KR20110118086A - 공정 컬럼을 위한 추적 제어기 시스템 및 방법 - Google Patents
공정 컬럼을 위한 추적 제어기 시스템 및 방법 Download PDFInfo
- Publication number
- KR20110118086A KR20110118086A KR1020110036096A KR20110036096A KR20110118086A KR 20110118086 A KR20110118086 A KR 20110118086A KR 1020110036096 A KR1020110036096 A KR 1020110036096A KR 20110036096 A KR20110036096 A KR 20110036096A KR 20110118086 A KR20110118086 A KR 20110118086A
- Authority
- KR
- South Korea
- Prior art keywords
- pressure
- hydraulic fluid
- tracking controller
- fluid
- piston
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/60—Construction of the column
- G01N30/6004—Construction of the column end pieces
- G01N30/6021—Adjustable pistons
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D15/00—Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
- B01D15/08—Selective adsorption, e.g. chromatography
- B01D15/10—Selective adsorption, e.g. chromatography characterised by constructional or operational features
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D15/00—Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
- B01D15/08—Selective adsorption, e.g. chromatography
- B01D15/26—Selective adsorption, e.g. chromatography characterised by the separation mechanism
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/50—Conditioning of the sorbent material or stationary liquid
- G01N30/56—Packing methods or coating methods
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Pathology (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Reciprocating Pumps (AREA)
- Control Of Fluid Pressure (AREA)
- Treatment Of Liquids With Adsorbents In General (AREA)
- Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
공정 컬럼 시스템은 입구, 출구, 피스톤 헤드 및 피스톤 압력 챔버를 포함하여 상기 피스톤 헤드에 제어된 층 압력을 제공하고, 따라서 상기 컬럼 내에 위치한 기재 및/또는 액체 층에 제어된 층 압력을 제공한다. 추적 제어기는 가압된 수압 유체의 공급원 및 피스톤 압력 챔버 뿐만 아니라 상기 컬럼에 대한 입구와 유체 연통되어 있다. 상기 추적 제어기는 상기 공정 컬럼 내로 흐르는 공정 유체 흐름의 압력을 수용한다. 상기 추적 제어기는 상기 가압된 수압 유체의 공급원과 유체 연통되는 수압 유체 드레인 포트를 갖는다. 상기 추적 제어기는, 상기 추적 제어기가 상기 공정 유체 흐름의 압력 강하를 감지하는 경우, 수압 유체를 상기 피스톤 압력 챔버로부터 상기 가압된 수압 유체의 공급원으로 유도한다. 상기 가압된 수압 유체의 공급원은 상기 시스템의 설정된 층 압력과 최대 예측된 공정 흐름 압력의 합과 동일한 압력을 상기 추적 제어기에 제공한다. 상기 추적 제어기가 상기 공정 유체 흐름의 압력 증가를 감지하는 경우, 상기 추적 제어기의 내부 압력이 상기 설정된 층 압력을 초과하도록 추가적인 수압 유체를 상기 가압된 수압 유체의 공급원으로부터 상기 피스톤 압력 챔버로 유도한다.
Description
본 발명은 일반적으로 공정 컬럼, 특히 공정 컬럼을 위한 추적 제어기 시스템 및 방법에 관한 것이다.
공정 컬럼은 다양한 압력 등급으로 많은 산업 공정에서 사용된다. 예를 들어, 대형 크로마토그래피를 사용하여 원료, 중간체 및 최종 생성물을 정제하는 것은 약제, 생약제, 영양제, 식료품, 생활 용품, 퍼스널 케어 제품, 석유 제품, 화학 제품 및 기타 특수 제품을 비롯한 많은 산업 분야에서 통상적이다. 또한, 생약 산업과 같은 특정 산업은 모든 제조되는 제품에 대해 다중 크로마토그래픽 정제 단계의 사용을 필요로 한다.
공정 컬럼은 전형적으로 상기 컬럼 내에 미립자 기재 물질(예컨대, 중합체 또는 실리카 겔 기제의 크로마토그래피 매질)의 균질한 층의 형성 및 유지관리가 모두 필요하다. 효율화를 위해, 상기 컬럼 내 미립자 물질의 배열은 가능한 한 균질하여야 한다. 또한, 미립자 기재 물질 층과 컬럼 입구 및 출구 간의 빈 공간이 없어야 한다. 최신 대형 컬럼 크로마토그래피는 이들 문제를 해결하기 위해 "동적 축 압축(dynamic axial compression)"이라고 하는 기술을 이용한다. 동적 축 압축에서, 조정가능한 위치 피스톤 헤드를 사용하여 상기 컬럼 내의 보통 5 내지 100 미크론 크기의 기재 미립자 물질을 압축한다. 상기 피스톤 헤드는 공기압 또는 수압에 의해 동적으로 움직인다. 상기 피스톤에 미치는 힘은 로드(rod)를 통해 컬럼 바깥으로 적용되거나, 또는 상기 피스톤의 한 쪽에서 상기 컬럼을 가압함으로써 안쪽으로 적용될 수 있다.
공정 컬럼 용도에서, 기재 층 체적의 변동은 특히 상기 층 물질이 압축가능한 성질의 것인 때 상기 층 물질의 침강, 수축 및 팽윤 때문에 일어나고, 상기 층의 수축 또는 팽창은 층을 통한 흐름 수압뿐만 아니라 pH, 용매 농도 또는 염 농도의 추가적인 영향 때문이다. 또 다른 문제는 유출 펌프의 작동이 맥동에서 자유롭지 않기 때문이다. 이 때문에 상기 층에는 가변적인 기계적 응력이 발생한다.
따라서, 공정 액체 유동 압력의 실시간 모니터링에 기초하여 층 압력의 동적 변화를 보정함으로써 층 일체성(bed integrity)을 유지하는 시스템 및 방법이 필요하다.
도 1은 내부 피스톤 압력 챔버를 포함하는 본 발명의 추적 제어기 시스템 및 방법의 실시양태를 도시한 개략도이다.
도 2는 피스톤 압력 챔버를 함유하는 외부 구동 컬럼을 포함하는 본 발명의 추적 제어기 시스템 및 방법의 실시양태를 도시한 개략도이다.
도 2는 피스톤 압력 챔버를 함유하는 외부 구동 컬럼을 포함하는 본 발명의 추적 제어기 시스템 및 방법의 실시양태를 도시한 개략도이다.
본 발명의 시스템 및 방법의 실시양태가 액체 크로마토그래피에 대해 하기에 기술되지만, 본 발명이 그에 한정되지 않으며 다르게는 여과, 고체상 합성, 포획 및 흡착뿐만 아니라 기체 및 초임계 유체를 비롯한 다른 유형의 크로마토그래피와 같은 공정 컬럼에 적용될 수 있음을 이해하여야 한다.
본 발명의 시스템의 실시양태는 일반적으로 도 1에서 10으로 표시된다. 공정 컬럼(12)은 수직으로 배치된 실린더 또는 컬럼(14)을 포함하며, 그 안에는 공정 컬럼 피스톤 헤드(16) 및 피스톤 로드(18)를 특징으로 하는 슬라이딩 피스톤이 위치한다. 공정 유체 통로(22)가 상기 피스톤 로드를 통해 형성된다. 컬럼(14)에는 상기 피스톤 로드가 통과하는 중앙 개구를 포함하는 상판(24)이 제공된다. 피스톤 압력 챔버(26)는 상기 상판과 상기 피스톤 헤드 사이에 형성된다. 컬럼(14)에는 또한 공정 유체 포트(34)가 내부에 형성된 하판(32)이 제공된다.
상기 피스톤 헤드의 저부 표면과 상기 하판 사이에는 미립자 물질의 기재 층(36)이 위치한다. 층(36)은 다르게는 하나의 단편(single piece)(모놀리식(monolithic) 또는 멤브레인) 층, 또는 세포들의 액체 현탁액(예컨대 효모를 이용한 발효 또는 동물 세포들의 플랜트를 이용한 생물반응기에 사용되는 것)일 수 있다. 기재 층(36)은 다공성 또는 비-다공성일 수 있고, 중합체성 물질 또는 겔 예컨대 셀룰로오스, 메타크릴레이트, 다이비닐 벤젠, 실리카, 제올라이트 또는 티탄으로 제조되거나 또는 임의의 다른 분리 매질에 사용되는 유형의 것인 기본 구조를 포함할 수 있다.
상기 시스템은, 공기 또는 액체와 같은 유체를 함유하는 모세관 라인(44)을 통해 공정 컬럼(12)의 포트(34)와 유체 연통(fluid communication)되는 감지 다이아프램을 포함한다. 상기 시스템은 또한 액체-충전된 라인(52)을 통해 감지 다이아프램(sensing diaphragm)(42)과 유체 연통되는 압력 감지 입력부(51)를 특징으로 하는 추적 제어기(50)를 포함한다. 이하에서 더욱 상세히 설명되는 바와 같이, 상기 추적 제어기는 또한 감지 다이아프램(42)에 의해 제공된 공정 유체 유동 압력 피드백에 기초하여 피스톤 헤드(16)에 작용하는 압력에 추가되는 바이어스 압력을 허용한다.
수압 액체 저장조(54)는 라인(58)을 통해 수압 펌프(56)의 입구와 연통되는 반면, 상기 펌프의 출구는 라인(62)을 통해 추적 제어기(50)의 수압 유체 입구(60)와 연통된다. 상기 추적 제어기는 또한 각각 63 및 64로 표시되는 수압 유체 드레인 포트 및 라인을 통해 수압 액체 저장조(54)와 유체 연통된다. 추적 제어기(50)는 또한 라인(66)을 통해 상기 공정 컬럼의 피스톤 압력 챔버(26)와 유체 연통되는 수압 유체 출구(65)를 특징으로 한다. 펌프(56)의 작동은 전자 제어기(68)에 의해 제어된다. 전자 제어기(68)는 마이크로프로세서 또는 당해 분야에 공지되어 있는 임의의 다른 전자 제어 장치일 수 있다.
작동시, 기재 층(36)을 위해 설정된 층 압력(Ps)이 선택되고 제어기(68) 내로 유입된다. 이것이 펌프(56)의 작동을 개시시켜 저장조(54)로부터의 수압 액체가 라인(58 및 62), 추적 제어기(50) 및 라인(66)을 통해 피스톤 압력 챔버(26)로 향하도록 한다. 그 결과, 상기 피스톤 압력 챔버는 상기 수압 액체에 의해 가압되고, 피스톤 헤드(16)는 상기 선택된 설정된 층 압력(Ps)에 의해 밑으로 밀려나 기재 층(36)의 미립자 물질을 압축시키거나 팩킹시킨다.
상기 액체 크로마토그래피 공정이 개시되는 경우, 공정 유체(이 경우, 첫 번째는 이동 상 액체이고 나중에는 크로마토그래피되는 조질 물질의 액체 용액)가 공정 유체 포트(34)를 통해 컬럼 내로 이동하고, 기재 층(36)을 통과한 다음, 공정 유체 통로(22)를 통해 상기 컬럼을 빠져나간다. 이러한 모드 작동이, 공정 유체 포트(34)가 상기 컬럼 입구로 작용하고 공정 유체 통로(22)가 상기 컬럼 출구로 작용하면서, 전진하는 것으로 생각되지만, 상기 흐름은, 상기 액체가 공정 유체 통로(22)를 통해 컬럼으로 유입되고 공정 유체 포트(34)를 통해 컬럼을 빠져나오면서, 역 방향으로 이동하는 다른 경로를 취할 수 있음을 이해하여야 한다.
기재 층(36)을 통해 흐르는 공정 유체의 흐름 결과, 유동 압력(Pf)이 상기 설정된 층 압력(Ps)에 추가되어 피스톤 헤드(16)의 저부 면에 작용한다. 여전히 미제로 남은, 잠금 피스톤을 가진 전형적인 종래 기술에서와 같이, 피스톤 헤드(16)는 기재 층(36)에 작용하는 추가적인 유동 압력을 감소시키기 위해 상향 이동할 수 없을 것이다. 특히 연질이고 압축가능한 기재 층 매질을 사용하는 동적 축 압축 컬럼의 경우, 상기 층을 통한 높은 유속으로 정상 작동시킬 필요가 있다. 이는 상기 피스톤이 움직이지 못하도록 증가된 피스톤 압력 설정을 필요로 할 수 있다. 이 증가된 피스톤 압력 설정은, 유입 흐름에 의한 수압으로 완충되는 한, 상기 층 물질에 의해 허용될 수 있다. 그러나, 상기 유속이 감소하거나 멈추는 경우, 이와 같은 피스톤 압력은, 그의 물리적 지지 능력을 초과하는 매질에 물리적 압력을 가하게 되어, 내부 공극 구조를 닫히게 할 뿐만 아니라 매질 기재를 파손시키는 매질의 과잉 압축을 초래할 수 있다. 이하 설명되는 바와 같이, 도 1의 시스템은 피스톤 압력 챔버(26)에 Pf와 동일한 압력 차를 더한다. 상기 시스템은 또한 충분한 유동 완충의 부재 하에 추가적인 피스톤 압력을 감소시키거나 제거하는데, 이는 압축성 또는 취성 매질이 상기 피스톤 압력에 적용되는 경우에 특히 유용하다.
제어기(68)는, 라인(62)을 통해 추적 제어기(50)의 입구에 제공되는 압력이 실제로 상기 설정된 층 압력(Ps), 또는 최대 예측된 작동 또는 공정 유동 압력(Pfmax)을 약간 초과하는 양과 동일하게 되도록 개조된다. 이러한 양, 바람직하게는 Pfmax를 약 1 내지 2 psi 초과하는 양이 과잉 압축 점(overpressure point)으로서, 이의 사용은 이하에서 설명한다. 상기 추적 제어기는, 포트(34)를 통하는 액체 흐름의 부재 하에, 단지 상기 설정된 층 압력(Ps)을 제공하기에 충분한 수압 유체만이 상기 피스톤 압력 챔버(26)에 제공되도록 개조된다.
상기 컬럼을 통한 공정 유체 흐름이 개시되는 경우, 감지 다이아프램(42)이 모세관(44)을 통한 공정 유체 포트(34)를 통해 흐르는 유체의 압력을 감지해서 액체-충전된 라인(52)을 통해 상기 추적 제어기(52)에 감지된 압력 입력부를 제공한다. 추적 제어기(50)는, 감지 다이아프램(42)에 의해 감지된 압력에 비례하여 라인(66)을 통한 피스톤 압력 챔버(26)에 라인(62)으로부터 전달된 수압 유체의 양을 증가시킴으로써 반응한다. 추적 제어기(50)는, 상기 추가적인 수압 유체에 전달된 압력, 따라서 상기 피스톤 압력 챔버(26)에 전달된 압력이, 피스톤 헤드(16)의 윗 쪽에 미치는 전체 층 압력(Pt)이 상기 설정된 층 압력(Ps)과 상기 피스톤 헤드의 바닥 측에 미치는 공정 유체 유동 압력(Pf)의 합과 같아지도록 개조된다. 즉, 상기 추적 제어기는 상기 피스톤 헤드(16)가 상기 기재 층(36)에 가하는 압력을 하기 방정식에 따라 조정한다:
Pt = Ps + Pf
상기 식에서,
Pt = 전체 층 압력
Ps = 설정된 층 압력
Pf = 압력 유체 유동 압력
상기 감지 다이아프램(42)은 상기 공정 유체 유동 압력의 증가 및 감소 둘 다를 감지한다. 상기 피스톤 헤드(16)의 바닥 측에 미치는 유동 압력(Pf)을 상응하게 증가시키는 상기 컬럼 내로의 유체 흐름의 임의의 증가는, 상기 감지 다이아프램에 의해 포트(34)에서 감지되고 추적 제어기(50)에 전달되는 압력으로 반영된다. 추적 제어기(50)는, 상기 피스톤 헤드에 미치는 전체 층 압력(Pt)이 상기 공정 유동 압력(Pf)과 상기 설정된 층 압력(Ps)의 합과 계속해서 일치하도록, 상기 피스톤 압력 챔버(26) 내의 압력을 증가시킴으로써 반응한다.
포트(34)를 통한 상기 컬럼 내로 흐르는 공정 유체의 흐름이 감소하는 경우, 이러한 정보가 앞서 언급된 바와 같이 감지 다이아프램(42)을 통해 추적 제어기에 전송된다. 추적 제어기(50)는, 라인(66)과 수압 유체 드레인 라인(64)을 통한 피스톤 압력 챔버(26)로부터 압력을 방출시킴으로써 반응한다. 그 결과, 상기 수압 유체는 상기 수압 유체 저장조로 다시 되돌아 간다. 방출된 유체의 양은 상기 감지 다이아프램에 의해 감지된, 따라서 상기 추적 제어기에 의해 감지된 압력 감소에 비례한다. 따라서, 전체 층 압력(Pt)은 공정 유체 유동 압력(Pf)의 감소에 상응하게 감소된다. 즉, 추적 제어기(50)는, 상기 피스톤 헤드에 미치는 전체 층 압력(Pt)이 상기 공정 유동 압력(Pf)과 상기 설정된 층 압력(Ps)의 합과 계속해서 일치하도록, 상기 피스톤 압력 챔버(26) 내의 압력을 감소시킴으로써 반응한다.
포트(34)를 통한 상기 컬럼 내로의 공정 유체의 흐름이 상기 과잉 압축 점에 상응하는 수준에 도달하는 경우, 다시 포트(34)를 통해 감지 다이아프램(42)에 의해 검출되는 바와 같이, 상기 추적 제어기는, 라인(66)과 수압 유체 드레인 라인(64)을 통한 피스톤 압력 챔버(26)로부터 압력을 방출시킨다. 그 결과, 상기 수압 유체는 상기 수압 유체 저장조로 다시 되돌아 간다. 방출된 유체의 양은 상기 설정된 층 압력에 가해진 차등 압력이 Pfmax와 같아지도록 감소하게 된다. 따라서, 추적 제어기(50)는, 상기 피스톤 헤드에 미치는 전체 층 압력(Pt)이 상기 최대 예측된 공정 유동 압력(Pfmax)과 상기 설정된 층 압력(Ps)의 합과 계속해서 일치하도록, 상기 피스톤 압력 챔버(26) 내의 압력을 감소시킴으로써 반응한다.
이상 살펴본 바와 같이, 상기 추적 제어기는 상기 전체 층 압력이 상기 공정 유체 유동 압력을 추적하도록 함으로써 기재의 일체성이 유지되도록 할 수 있다. 포트(34)와 추적 제어기(50) 간의 순수 유체 및 기계적 연결로 인해, 상기 추적 제어기의 반응성은 거의 순간적이고, 따라서 상기 기재 물질에 대한 위험의 기회를 최소화한다.
도 1에서 점선(70)으로 표시된 바와 같이, 감지 다이아프램(42)으로 유도하는 모세관은 다르게는 공정 유체 통로(22)의 개구에 위치할 수 있다. 이러한 구성은 상기 시스템이 공정 유체의 흐름이 공정 유체 통로(22)의 개구(72)(여기서는 공정 컬럼 입구)를 통해 컬럼으로 유입되고 기재 층(36)을 통해 이동하고 포트(34)(여기서는 공정 컬럼의 출구)를 통해 유출되는 상황에서 사용되도록 개조된다.
적절한 감지 다이아프램(42)과 추적 제어기(50)는 당해 분야에 공지되어 있다. 단지 예를 들면, 미네소타주 엘크 리버의 테스콤 코포레이션(Tescom Corporation)으로부터 입수가능한 SJS 시리즈 제어기 및 42 MW 용접된 다이아프램 기기가 각각 상기 추적 제어기(50) 및 감지 다이아프램(42)으로 사용하기에 적합하다. 바람직하게는, 상기 감지 다이아프램은 턴오프(t-off) 디자인보다는 관류 셀 디자인을 특징으로 하며, 이는 기존의 다이아프램 기기 절연체의 일부 변경을 필요로 할 수 있다.
도 2에서 일반적으로 110으로 표시되는 본 발명의 시스템의 다른 실시양태에서는, 상기 피스톤 압력 챔버는 피스톤 로드 상에서 작동하는 외부 구동 컬럼 내에, 따라서 상기 공정 컬럼의 피스톤 헤드 내에 하우징된다. 더욱 구체적으로, 도 2의 시스템(110)에서, 공정 컬럼(112)은 공정 컬럼 피스톤 헤드(116) 및 피스톤 로드(118)를 특징으로 하는 슬라이딩 피스톤이 내부에 위치한 수직으로 배치된 실린더(114)를 포함한다. 공정 유체 통로(122)는 상기 피스톤 헤드를 통해 형성된다. 상기 공정 컬럼(112)은 상기 피스톤 로드가 통과하는 개방형 상부 단부(124)를 특징으로 한다. 상기 공정 컬럼에는 또한 공정 유체 포트(134)가 내부에 형성된 하판(132)이 제공된다.
외부 구동 컬럼(125)은 컬럼(114) 위에서 지지되며 구동 피스톤(127)을 함유한다. 피스톤 압력 챔버(126)는 상기 구동 컬럼의 상부와 상기 구동 피스톤 헤드 사이에 형성된다.
상기 피스톤 헤드의 저부 표면과 상기 하판 사이에는 미립자 물질의 기재 층(136)이 위치한다. 층(136)은 다르게는 원피스(모놀리식 또는 멤브레인) 층, 또는 세포들의 액체 현탁액(예컨대 효모를 이용한 발효 또는 동물 세포들의 플랜트를 이용한 생물반응기에 사용되는 것)일 수 있다. 기재 층(136)은 다공성 또는 비-다공성일 수 있고, 중합체성 물질 또는 겔 예컨대 셀룰로오스, 메타크릴레이트, 다이비닐 벤젠, 실리카, 제올라이트 또는 티탄으로 제조되거나 또는 임의의 다른 분리 매질에 사용되는 유형의 것인 기본 구조를 포함할 수 있다.
도 2의 시스템은, 공기 또는 액체와 같은 유체를 함유하는 모세관 라인(144)을 통해 공정 컬럼(112)의 포트(134)와 유체 연통되는 감지 다이아프램(142)을 포함한다. 상기 시스템은 또한 액체-충전된 라인(152)을 통해 감지 다이아프램(142)과 유체 연통되는 압력 감지 입력부(151)를 특징으로 하는 추적 제어기(150)를 포함한다. 도 1의 실시양태에 대해 상기 기술된 바와 같이, 상기 추적 제어기는 또한 감지 다이아프램(142)에 의해 제공된 공정 유체 유동 압력 피드백에 기초하여 피스톤 헤드(116)에 작용하는 압력에 추가되는 바이어스 압력을 허용한다.
수압 액체 저장조(154)는 라인(158)을 통해 수압 펌프(156)의 입구와 연통되는 반면, 상기 펌프의 출구는 라인(162)을 통해 추적 제어기(150)의 수압 유체 입구(160)와 연통된다. 상기 추적 제어기는 또한 각각 163 및 164로 표시되는 수압 유체 드레인 포트 및 라인을 통해 수압 액체 저장조(154)와 유체 연통된다. 추적 제어기(150)는 또한 라인(166)을 통해 상기 외부 구동 컬럼의 피스톤 압력 챔버(126)와 유체 연통되는 수압 유체 출구(165)를 특징으로 한다. 펌프(156)의 작동은 전자 제어기(168)에 의해 제어된다. 전자 제어기(168)는 마이크로프로세서 또는 당해 분야에 공지되어 있는 임의의 다른 전자 제어 장치일 수 있다.
도 2의 시스템의 구성요소는 도 1의 시스템에 대해 상기 기술된 바와 같은 동일한 방식으로 작동하되, 상기 공정 유체 포트는 상기 공정 컬럼 입구로 작용하고 상기 공정 유체 통로(122)는 상기 공정 컬럼 출구로 작용한다. 유일한 차이점은 상기 피스톤 압력 챔버가, 상기 공정 컬럼(112)에 대해 외부에 있는 구동 컬럼(125) 내에 위치한다는 점이다.
도 2에서 점선(17)으로 표시된 바와 같이, 감지 다이아프램(142)으로 유도하는 모세관은 다르게는 공정 유체 통로(122)의 개구(172)에 위치할 수 있다. 이러한 구성은 상기 시스템이 공정 유체의 흐름이 개구(72)(여기서는 공정 컬럼 입구로 작용함)를 통해 컬럼으로 유입되고 기재 층(136)을 통해 이동하고 포트(134)(여기서는 공정 컬럼 출구로 작용함)를 통해 유출되는 상황에서 사용되도록 개조된다.
본 발명의 시스템 및 방법은 임의의 유체 가공 공정 및 층에 압력을 가하는 내부 피스톤 헤드를 특징으로 하는 관련 컬럼과 함께 사용될 수 있다. 이와 같은 유체 공정 및 장치의 예는 크로마토그래피 컬럼(액체, 초임계 유체 등), 포획 컬럼, 관류 합성기 컬럼 및 생물반응기/발효기 컬럼(이 경우, 상기 층은 세포들의 액체 현탁액임)을 포함하나, 이들에 국한되지 않는다. 이와 같은 공정은 생물학적 및 화학적 용도를 포함하나, 이들에 국한되지 않는 다양한 용도에 사용될 수 있다.
따라서, 본 발명은 시스템 수압을 상기 설정된 층 압력에 의해 공정 유체 압력을 초과하도록 거의 순간적으로 조정하여 층의 일체성을 유지하는 압력 추적 시스템을 제공한다. 침강, 수축 및 팽윤으로 인한 층 체적의 변동은 수압 액체를 피스톤 압력 챔버에 첨가하거나 또는 액체를 수압 유체 저장조로 재방출함으로써 자동으로 보정된다.
본 발명의 바람직한 실시양태를 도시하고 기술하였지만, 본 발명의 진의를 벗어나지 않고 본 발명을 변화 및 변경시킬 수 있으며, 본 발명의 범주는 첨부된 특허청구범위에 의해 정의됨은 당해 분야 숙련자에게 명백하다.
Claims (20)
- 피스톤 압력 챔버가 공정 컬럼의 피스톤 헤드로 하여금 공정 컬럼의 층(bed)에 층 압력을 가하도록 하고, 상기 공정 컬럼이 상기 층과 유체 연통되는 입구 및 출구를 가짐을 특징으로 하는, 공정 컬럼의 층 압력 제어 시스템으로서,
a) 가압된 수압 유체의 공급원; 및
b) 압력 감지 입력부, 상기 가압된 수압 유체의 공급원과 유체 연통되는 수압 유체 입구 및 상기 피스톤 압력 챔버와 유체 연통되도록 개조된 수압 유체 출구를 갖는 추적 제어기
를 포함하고, 이때
상기 추적 제어기의 압력 감지 입력부가, 상기 추적 제어기가 상기 공정 컬럼 내로 흐르는 공정 유체 흐름의 압력을 수용할 수 있도록 상기 공정 컬럼 입구와 유체 연통되도록 개조되어 있고,
상기 추적 제어기가 상기 피스톤 압력 챔버의 압력을 조정함으로써 상기 공정 유체 흐름의 압력 변화에 반응하는, 공정 컬럼의 층 압력 제어 시스템. - 제 1 항에 있어서,
상기 추적 제어기가 수압 유체 드레인 포트(drain port)를 포함하고, 상기 시스템이 상기 추적 제어기의 수압 유체 드레인 포트 및 상기 가압된 수압 유체의 공급원과 유체 연통되는 수압 유체 드레인 라인을 추가로 포함하며, 이때 상기 추적 제어기가, 상기 공정 유체 흐름의 압력 강하를 감지하는 경우, 수압 유체를 상기 피스톤 압력 챔버로부터 상기 수압 유체 드레인 라인 및 상기 가압된 수압 유체의 공급원으로 유도하도록 개조된, 시스템. - 제 1 항에 있어서,
상기 가압된 수압 유체의 공급원이
수압 유체 저장조, 및
상기 수압 유체 저장조와 유체 연통되는 입구 및 상기 추적 제어기의 수압 유체 입구와 유체 연통되는 출구를 갖는 펌프
를 포함하는, 시스템. - 제 3 항에 있어서,
상기 제어기 내로 설정된 층 압력이 유입될 수 있도록 상기 펌프에 연결되고 이를 제어하는 전자 제어기를 추가로 포함하는, 시스템. - 제 1 항에 있어서,
상기 추적 제어기가 상기 공정 유체 흐름의 압력을 상기 공정 컬럼 내로 수용할 수 있도록, 상기 추적 제어기의 압력 감지 입력부와 유체 연통되고 상기 공정 컬럼 입력부와 유체 연통되도록 개조된 감지 다이아프램을 추가로 포함하는, 시스템. - 제 5 항에 있어서,
상기 감지 다이아프램 및 상기 추적 제어기가 상기 공정 컬럼 내로 흐르는 상기 공정 유체 흐름의 압력을 수용할 수 있도록, 상기 감지 다이아프램과 유체 연통되고 상기 공정 컬럼 입력부와 유체 연통되도록 개조된 모세관을 추가로 포함하는, 시스템. - 제 1 항에 있어서,
상기 가압된 수압 유체의 공급원이 상기 추적 제어기의 수압 유체 입력부에 상기 시스템의 설정된 층 압력과 최대 예측된 공정 흐름 압력의 합과 동일한 압력을 제공하고,
상기 추적 제어기가 상기 공정 유체 흐름의 압력 증가를 감지하는 경우, 상기 추적 제어기의 내부 압력이 상기 설정된 층 압력을 초과하도록 추가적인 수압 유체를 상기 가압된 수압 유체의 공급원으로부터 상기 피스톤 압력 챔버로 유도하도록 개조된, 시스템. - a) 입구, 출구 및 공정 컬럼 피스톤 헤드를 가짐을 특징으로 하는 공정 컬럼으로서, 상기 공정 컬럼 피스톤 헤드에 인접해 위치하고 상기 공정 컬럼 입구 및 출구와 유체 연통되는 층을 또한 포함하는, 공정 컬럼;
b) 상기 공정 컬럼 피스톤 헤드가 상기 층에 층 압력을 제공하도록 하기 위한 피스톤 압력 챔버;
c) 가압된 수압 유체의 공급원; 및
d) 압력 감지 입력부, 상기 가압된 수압 유체의 공급원과 유체 연통되는 수압 유체 입구 및 상기 피스톤 압력 챔버와 유체 연통되는 수압 유체 출구를 갖는 추적 제어기를 포함하고, 이때
상기 추적 제어기 압력 감지 입력부가, 상기 추적 제어기가 상기 공정 컬럼 내로 흐르는 공정 유체 흐름의 압력을 수용할 수 있도록 상기 공정 컬럼 입구와 유체 연통되도록 개조되어 있고,
상기 추적 제어기가 상기 피스톤 압력 챔버의 압력을 조정함으로써 상기 공정 유체 흐름의 압력 변화에 반응하는, 공정 컬럼 시스템. - 제 8 항에 있어서,
상기 피스톤 압력 챔버가 상기 공정 챔버 내부에 있고 상기 공정 컬럼 피스톤 헤드와 상기 공정 컬럼의 상판 사이에 위치해 있는, 시스템. - 제 8 항에 있어서,
제 1 단부가 상기 공정 컬럼 피스톤에 연결된 피스톤 로드(rod), 및 구동 피스톤을 함유하는 외부 구동 컬럼을 추가로 포함하며, 이때 상기 피스톤 압력 챔버는 상기 외부 구동 컬럼 내 상기 구동 피스톤에 인접해 위치해 있고, 상기 구동 피스톤은 상기 피스톤 로드의 제 1 단부 반대쪽의 제 2 단부에서 상기 피스톤 로드에 연결되어 있는, 시스템. - 제 8 항에 있어서,
상기 컬럼의 입구가 공정 유체 포트를 포함하고, 상기 시스템이 상기 피스톤 헤드에 연결된 로드를 추가로 포함하며, 이때 상기 컬럼의 출구가 상기 로드를 통해 형성된 유체 통로를 포함하는, 시스템. - 제 8 항에 있어서,
상기 컬럼의 출구가 공정 유체 포트를 포함하고, 상기 시스템이 상기 피스톤 헤드에 연결된 로드를 추가로 포함하며, 이때 상기 컬럼의 입구가 상기 로드를 통해 형성된 유체 통로를 포함하는, 시스템. - 제 8 항에 있어서,
상기 추적 제어기가 수압 유체 드레인 포트를 포함하고, 상기 시스템이 상기 추적 제어기의 수압 유체 드레인 포트 및 상기 가압된 수압 유체의 공급원과 유체 연통된 수압 유체 드레인 라인을 추가로 포함하며, 이때 상기 추적 제어기가 상기 공정 유체 흐름의 압력 강하를 감지하는 경우, 상기 추적 제어기가 수압 유체를 상기 피스톤 압력 챔버로부터 상기 수압 유체 드레인 라인 및 상기 가압된 수압 유체의 공급원으로 유도하는, 시스템. - 제 8 항에 있어서,
상기 가압된 유체의 공급원이
수압 유체 저장조, 및
상기 수압 유체 저장조와 유체 연통되는 입구 및 상기 추적 제어기의 수압 유체 입구와 유체 연통되는 출구를 갖는 펌프
를 포함하고, 상기 시스템이, 설정된 층 압력이 상기 제어기 내로 유입될 수 있도록 상기 펌프에 연결되고 이를 제어하는 전자 제어기를 추가로 포함하는, 시스템. - 제 8 항에 있어서,
상기 추적 제어기가 상기 공정 컬럼 내로 흐르는 상기 공정 유체 흐름의 압력을 수용하도록, 상기 추적 제어기의 압력 감지 입력부와 유체 연통되고 상기 공정 컬럼과 유체 연통되는 감지 다이아프램을 추가로 포함하는, 시스템. - 제 15 항에 있어서,
상기 감지 다이아프램 및 상기 추적 제어기가 상기 공정 컬럼 내로 흐르는 상기 공정 유체 흐름의 압력을 수용하도록, 상기 감지 다이아프램과 유체 연통되고 상기 공정 컬럼 입력부와 유체 연통되는 모세관을 추가로 포함하는, 시스템. - 제 8 항에 있어서,
상기 가압된 수압 유체의 공급원이 상기 추적 제어기의 수압 유체 입력부에 상기 시스템의 설정된 층 압력과 최대 예측된 공정 흐름 압력의 합과 동일한 압력을 제공하고,
상기 추적 제어기가 상기 공정 유체 흐름의 압력 증가를 감지하는 경우, 상기 추적 제어기의 내부 압력이 상기 설정된 층 압력을 초과하도록 추가적인 수압 유체를 상기 가압된 수압 유체의 공급원으로부터 상기 피스톤 압력 챔버로 유도하도록 개조된, 시스템. - 피스톤 압력 챔버가 공정 컬럼의 피스톤 헤드로 하여금 공정 컬럼의 층에 층 압력을 가하도록 하고, 상기 공정 컬럼이 상기 층과 유체 연통되는 입구 및 출구를 가짐을 특징으로 하는, 공정 컬럼의 층 압력 제어 방법으로서,
a) 가압된 수압 유체의 공급원으로부터 추적 제어기를 통해 상기 피스톤 압력 챔버에 가압된 수압 유체를 제공하는 단계;
b) 상기 추적 제어기에 의해 상기 공정 컬럼 내로 흐르는 공정 유체 흐름의 압력을 감지하는 단계; 및
c) 상기 공정 유체 흐름의 감지된 압력에 기초하여 상기 추적 제어기를 사용하여 상기 피스톤 압력 챔버의 압력을 조정하는 단계
를 포함하는, 공정 컬럼의 층 압력 제어 방법. - 제 18 항에 있어서,
상기 추적 제어기가 수압 유체 드레인 포트를 포함하고, 상기 추적 제어기의 수압 유체 드레인 포트 및 상기 가압된 수압 유체의 공급원과 유체 연통되는 수압 유체 드레인 라인을 추가로 포함하고,
상기 추적 제어기가 상기 공정 유체 흐름의 압력 강하를 감지하는 경우, 수압 유체를 상기 피스톤 압력 챔버로부터 상기 수압 유체 드레인 라인 및 상기 가압된 수압 유체의 공급원으로 유도하는 단계를 추가로 포함하는, 방법. - 제 18 항에 있어서,
상기 가압된 수압 유체의 공급원이 상기 시스템의 설정된 층 압력과 최대 예측된 공정 흐름 압력의 합과 동일한 압력을 상기 추적 제어기에 제공하고,
상기 추적 제어기가 상기 공정 유체 흐름의 압력 증가를 감지하는 경우, 추적 제어기의 생성 압력이 상기 설정된 층 압력을 초과하도록 추가적인 수압 유체를 상기 가압된 수압 유체의 공급원으로부터 상기 피스톤 압력 챔버로 유도하는 단계를 추가로 포함하는, 방법.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/765,498 | 2010-04-22 | ||
US12/765,498 US20110259831A1 (en) | 2010-04-22 | 2010-04-22 | Tracking regulator system and method for processing columns |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20110118086A true KR20110118086A (ko) | 2011-10-28 |
Family
ID=44303539
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020110036096A KR20110118086A (ko) | 2010-04-22 | 2011-04-19 | 공정 컬럼을 위한 추적 제어기 시스템 및 방법 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20110259831A1 (ko) |
EP (1) | EP2381252A3 (ko) |
JP (1) | JP2011224564A (ko) |
KR (1) | KR20110118086A (ko) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2812090A4 (en) * | 2012-02-09 | 2015-09-16 | Asahi Kasei Bioprocess Inc | COLUMN PRESSURE REGULATION SYSTEM AND METHOD |
GB201701576D0 (en) * | 2017-01-31 | 2017-03-15 | Ge Healthcare Bio Sciences Ab | Method and system for transferring separation resin |
CA3120130A1 (en) * | 2020-05-15 | 2021-11-15 | Vitalis Extraction Technology Inc. | System and method for closed cycle preparative supercritical fluid chromatography |
US11179691B1 (en) | 2020-08-12 | 2021-11-23 | Asahi Kasei Bioprocess America, Inc. | Dynamically adjustable chemical processing column |
US11731062B2 (en) | 2021-01-20 | 2023-08-22 | Asahi Kasei Bioprocess America, Inc. | Components that facilitate maintenance of chromatography and synthesis columns |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2384931A1 (en) * | 2000-07-28 | 2002-02-07 | Euroflow (Uk) Limited | Methods and apparatus for packing chromatography columns and chromatography column |
FR2823134B1 (fr) * | 2001-04-10 | 2003-09-19 | Novasep | Dispositif de protection du lit chromatographique dans les colonnes chromatographiques a compression axiale dynamique |
FR2836230B1 (fr) * | 2002-02-15 | 2004-04-23 | Novasep | Protection du lit chromatographique dans les dispositifs de chromatographie a compression axiale dynamique |
GB0328674D0 (en) * | 2003-12-10 | 2004-01-14 | Euroflow Uk Ltd | Chromatography columns and their operation |
US7452471B2 (en) * | 2005-10-21 | 2008-11-18 | Ge Healthcare Bio-Sciences Ab | Automated packing system and method for chromatography columns |
-
2010
- 2010-04-22 US US12/765,498 patent/US20110259831A1/en not_active Abandoned
-
2011
- 2011-04-18 EP EP11250484A patent/EP2381252A3/en not_active Withdrawn
- 2011-04-19 KR KR1020110036096A patent/KR20110118086A/ko not_active Application Discontinuation
- 2011-04-20 JP JP2011093930A patent/JP2011224564A/ja not_active Withdrawn
Also Published As
Publication number | Publication date |
---|---|
JP2011224564A (ja) | 2011-11-10 |
EP2381252A3 (en) | 2013-01-23 |
EP2381252A2 (en) | 2011-10-26 |
US20110259831A1 (en) | 2011-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20110118086A (ko) | 공정 컬럼을 위한 추적 제어기 시스템 및 방법 | |
US7132053B2 (en) | Protective device for the chromatographic bed in dynamic axial compression chromatographic columns | |
EP2310683B1 (en) | A compressible fluid pumping system | |
US7997297B2 (en) | System and method for performing a chemical experiment | |
US20100170572A1 (en) | Pumping and flow control in systems including microfluidic systems | |
US20120198919A1 (en) | Liquid supply with optimized switching between different solvents | |
US10364808B2 (en) | Pumping system for chromatography applications | |
WO2002101474A3 (en) | Flow control systems | |
JP2007504479A (ja) | 流速制御 | |
KR950031154A (ko) | 저온 정류 시스템의 캐패시티 콘트롤 방법 | |
US9228985B2 (en) | Device and method for testing catalysts with variable process pressure adjustment | |
US12019058B2 (en) | Apparatus, method, and computer program product for adapting a predefined liquid chromatography process | |
Herterich et al. | Optimizing the operation of a direct-flow filtration device | |
US11338289B2 (en) | Microfluidic device | |
CN106404272B (zh) | 一种高压输液泵压力缓冲传感器及压力缓冲方法 | |
JPWO2014002665A1 (ja) | 液体クロマトグラフ装置 | |
Deininger et al. | Control of flow rate in high pressure liquid chromatography | |
EP3958994B1 (en) | A chromatography system | |
CN201187611Y (zh) | 自力式压力调节阀 | |
US20130206656A1 (en) | Apparatus for carrying out chromatography | |
CN208221743U (zh) | 一种温度控制的气动阀门 | |
CN1209277C (zh) | 恒压供液装置 | |
JPS61219377A (ja) | 菌回収装置 | |
JPH04334503A (ja) | 擬似移動層式クロマト分離装置 | |
SU880440A1 (ru) | Устройство дл автоматического регулировани соотношени парожидкостных потоков в испарительной секции ректификационной колонны |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WITN | Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid |