exist.

도 3 및 표 1은 합금화 영역에 대해 EDS(Energy Dispersive Spectroscopy) 분석결과를 보여주고 있다. Haynes 230 as-received 시편에 비해 원소별 화학조성을 크게 차이가 없지만 텅스텐(W)의 경우 상당히 높은 값을 보임을 알 수 있다. 또한, 알루미늄(Al)을 물리적 증착을 통해 코팅한 영향으로 화학조성이 5배 이상 높게 나온 것을 확인할 수 있다.3 and Table 1 show the results of Energy Dispersive Spectroscopy (EDS) analysis on the alloying region. Compared to the Haynes 230 as-received specimens, the chemical composition of each element is not significantly different, but it can be seen that tungsten (W) has a very high value. In addition, it can be seen that the chemical composition is more than five times higher by the effect of coating the aluminum (Al) through physical vapor deposition.

[표 1][Table 1]

Figure pat00001
Figure pat00001

재용해와 합금화는 모두 니켈기 합금의 고온 대기 환경하에서의 산화거동을 살펴보기 위함이며, 이를 위해 900℃ 대기환경에 100시간 동안 산화실험을 수행하였다. 도 6은 레이저빔 처리를 하지 않은 as-received 시편의 산화거동을 보여주고 있다. 표면의 산화막 아래에 약간의 내부산화물(Al2O3)이 형성되었으며 20㎛ 두께의 탈탄화 영역도 관찰이 되었다. 한편, 도 4 및 도 5는 합금화 영역에 대한 주사전자현미경(SEM; Scanning Electron Microscope) 사진이다. 모재에 형성된 결정립계 탄화물과 결정립내 탄화물은 관찰이 되지 않으며, 약 5㎛ 정도의 석출물(precipitates)이 존재하지 않는 영역이 형성되고, 합금화 영역 전체에 걸쳐 석출물이 형성되었다. 또한, 주사전자현미경(SEM; Scanning Electron Microscope) 상으로는 내부산화와 비슷한 정도의 명암을 가진 석출물이 존재하는 것을 볼 수 있다. 높은 알루미늄(Al) 함량으로 인해 as-received 시편보다 많이 형성된 것을 볼 수 있다.Both redissolution and alloying were conducted to investigate the oxidation behavior of nickel-based alloys under high temperature atmosphere. For this purpose, oxidation experiments were performed at 900 ° C for 100 hours. 6 shows the oxidation behavior of the as-received specimens not subjected to laser beam treatment. Some internal oxides (Al 2 O 3 ) were formed under the oxide layer on the surface, and the decarbonized region having a thickness of 20 μm was also observed. 4 and 5 are scanning electron microscope (SEM) photographs of alloying regions. Grain-based carbides formed in the base material and carbides within the grains were not observed, and regions having no precipitates of about 5 μm were formed, and precipitates were formed throughout the alloying region. In addition, on the scanning electron microscope (SEM), it can be seen that a precipitate having a contrast similar to that of internal oxidation exists. Due to the high aluminum (Al) content, it can be seen that more than as-received specimens are formed.

상기와 같은 결과로부터, 본 발명에 따른 표면 개질된 니켈기 합금의 제조방법은 공업에서 유용하게 사용되고 있는 레이저빔을 대기 환경에서 이용하여 표면 재용해 처리를 통해 산화거동을 향상시킬 수 있음을 알 수 있다. 재용해 시편의 경우 내부산화가 이루어지지 않은 점은 니켈기 합금의 인장 실험 데이터에 긍정적인 영향을 미칠 수 있다. 한편, 물리적 증착 이후 표면 합금화 처리를 통해 표면 근처에 알루미늄 함량을 높임으로써 산화막의 균열시 하부층에 존재하던 다량의 알루미늄(Al)이 지속적으로 공급되어 장기적인 내산화성 및 내부식성을 향상시킬 수 있다.From the above results, it can be seen that the method of manufacturing the surface-modified nickel-based alloy according to the present invention can improve the oxidation behavior through surface remelting treatment using a laser beam which is useful in the industry in the air environment. have. In the case of remelted specimens, the lack of internal oxidation can have a positive effect on the tensile test data of nickel-based alloys. Meanwhile, by increasing the aluminum content near the surface through surface alloying after physical deposition, a large amount of aluminum (Al), which was present in the lower layer during the cracking of the oxide film, is continuously supplied to improve long-term oxidation resistance and corrosion resistance.

Claims (8)

1) 니켈기 합금의 표면에 알루미늄 또는 니켈 알루미나이드를 물리적 증착시키는 단계, 및
2) 레이저빔을 조사하는 단계
를 포함하는 표면 개질된 니켈기 합금의 제조방법.
1) physically depositing aluminum or nickel aluminide on the surface of the nickel-based alloy, and
2) irradiating a laser beam
Method of producing a surface-modified nickel-based alloy comprising a.
제1항에 있어서,
상기 1) 단계로부터 형성되는 알루미늄 또는 니켈 알루미나이드 증착층의 두께는 3 ~ 5㎛인 것을 특징으로 하는 표면 개질된 니켈기 합금의 제조방법.
The method of claim 1,
Method for producing a surface-modified nickel-based alloy, characterized in that the thickness of the aluminum or nickel aluminide deposited layer formed from the step 1) is 3 ~ 5㎛.
제1항에 있어서,
상기 2) 단계의 레이저빔의 조사는 빔 직경이 Φ 0.6 내지 Φ 0.9 인 레이저빔을 이용하고, 1.00 ~ 1.12㎛의 파장으로 수행되는 것을 특징으로 하는 표면 개질된 니켈기 합금의 제조방법.
The method of claim 1,
Irradiation of the laser beam of step 2) using a laser beam having a beam diameter of Φ 0.6 to Φ 0.9, and a method of producing a surface-modified nickel-based alloy, characterized in that performed at a wavelength of 1.00 ~ 1.12㎛.
제1항에 있어서,
상기 2) 단계로부터 니켈기 합금의 표면이 재용해 및 합금화되어 합금화 영역이 형성되는 것을 특징으로 하는 표면 개질된 니켈기 합금의 제조방법.
The method of claim 1,
Method for producing a surface-modified nickel-based alloy, characterized in that from the step 2) the surface of the nickel-based alloy is redissolved and alloyed to form an alloying region.
제4항에 있어서,
상기 합금화 영역의 두께는 50 ~ 100㎛인 것을 특징으로 하는 표면 개질된 니켈기 합금의 제조방법.
The method of claim 4, wherein
The alloying region has a thickness of 50 ~ 100㎛ method for producing a surface-modified nickel-based alloy, characterized in that.
제4항에 있어서,
상기 합금화 영역은 알루미늄을 포함하고, 상기 알루미늄의 함량은 3 ~ 5 중량%인 것을 특징으로 하는 표면 개질된 니켈기 합금의 제조방법.
The method of claim 4, wherein
The alloying region includes aluminum, the content of aluminum is a method of producing a surface-modified nickel-based alloy, characterized in that 3 to 5% by weight.
제1항 내지 제6항 중 어느 한 항의 표면 개질된 니켈기 합금의 제조방법으로 제조되는 표면 개질된 니켈기 합금.The surface-modified nickel-based alloy prepared by the method for producing the surface-modified nickel-based alloy of any one of claims 1 to 6. 제7항의 표면 개질된 니켈기 합금을 포함하는 초고온가스로 중간 열교환기.An ultra-high temperature gas intermediate heat exchanger comprising the surface-modified nickel-based alloy of claim 7.
KR1020100050493A 2010-05-28 2010-05-28 Method for preparing surface modified nickel-based alloys KR20110130929A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100050493A KR20110130929A (en) 2010-05-28 2010-05-28 Method for preparing surface modified nickel-based alloys

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100050493A KR20110130929A (en) 2010-05-28 2010-05-28 Method for preparing surface modified nickel-based alloys

Publications (1)

Publication Number Publication Date
KR20110130929A true KR20110130929A (en) 2011-12-06

Family

ID=45499538

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100050493A KR20110130929A (en) 2010-05-28 2010-05-28 Method for preparing surface modified nickel-based alloys

Country Status (1)

Country Link
KR (1) KR20110130929A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101258505B1 (en) * 2011-03-21 2013-04-26 한국과학기술원 Method of surface modification of nickel-based superalloy by electron beam induced surface alloying

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101258505B1 (en) * 2011-03-21 2013-04-26 한국과학기술원 Method of surface modification of nickel-based superalloy by electron beam induced surface alloying

Similar Documents

Publication Publication Date Title
Calandri et al. Solution treatment study of inconel 718 produced by SLM additive technique in view of the oxidation resistance
JP5182669B2 (en) Multilayer alloy film, heat-resistant metal member having the same, and method for producing multilayer alloy film
Huang et al. Improvement of the oxidation resistance of NiCrAlY coatings by the addition of rhenium
JP7174811B2 (en) high temperature parts
JP2020517821A (en) Precipitation hardened cobalt-nickel based superalloys and articles made therefrom
Vialas et al. Substrate effect on the high-temperature oxidation behavior of a Pt-modified aluminide coating. Part I: influence of the initial chemical composition of the coating surface
Shen et al. Effect of the Al, Cr and B elements on the mechanical properties and oxidation resistance of Nb-Si based alloys: a review
US7138189B2 (en) Heat-resistant Ti alloy material excellent in resistance to corrosion at high temperature and to oxidation
Sun et al. Breakaway oxidation of a low-Al content nanocrystalline coating at 1000° C
Lin et al. Constructing self-supplying Al2O3-Y2O3 coating for the γ-TiAl alloy with enhanced oxidation protective ability
Koech et al. High-temperature corrosion behaviour of aluminized-coated and uncoated alloy 718 under cyclic oxidation and corrosion in NaCl vapour at 750° C
KR102261029B1 (en) Nickel-based super alloy for diffusion bonding and method for diffusion bonding using the same
Shan et al. A protective ceramic coating to improve oxidation and thermal shock resistance on CrMn alloy at elevated temperatures
Yang et al. High temperature oxidation resistance of arc ion plating NiCoCrAlY coating modified via laser shock peening
Braun et al. Oxidation behaviour of TBC systems on γ-TiAl based alloy Ti–45Al–8Nb
Liu et al. High-temperature oxidation of FGH96 P/M superalloy
Haynes et al. Influences of superalloy composition and Pt content on the oxidation behavior of gamma–gamma prime NiPtAl bond coatings
CN110396623B (en) High-temperature protective coating material suitable for single crystal nickel-based high-temperature alloy blade
Chen et al. Microstructure and thermophysical properties of as-cast CoNiCrAl bond coat alloys at different Al contents
Bouchaud et al. Cyclic and isothermal oxidation at 1,100 C of a CVD aluminised directionally solidified Ni Superalloy
Jiang et al. Preparation and oxidation behaviour of an AlSiY diffusion coating on a Ni-based single crystal superalloy
KR20110130929A (en) Method for preparing surface modified nickel-based alloys
Tang et al. Improvement of the high-temperature oxidation resistance of Zr alloy cladding by surface modification with aluminum-containing ternary carbide coatings
Sun et al. Improved mechanical properties of Ni-rich Ni 3 Al coatings produced by EB-PVD for repairing single crystal blades
Sah et al. Development and oxidation resistance evaluation of Al-rich surface layer on Alloy 617

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application