KR20110130130A - Multi-component metal oxide catalysts containing a bipo4, preparing method thereof and preparing method of 1,3-butadiene using the same - Google Patents

Multi-component metal oxide catalysts containing a bipo4, preparing method thereof and preparing method of 1,3-butadiene using the same Download PDF

Info

Publication number
KR20110130130A
KR20110130130A KR1020100049613A KR20100049613A KR20110130130A KR 20110130130 A KR20110130130 A KR 20110130130A KR 1020100049613 A KR1020100049613 A KR 1020100049613A KR 20100049613 A KR20100049613 A KR 20100049613A KR 20110130130 A KR20110130130 A KR 20110130130A
Authority
KR
South Korea
Prior art keywords
bismuth
nickel
precursor
iron
molybdenum
Prior art date
Application number
KR1020100049613A
Other languages
Korean (ko)
Other versions
KR101239803B1 (en
Inventor
신채호
박정현
정광덕
노경호
박지원
노은애
Original Assignee
금호석유화학 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 금호석유화학 주식회사 filed Critical 금호석유화학 주식회사
Priority to KR1020100049613A priority Critical patent/KR101239803B1/en
Publication of KR20110130130A publication Critical patent/KR20110130130A/en
Application granted granted Critical
Publication of KR101239803B1 publication Critical patent/KR101239803B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • B01J27/19Molybdenum
    • B01J27/192Molybdenum with bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/12Alkadienes
    • C07C11/16Alkadienes with four carbon atoms
    • C07C11/1671, 3-Butadiene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/42Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor
    • C07C5/48Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor with oxygen as an acceptor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/50Constitutive chemical elements of heterogeneous catalysts of Group V (VA or VB) of the Periodic Table
    • B01J2523/51Phosphorus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/50Constitutive chemical elements of heterogeneous catalysts of Group V (VA or VB) of the Periodic Table
    • B01J2523/54Bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/60Constitutive chemical elements of heterogeneous catalysts of Group VI (VIA or VIB) of the Periodic Table
    • B01J2523/68Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/80Constitutive chemical elements of heterogeneous catalysts of Group VIII of the Periodic Table
    • B01J2523/84Metals of the iron group
    • B01J2523/842Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/80Constitutive chemical elements of heterogeneous catalysts of Group VIII of the Periodic Table
    • B01J2523/84Metals of the iron group
    • B01J2523/847Nickel

Abstract

PURPOSE: A bismuth phosphate-containing a multi-component-based metal oxide catalyst, a method for preparing the same, and a method for preparing 1,3-butadiene using the same are provided to improve the yield of the 1,3-butadiene by increasing the selectivity of the catalyst. CONSTITUTION: A method for preparing a bismuth phosphate-containing a multi-component-based metal oxide catalyst includes the following: The catalyst is represented by chemicl formula 1. A bismuth precursor, an iron precursor, and a nickel precursor are dissolved in an aqueous solution, and the dissolved aqueous solution is introduced into a molybdenum precursor dissolved aqueous solution to obtain a first solution. A phosphorus precursor is added into the first solution to obtain a second solution. The pH value of the second solution is adjusted to be in a range between 3.0 and 6.0. A stirring process and a coprecipitating process are implemented to obtain a coprecipitated solution. The coprecipitated solution is filtered to obtain a solid sample. The solid sample is dried at a temperature between 80 and 110 degrees Celsius in order to obtain a dried catalyst. The dried catalyst is thermally treated at a temperature between 400 and 600 degrees Celsius.

Description

BiPO4를 포함하는 다성분계 금속산화물 촉매와 그의 제조방법 및 이를 이용한 1,3-부타디엔의 제조방법{Multi-component metal oxide catalysts containing a BiPO4, Preparing method thereof and Preparing method of 1,3-Butadiene using the same}Multi-component metal oxide catalysts containing a BiPO4, Preparing method etc. and preparing method of 1,3-Butadiene using the same }

본 발명은 BiPO4상을 포함하고 비스무스, 몰리브덴, 철, 니켈 및 인을 특정 몰비로 포함하는 다성분계 금속산화물 촉매 및 이의 제조방법에 관한 것이며, 또한, 상기 금속산화물 촉매 하에서, 부텐을 이용하여 1,3-부타디엔을 높은 수율로 제조하는 방법에 관한 것이다.
The present invention relates to a multicomponent metal oxide catalyst comprising a BiPO 4 phase and comprising bismuth, molybdenum, iron, nickel and phosphorus in a specific molar ratio, and a method for preparing the same. A method for producing, 3-butadiene in high yield.

1,3-부타디엔은 스티렌부타디엔고무(styrene butadiene rubber, SBR), 폴리부타디엔 고무(polybutadiene rubber, BR), 부타디엔 단독 중합체 등의 합성 고무를 제조하는데 사용되거나, 열가소성 삼량체인 아크릴로니트릴 부타디엔 스티렌(acrylonitrile butadiene styrene, ABS)를 제조하는데 사용되는 화합물이다.1,3-butadiene is used to prepare synthetic rubbers such as styrene butadiene rubber (SBR), polybutadiene rubber (BR), butadiene homopolymer, or acrylonitrile acrylonitrile, a thermoplastic trimer butadiene styrene (ABS).

일반적으로 1,3-부타디엔은 보통 나프타를 원료로 하여, 포화 탄화수소의 열분해 방법(크래킹 방법)에 의해 제조한다. 나프타를 열분해 하면 메탄, 에탄, 에텐, 아세틸렌, 프로판, 프로펜, 프로핀, 알렌, 부텐, 부타디엔, C5 이상의 고급 탄화수소의 혼합물이 얻어진다. 따라서, 상기 열분해 방법을 통해 1,3-부타디엔을 생산하는 것은 위와 같은 부산물인 다른 올레핀 류도 동시에 합성되므로 1.3-부타디엔을 제조하는 방법으로는 매우 비효율적이다.Generally, 1,3-butadiene is manufactured by the thermal decomposition method (cracking method) of a saturated hydrocarbon, using naphtha as a raw material normally. Pyrolysis of naphtha results in a mixture of methane, ethane, ethene, acetylene, propane, propene, propene, allene, butene, butadiene, and C 5 or higher hydrocarbons. Therefore, the production of 1,3-butadiene through the pyrolysis method is also very inefficient as a method for producing 1.3-butadiene because other olefins which are the above by-products are simultaneously synthesized.

또 다른 제조방법으로 직접 탈수소화에 의해 제조하는 방법인데, 이 방법은 크래킹 방법보다 1,3-부타디엔의 수율은 높으나, 열역학적으로 적합하지 않고 높은 반응온도를 요구하는 단점이 있다.Another manufacturing method is a method of manufacturing by direct dehydrogenation, which has a higher yield of 1,3-butadiene than a cracking method, but has a disadvantage in that it is not thermodynamically suitable and requires a high reaction temperature.

이러한 단점을 극복한 것이 산화적 탈수소화(oxidative dehydrogenation) 방법인데, 이 방법은 부텐과 산소가 반응하여 1,3-부타디엔과 물을 생성하는 반응으로, 이 반응은 증기 존재 하에 수행하는데, 첨가된 증기는 열 수송체로서 작용하며 촉매 상에서 유기 침착물의 기화를 촉진하여, 촉매의 탄화를 막고 촉매의 유출 시간을 증가시킨다. 유기 침착물은 일산화탄소, 이산화탄소 및 물로 전환되며, 여기에서 생성물로 안정한 물이 생성되므로 열역학적으로 유리할 뿐만 아니라 반응 온도를 낮출 수 있다. 즉, 산화적 탈수소화는 열역학적으로 안정하고 낮은 온도에서 올레핀에 대한 선택도가 우수하며, 일반적으로 산화적 탈수소화 반응에서는 반응초기에 생성된 라디칼이 중요한 반응 중간체로서 반응 중에 고체 표면에서 탈착되어 기체 부분으로 이동하여 균일계 촉매반응에 참여하게 된다. 부텐에서 1,3-부타디엔으로의 산화적 탈수소화에 적합한 촉매는 비스무스 몰리브덴 계 산화물[A.P.V. Soares, L.K. Kimitrov, M.C.A. Oliveira, L. Hilaire, M.F. Portela, R.K. Grasselli, Appl. Catal., 253, 191 (2003)(β-Bi2Mo2O9 + γ-Bi2MoO6), P. Boutry, R. Montarnal, J. Wrzyszcz, J. Catal., 13,75(1969)(β-Bi2Mo2O9, γ-Bi2MoO6), Jung, J.C., Kim. H., Choi, A.S., Chung, Y.M., Kim, T.J., Lee, S.J., Oh, S.H., Song, I.K., J. Mol. Catal. A: Chem., 259, 166-170(2006)(α-Bi2Mo3O12, β-Bi2Mo2O9, γ-Bi2MoO6)]과 아연 페라이트 촉매[대한민국 등록특허 제 10-0847206 호], 또는 철을 추가로 포함하는 비스무스-몰리브덴 다중 금속 산화물 촉매를 기초로 한다[US 4,423,281 (Mo12BiNi8Pb0.5Cr3K0.2Ox, Mo12BibNi7Al3Cr0.5K0.5Ox), US 4,336,409 (Mo12BNi6Cd2Cr3P0.5Ox), DE-A 26 00 128 (Mo12BiNi0.5Cr3 P0.5Mg7.5K0.1Ox+SiO2), DE-A 24 40 329 (Mo12BiCo4.5Ni2.5Cr3P0.5K0.2Ox)].Overcoming this drawback is the oxidative dehydrogenation method, which reacts butene with oxygen to produce 1,3-butadiene and water, which is carried out in the presence of steam, The vapor acts as a heat transporter and promotes vaporization of organic deposits on the catalyst, preventing carbonization of the catalyst and increasing the outflow time of the catalyst. Organic deposits are converted to carbon monoxide, carbon dioxide and water, where stable water is produced as a product, which is not only thermodynamically advantageous but also lowers the reaction temperature. In other words, oxidative dehydrogenation is thermodynamically stable and has good selectivity for olefins at low temperatures. In general, in oxidative dehydrogenation reactions, radicals generated at the beginning of the reaction are important reaction intermediates and desorb on the solid surface during the reaction. It is moved to the part to participate in the homogeneous catalysis. Suitable catalysts for oxidative dehydrogenation of butenes to 1,3-butadiene are bismuth molybdenum based oxides [APV Soares, LK Kimitrov, MCA Oliveira, L. Hilaire, MF Portela, RK Grasselli, Appl. Catal., 253, 191 (2003) ( β- Bi 2 Mo 2 O 9 + γ- Bi 2 MoO 6 ), P. Boutry, R. Montarnal, J. Wrzyszcz, J. Catal., 13,75 (1969) ( β- Bi 2 Mo 2 O 9 , γ- Bi 2 MoO 6 ), Jung, JC, Kim. H., Choi, AS, Chung, YM, Kim, TJ, Lee, SJ, Oh, SH, Song, IK, J. Mol. Catal. A: Chem., 259, 166-170 (2006) ( α- Bi 2 Mo 3 O 12 , β- Bi 2 Mo 2 O 9 , γ- Bi 2 MoO 6 )] and a zinc ferrite catalyst [Korea Patent No. 10 -0847206], or based on bismuth-molybdenum multi-metal oxide catalyst further comprising iron [US 4,423,281 (Mo 12 BiNi 8 Pb 0.5 Cr 3 K 0.2 O x , Mo 12 Bi b Ni 7 Al 3 Cr 0.5 K 0.5 O x ), US 4,336,409 (Mo 12 BNi 6 Cd 2 Cr 3 P 0.5 O x ), DE-A 26 00 128 (Mo 12 BiNi 0.5 Cr 3 P 0.5 Mg 7.5 K 0.1 O x + SiO 2 ), DE -A 24 40 329 (Mo 12 BiCo 4.5 Ni 2.5 Cr 3 P 0.5 K 0.2 O x )].

그러나, 상기 문헌 및 특허에 명시된 촉매 중 비스무스 몰리브덴 계 산화물 촉매는 합성은 쉬우나, 부텐에 대한 1,3-부타디엔의 수율이 낮으며, 상기 다중 금속산화물 촉매의 경우 매우 높은 1,3-부타디엔 수율을 얻을 수 있으나, 촉매의 안정성이 낮고 합성이 매우 어려우며, 재현성 확보가 곤란하여 상업화하는데 문제가 있었다.However, bismuth molybdenum-based oxide catalysts among the catalysts specified in the above documents and patents are easy to synthesize, but have a low yield of 1,3-butadiene for butene, and very high 1,3-butadiene yield for the multimetal oxide catalyst. Although it can be obtained, there is a problem in commercialization due to the low stability of the catalyst, very difficult synthesis, difficult to secure reproducibility.

이에, 본 발명자들은 부텐의 산화적 탈수소화 반응은 부텐과 산소가 반응하여 부분산화반응을 거쳐 1,3-부타디엔과 물을 생성하는 반응이며, 이때, 반응물로 산소를 사용하기 때문에 완전 산화반응 등 많은 부반응이 예상되므로, 이러한 부반응을 최대한 억제하고 1,3-부타디엔의 선택도가 높은 촉매를 개발하고자 노력하였다. 그 결과, 비스무스 몰리브덴 계 산화물 촉매에 철과 니켈 그리고 인(P)을 첨가하고, 이들 성분간의 조성비를 적절히 조절하면 기존의 1,3-부타디엔 제조용 비스무스 몰리브덴 계 산화물 촉매 보다 내구성 및 장기활성이 우수할 뿐만 아니라, 선택도가 우수하여 높은 수율로 1,3-부타디엔을 제조할 수 있는 촉매를 제조할 수 있음을 알게 되어 본 발명을 완성하게 되었다.Accordingly, the present inventors are oxidative dehydrogenation of butene is a reaction of butene and oxygen to produce a 1,3-butadiene and water through a partial oxidation reaction, at this time, because the oxygen is used as a reactant, a complete oxidation reaction, etc. Because many side reactions are expected, efforts have been made to suppress these side reactions as much as possible and to develop catalysts with high selectivity of 1,3-butadiene. As a result, if iron, nickel and phosphorus (P) were added to the bismuth molybdenum-based oxide catalyst, and the composition ratio between these components was properly adjusted, durability and long-term activity would be superior to those of the bismuth molybdenum-based oxide catalyst for producing 1,3-butadiene. In addition, it was found that the catalyst can be prepared to produce a 1,3-butadiene in a high yield with excellent selectivity to complete the present invention.

따라서, 본 발명은 내구성, 장기활성, 1,3-부타디엔의 선택도가 우수한 다성분계 금속산화물 촉매 및 이의 제조방법을 제공하는데 그 목적이 있다.Accordingly, an object of the present invention is to provide a multi-component metal oxide catalyst having excellent durability, long-term activity, and selectivity of 1,3-butadiene and a method for preparing the same.

또한, 본 발명은 상기 촉매를 이용하여 1,3-부타디엔의 선택도와 수율이 높은 1,3-부타디엔의 제조방법을 제공하는데 그 목적이 있다.
Another object of the present invention is to provide a method for producing 1,3-butadiene having high selectivity and yield of 1,3-butadiene using the catalyst.

본 발명은 하기 화학식 1로 표시되는 비스무스-몰리브덴-철-니켈-인 다성분계 금속산화물 촉매를 특징으로 한다.The present invention is characterized by bismuth-molybdenum-iron-nickel-phosphorus multicomponent metal oxide catalyst represented by the following formula (1).

[화학식 1][Formula 1]

BiMoFeBiMoFe 00 .65.65 NiNi xx PP 00 .8.8 OO yy

상기 화학식 1에 있어서, x는 0〈x≤2.0 이며, y는 전체 금속성분의 원자가를 만족시키는 실수이다.In Formula 1, x is 0 <x≤2.0, and y is a real number satisfying the valence of all metal components.

또한, 본 발명은 비스무스 전구체, 철 전구체 및 니켈 전구체가 용해된 수용액을 몰리브덴 전구체가 용해된 수용액에 투입하여, 비스무스, 몰리브덴, 철 및 니켈을 상기 화학식 1의 몰비로 함유하는 제 1 용액을 제조하는 제 1 단계; 인 전구체를 상기 화학식 1의 몰비를 만족하도록 상기 제 1 용액에 적가하여 제 2 용액을 제조하는 제 2 단계; 상기 제 2 용액의 수소이온지수(이하 pH)를 3.0 ~ 6.0 로 조절한 후 교반 및 공침시켜 공침용액을 제조하는 제 3 단계; 상기 공침용액을 여과하여 얻은 고체시료를 80 ~ 110℃에서 건조시켜 건조된 촉매를 얻는 제 4 단계; 및 상기 건조된 촉매를 400 ~ 600℃에서 열처리하는 제 5 단계;를 포함하는 것을 특징으로 하는 상기 화학식 1로 표시되는 비스무스-몰리브덴-철-니켈-인 다성분계 금속산화물 촉매의 제조방법을 그 특징으로 한다.In addition, the present invention is added to the aqueous solution in which the bismuth precursor, iron precursor and nickel precursor dissolved in an aqueous solution in which molybdenum precursor is dissolved, to prepare a first solution containing bismuth, molybdenum, iron and nickel in the molar ratio of the formula (1) First step; A second step of preparing a second solution by dropwise addition of a phosphorus precursor to the first solution to satisfy the molar ratio of Chemical Formula 1; A third step of preparing a coprecipitation solution by adjusting the hydrogen ion index (hereinafter pH) of the second solution to 3.0 to 6.0, followed by stirring and coprecipitation; A fourth step of obtaining a dried catalyst by drying the solid sample obtained by filtering the coprecipitation solution at 80 to 110 ° C; And a fifth step of heat-treating the dried catalyst at 400 to 600 ° C .; and a method for preparing a bismuth-molybdenum-iron-nickel-phosphorus multi-component metal oxide catalyst represented by Chemical Formula 1, comprising: It is done.

또한, 본 발명은 상기 화학식 1로 표시되는 비스무스-몰리브덴-철-니켈-인 다성분계 금속산화물 촉매 하에서, 부텐을 산화적 탈수소화 반응시켜 1,3-부타디엔을 제조하는 방법을 그 특징으로 한다.
In addition, the present invention is characterized by a method for producing 1,3-butadiene by oxidative dehydrogenation of butene under a bismuth-molybdenum-iron-nickel-phosphorus multicomponent metal oxide catalyst represented by Chemical Formula 1.

본 발명의 BiPO4상을 포함하는 비스무스-몰리브덴-철-니켈-인 다성분계 금속산화물 촉매는 기존의 1,3-부타디엔 제조용 비스무스 몰리브덴 계 산화물 촉매 보다 내구성 및 장기활성이 우수할 뿐만 아니라, 선택도가 우수하여 높은 수율로 1,3-부타디엔을 제조할 수 있어, 1,3-부타디엔의 대량 생산에 적합하다. 또한, 본 발명의 비스무스-몰리브덴-철-니켈-인 다성분계 금속산화물 촉매의 제조방법은 기존 다성분계 금속산화물 촉매의 제조방법과 비교하여 비교적 간단한 합성경로를 가지며, 재현성 확보에 유리하다.
The bismuth-molybdenum-iron-nickel-phosphorous multicomponent metal oxide catalyst including the BiPO 4 phase of the present invention is not only superior in durability and long-term activity but also selectivity than the conventional bismuth molybdenum oxide catalyst for producing 1,3-butadiene. It is excellent in that it can manufacture 1, 3- butadiene with a high yield, and is suitable for the mass production of 1, 3- butadiene. In addition, the bismuth-molybdenum-iron-nickel-phosphorous multicomponent metal oxide catalyst production method of the present invention has a relatively simple synthesis path compared to the conventional multicomponent metal oxide catalyst production method, and is advantageous in securing reproducibility.

도 1은 실시예 1 ~ 5 및 비교예에서 제조한 다성분계 복합 금속산화물 촉매 (BiMoFe0.65NixP0.8Oy)의 X-선 회절패턴 결과로서, (a) ~ (f)는 순서대로 화학식 1에서 니켈(Ni)의 몰비 x가 0.0, 0.1, 0.3, 0.5, 0.7, 및 0.9인 촉매의 결과 데이터이다. ■는 Fe2(MoO4)3, ●는 Bi3FeMo2O12, ▼는 BiPO4[low-temp. JCPDS file no. 15-0767], ▲는 BiPO4[high temp. JCPDS file no. 43-0637], ↓는 β-NiMo4이다.
도 2는 BiMoF0 .65NixP0 .8Oy로 표시되는 촉매의 반응활성 실험 결과이다. ■는 X=0, ●는 0.1, ▲는 0.3, ▼는 0.5, ◀는 0.7, ▶은 0.9를 나타낸다.
도 3은 BiMoF0 .65NixP0 .8Oy로 표시되는 촉매상에서 산화적 탈수소화반응 결과 생산된 1,3-부타디엔(닫힌 표시)과 이산화탄소(열린 표시)의 선택도를 나타내며, (■,□)는 X=0, (●,○)는 0.1 (▲,△)는 0.3, (▼,▽)는 0.5, (◆,◇)는 0.7, (◀,◁)은 0.9를 각각 나타낸다.
도 4는 BiMoF0 .65NixP0 .8Oy로 표시되는 촉매 내 니켈의 함량에 따른 반응 활성 변화를 나타낸 그래프이다.
1 is an X-ray diffraction pattern of the multi-component complex metal oxide catalyst (BiMoFe 0.65 Ni x P 0.8 O y ) prepared in Examples 1 to 5 and Comparative Examples, (a) to (f) in order Results data for catalysts where the molar ratio x of nickel (Ni) at 1 is 0.0, 0.1, 0.3, 0.5, 0.7, and 0.9. ■ is Fe 2 (MoO 4 ) 3 , ● is Bi 3 FeMo 2 O 12 , ▼ is BiPO 4 [low-temp. JCPDS file no. 15-0767], ▲ is BiPO 4 [high temp. JCPDS file no. 43-0637], ↓ is β- NiMo 4 .
Figure 2 is a reaction activity results of the catalyst represented by the BiMoF 0 .65 Ni x P 0 .8 O y. X stands for X = 0, ● stands for 0.1, ▲ stands for 0.3, ▼ stands for 0.5, ◀ stands for 0.7, and ▶ stands for 0.9.
3 is BiMoF 0 .65 Ni x P 0 .8 O y oxidative dehydrogenation results produced 1,3-butadiene (closed indicator) on the catalyst represented by and indicates the selectivity of the carbon dioxide (open display), ( X, Y represent 0.1 (▲, △) 0.3, (▼, ▽) 0.5, (◆, ◇) 0.7, and (◀, ◁) represent 0.9, respectively. .
Figure 4 is a graph showing the changes in reaction activity content of the nickel catalyst represented by the BiMoF 0 .65 Ni x P 0 .8 O y.

이하에서는 본 발명을 더욱 자세하게 설명 하겠다.Hereinafter, the present invention will be described in more detail.

본 발명은 비스무스, 몰리브덴, 철, 니켈 및 인을 특정 몰비로 포함하는 비스무스-몰리브덴-철-니켈-인 다성분계 금속산화물 촉매에 관한 것으로서, 하기 화학식 1로 표시되는 것을 그 특징으로 한다.The present invention relates to a bismuth-molybdenum-iron-nickel-phosphorous multicomponent metal oxide catalyst containing bismuth, molybdenum, iron, nickel and phosphorus in a specific molar ratio, and is characterized by the following formula (1).

[화학식 1][Formula 1]

BiMoFeBiMoFe 00 .65.65 NiNi xx PP 00 .8.8 OO yy

상기 화학식 1에 있어서, x는 0〈x≤2.0 이며, y는 전체 금속성분의 원자가를 만족시키는 실수이다.In Formula 1, x is 0 <x≤2.0, and y is a real number satisfying the valence of all metal components.

이때, 상기 x가 2.0을 초과하면 니켈이 촉매 표면에 과량 존재하게 되어 부텐의 완전산화가 일어나 이산화탄소의 선택성이 증가하므로 상기 범위 내의 몰수를 유지하는 것이 좋으며, 바람직하게는 0.1≤x<1.0 의 값을 갖는 것이 좋다.At this time, when x exceeds 2.0, nickel is present in the catalyst surface excessively, so that complete oxidation of butene occurs and the selectivity of carbon dioxide is increased, so that the number of moles within the range is preferably maintained, and preferably a value of 0.1 ≦ x <1.0. It is good to have.

또한, 본 발명의 상기 비스무스-몰리브덴-철-니켈-인 다성분계 금속산화물 촉매는 지지체가 없으면서도 높은 내구성과 장수명 및 높은 반응 활성을 갖는 것에 특징이 있으며, 사용에 따라서 지지체를 더 포함할 수도 있는데, 지지체를 포함하는 경우 지지체는 특별히 한정하지는 않으나, 알루미나, 실리카 또는 실리카-알루미나 중에서 선택된 1종을 사용하는 것이 바람직하다.In addition, the bismuth-molybdenum-iron-nickel-phosphorus multicomponent metal oxide catalyst of the present invention is characterized by having high durability, long life and high reaction activity without a support, and may further include a support according to use. In the case of including the support, the support is not particularly limited, but it is preferable to use one selected from alumina, silica or silica-alumina.

또한, 본 발명은 상기 화학식 1로 표시되는 비스무스-몰리브덴-철-니켈-인 다성분계 금속산화물 촉매의 제조방법에 관한 것으로서, 비스무스, 몰리브덴, 철, 니켈 및 인을 특정 몰비로 고정시킨 용액을 제조한 후, 이를 특정 pH 하에서 교반 및 공침시키고 건조 및 열처리하여 비스무스-몰리브덴-철-니켈-인 다성분계 금속산화물 촉매를 제조하는 것을 그 특징으로 한다.In addition, the present invention relates to a method for preparing a bismuth-molybdenum-iron-nickel-phosphorous multicomponent metal oxide catalyst represented by Chemical Formula 1, to prepare a solution in which bismuth, molybdenum, iron, nickel, and phosphorus are fixed at a specific molar ratio. After that, the mixture is stirred and co-precipitated under a specific pH, and dried and heat-treated to produce bismuth-molybdenum-iron-nickel-phosphorus multicomponent metal oxide catalyst.

상기 제 1 단계에 있어서, 상기 제 1 용액은 상기 비스무스 전구체, 철 전구체 및 니켈 전구체를 산성화 된 증류수에 용해시킨 수용액을 몰리브덴 전구체를 증류수에 용해시킨 수용액에 적가하여 제조하며, 비스무스, 몰리브덴, 철 및 니켈을 상기 화학식 1의 몰비로 함유하도록 제조한다. 상기 제 1 용액을 제조할 때에는 50 ~ 70℃ 를 유지함으로써 전구체가 완전히 용해되도록 한다. 상기 비스무스 전구체, 몰리브덴 전구체, 철 전구체 및 니켈 전구체 각각은 당 업계에서 사용하는 것을 사용할 수 있으며, 특별히 한정하지는 않으나, 상기 비스무스 전구체, 철 전구체와 니켈 전구체는 염화물 전구체 또는 질산염 전구체를 사용하는 것이 좋으며, 상기 몰리브덴 전구체는 암모늄 전구체를 사용하는 것이 좋다. 구체적인 예를 들면, 상기 비스무스 전구체는 비스무스 질산염(Bismuth nitrate)을, 상기 몰리브덴 전구체는 암모늄 몰리브데이트(Ammonium molybdate)를, 상기 철 전구체는 질산 철(Iron nitrate)을, 그리고 니켈 전구체는 질산 니켈(Nickel nitrate)을 사용하는 것이 바람직하다.In the first step, the first solution is prepared by dropwise adding an aqueous solution in which the bismuth precursor, an iron precursor and a nickel precursor are dissolved in acidified distilled water to an aqueous solution in which molybdenum precursor is dissolved in distilled water, and bismuth, molybdenum, iron and It is prepared to contain nickel in the molar ratio of Chemical Formula 1. When preparing the first solution, the precursor is completely dissolved by maintaining 50 to 70 ° C. Each of the bismuth precursor, molybdenum precursor, iron precursor and nickel precursor may be used in the art, and is not particularly limited, but the bismuth precursor, the iron precursor and the nickel precursor may preferably use a chloride precursor or a nitrate precursor, The molybdenum precursor is preferably used an ammonium precursor. For example, the bismuth precursor is bismuth nitrate, the molybdenum precursor is ammonium molybdate, the iron precursor is iron nitrate, and the nickel precursor is nickel nitrate ( Nickel nitrate) is preferred.

상기 제 2 단계에서는, 제 1 단계에서 제조한 제 1 용액에 인 전구체를 적가하여 인의 함량이 상기 화학식 1을 만족하도록 제 2 용액을 제조한다. 상기 인 전구체는 당 업계에서 사용하는 것을 사용할 수 있으며, 특별히 한정하지는 않으나, 인산(Phosphoric acid) 또는 인산암모늄(Ammonium phosphate)를 사용하는 것이 바람직하다.In the second step, a phosphorus precursor is added dropwise to the first solution prepared in the first step to prepare a second solution so that the phosphorus content satisfies the formula (1). The phosphorus precursor may be used in the art, but is not particularly limited, it is preferable to use phosphoric acid (Phosphoric acid) or ammonium phosphate (Ammonium phosphate).

제 3 단계에서는 상기 제 2 용액에 pH 조절제를 첨가하여, pH 3.0 ~ 6.0, 바람직하게는 pH 4.8 ~ 5.2, 더욱 바람직하게는 pH 4.9 ~ 5.1로 조절하고 교반 및 공침을 수행을 한다. pH가 너무 낮거나 높으면 활성에 참여하는 물질의 상이 생성되지 않는 문제가 있을 수 있으므로 상기 범위의 산성도를 유지하는 것이 바람직하다. 상기 pH 조절제는 당 업계에서 사용하는 것을 사용할 수 있으며, 특별히 한정하지는 않으나, 예를 들면, 암모니아 용액과 같은 염기성 용액 등을 사용할 수 있다. 상기 pH 범위 하에서 2 ~ 6 시간 정도 충분하게 교반시켜서 Bi1Mo1Fe0.65NixP0.8Oy 가 공침된 용액을 얻는다.In the third step, a pH adjuster is added to the second solution to adjust pH 3.0 to 6.0, preferably pH 4.8 to 5.2, more preferably pH 4.9 to 5.1, and perform stirring and coprecipitation. If the pH is too low or too high, there may be a problem that the phase of the material participating in the activity is not generated, it is preferable to maintain the acidity in the above range. The pH adjusting agent may be used in the art, and is not particularly limited, for example, a basic solution such as ammonia solution may be used. The solution is sufficiently stirred for 2 to 6 hours in the pH range to obtain a solution in which Bi 1 Mo 1 Fe 0.65 Ni x P 0.8 O y is co-precipitated.

상기 제 4 단계에서는 상기 공침용액을 감압증발기를 이용하여 50 ~ 70℃에서 감압 증류하여 고체시료를 얻는 것이 좋다. 다음으로, 상기 고체시료를 80 ~ 110℃에서 18 ~ 24 시간 정도 충분히 건조시켜서 건조된 촉매를 얻는다.In the fourth step, the coprecipitation solution is distilled under reduced pressure at 50 ~ 70 ℃ using a reduced pressure evaporator to obtain a solid sample. Next, the solid sample is sufficiently dried at 80 to 110 ° C. for 18 to 24 hours to obtain a dried catalyst.

상기 제 5 단계에서는 상기 제 4 단계의 건조된 촉매를 400 ~ 600℃에서 열처리하여 상기 화학식 1로 표시되는 BiPO4상을 포함된 비스무스-몰리브덴-철-니켈-인 다성분계 금속산화물 촉매를 제조하는 공정으로서, 열처리 온도가 400℃ 미만이면 원하는 결정을 얻지 못하는 문제가 있을 수 있으며, 600℃를 초과하면 촉매가 녹아 고융체를 형성하는 문제가 있을 수 있으므로, 상기 범위 내의 온도를 유지하는 것이 바람직하다.In the fifth step, the dried catalyst of the fourth step is heat-treated at 400 to 600 ° C. to prepare a bismuth-molybdenum-iron-nickel-phosphorus multi-component metal oxide catalyst including a BiPO 4 phase represented by Chemical Formula 1 As a process, if the heat treatment temperature is less than 400 ℃ may have a problem that can not obtain the desired crystals, if it exceeds 600 ℃ may have a problem of melting the catalyst to form a high melt, it is preferable to maintain the temperature within the above range .

이하에서는 본 발명의 비스무스-몰리브덴-철-니켈-인 다성분계 금속산화물 촉매를 이용하여 1,3-부타디엔을 제조하는 방법에 대하여 설명을 하겠다.Hereinafter, a method of preparing 1,3-butadiene using the bismuth-molybdenum-iron-nickel-phosphorus multicomponent metal oxide catalyst of the present invention will be described.

본 발명은 1,3-부타디엔을 제조하는 방법에 관한 것으로서, 상기 화학식 1로 표시되는 비스무스-몰리브덴-철-니켈-인 다성분계 금속산화물 촉매 하에서, 부텐을 산화적 탈수소화 반응시켜서 1,3-부타디엔을 제조하는 것에 그 특징이 있다.The present invention relates to a method for preparing 1,3-butadiene, wherein the butene is subjected to oxidative dehydrogenation under a bismuth-molybdenum-iron-nickel-phosphorus multicomponent metal oxide catalyst represented by Chemical Formula 1 to 1,3-butadiene. It is characterized by the production of butadiene.

상기 비스무스-몰리브덴-철-니켈-인 다성분계 금속산화물 촉매는 부텐의 산화적 탈수소화 반응을 위해 450 ~ 600℃에서 전처리 하여 사용할 수 있으며, 바람직하게는 450 ~ 550℃, 더욱 바람직하게는 500 ~ 520℃에서 전처리 한 것을 사용하는 것이 좋다. 전처리 온도가 너무 높으면 촉매의 상변화가 일어나는 문제가 있을 수 있고, 반대로 너무 낮으면 촉매에 흡착되어 있는 공기중의 물과 불순물들이 반응에 참여하는 문제가 있을 수 있다.The bismuth-molybdenum-iron-nickel-phosphorus multicomponent metal oxide catalyst may be used after pretreatment at 450 to 600 ° C for oxidative dehydrogenation of butene, preferably 450 to 550 ° C, more preferably 500 to Pretreatment at 520 ° C is recommended. If the pretreatment temperature is too high, there may be a problem that a phase change of the catalyst occurs. On the contrary, if the pretreatment temperature is too low, water and impurities in the air adsorbed on the catalyst may participate in the reaction.

부텐의 산화적 탈수소화 반응의 반응물로는 부텐 외에 공기 및 스팀(steam)의 혼합기체를 더 포함하고 있으며, 혼합비율은 부텐: 공기: 스팀 = 8 ~ 11 부피%: 30 ~ 50 부피%: 40 ~ 60 부피%가 좋으며, 더욱 바람직하게는 10 부피%: 35 ~ 45 부피%: 45 ~ 55 부피%의 부피 비로 사용하는 것이 좋다. 상기 공기는 질소 79 부피% 및 산소 21 부피%를 포함하고 있는 일반적인 공기를 말하며, 반응물의 혼합비율이 상기 범위를 벗어나면 반응 활성이 감소하거나 부산물이 증가할 수 있다. 그리고, 상기 부텐은 바람직하기로는 1-부텐을 사용하는 것이 좋으며, 1-부텐을 사용하는 경우 반응물의 혼합비는 1-부텐: 공기: 스팀의 혼합비가 10 부피%: 40 부피%: 50 부피%인 것이 좋다. 상기 부텐과 공기의 주입량(투입량)은 질량유속조절기(mass flow controller)로 조절할 수 있으며, 스팀의 주입량은 미세유량 펌프로 주입속도의 통제를 통하여 조절할 수 있다.The reactants of the oxidative dehydrogenation of butenes further include a mixture of air and steam in addition to butenes. The mixing ratio is butene: air: steam = 8 to 11% by volume: 30 to 50% by volume: 40 ~ 60% by volume is preferred, more preferably 10% by volume: 35 to 45% by volume: 45 to 55% by volume is preferably used. The air refers to general air containing 79% by volume of nitrogen and 21% by volume of oxygen. When the mixing ratio of the reactants is outside the above range, the reaction activity may decrease or the by-products may increase. The butene is preferably 1-butene, and when 1-butene is used, the mixing ratio of the reactants is 1-butene: air: steam, and the mixing ratio is 10% by volume: 40% by volume: 50% by volume. It is good. The injection amount (injection amount) of the butene and air may be controlled by a mass flow controller, and the injection amount of steam may be controlled by controlling the injection speed by a microflow pump.

상기 반응물의 주입량(투입량)은 부텐을 기준으로 300 ~ 700 h-1의 공간속도(GHSV, Gas Hourly Space Velocity)로, 바람직하게는 600 ~ 650 h-1의 공간속도로 주입하는 것이 좋으며, 더욱 바람직하게는 620 ~ 640 h-1의 공간속도로 주입하는 것이 좋다. 공간속도가 300 h-1 미만이면 단위시간당 생성물의 양이 적어 채산성에 문제가 있을 수 있으며, 700 h-1를 초과하면 부텐이 촉매와 반응할 수 있는 시간이 짧아 미 반응물의 증가로 1,3-부타디엔의 수율이 낮아질 수 있다.The injection amount (injection amount) of the reactant is 300 to 700 h −1 gas velocity space velocity (GHSV) based on butene, preferably at a space velocity of 600 to 650 h −1 , and more preferably. Preferably it is injected at a space velocity of 620 ~ 640 h -1 . If the space velocity is less than 300 h -1 , there may be a problem in profitability due to the small amount of product per unit time. If the space velocity exceeds 700 h -1 , butene may react with the catalyst shortly, resulting in an increase in unreacted substances. -Butadiene yield can be lowered.

그리고, 상기 산화적 탈수소화 반응은 350 ~ 550℃ 온도 범위 하에서, 바람직하게는 350 ~ 450℃, 더욱 바람직하게는 400 ~ 420℃ 온도 범위 하에서, 수행하는 하는 것이 좋은데, 반응온도가 350℃ 미만인 경우 반응온도가 너무 낮아 촉매가 활성화 되지 않아 부분산화 반응이 잘 일어나지 않는 문제가 있을 수 있고, 550℃를 초과하는 온도에서 반응을 수행하면 C1 ~ C3의 크래킹 생산물이나 완전산화가 일어나는 등의 문제가 있을 수 있으므로 상기 범위의 온도를 유지하는 것이 좋다.And, the oxidative dehydrogenation reaction is preferably carried out under a temperature range of 350 ~ 550 ℃, preferably 350 ~ 450 ℃, more preferably 400 ~ 420 ℃ temperature, when the reaction temperature is less than 350 ℃ If the reaction temperature is too low, there may be a problem that the partial oxidation reaction does not occur well because the catalyst is not activated, and when the reaction is performed at a temperature exceeding 550 ° C., cracking products or complete oxidation of C 1 to C 3 may occur. It is good to maintain the temperature in the above range because there may be.

본 발명의 BiPO4상을 포함하는 비스무스-몰리브덴-철-니켈-인 다성분계 금속산화물 촉매는 기존의 1,3-부타디엔 제조용 비스무스 몰리브덴 계 산화물 촉매 보다 내구성, 장기활성 및 선택도가 우수하여 높은 수율로 1,3-부타디엔을 제조할 수 있으며, 또한, 본 발명의 비스무스-몰리브덴-철-니켈-인 다성분계 금속산화물 촉매의 제조방법은 기존 다성분계 금속산화물 촉매의 제조방법과 비교하여 비교적 간단한 합성경로를 가지며, 재현성 확보에 유리하다.
Bismuth-molybdenum-iron-nickel-phosphorous multi-component metal oxide catalyst including BiPO 4 phase of the present invention has higher durability, long-term activity, and selectivity than conventional bismuth molybdenum-based oxide catalyst for producing 1,3-butadiene, thus providing high yield. 1,3-butadiene can be produced, and the bismuth-molybdenum-iron-nickel-phosphorous multicomponent metal oxide catalyst of the present invention is relatively simple compared with the conventional multicomponent metal oxide catalyst production method. It has a path and is advantageous for ensuring reproducibility.

이하에서는 본 발명을 실시예에 의거하여 더욱 자세하게 설명을 하겠다. 그러나, 본 발명의 권리범위가 하기 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail based on examples. However, the scope of the present invention is not limited by the following examples.

[실시예][Example]

실시예 1: 비스무스-몰리브덴-철-니켈-인 다성분계 금속산화물 촉매의 제조Example 1 Preparation of Bismuth-molybdenum-iron-nickel-phosphorus multicomponent metal oxide catalyst

12.4 g의 질산 비스무스 5수화물(Bi(NO3)3ㆍ5H2O, Aldrich, 98%)와 6.7 g의 질산 철 9수화물(Fe(NO3)3ㆍ9H2O, Junsei, 98%), 그리고 0.7 g의 질산 니켈 6수화물(Ni(NO3)2ㆍ6H2O, SAMCHUN, 98%)을 질산이 첨가된 증류수(85 ml)에 넣어 교반하여, Bi: Fe: Ni=1:0.65:0.1 몰비로 함유하는 비스무스-철-니켈 수용액을 제조하였다. 질산 비스무스 5수화물은 강한 산성용액에서 잘 용해되므로 증류수에 질산용액을 첨가하여 질산 비스무스 5수화물을 용해시켰다. 질산 철 9수화물과 질산 니켈 6수화물은 증류수에 잘 용해되므로, 염 자체로 질산 비스무스 5수화물이 용해되어 있는 산성용액에 첨가하였다. 이와는 별도로 암모늄 몰리브데이트 4수화물((NH4)6Mo7O24ㆍ4H2O, Wako Pure Chemical, 98%) 4.5 g을 증류수(74 ml)에 투입 및 교반하여 몰리브덴 전구체가 용해된 몰리브덴 수용액을 제조하였다. 암모늄 몰리브데이트의 용해를 위해 증류수의 온도는 60℃로 조절하였다. 이후 상기 비스무스-철-니켈 수용액을 상기 몰리브덴 수용액에 적가하고 수용액의 온도를 60℃로 맞추어 비스무스, 몰리브덴, 철 및 니켈을 Bi: Mo: Fe: Ni=1:1:0.65:0.1 의 몰비로 함유하는 제 1 용액을 제조하였다.12.4 g of bismuth nitrate pentahydrate (Bi (NO 3 ) 3 ㆍ 5H 2 O, Aldrich, 98%) and 6.7 g of iron nitrate hexahydrate (Fe (NO 3 ) 3 ㆍ 9H 2 O, Junsei, 98%), 0.7 g of nickel nitrate hexahydrate (Ni (NO 3 ) 2 .6H 2 O, SAMCHUN, 98%) was added to distilled water (85 ml) to which nitric acid was added, followed by stirring. Bi: Fe: Ni = 1: 0.65: A bismuth-iron-nickel aqueous solution containing 0.1 molar ratio was prepared. Since bismuth nitrate pentahydrate is well dissolved in a strong acid solution, nitric acid solution was added to distilled water to dissolve bismuth nitrate pentahydrate. Since iron nitrate hexahydrate and nickel nitrate hexahydrate were well dissolved in distilled water, the salt was added to the acid solution in which bismuth nitrate pentahydrate was dissolved. Separately, 4.5 g of ammonium molybdate tetrahydrate ((NH 4 ) 6 Mo 7 O 24 4H 2 O, Wako Pure Chemical, 98%) was added to distilled water (74 ml) and stirred to dissolve the molybdenum precursor solution. Was prepared. The temperature of the distilled water was adjusted to 60 ℃ for the dissolution of ammonium molybdate. Then, the bismuth-iron-nickel aqueous solution is added dropwise to the molybdenum aqueous solution, and the bismuth, molybdenum, iron, and nickel are contained in a molar ratio of Bi: Mo: Fe: Ni = 1: 1: 0.65: 0.1 by adjusting the temperature of the aqueous solution to 60 ° C. To prepare a first solution.

다음으로 상기 제 1 용액에 인의 전구체로서 85% 농도의 인산용액(H3PO4, SAMCHUN)을 상기 제 1 용액에 2.3 g 적가하여 제 2 용액을 제조한 후, 암모니아 수용액(NH4OH, SAMCHUN, 28%)으로 pH가 5.0이 되도록 조절하고 자력 교반기를 이용하여 60℃에서 3시간 동안 교반 시켜 공침용액을 제조하였다.Next, 2.3 g of a phosphoric acid solution (H 3 PO 4 , SAMCHUN) at a concentration of 85% was added dropwise to the first solution as a precursor of phosphorus to the first solution to prepare a second solution, followed by aqueous ammonia solution (NH 4 OH, SAMCHUN, 28). %) Was adjusted to pH 5.0 and stirred for 3 hours at 60 ℃ using a magnetic stirrer to prepare a coprecipitation solution.

다음으로 감압증류기를 이용하여 상기 공침용액의 수분을 증발시켜 고체 촉매를 얻은 후, 상기 고체 촉매를 100℃에서 24 시간 건조시킨 다음, 이를 전기로에 넣고 550℃에서 2 시간 동안 열처리하여 BiPO4상을 포함하는 비스무스-몰리브덴-철-니켈-인 다성분계 금속산화물 촉매를 제조하였다.
Next, after evaporating the water of the coprecipitation solution using a reduced pressure distillation to obtain a solid catalyst, the solid catalyst was dried at 100 ° C. for 24 hours, then placed in an electric furnace and heat treated at 550 ° C. for 2 hours to prepare a BiPO 4 phase. A bismuth-molybdenum-iron-nickel-phosphorous multicomponent metal oxide catalyst was prepared.

실시예 2 ~ 5: 비스무스-몰리브덴-철-니켈-인 다성분계 금속산화물 촉매의 제조Examples 2 to 5: Preparation of Bismuth-molybdenum-iron-nickel-phosphorous multicomponent metal oxide catalyst

상기 실시예 1과 동일하게 실시하되, 질산 니켈 6수화물의 사용량을 조절하여 니켈의 몰비가 다른 비스무스-몰리브덴-철-니켈-인 다성분계 금속산화물 촉매의 제조하였다. 조성비는 하기 표 1과 같다.
A multicomponent metal oxide catalyst was prepared in the same manner as in Example 1 except that bismuth-molybdenum-iron-nickel-different molar ratio of nickel was adjusted by adjusting the amount of nickel nitrate hexahydrate. The composition ratio is shown in Table 1 below.

비교예: 비스무스-몰리브덴-철-인 다성분계 금속산화물 촉매의 제조Comparative Example: Preparation of Bismuth-molybdenum-iron-phosphorus Multicomponent Metal Oxide Catalyst

상기 실시예 1과 동일하게 실시하되, 질산 니켈 6수화물을 사용하지 않은 비스무스-몰리브덴-철-인 다성분계 금속산화물 촉매를 제조하였다.In the same manner as in Example 1, a bismuth-molybdenum-iron-phosphorus multicomponent metal oxide catalyst was prepared, which did not use nickel nitrate hexahydrate.

구분division 몰비Mole ratio BiBi MoMo FeFe NiNi PP 비교예Comparative example 1.001.00 1.001.00 0.650.65 0.000.00 0.800.80 실시예 1Example 1 1.001.00 1.001.00 0.650.65 0.100.10 0.800.80 실시예 2Example 2 1.001.00 1.001.00 0.650.65 0.300.30 0.800.80 실시예 3Example 3 1.001.00 1.001.00 0.650.65 0.500.50 0.800.80 실시예 4Example 4 1.001.00 1.001.00 0.650.65 0.700.70 0.800.80 실시예 5Example 5 1.001.00 1.001.00 0.650.65 0.900.90 0.800.80

시험예Test Example 1: 제조된  1: manufactured 다성분계Multicomponent system 금속산화물 촉매의 X-선  X-ray of metal oxide catalyst 회절분석Diffraction analysis (( XRDXRD ) 시험) exam

제조된 촉매의 상을 40 kV와 40 mA 조건에서 Ni-filter를 사용하는 X-선 회절분석기(Siemens D-5005, CuKα=1.5418 Å)를 사용하여 분석하였으며, 분석결과는 도 1 및 하기 표 2와 같다.The prepared catalyst was analyzed using an X-ray diffractometer (Siemens D-5005, CuKα = 1.5418 Hz) using Ni-filter at 40 kV and 40 mA. The analysis results are shown in FIG. 1 and Table 2 below. Same as

구분division 제조촉매Manufacture catalyst 몰비Mole ratio X-선 회절분석X-ray Diffraction BiBi MoMo FeFe NiNi PP 비교예Comparative example BiMoFe0 .65P0 .8O7 .475 BiMoFe 0 .65 P 0 .8 O 7 .475 1.001.00 1.001.00 0.650.65 0.000.00 0.800.80 BiPO4[JCPDS file no. 43-0637], BiPO4[JCPDS file no. 15-0767], Fe2(MoO4)3, Bi3FeMo2O12 BiPO 4 [JCPDS file no. 43-0637], BiPO 4 [JCPDS file no. 15-0767], Fe 2 (MoO 4 ) 3 , Bi 3 FeMo 2 O 12 실시예 1Example 1 BiMoFe0 .65Ni0 .1P0 .8O7 .575 BiMoFe 0 .65 Ni 0 .1 P 0 .8 O 7 .575 1.001.00 1.001.00 0.650.65 0.100.10 0.800.80 BiPO4[JCPDS file no. 43-0637], BiPO4[JCPDS file no. 15-0767], Fe2(MoO4)3, Bi3FeMo2O12, β-NiMo4 BiPO 4 [JCPDS file no. 43-0637], BiPO 4 [JCPDS file no. 15-0767], Fe 2 (MoO 4 ) 3 , Bi 3 FeMo 2 O 12, β -NiMo 4 실시예 2Example 2 BiMoFe0 .65Ni0 .3P0 .8O7 .775 BiMoFe 0 .65 Ni 0 .3 P 0 .8 O 7 .775 1.001.00 1.001.00 0.650.65 0.300.30 0.800.80 BiPO4[JCPDS file no. 43-0637], BiPO4[JCPDS file no. 15-0767], Fe2(MoO4)3, Bi3FeMo2O12, β-NiMo4 BiPO 4 [JCPDS file no. 43-0637], BiPO 4 [JCPDS file no. 15-0767], Fe 2 (MoO 4 ) 3 , Bi 3 FeMo 2 O 12, β -NiMo 4 실시예 3Example 3 BiMoFe0 .65Ni0 .5P0 .8O7 .975 BiMoFe 0 .65 Ni 0 .5 P 0 .8 O 7 .975 1.001.00 1.001.00 0.650.65 0.500.50 0.800.80 BiPO4[JCPDS file no. 43-0637], BiPO4[JCPDS file no. 15-0767], Fe2(MoO4)3, Bi3FeMo2O12, β-NiMo4 BiPO 4 [JCPDS file no. 43-0637], BiPO 4 [JCPDS file no. 15-0767], Fe 2 (MoO 4 ) 3 , Bi 3 FeMo 2 O 12, β -NiMo 4 실시예 4Example 4 BiMoFe0 .65Ni0 .7P0 .8O8 .175 BiMoFe 0 .65 Ni 0 .7 P 0 .8 O 8 .175 1.001.00 1.001.00 0.650.65 0.700.70 0.800.80 BiPO4[JCPDS file no. 43-0637], BiPO4[JCPDS file no. 15-0767], Fe2(MoO4)3, Bi3FeMo2O12, β-NiMo4 BiPO 4 [JCPDS file no. 43-0637], BiPO 4 [JCPDS file no. 15-0767], Fe 2 (MoO 4 ) 3 , Bi 3 FeMo 2 O 12, β -NiMo 4 실시예 5Example 5 BiMoFe0 .65Ni0 .9P0 .8O8 .375 BiMoFe 0 .65 Ni 0 .9 P 0 .8 O 8 .375 1.001.00 1.001.00 0.650.65 0.900.90 0.800.80 BiPO4[JCPDS file no. 43-0637], BiPO4[JCPDS file no. 15-0767], Fe2(MoO4)3, Bi3FeMo2O12, β-NiMo4 BiPO 4 [JCPDS file no. 43-0637], BiPO 4 [JCPDS file no. 15-0767], Fe 2 (MoO 4 ) 3 , Bi 3 FeMo 2 O 12, β -NiMo 4

도 1 및 상기 표 2에서 보이듯이, 다양한 성분의 촉매 특성이 형성됨을 알 수 있으며, 특히 니켈의 첨가에 따라 β-NiMo4 촉매상이 형성되었음을 알 수 있다.
As shown in Figure 1 and Table 2, it can be seen that the catalytic properties of various components are formed, in particular β -NiMo 4 according to the addition of nickel It can be seen that the catalyst phase has formed.

시험예 2: 촉매의 활성 측정 시험Test Example 2: Test for Determination of Activity of Catalyst

상기 실시예 1 ~ 5 및 비교예에서 제조한 촉매 각각을 스테인리스 스틸(SUS) 반응기에 상기 열처리 한 촉매를 고정시키고, 반응기를 전기로 안에 설치하여 질소분위기에서 500℃에서 2 시간 동안 전처리 하였다. 전처리 한 촉매 층의 반응온도를 일정하게 유지시킨 후, 반응물을 촉매 층에 연속적으로 통과시키면서 반응을 14 시간 동안 수행되도록 하였다.Each of the catalysts prepared in Examples 1 to 5 and Comparative Example was fixed in the stainless steel (SUS) reactor with the heat treated catalyst, and the reactor was installed in an electric furnace and pretreated at 500 ° C. for 2 hours in a nitrogen atmosphere. After the reaction temperature of the pretreated catalyst bed was kept constant, the reaction was allowed to run for 14 hours while continuously passing the reactants through the catalyst bed.

산화적 탈수소화 반응을 진행시키기 위한 반응온도는 420℃를 유지하였으며, 반응물의 주입양은 1-부텐을 기준으로 공간속도(GHSV)가 632 h-1이 되도록 하고, 촉매 량을 0.5 g으로 설정하였다. 그리고, 상기 반응물로서, 1-부텐: 공기: 스팀의 혼합비가 10 부피%: 40 부피%: 50 부피%인 혼합기체를 사용하여, 산화적 탈수소화 반응을 수행하여 1.3-부타디엔을 포함하는 생성물을 제조하였다. 상기 공기는 질소 79 부피% 및 산소 21 부피%를 포함하고 있는 일반적인 공기이다.The reaction temperature for the oxidative dehydrogenation reaction was maintained at 420 ° C., and the injection amount of the reactant was adjusted to a space velocity (GHSV) of 632 h −1 based on 1-butene, and the amount of catalyst was set at 0.5 g. . In addition, as a reactant, a product containing 1.3-butadiene was subjected to an oxidative dehydrogenation reaction using a mixed gas having a mixing ratio of 1-butene: air: steam at 10% by volume: 40% by volume: 50% by volume. Prepared. The air is general air containing 79% nitrogen and 21% oxygen.

상기 반응물 중 스팀은 초기에 물로 주입되나 예열구간을 설정하여 상기 고정 층 반응기로 주입하기 전에 190℃에서 스팀으로 기화시켜서 다른 반응물과 함께 반응기에 주입되도록 반응 장치를 설계하였다. 또한, 1-부텐과 공기의 양은 질량유속조절기(Mass flow controller)를 통해 제어하였으며, 스팀의 양은 미세유량 펌프의 주입속도를 조절하여 제어하였다.The reaction device was designed such that steam of the reactants was initially injected into the water, but before the injection into the fixed bed reactor by setting a preheating section, the steam was vaporized at 190 ° C. and injected into the reactor together with the other reactants. In addition, the amount of 1-butene and air was controlled through a mass flow controller, and the amount of steam was controlled by adjusting the injection rate of the microfluidic pump.

상기 촉매 활성 측정은 열전도도 검출기와 불꽃이온 검출기가 장착된 기체크로마토그래프(Varian CP3800)에 상기 산화적 탈수소화 반응에 의한 생성물 각각을 보내어 60℃로 유지된 PORAPAK Q packed 컬럼으로 이산화탄소를, CP-Al2O3 모세관 컬럼으로 탄화수소를 분석하였다. 시간에 따른 1-부텐의 전환율은 도 2, 시간에 따른 1,3-부타디엔 및 이산화탄소의 선택도는 도 3에 나타내었으며, 산화적 탈수소화 반응 14시간 후의 1-부텐의 전환율, 1,3-부타디엔의 수율 및 선택도, 그리고 이산화탄소의 수율을 하기 표 3 및 도 4에 나타내었다. 1-부텐의 전환율과 1,3-부타디엔의 선택도 및 1,3-부타디엔의 수율은 각각 하기 수학식 1 ~ 3을 이용하여 계산하였다.The catalytic activity was measured by sending each of the products of the oxidative dehydrogenation reaction to a gas chromatograph (Varian CP3800) equipped with a thermal conductivity detector and a flame ion detector, using a PORAPAK Q packed column maintained at 60 ° C. Hydrocarbons were analyzed by Al 2 O 3 capillary column. The conversion rate of 1-butene with time is shown in FIG. 2, and the selectivity of 1,3-butadiene and carbon dioxide with time is shown in FIG. 3, and the conversion rate of 1-butene after 14 hours of oxidative dehydrogenation reaction, 1,3- The yield and selectivity of butadiene and the yield of carbon dioxide are shown in Table 3 and FIG. 4. Conversion of 1-butene, selectivity of 1,3-butadiene, and yield of 1,3-butadiene were calculated using the following Equations 1 to 3, respectively.

[수학식 1] : 1-부텐의 전환율 Equation 1: conversion rate of 1-butene

Figure pat00001

Figure pat00001

[수학식 2] : 1,3-부타디엔의 선택도Equation 2: Selectivity of 1,3-butadiene

Figure pat00002

Figure pat00002

[수학식 3] : 1,3-부타디엔의 수율Equation 3: yield of 1,3-butadiene

Figure pat00003

Figure pat00003

구분division BiFe0 .65NixMoP0 .8
내 니켈의 함량
BiFe 0 .65 Ni x MoP 0 .8
Nickel content
1-부텐의
전환율(%)
1-butene
% Conversion
1,3-부타디엔의
선택도(%)
1,3-butadiene
Selectivity (%)
1,3-부타디엔의
수율(%)
1,3-butadiene
yield(%)
CO2
수율(%)
CO 2 of
yield(%)
비교예Comparative example 0.00.0 47.647.6 87.087.0 41.441.4 5.05.0 실시예 1Example 1 0.10.1 52.452.4 74.674.6 39.139.1 12.112.1 실시예 2Example 2 0.30.3 62.962.9 85.985.9 54.054.0 8.18.1 실시예 3Example 3 0.50.5 84.184.1 86.186.1 72.472.4 10.710.7 실시예 4Example 4 0.70.7 86.886.8 85.985.9 74.674.6 11.111.1 실시예 5Example 5 0.90.9 69.669.6 78.978.9 54.954.9 14.614.6

14 시간 동안 산화적 탈수소화 반응 후 생성물은 1,3-부타디엔 외에도 완전산화에 의해 생성된 이산화탄소와 크래킹에 의한 메탄, 에탄 등의 C1 ~ C3의 부산물 등이 포함되어 있다. 상기 표 3을 나타낸 것처럼, 본 발명의 비스무스-몰리브덴-철-니켈-인 다성분계 금속산화물 촉매는 니켈(Ni)의 함량에 따라 반응성의 차이를 보였으며, 특히 니켈의 몰비가 0.7인 BiMoFe0 .65Ni0 .7P0 .8의 14 시간 반응 후 부텐의 전환율과 1,3-부타디엔의 수율은 각각 87%, 75%로 가장 높았다. 니켈을 함유하지 않은 비스무스-철-몰리브덴-인 다성분계 금속산화물 촉매인 비교예는 상기 표 3과 도 3, 도 4에 나타낸 것처럼 1,3-부타디엔의 선택도가 우수하고, 이산화탄소의 수율은 낮지만, 전환율이 본 발명의 촉매보다 낮았다.
After 14 hours of oxidative dehydrogenation, the product contains not only 1,3-butadiene but also carbon dioxide produced by complete oxidation and by-products of C 1 to C 3 such as methane and ethane by cracking. As shown in Table 3, the bismuth-molybdenum-iron-nickel-phosphorus multicomponent metal oxide catalyst of the present invention showed a difference in reactivity according to the content of nickel (Ni), in particular BiMoFe 0 . 65 Ni 0 .7 yield of the conversion and the 1,3-butadiene after 14 hours the reaction of P 0 .8 butene was the highest to 87%, 75%, respectively. Nickel-free bismuth-iron-molybdenum-based multi-component metal oxide catalysts have a high selectivity for 1,3-butadiene and low carbon dioxide yields as shown in Table 3 and FIGS. 3 and 4. However, the conversion was lower than the catalyst of the present invention.

상기 실시예 및 시험예를 통하여, 본 발명의 비스무스-몰리브덴-철-니켈-인 다성분계 금속산화물 촉매가 높은 부텐 전환율과 1,3-부타디엔의 선택성을 가지며, 장시간 활성을 유지할 수 있는 우수한 촉매임을 확인하였다. 또한 본 발명의 비스무스-몰리브덴-철-니켈-인 다성분계 금속산화물 촉매의 제조방법은 비교적 간단한 촉매 합성과정에 의해 재현될 수 있어 안정적으로 1,3-부타디엔을 생산할 수 있는 단독 공정을 확보할 수 있을 뿐만 아니라 고유가 시대에 1,3-부타디엔의 수요에 따른 효율적인 대처가 가능할 것으로 기대된다.Through the above examples and test examples, the bismuth-molybdenum-iron-nickel-phosphorus multicomponent metal oxide catalyst of the present invention has a high butene conversion and selectivity of 1,3-butadiene, and is an excellent catalyst capable of maintaining long-term activity. Confirmed. In addition, the production method of the bismuth-molybdenum-iron-nickel-phosphorous multi-component metal oxide catalyst of the present invention can be reproduced by a relatively simple catalyst synthesis process, thereby securing a single process capable of stably producing 1,3-butadiene. In addition, it is expected to be able to cope effectively with the demand of 1,3-butadiene in the era of high oil prices.

Claims (8)

하기 화학식 1로 표시되는 것을 특징으로 하는 비스무스-몰리브덴-철-니켈-인 다성분계 금속산화물 촉매;
[화학식 1]
BiMoFe 0 .65 Ni x P 0 .8 O y
상기 화학식 1에 있어서, x는 0〈x≤2.0 이며, y는 전체 금속성분의 원자가를 만족시키는 실수이다.
Bismuth-molybdenum-iron-nickel-phosphorus multicomponent metal oxide catalysts represented by the following Chemical Formula 1;
[Formula 1]
BiMoFe 0 .65 Ni x P 0 .8 O y
In Formula 1, x is 0 <x≤2.0, and y is a real number satisfying the valence of all metal components.
비스무스 전구체, 철 전구체 및 니켈 전구체가 용해된 수용액을 몰리브덴 전구체가 용해된 수용액에 투입하여, 비스무스, 몰리브덴, 철 및 니켈을 하기 화학식 1의 몰비로 함유하는 제 1 용액을 제조하는 제 1 단계;
인 전구체를 하기 화학식 1의 몰비를 만족하도록 상기 제 1 용액에 적가하여 제 2 용액을 제조하는 제 2 단계;
상기 제 2 용액의 pH를 3.0 ~ 6.0으로 조절한 후 교반 및 공침시켜 공침용액을 제조하는 제 3 단계;
상기 공침용액을 여과하여 얻은 고체시료를 80 ~ 110℃에서 건조시켜 건조된 촉매를 얻는 제 4 단계; 및
상기 건조된 촉매를 400 ~ 600℃에서 열처리하는 제 5 단계;
를 포함하는 것을 특징으로 하는 하기 화학식 1로 표시되는 비스무스-몰리브덴-철-니켈-인 다성분계 금속산화물 촉매의 제조방법;
[화학식 1]
BiMoFe 0 .65 Ni x P 0 .8 O y
상기 화학식 1에 있어서, x는 0〈x≤2.0 이며, y는 전체 금속성분의 원자가를 만족시키는 실수이다.
A first step of preparing a first solution containing bismuth, molybdenum, iron, and nickel in a molar ratio of Formula 1 by adding an aqueous solution in which a bismuth precursor, an iron precursor, and a nickel precursor are dissolved into an aqueous solution in which a molybdenum precursor is dissolved;
A second step of preparing a second solution by dropwise addition of a phosphorus precursor to the first solution to satisfy a molar ratio of Formula 1;
A third step of preparing a coprecipitation solution by adjusting the pH of the second solution to 3.0 to 6.0, followed by stirring and coprecipitation;
A fourth step of obtaining a dried catalyst by drying the solid sample obtained by filtering the coprecipitation solution at 80 to 110 ° C; And
A fifth step of heat-treating the dried catalyst at 400 to 600 ° C;
Method for producing a bismuth- molybdenum- iron- nickel- phosphorus multi-component metal oxide catalyst represented by the formula (1) comprising a;
[Formula 1]
BiMoFe 0 .65 Ni x P 0 .8 O y
In Formula 1, x is 0 <x≤2.0, and y is a real number satisfying the valence of all metal components.
제 2 항에 있어서, 상기 비스무스 전구체는 비스무스 질산염(Bismuth nitrate)이고, 상기 몰리브덴 전구체는 암모늄 몰리브데이트(Ammonium molybdate)이며, 상기 철 전구체는 질산 철(Iron nitrate), 니켈의 전구체는 질산 니켈(Nickel nitrate)인 것을 특징으로 하는 비스무스-몰리브덴-철-니켈-인 다성분계 금속산화물 촉매의 제조방법.
According to claim 2, wherein the bismuth precursor is bismuth nitrate (Bismuth nitrate), the molybdenum precursor is ammonium molybdate, the iron precursor is iron nitrate (Iron nitrate), the precursor of nickel is nickel nitrate ( Nickel nitrate) bismuth-molybdenum-iron-nickel-phosphorous multicomponent metal oxide catalyst.
제 2 항에 있어서, 상기 인 전구체는 인산(Phosphoric acid) 또는 인산암모늄(Ammonium phosphate)인 것을 특징으로 하는 비스무스-몰리브덴-철-니켈-인 다성분계 금속산화물 촉매의 제조방법.
The method of claim 2, wherein the phosphorus precursor is phosphoric acid (Phosphoric acid) or ammonium phosphate (Ammonium phosphate), characterized in that the bismuth- molybdenum- iron- nickel- phosphorus multi-component metal oxide catalyst production method.
하기 화학식 1로 표시되는 비스무스-몰리브덴-철-니켈-인 다성분계 금속산화물 촉매 하에서, 부텐(butenes)을 산화적 탈수소화 반응시켜서 1,3-부타디엔을 제조하는 방법;
[화학식 1]
BiMoFe 0 .65 Ni x P 0 .8 O y
상기 화학식 1에 있어서, x는 0〈x≤2.0 이며, y는 전체 금속성분의 원자가를 만족시키는 실수이다.
A method for preparing 1,3-butadiene by oxidative dehydrogenation of butenes under a bismuth-molybdenum-iron-nickel-phosphorus multicomponent metal oxide catalyst represented by Formula 1;
[Formula 1]
BiMoFe 0 .65 Ni x P 0 .8 O y
In Formula 1, x is 0 <x≤2.0, and y is a real number satisfying the valence of all metal components.
제 5 항에 있어서, 상기 부텐의 산화적 탈수소화 반응의 반응물은 부텐, 공기(N2 79 부피% 및 O2 21 부피%) 및 스팀(steam)을 포함하고 있으며, 상기 부텐: 공기: 스팀 = 8 ~ 11 부피%: 30 ~ 50 부피%: 40 ~ 60 부피%의 비율로 포함하고 있는 것을 특징으로 하는 1,3-부타디엔을 제조하는 방법.
The reaction product of claim 5, wherein the reactant of the oxidative dehydrogenation of butene comprises butene, air (79% by volume of N 2 and 21% by volume of O 2 ) and steam, wherein the butene: air: steam = 8 to 11% by volume: 30 to 50% by volume: a method for producing 1,3-butadiene, characterized in that it comprises a ratio of 40 to 60% by volume.
제 5 항에 있어서, 상기 산화적 탈수소화 반응은 350 ~ 550℃ 온도 하에서, 반응물을 부텐을 기준으로 300 ~ 700 h- 1 로 공급하여 반응을 수행하는 것을 특징을 하는 1,3-부타디엔을 제조하는 방법.
The method of claim 5, wherein the oxidative dehydrogenation reaction is carried out at a temperature of 350 ~ 550 ℃, the reaction is carried out by supplying the reaction to 300 ~ 700 h - 1 based on the butenes to prepare a 1,3-butadiene How to.
제 5 항 내지 제 7 항 중에서 선택된 어느 한 항에 있어서, 상기 부텐은 1-부텐인 것을 특징으로 하는 1,3-부타디엔을 제조하는 방법.8. The method of claim 1, wherein the butene is 1-butene. 9.
KR1020100049613A 2010-05-27 2010-05-27 Multi-component metal oxide catalysts containing a BiPO4, Preparing method thereof and Preparing method of 1,3-Butadiene using the same KR101239803B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100049613A KR101239803B1 (en) 2010-05-27 2010-05-27 Multi-component metal oxide catalysts containing a BiPO4, Preparing method thereof and Preparing method of 1,3-Butadiene using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100049613A KR101239803B1 (en) 2010-05-27 2010-05-27 Multi-component metal oxide catalysts containing a BiPO4, Preparing method thereof and Preparing method of 1,3-Butadiene using the same

Publications (2)

Publication Number Publication Date
KR20110130130A true KR20110130130A (en) 2011-12-05
KR101239803B1 KR101239803B1 (en) 2013-03-06

Family

ID=45499013

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100049613A KR101239803B1 (en) 2010-05-27 2010-05-27 Multi-component metal oxide catalysts containing a BiPO4, Preparing method thereof and Preparing method of 1,3-Butadiene using the same

Country Status (1)

Country Link
KR (1) KR101239803B1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140050531A (en) 2012-10-19 2014-04-29 한국화학연구원 Ordered mesoporous-silica based catalysts for the production of 1,3-butadiene and production method of 1,3-butadiene using thereof
CN103752316A (en) * 2014-01-26 2014-04-30 惠生工程(中国)有限公司 Iron catalyst for preparing butadiene through n-butene oxydehydrogenation and preparation method and application of iron catalyst
WO2015072820A1 (en) * 2013-11-18 2015-05-21 주식회사 엘지화학 Bismuth molybdate-based catalyst having zeolite coating layer, method for producing same, and method for preparing 1,3-butadiene using same
KR20150117739A (en) 2014-04-10 2015-10-21 한국화학연구원 Method preparing 1,3 - butadiene and apparatus for preparing the same
CN105344366A (en) * 2015-12-11 2016-02-24 湘潭大学 Preparation method for sunlight responding BiPO4 photocatalyst
WO2016099046A1 (en) * 2014-12-16 2016-06-23 (주) 엘지화학 Butadiene production method
CN105854912A (en) * 2016-04-18 2016-08-17 河南师范大学 BiPO4-WO3 composite photocatalyst and preparation method thereof
US9751819B2 (en) 2014-12-16 2017-09-05 Lg Chem, Ltd. Method of preparing butadiene
CN107537535A (en) * 2016-06-29 2018-01-05 中国石油化工股份有限公司 Catalyst for Oxidative Dehydrogenation of Butene into Butadiene under low-water ratio conditions and preparation method thereof and process
CN107537530A (en) * 2016-06-29 2018-01-05 中国石油化工股份有限公司 Catalyst and its process for Oxidative Dehydrogenation of Butene into Butadiene
CN107537533A (en) * 2016-06-29 2018-01-05 中国石油化工股份有限公司 Catalyst and its process for Oxidative Dehydrogenation of Butene into Butadiene under low-water ratio conditions
US9925525B2 (en) 2013-11-18 2018-03-27 Lg Chem, Ltd. Bismuth molybdate-based catalyst having zeolite coating layer, method of preparing the same, and method of preparing 1,3-butadiene using the same
WO2019199042A1 (en) * 2018-04-10 2019-10-17 주식회사 엘지화학 Method for producing metal complex catalyst, and metal complex catalyst produced by same
WO2020213361A1 (en) * 2019-04-15 2020-10-22 旭化成株式会社 Catalyst, method for manufacturing catalyst, and method for manufacturing acrylonitrile
CN113394027A (en) * 2020-03-12 2021-09-14 天津理工大学 Carbon nano onion film-based supercapacitor used in field of alternating current line filtering
WO2022085096A1 (en) * 2020-10-20 2022-04-28 Toyo Tire株式会社 Light olefin production method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100888133B1 (en) 2007-10-02 2009-03-13 에스케이에너지 주식회사 Method of preparing multicomponent bismuth molybdate catalysts comprising four metal components and method of preparing 1,3-butadiene using said catalysts

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140050531A (en) 2012-10-19 2014-04-29 한국화학연구원 Ordered mesoporous-silica based catalysts for the production of 1,3-butadiene and production method of 1,3-butadiene using thereof
US9925525B2 (en) 2013-11-18 2018-03-27 Lg Chem, Ltd. Bismuth molybdate-based catalyst having zeolite coating layer, method of preparing the same, and method of preparing 1,3-butadiene using the same
WO2015072820A1 (en) * 2013-11-18 2015-05-21 주식회사 엘지화학 Bismuth molybdate-based catalyst having zeolite coating layer, method for producing same, and method for preparing 1,3-butadiene using same
CN103752316A (en) * 2014-01-26 2014-04-30 惠生工程(中国)有限公司 Iron catalyst for preparing butadiene through n-butene oxydehydrogenation and preparation method and application of iron catalyst
KR20150117739A (en) 2014-04-10 2015-10-21 한국화학연구원 Method preparing 1,3 - butadiene and apparatus for preparing the same
WO2016099046A1 (en) * 2014-12-16 2016-06-23 (주) 엘지화학 Butadiene production method
US9751819B2 (en) 2014-12-16 2017-09-05 Lg Chem, Ltd. Method of preparing butadiene
CN105344366A (en) * 2015-12-11 2016-02-24 湘潭大学 Preparation method for sunlight responding BiPO4 photocatalyst
CN105854912A (en) * 2016-04-18 2016-08-17 河南师范大学 BiPO4-WO3 composite photocatalyst and preparation method thereof
CN107537533B (en) * 2016-06-29 2019-08-02 中国石油化工股份有限公司 Catalyst and its process for Oxidative Dehydrogenation of Butene into Butadiene under low-water ratio conditions
CN107537530A (en) * 2016-06-29 2018-01-05 中国石油化工股份有限公司 Catalyst and its process for Oxidative Dehydrogenation of Butene into Butadiene
CN107537535A (en) * 2016-06-29 2018-01-05 中国石油化工股份有限公司 Catalyst for Oxidative Dehydrogenation of Butene into Butadiene under low-water ratio conditions and preparation method thereof and process
CN107537535B (en) * 2016-06-29 2019-12-10 中国石油化工股份有限公司 Catalyst for preparing butadiene by oxidative dehydrogenation of butylene under low water ratio condition and preparation method and process method thereof
CN107537530B (en) * 2016-06-29 2020-02-04 中国石油化工股份有限公司 Catalyst for preparing butadiene by oxidative dehydrogenation of butylene and process method thereof
CN107537533A (en) * 2016-06-29 2018-01-05 中国石油化工股份有限公司 Catalyst and its process for Oxidative Dehydrogenation of Butene into Butadiene under low-water ratio conditions
US11465138B2 (en) 2018-04-10 2022-10-11 Lg Chem, Ltd. Method for producing metal complex catalyst, and metal complex catalyst produced by same
WO2019199042A1 (en) * 2018-04-10 2019-10-17 주식회사 엘지화학 Method for producing metal complex catalyst, and metal complex catalyst produced by same
WO2020213361A1 (en) * 2019-04-15 2020-10-22 旭化成株式会社 Catalyst, method for manufacturing catalyst, and method for manufacturing acrylonitrile
JPWO2020213361A1 (en) * 2019-04-15 2021-11-11 旭化成株式会社 Catalyst, catalyst manufacturing method, acrylonitrile manufacturing method
US11772080B2 (en) 2019-04-15 2023-10-03 Asahi Kasei Kabushiki Kaisha Catalyst, method for producing catalyst, and method for producing acrylonitrile
CN113394027B (en) * 2020-03-12 2022-03-15 天津理工大学 Carbon nano onion film-based supercapacitor used in field of alternating current line filtering
CN113394027A (en) * 2020-03-12 2021-09-14 天津理工大学 Carbon nano onion film-based supercapacitor used in field of alternating current line filtering
WO2022085096A1 (en) * 2020-10-20 2022-04-28 Toyo Tire株式会社 Light olefin production method
JPWO2022085096A1 (en) * 2020-10-20 2022-04-28

Also Published As

Publication number Publication date
KR101239803B1 (en) 2013-03-06

Similar Documents

Publication Publication Date Title
KR101239803B1 (en) Multi-component metal oxide catalysts containing a BiPO4, Preparing method thereof and Preparing method of 1,3-Butadiene using the same
KR100888133B1 (en) Method of preparing multicomponent bismuth molybdate catalysts comprising four metal components and method of preparing 1,3-butadiene using said catalysts
KR100932373B1 (en) Method for preparing multicomponent bismuth molybdate catalyst according to pH change and method for preparing 1,3-butadiene using the catalyst
KR101508776B1 (en) A method for Producing 1,3-Butadiene from n-Butene using Continuous-flow Dual-bed Reactor
KR101617053B1 (en) A method for preparing 1,3-butadiene using continuous reactors
KR20100042935A (en) The complex oxide catalyst of bi/mo/fe for the oxidative dehydrogenation of 1-butane to 1,3-butadiene and process thereof
KR101340621B1 (en) Ferrite metal oxide catalysts using the spray-pyrolysis process, preparing method thereof and preparing method of 1,3-butadiene using the same
KR101701973B1 (en) Method for preparing ferrite metal oxide catalyst
KR100963079B1 (en) Multicomponent bismuth- molybdate catalyst, preparation method thereof and method of preparing 1,3-butadiene using said catalyst
EP3023148B1 (en) Method for manufacturing multi-component composite metal oxide catalyst
JP2011518649A (en) Hybrid manganese ferrite catalyst, method for producing the same, and method for producing 1,3-butadiene using the same
KR101432621B1 (en) Reforming catalyst for manufacturing synthesis gas, method for manufacturing synthesis gas using the same, and reactor for manufacturing synthesis gas
KR101603820B1 (en) Catalyst for production from butene mixture to butadiene and method of preparing the same
KR101270679B1 (en) Bismuth-molybdenum-iron-phosphorus multi-component metal oxide catalyst, Preparing method thereof and Preparing method of 1,3-butadiene using the same
KR101495478B1 (en) oxidation catalyst for production of butadiene and method of preparing the same
KR101702141B1 (en) Catalyst for production from butene mixture to butadiene and method of preparing the same
KR101679113B1 (en) Multicomplexes bismuth molybdate catalyst, method of preparing thereof, and method for producing butadiene
EP2837422B1 (en) Oxidation catalyst for preparing butadiene and method for preparing same
KR101512483B1 (en) Bismuth-molybdenum-iron-nickel multi-component metal oxide catalyst, preparing method thereof and preparing method of 1,3-butadiene using the same
KR101559199B1 (en) Catalyst for production from butene mixture to butadiene and method of preparing the same
KR101709412B1 (en) Method for preparing butadiene
KR101792072B1 (en) Method for preparing multi-component ferrite metal oxide catalyst
KR101751537B1 (en) Method for preparing ferrite metal oxide catalyst
KR101830377B1 (en) Preparing method of catalyst for polymerization of 1,3-butadiene and process for polymerization of 1,3-butadiene using the same
KR20200126906A (en) A supported catalyst for non-oxidative dehydrogenation of alkane and method for preparing alkene using the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160204

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170214

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20200129

Year of fee payment: 8