KR20110105664A - Organic light emitting material and organic light emitting diode having the same - Google Patents

Organic light emitting material and organic light emitting diode having the same Download PDF

Info

Publication number
KR20110105664A
KR20110105664A KR1020100024932A KR20100024932A KR20110105664A KR 20110105664 A KR20110105664 A KR 20110105664A KR 1020100024932 A KR1020100024932 A KR 1020100024932A KR 20100024932 A KR20100024932 A KR 20100024932A KR 20110105664 A KR20110105664 A KR 20110105664A
Authority
KR
South Korea
Prior art keywords
formula
organic electroluminescent
electroluminescent device
chemical formula
light emitting
Prior art date
Application number
KR1020100024932A
Other languages
Korean (ko)
Other versions
KR101125682B1 (en
Inventor
박종억
김정미
김명주
이혜진
이상진
배유진
백용구
김진영
Original Assignee
주식회사 이엘엠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 이엘엠 filed Critical 주식회사 이엘엠
Priority to KR1020100024932A priority Critical patent/KR101125682B1/en
Publication of KR20110105664A publication Critical patent/KR20110105664A/en
Application granted granted Critical
Publication of KR101125682B1 publication Critical patent/KR101125682B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 발명은 유기 전기발광 소자에 사용되는 화합물 유도체와 이를 이용한 유기 전기발광 소자에 관한 것으로, 더욱 자세하게는 카바졸 유도체 화합물을 제조하고, 이를 유기 전기발광 소자의 정공전달물질로 사용하여 소자의 수명을 증가시키며, 발광 휘도와 발광 효율이 우수한 유기 전기발광 소자를 제공하는 것이다.The present invention relates to a compound derivative used in an organic electroluminescent device and an organic electroluminescent device using the same, and more particularly, to prepare a carbazole derivative compound, and to use this as a hole transport material of the organic electroluminescent device To increase, to provide an organic electroluminescent device excellent in luminescence brightness and luminous efficiency.

Description

유기 전기 발광 조성물 및 이를 포함하는 유기 전기 발광 소자{Organic Light Emitting Material and Organic Light Emitting Diode Having The Same}Organic electroluminescent composition and organic electroluminescent device comprising same {Organic Light Emitting Material and Organic Light Emitting Diode Having The Same}

본 발명은 유기 전기 발광 소자에 대한 것으로, 특히 유기 전기 발광 소자의 발광 재료로 사용되는 카바졸 유도체에 대한 것이며, 더욱 자세하게는 카바졸 화합물을 제조하고 이를 유기 전기발광 소자의 정공전달물질로 사용하여 소자의 수명을 증가시키며, 발광 휘도와 발광 효율이 우수한 유기 전기발광 소자를 제공하는 것이다.
The present invention relates to an organic electroluminescent device, and more particularly, to a carbazole derivative used as a light emitting material of an organic electroluminescent device, and more particularly to preparing a carbazole compound and using it as a hole transport material of the organic electroluminescent device. It is to provide an organic electroluminescent device which increases the life of the device and is excellent in light emission luminance and light emission efficiency.

저 전압구동, 자기발광, 경량 박형, 광 시야각 그리고 빠른 응답속도 등의 여러 가지 장점을 가진 유기 전기발광 소자는 LCD를 대체할 차세대 평판 디스플레이 중의 하나로서 최근 가장 연구가 활발히 이루어지고 있는 분야이다.
Organic electroluminescent devices with various advantages such as low voltage driving, self-luminous, light weight, wide viewing angle and fast response speed are one of the most researched fields as one of the next generation flat panel displays to replace LCD.

미국 특허 제 4,356,429 호에서, 탕(Tang) 등은 양극과 음극 사이에 놓인 2개의 유기층(정공전달층과 발광층)을 포함하는 이층구조의 유기 전기발광 소자를 개시하였다. 즉, 양극에 인접한 정공전달층은 정공전달물질을 함유하며 유기 전기발광 소자 장치 내에서 단지 정공(hole)만을 주로 발광층에 전달하는 기능을 갖는다. 이와 유사하게, 음극에 인접한 전자수송층은 전자전달물질을 함유하며 유기 전기발광 소자 장치 내에서 단지 전자만을 주로 전달하도록 선택된 이층구조의 유기 전기발광 소자 장치는 높은 발광 효율을 달성하여 상당부분 유기 전기발광 소자의 기술을 개선시켰다. 따라서, 발광효율적인 면에서 정공주입층(hole injection layer)과 정공수송층(hole transporting layer) 같은 정공전달층, 전자수송층(electron transporting layer), 정공차단층(hole blocking layer) 등을 포함하는 다층 구조(multilayer system)를 이용하지 않으면 고효율 및 고휘도의 발광특성을 기대하기는 불가능하다.
In US Pat. No. 4,356,429, Tang et al. Disclosed a two-layered organic electroluminescent device comprising two organic layers (hole transport layer and light emitting layer) sandwiched between an anode and a cathode. That is, the hole transport layer adjacent to the anode contains a hole transport material and has a function of transferring only holes to the light emitting layer mainly in the organic electroluminescent device. Similarly, the electron transport layer adjacent to the cathode contains an electron transport material, and the organic electroluminescent device device having a two-layer structure selected to mainly transmit only electrons within the organic electroluminescent device device achieves high luminous efficiency and thus substantially organic electroluminescence. The technology of the device was improved. Therefore, in terms of luminous efficiency, a multilayer structure including a hole transport layer such as a hole injection layer and a hole transporting layer, an electron transporting layer, a hole blocking layer, and the like ( Without the multilayer system, it is impossible to expect high efficiency and high luminance.

유기 전기발광 소자 장치를 실용화하기 위해서는 위의 다층 구조로 소자를 구성하는 것 이외에 소자 재료 특히, 정공전달물질의 역할이 매우 중요하다. 장 수명의 소자를 위해서는 정공전달물질이 열적 그리고 전기적으로 안정성을 지니고 있어야한다. 왜냐하면 전압을 걸어주었을 때 소자에서 발생되는 열로 인하여 열안정성이 낮은 분자는 결정 안정성이 낮아 재배열현상이 일어나게 되고, 결국 국부적으로 결정화가 발생되어 불균질 부분이 존재한다면, 전기장이 이 부분에 집중하여 소자의 열화 및 파괴를 가져오는 것으로 받아들여지기 때문이다. 따라서 유기층은 통상적으로 비결정질 상태로 사용된다. 더욱이, 유기 전기발광 소자는 전류주입형 소자이기 때문에, 만약 사용되는 재료가 낮은 유리전이온도(Tg)를 갖는다면, 사용 중 발생하는 열이 유기 전기발광 소자의 열화를 초래하여 소자의 수명을 단축시키게 된다. 이런 점에서, 높은 유리전이온도를 갖는 재료가 바람직하다.
In order to realize the organic electroluminescent device device, in addition to configuring the device in the above multilayer structure, the role of the device material, in particular, the hole transport material is very important. For long life devices, the hole transport material must be thermally and electrically stable. Because of the heat generated by the device when the voltage is applied, molecules with low thermal stability have low crystal stability, resulting in rearrangement. Finally, if localization occurs and an inhomogeneous part exists, the electric field concentrates on this part. This is because it is accepted to bring about deterioration and destruction of the device. Therefore, the organic layer is usually used in an amorphous state. Furthermore, since the organic electroluminescent device is a current injection type device, if the material used has a low glass transition temperature (Tg), the heat generated during use causes the organic electroluminescent device to deteriorate and shorten the life of the device. Let's go. In this respect, materials having a high glass transition temperature are preferred.

기존에 사용되고 있는 정공전달물질의 대표적인 예로는 CuPC[구리 프탈로시아닌], m-MTDATA[4,4',4"-트리스(N-3-메틸페닐-N-페닐아미노)-트리페닐아민], 하기 화학식 1의 2-TNATA[4,4',4"-트리스(N-(나프틸렌-2-일)-N-페닐아미노)-트리페닐아민], TPD[N,N'-디페닐-N,N'-디(3-메틸페닐)-4,4'-디아미노비페닐] 그리고 하기 화학식 2의 NPB[N,N'-디(나프탈렌-1-일)-N,N'-디페닐벤지딘] 등이 있다.Representative examples of hole-transfer materials used in the past include CuPC [copper phthalocyanine], m-MTDATA [4,4 ′, 4 ”-tris ( N- 3-methylphenyl- N -phenylamino) -triphenylamine], 2-TNATA [4,4 ', 4 "-tris ( N- (naphthylene-2-yl) -N -phenylamino) -triphenylamine] of 1, TPD [ N, N' -diphenyl- N, N' -di (3-methylphenyl) -4,4'-diaminobiphenyl] and NPB [ N, N' -di (naphthalen-1-yl) -N, N' -diphenylbenzidine] Etc.

[화학식 1] [화학식 2][Formula 1] [Formula 2]

Figure pat00001
Figure pat00002

Figure pat00001
Figure pat00002

그러나, CuPC는 금속착화합물이므로 ITO 기판과의 접착성이 우수하고 가장 안정하기 때문에 널리 사용되지만 가시광선 영역에서 흡수가 일어나므로 총 천연색을 구현하는 것이 어렵고, m-MTDATA나 2-TNATA는 유리전이온도가 78℃ 및 108℃로 낮을 뿐만 아니라 대량화 하는 과정에서 단점이 많이 발생하기 때문에, 이 역시 총 천연색을 구현하는 데는 문제점이 있다. 또한, TPD나 NPB도 유리전이온도(Tg)가 각각 60 ℃ 및 96 ℃로 낮기 때문에 상기와 같은 이유로 소자의 수명을 단축시킨다는 치명적인 단점이 있다.
However, since CuPC is a metal complex, it is widely used because it has excellent adhesion to ITO substrate and is the most stable, but it is difficult to realize total color due to absorption in the visible region, and m-MTDATA or 2-TNATA have a glass transition temperature. Since not only is low as 78 ℃ and 108 ℃ but also a lot of disadvantages in the process of mass production, this also has a problem in realizing the total color. In addition, TPD or NPB also has a fatal disadvantage of shortening the life of the device for the same reason because the glass transition temperature (Tg) as low as 60 ℃ and 96 ℃, respectively.

상기와 같이 종래의 유기 전기발광 소자에 사용되는 정공전달물질은 여전히 많은 문제점을 내포하고 있으며, 우수한 물리적 특성을 가지는 성능 개량이 요구되고 있다. 따라서 유기 전기발광 소자의 발광효율을 향상시키고, 높은 열안정성과 높은 유리전이온도를 갖는 우수한 재료에 대한 개발이 절실히 요구된다.
As described above, the hole transport material used in the conventional organic electroluminescent device still contains many problems, and there is a demand for improved performance having excellent physical properties. Therefore, there is an urgent need for development of an excellent material having an improved luminous efficiency of an organic electroluminescent device and having high thermal stability and high glass transition temperature.

상기한 문제점을 해결하기 위한 본 발명은 높은 유리전이온도를 갖는 카바졸 화합물 유도체와 이것을 포함하는 유기 전기 발광 조성물, 유기 전기 발광 소자를 제공하는데 그 목적이 있다. 본 발명의 다른 목적은 유기 전기발광 소자의 발광 효율을 향상시키고 소자의 수명을 증가시킬 수 있는 우수한 열안정성을 가진 유기 전기발광 소자용 정공전달 물질 및 그 제조방법을 제공하는 것이다. 본 발명의 또 다른 목적은 높은 발광 효율을 나타내는 유기 전기발광 소자를 제공하는 것이다. 본 발명의 또 다른 목적은 연장된 수명을 갖는 유기 전기발광 소자를 제공하는 것이다.
The present invention for solving the above problems is to provide a carbazole compound derivative having a high glass transition temperature, an organic electroluminescent composition comprising the same, and an organic electroluminescent device. Another object of the present invention is to provide a hole transport material for an organic electroluminescent device having excellent thermal stability and a method of manufacturing the same, which can improve the luminous efficiency of the organic electroluminescent device and increase the lifetime of the device. Still another object of the present invention is to provide an organic electroluminescent device exhibiting high luminous efficiency. Another object of the present invention is to provide an organic electroluminescent device having an extended lifetime.

먼저, 본 발명은 유기 전기 발광 소자의 발광 재료로 사용되며, 하기 화학식 I로 표시되는 카바졸 유도체를 포함하는 것을 특징으로 하는 유기 전기 발광 조성물이다. First, the present invention is an organic electroluminescent composition, which is used as a light emitting material of an organic electroluminescent device and comprises a carbazole derivative represented by the following general formula (I).

[화학식 I][Formula I]

Figure pat00003
Figure pat00003

(상기 화학식 I에서, R1 및 R2는 각각 수소, 치환되거나 비치환된 아릴기, 치환되거나 비치환된 헤테로아릴기, 또는 알킬기이고, R3 내지 R5는 각각 치환되거나 비치환된 아릴기, 또는 치환되거나 비치환된 헤테로아릴기이고, D는 연결기(linker), 치환되거나 비치환된 아릴렌기, 또는 치환되거나 비치환된 헤테로아릴렌기이다.)
(In Formula I, R1 and R2 are each hydrogen, a substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl group, or an alkyl group, and R3 to R5 are each a substituted or unsubstituted aryl group, or substituted Unsubstituted heteroaryl group, D is a linker, a substituted or unsubstituted arylene group, or a substituted or unsubstituted heteroarylene group.)

본 발명의 다른 실시형태는 상술한 유기 전기 발광 조성물을 포함하여 이루어진 유기층을 하나 이상 포함하는 것을 특징으로 하는 유기 전기 발광 소자이다. 여기서, 상기 유기 전기 발광 소자는 유기 발광 다이오드, 유기 전계-효과 트랜지스터, 유기 박막 트랜지스터, 유기 레이저 다이오드, 유기 태양 전지, 유기 발광 전기화학 전지 또는 유기 집적 회로를 포함하고, 본 발명은 상기한 유기 발광 다이오드 등에 다양하게 적용될 수 있다는 것은 이 기술분야에서 보통의 지식을 가진자에게 명백하다.
Another embodiment of the invention is an organic electroluminescent device comprising at least one organic layer comprising the organic electroluminescent composition described above. Here, the organic electroluminescent device includes an organic light emitting diode, an organic field-effect transistor, an organic thin film transistor, an organic laser diode, an organic solar cell, an organic light emitting electrochemical cell, or an organic integrated circuit. It is apparent to those skilled in the art that various applications such as diodes can be made.

기타 다른 실시예들은 후술하는 발명의 상세한 설명 및 도면에 기재되어 있다.
Other embodiments are described in the detailed description and drawings below.

본 발명에 따른 카바졸 유도체는 140℃ 이상의 높은 유리전이온도와 높은 열분해 온도를 갖고 있기 때문에 열적 안정성이 우수하고, 이것을 포함하는 조성물을 유기 전기 발광 소자의 정공전달물질 등으로 사용하여 발광특성을 평가한 결과, 기존의 정공전달물질인 2-TNATA(화학식 1)나 NPB(화학식 2)보다 전류 밀도, 휘도, 최고 휘도 그리고 발광 효율 여러 면에서 우수한 발광 특성을 나타내었다.
The carbazole derivatives according to the present invention have excellent thermal stability because they have a high glass transition temperature and a high pyrolysis temperature of 140 ° C. or higher, and the light emitting properties of the carbazole derivatives are evaluated using a composition including the same as a hole transport material of an organic electroluminescent device. As a result, the present invention showed superior luminescence properties in terms of current density, brightness, highest brightness, and luminous efficiency than conventional hole transport materials, 2-TNATA (Formula 1) or NPB (Formula 2).

이에 따라, 본 발명에 따른 카바졸 유도체를 정공전달물질 등으로 사용하여 유기 전기발광 소자를 제작하면, 기존의 유기 전기발광 소자의 가장 큰 단점인 발광 휘도와 발광 효율이 낮은 문제를 동시에 해결할 수 있을 뿐만 아니라, 유리전이온도도 높기 때문에 유기 전기발광 소자의 열적 안정성까지 뛰어나므로, 고성능의 유기 전기발광 소자의 제작이 가능할 뿐만 아니라 고효율, 고휘도 및 장수명이 요구되는 총천연색의 유기 전기발광 소자의 상용화에 크게 기여할 수 있다.
Accordingly, when the organic electroluminescent device is manufactured using the carbazole derivative according to the present invention as a hole transporting material, the problems of low luminance and low luminous efficiency, which are the biggest disadvantages of the conventional organic electroluminescent device, can be solved at the same time. In addition, since the glass transition temperature is high, the thermal stability of the organic electroluminescent device is excellent. Therefore, it is possible to manufacture a high-performance organic electroluminescent device and to commercialize a full-color organic electroluminescent device requiring high efficiency, high brightness and long life. Can contribute.

도 1은 본 발명의 일 실시예에 따른 화학식 35의 카바졸 유도체에 대한 UV/Vis. 및 형광 스펙트럼 그래프이다.
도 2는 본 발명의 일 실시예에 따른 화학식 35의 카바졸 유도체에 대한 시차주사열량계(DSC) 곡선 그래프이다.
도 3은 본 발명의 일 실시예에 따른 화학식 133의 카바졸 유도체에 대한 UV/Vis. 및 형광 스펙트럼 그래프이다.
도 4는 본 발명의 일 실시예에 따른 화학식 133의 카바졸 유도체에 대한 시차주사열량계(DSC) 곡선 그래프이다.
도 5는 본 발명의 일 실시예에 따른 카바졸 유도체를 이용하여 제작된 유기 전기발광 소자의 다층 구조를 나타내는 도면이다.
1 is a UV / Vis. For the carbazole derivative of Formula 35 according to an embodiment of the present invention. And fluorescence spectral graphs.
Figure 2 is a differential scanning calorimetry (DSC) curve graph for the carbazole derivative of Formula 35 according to an embodiment of the present invention.
Figure 3 is a UV / Vis for the carbazole derivative of formula 133 according to an embodiment of the present invention. And fluorescence spectral graphs.
4 is a differential scanning calorimetry (DSC) curve graph of a carbazole derivative of Formula 133 according to an embodiment of the present invention.
5 is a view showing a multilayer structure of an organic electroluminescent device manufactured using a carbazole derivative according to an embodiment of the present invention.

본 발명은 유기 전기 발광 소자에서 정공전달물질 또는 유기 전기 발광 재료로써 사용하기에 유용한 하기 화학식 I로 표시되는 카바졸 유도체로써, 이러한 카바졸 유도체는 높은 유리 전이 온도와 우수한 정공 주입, 수송 능력을 갖고 있기 때문에, 이를 정공전달물질 등으로 사용하여 유기 전기 발광 소자를 제작하면 발광 효율을 높이고 소자의 수명을 증가시킬 수 있는 것이다.The present invention is a carbazole derivative represented by the following general formula (I) which is useful for use as a hole transport material or an organic electroluminescent material in an organic electroluminescent device, and the carbazole derivative has a high glass transition temperature and excellent hole injection and transport ability. Therefore, when the organic electroluminescent device is manufactured using the hole transport material, the light emitting efficiency can be increased and the life of the device can be increased.

[화학식 I][Formula I]

Figure pat00004
Figure pat00004

(상기 화학식 I에서, R1 및 R2는 각각 수소, 치환되거나 비치환된 아릴기, 치환되거나 비치환된 헤테로아릴기, 또는 알킬기이고, R3 내지 R5는 각각 치환되거나 비치환된 아릴기, 또는 치환되거나 비치환된 헤테로아릴기이고, D는 연결기(linker), 치환되거나 비치환된 아릴렌기, 또는 치환되거나 비치환된 헤테로아릴렌기이다.)
(In Formula I, R1 and R2 are each hydrogen, a substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl group, or an alkyl group, and R3 to R5 are each a substituted or unsubstituted aryl group, or substituted Unsubstituted heteroaryl group, D is a linker, a substituted or unsubstituted arylene group, or a substituted or unsubstituted heteroarylene group.)

상기 화학식 I 에서, 치환되거나 비치환된 아릴기라 함은, 특정한 작용기에 의해 치환되거나 또는 어떠한 작용기에 의해서도 치환되지 않은 아릴기를 뜻하며, 이러한 아릴기의 예로써는 페닐기, 나프틸기, 페난트릴기, 안트릴기, 비페닐기, 터페닐기, 플루오렌기 등을 포함한다. 또한, 본 명세서에서, D가 연결기(linker)라는 것은 수소나 다른 작용기 없이 단순히 연결만시켜 주는 브릿지기(bridging group)로써, 예를 들어 화학식 I의 경우, R2를 가지는 카바졸의 페닐기와 R4 및 R5를 가지는 아민(N)이 직접 연결되는 것을 뜻하며, 다시 말해서 D가 특별하게 존재하지 않는 것을 의미한다.
In the above formula (I), the substituted or unsubstituted aryl group means an aryl group which is substituted by a specific functional group or is not substituted by any functional group, and examples of such an aryl group are phenyl group, naphthyl group, phenanthryl group and anthryl Groups, biphenyl groups, terphenyl groups, fluorene groups and the like. In addition, in the present specification, that D is a linking group is a bridging group that simply connects without hydrogen or other functional groups, for example, in the case of the formula (I), a phenyl group of carbazole having R 2 and R 4 and This means that the amine (N) having R 5 is directly connected, that is, that D is not particularly present.

그리고, 상기 화학식 I에서, R1 내지 R5의 바람직한 예는 다음의 표 1에 기재된 화학 구조식의 단위구조와 같다. 각각의 단위구조에는 이를 구분하기 위하여 b01 내지 b15으로 구분기호를 명명하였다.In addition, in the general formula (I), preferred examples of R1 to R5 are the same as the unit structure of the chemical formula shown in Table 1 below. Each unit structure is named by b01 to b15 to distinguish them.

구분division 단위구조Unit structure 구분division 단위구조Unit structure 구분division 단위구조Unit structure b01b01

Figure pat00005
Figure pat00005
b02b02
Figure pat00006
Figure pat00006
b03b03
Figure pat00007
Figure pat00007
b04b04
Figure pat00008
Figure pat00008
b05b05
Figure pat00009
Figure pat00009
b06b06
Figure pat00010
Figure pat00010
b07b07
Figure pat00011
Figure pat00011
b08b08
Figure pat00012
Figure pat00012
b09b09
Figure pat00013
Figure pat00013
b10b10
Figure pat00014
Figure pat00014
b11b11
Figure pat00015
Figure pat00015
b12b12
Figure pat00016

Figure pat00016
b13
b13

Methyl

Methyl
b14
b14

tert-Butyl

tert -Butyl
b15
b15

H

H

또한, 상기 화학식 I에서, D의 바람직한 예는 다음의 표 2에 기재된 화학 구조식의 단위구조와 같다. 각각의 단위구조에는 이를 구분하기 위하여 d01 내지 d06로 구분기호를 명명하였다. In addition, in the general formula (I), a preferable example of D is the same as the unit structure of the chemical formula shown in Table 2. In each unit structure, the division symbols are named d01 to d06 to distinguish them.

구분division 단위구조Unit structure 구분division 단위구조Unit structure 구분division 단위구조Unit structure d01d01 연결기coupler d02d02

Figure pat00017
Figure pat00017
d03d03
Figure pat00018
Figure pat00018
d04d04
Figure pat00019
Figure pat00019
d05d05
Figure pat00020
Figure pat00020
d06d06
Figure pat00021
Figure pat00021

상기 표 1과 표 2를 바탕으로, 최종적으로 높은 발광 효율과 긴 수명의 유기 전기 발광 소자를 가능하게 하는 일반 화학식 I의 구조를 갖는 카바졸 유도체의 구체적인 예는 하기의 표 3 내지 표 10에 표시되는 화합물인 화학식 11 내지 화학식 212의 화합물을 포함한다. 하지만 본 발명은 이들로 한정되지는 않는다.
Based on Tables 1 and 2, specific examples of carbazole derivatives having a structure of general formula (I) that finally enable organic electroluminescent devices of high luminous efficiency and long life are shown in Tables 3 to 10 below. It includes a compound of Formula 11 to Formula 212 which is a compound. However, the present invention is not limited to these.

화학식Chemical formula DD R1R1 R2R2 R3R3 R4R4 R5R5 1111 d01d01 b15b15 b15b15 b01b01 b01b01 b01b01 1212 d01d01 b15b15 b15b15 b01b01 b01b01 b02b02 1313 d01d01 b15b15 b15b15 b01b01 b01b01 b03b03 1414 d01d01 b15b15 b15b15 b01b01 b01b01 b04b04 1515 d01d01 b15b15 b15b15 b01b01 b01b01 b05b05 1616 d01d01 b15b15 b15b15 b01b01 b01b01 b06b06 1717 d01d01 b15b15 b15b15 b01b01 b01b01 b08b08 1818 d01d01 b15b15 b15b15 b01b01 b01b01 b09b09 1919 d01d01 b15b15 b15b15 b01b01 b01b01 b10b10 2020 d01d01 b15b15 b15b15 b01b01 b01b01 b11b11 2121 d01d01 b15b15 b15b15 b01b01 b01b01 b12b12 2222 d01d01 b15b15 b15b15 b01b01 b02b02 b03b03 2323 d01d01 b15b15 b15b15 b01b01 b02b02 b04b04 2424 d01d01 b15b15 b15b15 b01b01 b02b02 b08b08 2525 d01d01 b15b15 b15b15 b01b01 b02b02 b09b09 2626 d01d01 b15b15 b15b15 b01b01 b02b02 b11b11 2727 d01d01 b15b15 b15b15 b01b01 b02b02 b12b12 2828 d01d01 b15b15 b15b15 b01b01 b03b03 b03b03 2929 d01d01 b15b15 b15b15 b01b01 b03b03 b04b04 3030 d01d01 b15b15 b15b15 b01b01 b03b03 b08b08 3131 d01d01 b15b15 b15b15 b01b01 b03b03 b09b09 3232 d01d01 b15b15 b15b15 b01b01 b03b03 b12b12 3333 d01d01 b15b15 b15b15 b01b01 b04b04 b04b04 3434 d01d01 b15b15 b15b15 b01b01 b04b04 b08b08 3535 d01d01 b15b15 b15b15 b01b01 b04b04 b12b12 3636 d01d01 b15b15 b15b15 b01b01 b08b08 b09b09

화학식Chemical formula DD R1R1 R2R2 R3R3 R4R4 R5R5 3737 d01d01 b15b15 b15b15 b02b02 b01b01 b01b01 3838 d01d01 b15b15 b15b15 b02b02 b01b01 b02b02 3939 d01d01 b15b15 b15b15 b02b02 b01b01 b03b03 4040 d01d01 b15b15 b15b15 b02b02 b01b01 b04b04 4141 d01d01 b15b15 b15b15 b02b02 b01b01 b08b08 4242 d01d01 b15b15 b15b15 b02b02 b01b01 b12b12 4343 d01d01 b15b15 b15b15 b02b02 b02b02 b04b04 4444 d01d01 b15b15 b15b15 b02b02 b02b02 b12b12 4545 d01d01 b15b15 b15b15 b02b02 b03b03 b03b03 4646 d01d01 b15b15 b15b15 b02b02 b03b03 b04b04 4747 d01d01 b15b15 b15b15 b02b02 b03b03 b12b12 4848 d01d01 b15b15 b15b15 b03b03 b01b01 b01b01 4949 d01d01 b15b15 b15b15 b03b03 b01b01 b02b02 5050 d01d01 b15b15 b15b15 b03b03 b01b01 b03b03 5151 d01d01 b15b15 b15b15 b03b03 b01b01 b04b04 5252 d01d01 b15b15 b15b15 b03b03 b01b01 b08b08 5353 d01d01 b15b15 b15b15 b03b03 b01b01 b12b12 5454 d01d01 b15b15 b15b15 b03b03 b02b02 b04b04 5555 d01d01 b15b15 b15b15 b03b03 b02b02 b12b12 5656 d01d01 b15b15 b15b15 b03b03 b03b03 b03b03 5757 d01d01 b15b15 b15b15 b03b03 b03b03 b04b04 5858 d01d01 b15b15 b15b15 b03b03 b03b03 b12b12 5959 d01d01 b15b15 b15b15 b04b04 b01b01 b01b01 6060 d01d01 b15b15 b15b15 b04b04 b01b01 b02b02 6161 d01d01 b15b15 b15b15 b04b04 b01b01 b03b03 6262 d01d01 b15b15 b15b15 b04b04 b01b01 b04b04

화학식Chemical formula DD R1R1 R2R2 R3R3 R4R4 R5R5 6363 d01d01 b15b15 b15b15 b04b04 b01b01 b12b12 6464 d01d01 b15b15 b15b15 b04b04 b02b02 b04b04 6565 d01d01 b15b15 b15b15 b04b04 b02b02 b12b12 6666 d01d01 b15b15 b15b15 b04b04 b03b03 b03b03 6767 d01d01 b15b15 b15b15 b04b04 b03b03 b12b12 6868 d01d01 b15b15 b15b15 b04b04 b04b04 b04b04 6969 d01d01 b15b15 b15b15 b04b04 b04b04 b12b12 7070 d01d01 b15b15 b01b01 b01b01 b01b01 b02b02 7171 d01d01 b15b15 b01b01 b01b01 b01b01 b03b03 7272 d01d01 b15b15 b01b01 b01b01 b01b01 b12b12 7373 d01d01 b15b15 b01b01 b01b01 b02b02 b04b04 7474 d01d01 b15b15 b01b01 b01b01 b02b02 b12b12 7575 d01d01 b15b15 b01b01 b01b01 b03b03 b04b04 7676 d01d01 b15b15 b01b01 b01b01 b03b03 b12b12 7777 d01d01 b15b15 b01b01 b01b01 b04b04 b04b04 7878 d01d01 b15b15 b01b01 b01b01 b04b04 b12b12 7979 d01d01 b15b15 b01b01 b04b04 b03b03 b04b04 8080 d01d01 b15b15 b01b01 b04b04 b03b03 b12b12 8181 d01d01 b15b15 b01b01 b04b04 b04b04 b04b04 8282 d01d01 b15b15 b01b01 b04b04 b04b04 b12b12 8383 d01d01 b15b15 b02b02 b01b01 b01b01 b02b02 8484 d01d01 b15b15 b02b02 b01b01 b01b01 b12b12 8585 d01d01 b15b15 b02b02 b01b01 b03b03 b04b04 8686 d01d01 b15b15 b02b02 b01b01 b03b03 b12b12 8787 d01d01 b15b15 b02b02 b01b01 b04b04 b04b04 8888 d01d01 b15b15 b02b02 b01b01 b04b04 b12b12

화학식Chemical formula DD R1R1 R2R2 R3R3 R4R4 R5R5 8989 d01d01 b15b15 b03b03 b01b01 b01b01 b02b02 9090 d01d01 b15b15 b03b03 b01b01 b01b01 b12b12 9191 d01d01 b15b15 b03b03 b01b01 b03b03 b04b04 9292 d01d01 b15b15 b03b03 b01b01 b03b03 b12b12 9393 d01d01 b15b15 b03b03 b01b01 b04b04 b04b04 9494 d01d01 b15b15 b03b03 b01b01 b04b04 b12b12 9595 d01d01 b15b15 b04b04 b01b01 b01b01 b02b02 9696 d01d01 b15b15 b04b04 b01b01 b04b04 b12b12 9797 d01d01 b01b01 b15b15 b01b01 b01b01 b02b02 9898 d01d01 b01b01 b15b15 b01b01 b01b01 b03b03 9999 d01d01 b01b01 b15b15 b01b01 b01b01 b12b12 100100 d01d01 b01b01 b15b15 b01b01 b02b02 b04b04 101101 d01d01 b01b01 b15b15 b01b01 b02b02 b12b12 102102 d01d01 b01b01 b15b15 b01b01 b03b03 b04b04 103103 d01d01 b01b01 b15b15 b01b01 b03b03 b12b12 104104 d01d01 b01b01 b15b15 b01b01 b04b04 b04b04 105105 d01d01 b01b01 b15b15 b01b01 b04b04 b12b12 106106 d01d01 b01b01 b15b15 b04b04 b03b03 b04b04 107107 d01d01 b01b01 b15b15 b04b04 b03b03 b12b12 108108 d01d01 b01b01 b15b15 b04b04 b04b04 b04b04 109109 d01d01 b01b01 b15b15 b04b04 b04b04 b12b12 110110 d01d01 b03b03 b15b15 b01b01 b01b01 b02b02 111111 d01d01 b03b03 b15b15 b01b01 b01b01 b12b12 112112 d01d01 b03b03 b15b15 b01b01 b03b03 b04b04 113113 d01d01 b03b03 b15b15 b01b01 b03b03 b12b12 114114 d01d01 b03b03 b15b15 b01b01 b04b04 b04b04

화학식Chemical formula DD R1R1 R2R2 R3R3 R4R4 R5R5 115115 d01d01 b03b03 b15b15 b01b01 b04b04 b12b12 116116 d01d01 b01b01 b01b01 b01b01 b04b04 b12b12 117117 d01d01 b13b13 b01b01 b01b01 b04b04 b12b12 118118 d01d01 b14b14 b01b01 b01b01 b04b04 b12b12 119119 d02d02 b15b15 b15b15 b01b01 b01b01 b01b01 120120 d02d02 b15b15 b15b15 b01b01 b01b01 b02b02 121121 d02d02 b15b15 b15b15 b01b01 b01b01 b03b03 122122 d02d02 b15b15 b15b15 b01b01 b01b01 b04b04 123123 d02d02 b15b15 b15b15 b01b01 b01b01 b07b07 124124 d02d02 b15b15 b15b15 b01b01 b01b01 b08b08 125125 d02d02 b15b15 b15b15 b01b01 b01b01 b12b12 126126 d02d02 b15b15 b15b15 b01b01 b02b02 b03b03 127127 d02d02 b15b15 b15b15 b01b01 b02b02 b04b04 128128 d02d02 b15b15 b15b15 b01b01 b02b02 b08b08 129129 d02d02 b15b15 b15b15 b01b01 b02b02 b12b12 130130 d02d02 b15b15 b15b15 b01b01 b03b03 b03b03 131131 d02d02 b15b15 b15b15 b01b01 b03b03 b04b04 132132 d02d02 b15b15 b15b15 b01b01 b03b03 b08b08 133133 d02d02 b15b15 b15b15 b01b01 b03b03 b12b12 134134 d02d02 b15b15 b15b15 b01b01 b04b04 b04b04 135135 d02d02 b15b15 b15b15 b01b01 b04b04 b12b12 136136 d02d02 b15b15 b15b15 b02b02 b01b01 b01b01 137137 d02d02 b15b15 b15b15 b02b02 b01b01 b02b02 138138 d02d02 b15b15 b15b15 b02b02 b01b01 b03b03 139139 d02d02 b15b15 b15b15 b02b02 b01b01 b04b04 140140 d02d02 b15b15 b15b15 b02b02 b01b01 b12b12

화학식Chemical formula DD R1R1 R2R2 R3R3 R4R4 R5R5 141141 d02d02 b15b15 b15b15 b02b02 b02b02 b04b04 142142 d02d02 b15b15 b15b15 b02b02 b02b02 b12b12 143143 d02d02 b15b15 b15b15 b02b02 b03b03 b04b04 144144 d02d02 b15b15 b15b15 b02b02 b03b03 b12b12 145145 d02d02 b15b15 b15b15 b03b03 b01b01 b02b02 146146 d02d02 b15b15 b15b15 b03b03 b01b01 b03b03 147147 d02d02 b15b15 b15b15 b03b03 b01b01 b04b04 148148 d02d02 b15b15 b15b15 b03b03 b01b01 b12b12 149149 d02d02 b15b15 b15b15 b03b03 b02b02 b04b04 150150 d02d02 b15b15 b15b15 b03b03 b02b02 b12b12 151151 d02d02 b15b15 b15b15 b03b03 b03b03 b03b03 152152 d02d02 b15b15 b15b15 b03b03 b03b03 b04b04 153153 d02d02 b15b15 b15b15 b03b03 b03b03 b12b12 154154 d02d02 b15b15 b15b15 b04b04 b01b01 b02b02 155155 d02d02 b15b15 b15b15 b04b04 b01b01 b03b03 156156 d02d02 b15b15 b15b15 b04b04 b01b01 b04b04 157157 d02d02 b15b15 b15b15 b04b04 b01b01 b12b12 158158 d02d02 b15b15 b15b15 b04b04 b02b02 b04b04 159159 d02d02 b15b15 b15b15 b04b04 b02b02 b12b12 160160 d02d02 b15b15 b15b15 b04b04 b03b03 b03b03 161161 d02d02 b15b15 b15b15 b04b04 b03b03 b12b12 162162 d02d02 b15b15 b15b15 b04b04 b04b04 b04b04 163163 d02d02 b15b15 b15b15 b04b04 b04b04 b12b12 164164 d02d02 b15b15 b01b01 b01b01 b01b01 b02b02 165165 d02d02 b15b15 b01b01 b01b01 b01b01 b03b03 166166 d02d02 b15b15 b01b01 b01b01 b01b01 b12b12

화학식Chemical formula DD R1R1 R2R2 R3R3 R4R4 R5R5 167167 d02d02 b15b15 b01b01 b01b01 b02b02 b04b04 168168 d02d02 b15b15 b01b01 b01b01 b02b02 b12b12 169169 d02d02 b15b15 b01b01 b01b01 b03b03 b04b04 170170 d02d02 b15b15 b01b01 b01b01 b03b03 b12b12 171171 d02d02 b15b15 b01b01 b01b01 b04b04 b04b04 172172 d02d02 b15b15 b01b01 b01b01 b04b04 b12b12 173173 d02d02 b15b15 b01b01 b04b04 b03b03 b04b04 174174 d02d02 b15b15 b01b01 b04b04 b03b03 b12b12 175175 d02d02 b15b15 b01b01 b04b04 b04b04 b04b04 176176 d02d02 b15b15 b01b01 b04b04 b04b04 b12b12 177177 d02d02 b15b15 b02b02 b01b01 b01b01 b02b02 178178 d02d02 b15b15 b02b02 b01b01 b01b01 b12b12 179179 d02d02 b15b15 b02b02 b01b01 b03b03 b04b04 180180 d02d02 b15b15 b02b02 b01b01 b03b03 b12b12 181181 d02d02 b15b15 b02b02 b01b01 b04b04 b04b04 182182 d02d02 b15b15 b02b02 b01b01 b04b04 b12b12 183183 d02d02 b15b15 b03b03 b01b01 b01b01 b02b02 184184 d02d02 b15b15 b03b03 b01b01 b01b01 b12b12 185185 d02d02 b15b15 b03b03 b01b01 b03b03 b04b04 186186 d02d02 b15b15 b03b03 b01b01 b03b03 b12b12 187187 d02d02 b15b15 b03b03 b01b01 b04b04 b04b04 188188 d02d02 b15b15 b03b03 b01b01 b04b04 b12b12 189189 d02d02 b15b15 b04b04 b01b01 b01b01 b02b02 190190 d02d02 b15b15 b04b04 b01b01 b04b04 b12b12 191191 d02d02 b01b01 b15b15 b01b01 b01b01 b02b02 192192 d02d02 b01b01 b15b15 b01b01 b01b01 b03b03

화학식Chemical formula DD R1R1 R2R2 R3R3 R4R4 R5R5 193193 d02d02 b01b01 b15b15 b01b01 b01b01 b12b12 194194 d02d02 b01b01 b15b15 b01b01 b02b02 b12b12 195195 d02d02 b01b01 b15b15 b01b01 b03b03 b12b12 196196 d02d02 b01b01 b15b15 b01b01 b04b04 b12b12 197197 d02d02 b01b01 b15b15 b04b04 b03b03 b04b04 198198 d02d02 b01b01 b15b15 b04b04 b03b03 b12b12 199199 d02d02 b01b01 b15b15 b04b04 b04b04 b04b04 200200 d02d02 b01b01 b15b15 b04b04 b04b04 b12b12 201201 d02d02 b03b03 b15b15 b01b01 b01b01 b02b02 202202 d02d02 b03b03 b15b15 b01b01 b01b01 b12b12 203203 d02d02 b03b03 b15b15 b01b01 b03b03 b04b04 204204 d02d02 b03b03 b15b15 b01b01 b03b03 b12b12 205205 d02d02 b03b03 b15b15 b01b01 b04b04 b04b04 206206 d02d02 b03b03 b15b15 b01b01 b04b04 b12b12 207207 d02d02 b01b01 b01b01 b01b01 b04b04 b12b12 208208 d03d03 b15b15 b15b15 b01b01 b01b01 b02b02 209209 d03d03 b15b15 b15b15 b01b01 b04b04 b12b12 210210 d04d04 b15b15 b15b15 b01b01 b04b04 b12b12 211211 d05d05 b15b15 b15b15 b01b01 b04b04 b12b12 212212 d06d06 b15b15 b15b15 b01b01 b04b04 b12b12

이에 따라, 상기 화학식 I의 구조를 갖는 카바졸 유도체로서, 특별히 높은 발광 효율과 긴 수명의 유기 전기 발광 소자를 가능하게 하는 구체적인 예는 하기 화학식 12, 29, 32, 33, 35, 69, 116, 120, 121, 125, 129, 131, 133, 134, 135, 207 또는 208일 수 있다. 하지만 본 발명은 이들로 한정되지는 않는다.Accordingly, specific examples of the carbazole derivative having the structure of Chemical Formula (I), which enable an organic electroluminescent device having a particularly high luminous efficiency and a long lifetime, are represented by the following Chemical Formulas 12, 29, 32, 33, 35, 69, 116, 120, 121, 125, 129, 131, 133, 134, 135, 207 or 208. However, the present invention is not limited to these.

[화학식 12] [화학식 29][Formula 12] [Formula 29]

Figure pat00022
Figure pat00023
Figure pat00022
Figure pat00023

[화학식 32] [화학식 33][Formula 32] [Formula 33]

Figure pat00024
Figure pat00025
Figure pat00024
Figure pat00025

[화학식 35] [화학식 69][Formula 35] [Formula 69]

Figure pat00026
Figure pat00027
Figure pat00026
Figure pat00027

[화학식 116] [화학식 120][Formula 116] [Formula 120]

Figure pat00028
Figure pat00029
Figure pat00028
Figure pat00029

[화학식 121] [화학식 125][Formula 121] [Formula 125]

Figure pat00030
Figure pat00031
Figure pat00030
Figure pat00031

[화학식 129] [화학식 131][Formula 129] [Formula 131]

Figure pat00032
Figure pat00033
Figure pat00032
Figure pat00033

[화학식 133] [화학식 134][Formula 133] [Formula 134]

Figure pat00034
Figure pat00035
Figure pat00034
Figure pat00035

[화학식 135] [화학식 207][Formula 135] [Formula 207]

Figure pat00036
Figure pat00037
Figure pat00036
Figure pat00037

[화학식 208][Formula 208]

Figure pat00038

Figure pat00038

본 발명은 상기와 같이 유기 전기 발광 소자의 발광 재료로 사용될 수 있는 카바졸 유도체이거나 이를 포함하는 유기 발광 조성물 또는 유기 발광 재료일 수 있다. 이러한 유도체, 조성물 또는 재료를 유기 전기 발광 소자의 정공전달물질로 사용하면 고 발광효율을 얻을 수 있고, 상기 카바졸 유도체의 유리전이 온도가 높기 때문에 우수한 내구성을 갖는 소자를 제작할 수 있다. 여기에서 상기 정공전달물질은 정공주입층 또는 정공수송층에 사용되는 물질을 말하며, 일부 경우에는 발광층에 사용하는 물질일 수도 있다.
The present invention may be an organic light emitting composition or an organic light emitting material comprising or a carbazole derivative that can be used as a light emitting material of the organic electroluminescent device as described above. Using such a derivative, composition or material as a hole transporting material of the organic electroluminescent device can obtain a high luminous efficiency, it is possible to manufacture a device having excellent durability because of the high glass transition temperature of the carbazole derivatives. Here, the hole transport material refers to a material used for the hole injection layer or the hole transport layer, in some cases may be a material used for the light emitting layer.

그리고, 본 발명에 따른 카바졸 유도체들은 고순도를 요구하는 유기 전기 발광 소자의 특성상 재결정과 승화법을 이용하여 정제를 하는 것도 가능하다.
In addition, the carbazole derivatives according to the present invention may be purified using recrystallization and sublimation methods due to the characteristics of the organic electroluminescent device requiring high purity.

이하, 본 발명을 실시예와 비교예를 참조하여 더욱 상세히 설명한다. 본 발명은 하기의 실시예와 비교예에 의하여 보다 더 잘 이해될 수 있으며, 하기의 실시예는 본 발명을 예시하기 위한 것이며 첨부된 특허청구범위에 의하여 한정되는 보호범위를 제한하고자 하는 것은 아니다.
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. The invention can be better understood by the following examples and comparative examples, which are intended to illustrate the invention and are not intended to limit the scope of protection defined by the appended claims.

[실시예 1] 화학식 12의 제조Example 1 Preparation of Chemical Formula 12

본 발명에서 상기 화학식 I로 표시되는 카바졸 유도체는 하기 반응식 1과 같은 합성 경로에 의해 제조할 수 있다. In the present invention, the carbazole derivative represented by Formula I may be prepared by a synthetic route as in Scheme 1 below.

[반응식 1]Scheme 1

Figure pat00039

Figure pat00039

1-1. 화학식 A02의 제조1-1. Preparation of Formula A02

2000-ml, 4구 둥근바닥플라스크에 N-페닐카바졸(화학식 A01) 100g(0.410mol)을 투입하고 디클로로메탄 600ml로 희석시켰다. 이 희석액에 N-브로모숙신이미드(NBS) 76g을 서서히 투입하고 반응액을 실온에서 4시간동안 교반시켰다. 반응액에 증류수 600ml를 투입 후 30분간 교반한 다음 유기층을 분리하였다. 분리된 유기층을 건조 후 농축한 다음 아세톤과 메탄올로 재결정하고 진공건조하여 목적화합물 110g(수율 83%)을 얻었다.
Into a 2000-ml, four-necked round bottom flask, 100 g (0.410 mol) of N -phenylcarbazole (Formula A01) was added and diluted with 600 ml of dichloromethane. 76 g of N -bromosuccinimide (NBS) was slowly added to the diluent, and the reaction solution was stirred at room temperature for 4 hours. After distilled water 600ml was added to the reaction solution, the mixture was stirred for 30 minutes, and the organic layer was separated. The separated organic layer was dried and concentrated, then recrystallized with acetone and methanol and dried in vacuo to give 110 g (yield 83%) of the title compound.

1-2. 화학식 A03의 제조1-2. Preparation of Formula A03

2000-ml, 4구 둥근바닥플라스크에 질소 분위기 하에서 실시예 1-1에서 제조한 화학식 A02 화합물 100g(0.310mol), 카바졸 57g, 팔라디움 아세테이트(II) 0.34g, 트리-(t-부틸)포스핀(10% 헥산용액) 6.1g, 소디움 t-부톡시드 36g 그리고 O-자일렌 1000ml를 투입하였다. 반응액을 8시간 동안 환류 시킨 후 냉각하고 과량의 메탄올에 부어 고체를 석출시켰다. 얻어진 고체를 여과하고 진공건조하여 목적화합물 96g(수율 76%)을 얻었다.100 g (0.310 mol) of formula A02 compound prepared in Example 1-1, 57 g of carbazole, 0.34 g of palladium acetate (II), tri- (t-butyl) force, in a 2000-ml, four-necked round bottom flask under nitrogen atmosphere 6.1 g of pin (10% hexane solution), 36 g of sodium t-butoxide and 1000 ml of O-xylene were added thereto. The reaction solution was refluxed for 8 hours, cooled, and poured into excess methanol to precipitate a solid. The obtained solid was filtered and dried in vacuo to give 96 g (yield 76%) of the title compound.

1H NMR (400MHz, DMSO-d6) : δ 8.53(s, 1H), 8.33(d, J = 8.1Hz, 1H), 8.26(d, J = 7.7Hz, 2H), 7.73-7.70(m, 4H), 7.61-7.57(m, 3H), 7.51-7.41(m, 4H), 7.36-7.26(m, 5H).
1 H NMR (400 MHz, DMSO-d 6 ): δ 8.53 (s, 1H), 8.33 (d, J = 8.1 Hz, 1H), 8.26 (d, J = 7.7 Hz, 2H), 7.73-7.70 (m, 4H), 7.61-7.57 (m, 3H), 7.51-7.41 (m, 4H), 7.36-7.26 (m, 5H).

1-3. 화학식 A04의 제조1-3. Preparation of Formula A04

2000-ml, 4구 둥근바닥플라스크에 실시예 1-2에서 제조한 화학식 A03 화합물 40g(0.098mol)을 투입하고 디클로로메탄 400ml로 희석시켰다. 이 희석액을 0℃로 냉각 후 N-브로모숙신이미드(NBS) 17.4g을 서서히 투입하고 3시간동안 교반시켰다. 반응액에 증류수 400ml를 투입 후 30분간 교반한 다음 유기층을 분리하였다. 분리된 유기층을 건조 후 농축한 다음 아세톤과 메탄올로 재결정하고 진공건조하여 목적화합물 45g(수율 94%)을 얻었다.40 g (0.098 mol) of the compound of Formula A03 prepared in Example 1-2 were added to a 2000-ml, four-necked round bottom flask and diluted with 400 ml of dichloromethane. After cooling the dilution solution to 0 ° C., 17.4 g of N -bromosuccinimide (NBS) was slowly added thereto, followed by stirring for 3 hours. 400 ml of distilled water was added to the reaction solution, stirred for 30 minutes, and the organic layer was separated. The separated organic layer was dried, concentrated and then recrystallized with acetone and methanol and dried in vacuo to give 45 g (yield 94%) of the title compound.

1H NMR (400MHz, DMSO-d6) : δ 8.54(d, J = 5.2Hz, 2H), 8.32(d, J = 7.7Hz, 2H), 7.72(d, J = 4.4Hz, 4H), 7.60-7.42(m, 6H), 7.37-7.29(m, 5H).
1 H NMR (400 MHz, DMSO-d 6 ): δ 8.54 (d, J = 5.2 Hz, 2H), 8.32 (d, J = 7.7 Hz, 2H), 7.72 (d, J = 4.4 Hz, 4H), 7.60 -7.42 (m, 6 H), 7.37-7.29 (m, 5 H).

1-4. 화학식 12의 제조1-4. Preparation of Formula 12

1000-ml, 4구 둥근바닥플라스크에 질소 분위기 하에서 실시예 1-3에서 제조한 화학식 A04 화합물 45g(0.092mol), N-페닐-1-나프틸아민 22.3g, 팔라디움 아세테이트(II) 0.12g, 트리-(t-부틸)포스핀(10% 헥산용액) 2g, 소디움 t-부톡시드 12g 그리고 o-자일렌 450ml를 투입하였다. 반응액을 3시간 동안 환류 시킨 후 냉각하고 과량의 메탄올에 부어 고체를 석출시켰다. 얻어진 고체를 여과하고 진공건조하여 목적화합물 51g(수율 88%)을 얻었다. MS(m/z, [M]+): C46H31N3: 625.46
45 g (0.092 mol) of Formula A04 compound prepared in Example 1-3, 22.3 g of N -phenyl-1-naphthylamine, 0.12 g of palladium acetate (II), in a 1000-ml, 4-necked round bottom flask under nitrogen atmosphere 2 g of tri- (t-butyl) phosphine (10% hexane solution), 12 g of sodium t-butoxide and 450 ml of o-xylene were added. The reaction solution was refluxed for 3 hours, cooled, and poured into excess methanol to precipitate a solid. The obtained solid was filtered and dried in vacuo to give 51 g (yield 88%) of the title compound. MS ( m / z , [M] + ): C46H31N3: 625.46

[실시예 2] 화학식 35의 제조Example 2 Preparation of Chemical Formula 35

Figure pat00040

Figure pat00040

1000-ml, 4구 둥근바닥플라스크에 질소 분위기 하에서 실시예 1-3에서 제조한 화학식 A04 화합물 45g(0.092mol), N-(4-비페닐)-9,9-디메틸-9H-플루오렌-2-아민 34g, 팔라디움 아세테이트(II) 0.12g, 트리-(t-부틸)포스핀(10% 헥산용액) 2g, 소디움 t-부톡시드 12g 그리고 o-자일렌 450ml를 투입하였다. 반응액을 5시간 동안 환류 시킨 후 냉각하고 과량의 메탄올에 부어 고체를 석출시켰다. 얻어진 고체를 여과하고 진공건조하여 목적화합물 67g(수율 94%)을 얻었다.1000-ml, 4 sphere formula prepared in Example 1-3 in a nitrogen atmosphere in a round bottom flask, compound A04 45g (0.092mol), N - ( 4- biphenyl), 9,9-dimethyl -9 H - fluoren 34 g of 2-amine, 0.12 g of palladium acetate (II), 2 g of tri- (t-butyl) phosphine (10% hexane solution), 12 g of sodium t-butoxide and 450 ml of o-xylene were added thereto. The reaction solution was refluxed for 5 hours, cooled, and poured into excess methanol to precipitate a solid. The obtained solid was filtered and dried in vacuo to give 67 g (yield 94%) of the title compound.

1H NMR (400MHz, DMSO-d6) : δ 8.58(s, 1H), 8.35(d, J = 7.7Hz, 1H), 8.23(d, J = 7.3Hz, 1H), 8.16(s, 1H), 7.73-7.69(m, 6H), 7.66-7.57(m, 7H), 7.51-7.39(m, 7H), 7.35-7.21(m, 8H), 7.08(d, J = 8.8Hz, 2H), 7.02(d, J = 8.1Hz, 1H), 1.39(s, 6H). 1 H NMR (400 MHz, DMSO-d 6 ): δ 8.58 (s, 1 H), 8.35 (d, J = 7.7 Hz, 1 H), 8.23 (d, J = 7.3 Hz, 1 H), 8.16 (s, 1 H) , 7.73-7.69 (m, 6H), 7.66-7.57 (m, 7H), 7.51-7.39 (m, 7H), 7.35-7.21 (m, 8H), 7.08 (d, J = 8.8 Hz, 2H), 7.02 (d, J = 8.1 Hz, 1H), 1.39 (s, 6H).

UV(λmax) : 332nm PL : 427nm(도 1 참조)UV (λ max ): 332 nm PL: 427 nm (see FIG. 1)

유리전이온도(Tg, DSC에 의한 측정) : 168℃(도 2 참조)
Glass transition temperature (measured by Tg, DSC): 168 ° C (see Figure 2)

[실시예 3] 화학식 129의 제조Example 3 Preparation of Chemical Formula 129

Figure pat00041

Figure pat00041

3-1. 화학식 A05의 제조3-1. Preparation of Formula A05

3000-ml, 4구 둥근바닥플라스크에 실시예 1-3에서 제조한 화학식 A04 화합물 80g(0.164mol)을 투입하고 테트라하이드로퓨란 1600ml로 희석시켰다. 이 희석액에 4-클로로벤젠보론 산 28.2g, 3M-탄산칼륨 수용액 164ml 그리고 테트라키스(트리페닐포스핀)팔라디움(0) 2.1g을 투입 후 반응액을 1일 동안 환류시켰다. 반응액을 실온으로 냉각 후 테트라하이드로퓨란을 농축한 다음 메탄올을 가하여 석출된 고체를 진공 여과하였다. 모아진 고체 화합물을 진공건조하여 목적화합물 75g(수율 88%)을 얻었다.
80 g (0.164 mol) of the compound of Formula A04 prepared in Example 1-3 were added to a 3000-ml, four-necked round bottom flask and diluted with 1600 ml of tetrahydrofuran. 28.2 g of 4-chlorobenzene boronic acid, 164 ml of 3M-potassium carbonate aqueous solution, and 2.1 g of tetrakis (triphenylphosphine) palladium (0) were added to the diluent, and the reaction solution was refluxed for 1 day. After cooling the reaction solution to room temperature, tetrahydrofuran was concentrated, methanol was added, and the precipitated solid was vacuum filtered. The collected solid compound was vacuum dried to obtain 75 g (yield 88%) of the title compound.

3-2. 화학식 129의 제조3-2. Preparation of Formula 129

1000-ml, 4구 둥근바닥플라스크에 질소 분위기 하에서 실시예 3-1에서 제조한 화학식 A05 화합물 40g(0.077mol), N-(1-나프틸)-9,9-디메틸-9H-플루오렌-2-아민 27g, 팔라디움 아세테이트(II) 0.09g, 트리-(t-부틸)포스핀(10% 헥산용액) 1.6g, 소디움 t-부톡시드 9g 그리고 o-자일렌 400ml를 투입하였다. 반응액을 6시간 동안 환류 시킨 후 냉각하고 과량의 메탄올에 부어 고체를 석출시켰다. 얻어진 고체를 여과하고 진공건조하여 목적화합물 26g(수율 85%)을 얻었다.1000-ml, 4 sphere formula A05 compound 40g (0.077mol) prepared in Example 3-1 in a nitrogen atmosphere in a round bottom flask, N - (1- naphthyl) 9,9-dimethyl -9 H - fluoren 27 g of 2-amine, 0.09 g of palladium acetate (II), 1.6 g of tri- (t-butyl) phosphine (10% hexane solution), 9 g of sodium t-butoxide and 400 ml of o-xylene were added. The reaction solution was refluxed for 6 hours, cooled, and poured into excess methanol to precipitate a solid. The obtained solid was filtered and dried in vacuo to give 26 g (yield 85%) of the title compound.

1H NMR (400MHz, DMSO-d6) : δ 8.54(d, J = 7.0Hz, 2H), 8.33(t, J = 6.2Hz, 2H), 8.02(d, J = 8.5Hz, 1H), 7.92(d, J = 8.4Hz, 2H), 7.73-7.57(m, 13H), 7.54-7.35(m, 9H), 7.33-7.21(m, 5H), 7.04(d, J = 8.6Hz, 2H), 6.89(dd, J = 8.1, 1.8Hz, 1H), 1.35(s, 6H).
1 H NMR (400 MHz, DMSO-d 6 ): δ 8.54 (d, J = 7.0 Hz, 2H), 8.33 (t, J = 6.2 Hz, 2H), 8.02 (d, J = 8.5 Hz, 1H), 7.92 (d, J = 8.4 Hz, 2H), 7.73-7.57 (m, 13H), 7.54-7.35 (m, 9H), 7.33-7.21 (m, 5H), 7.04 (d, J = 8.6 Hz, 2H), 6.89 (dd, J = 8.1, 1.8 Hz, 1H), 1.35 (s, 6H).

[실시예 4] 화학식 133의 제조Example 4 Preparation of Chemical Formula 133

Figure pat00042

Figure pat00042

4-1. 화학식 A06의 제조4-1. Preparation of Formula A06

1000-ml, 4구 둥근바닥플라스크에 질소 분위기 하에서 실시예 3-1에서 제조한 화학식 A05 화합물 40g(0.077mol), 2-나프틸아민 13g, 팔라디움 아세테이트(II) 0.07g, 트리-(t-부틸)포스핀(10% 헥산용액) 1.2g, 소디움 t-부톡시드 9g 그리고 톨루엔 450ml를 투입하였다. 반응액을 2시간 동안 환류 시킨 후 냉각하고 과량의 메탄올에 부어 고체를 석출시켰다. 얻어진 고체를 여과하고 진공건조하여 목적화합물 40g(수율 83%)을 얻었다.
40 g (0.077 mol) of formula A05 compound prepared in Example 3-1, 13 g of 2-naphthylamine, 0.07 g of palladium acetate (II), and tri- (t- 1.2 g of butyl) phosphine (10% hexane solution), 9 g of sodium t-butoxide and 450 ml of toluene were added thereto. The reaction solution was refluxed for 2 hours, cooled, and poured into excess methanol to precipitate a solid. The obtained solid was filtered and dried under vacuum to obtain 40 g (yield 83%) of the title compound.

4-2. 화학식 133의 제조4-2. Preparation of Formula 133

1000-ml, 4구 둥근바닥플라스크에 질소 분위기 하에서 실시예 4-1에서 제조한 화학식 A06 화합물 27g(0.077mol), 2-브로모-9,9-디메틸-9H-플루오렌 14g, 팔라디움 아세테이트(II) 0.05g, 트리-(t-부틸)포스핀(10% 헥산용액) 0.8g, 소디움 t-부톡시드 4.6g 그리고 o-자일렌 300ml를 투입하였다. 반응액을 4시간 동안 환류 시킨 후 냉각하고 과량의 메탄올에 부어 고체를 석출시켰다. 얻어진 고체를 여과하고 진공건조하여 목적화합물 28g(수율 79%)을 얻었다.27 g (0.077 mol) of formula A06 compound prepared in Example 4-1 in a 1000-ml, four-necked round bottom flask under nitrogen atmosphere, 14 g of 2-bromo-9,9-dimethyl-9 H -fluorene, palladium acetate (II) 0.05 g, 0.8 g of tri- (t-butyl) phosphine (10% hexane solution), 4.6 g of sodium t-butoxide and 300 ml of o-xylene were added. The reaction solution was refluxed for 4 hours, cooled, and poured into excess methanol to precipitate a solid. The obtained solid was filtered and dried under vacuum to obtain 28 g (yield 79%) of the title compound.

1H NMR (400MHz, DMSO-d6) : δ 8.60(d, J = 11.2Hz, 2H), 8.36(dd, J = 7.7, 4.8Hz ,2H), 7.88-7.83(m, 3H), 7.79-7.63(m, 9H), 7.60(s, 2H), 7.58-7.48(m, 4H), 7.46-7.36(m, 6H), 7.34-7.26(m, 6H), 7.22(d, J = 8.4Hz, 2H), 7.08(dd, J = 8.0, 1.6Hz ,1H), 1.39(s, 6H). 1 H NMR (400 MHz, DMSO-d 6 ): δ 8.60 (d, J = 11.2 Hz, 2H), 8.36 (dd, J = 7.7, 4.8 Hz, 2H), 7.88-7.83 (m, 3H), 7.79- 7.63 (m, 9H), 7.60 (s, 2H), 7.58-7.48 (m, 4H), 7.46-7.36 (m, 6H), 7.34-7.26 (m, 6H), 7.22 (d, J = 8.4 Hz, 2H), 7.08 (dd, J = 8.0, 1.6 Hz, 1H), 1.39 (s, 6H).

UV(λmax) : 346nm PL : 438nm(도 3 참조)UV (λ max ): 346 nm PL: 438 nm (see FIG. 3)

유리전이온도(Tg, DSC에 의한 측정) : 169℃(도 4 참조)
Glass transition temperature (measured by Tg, DSC): 169 ° C (see Figure 4)

[실시예 5] 화학식 135의 제조Example 5 Preparation of Chemical Formula 135

Figure pat00043

Figure pat00043

1000-ml, 4구 둥근바닥플라스크에 질소 분위기 하에서 실시예 3-1에서 제조한 화학식 A05 화합물 19g(0.037mol), N-(4-비페닐)-9,9-디메틸-9H-플루오렌-2-아민 14g, 팔라디움 아세테이트(II) 0.05g, 트리-(t-부틸)포스핀(10% 헥산용액) 0.7g, 소디움 t-부톡시드 4g 그리고 o-자일렌 200ml를 투입하였다. 반응액을 5시간 동안 환류 시킨 후 냉각하고 과량의 메탄올에 부어 고체를 석출시켰다. 얻어진 고체를 여과하고 진공건조하여 목적화합물 26g(수율 85%)을 얻었다.1000-ml, 4 sphere formula prepared in Example 3-1 in a nitrogen atmosphere in a round bottom flask, compound A05 19g (0.037mol), N - ( 4- biphenyl), 9,9-dimethyl -9 H - fluoren 14 g of 2-amine, 0.05 g of palladium acetate (II), 0.7 g of tri- (t-butyl) phosphine (10% hexane solution), 4 g of sodium t-butoxide and 200 ml of o-xylene were added. The reaction solution was refluxed for 5 hours, cooled, and poured into excess methanol to precipitate a solid. The obtained solid was filtered and dried in vacuo to give 26 g (yield 85%) of the title compound.

1H NMR (400MHz, DMSO-d6) : δ 8.58(d, J = 11.7Hz, 2H), 8.35(t, J = 7.0Hz, 2H), 7.79-7.73(m, 9H), 7.66-7.57(m, 7H), 7.50(t, J = 7.3Hz, 2H), 7.45-7.24(m, 12H), 7.20(d, J = 8.8Hz, 2H), 7.15(d, J = 8.8Hz, 2H), 7.06(dd, J = 8.1, 1.8Hz, 1H), 1.41(s, 6H). 1 H NMR (400 MHz, DMSO-d 6 ): δ 8.58 (d, J = 11.7 Hz, 2H), 8.35 (t, J = 7.0 Hz, 2H), 7.79-7.73 (m, 9H), 7.66-7.57 ( m, 7H), 7.50 (t, J = 7.3 Hz, 2H), 7.45-7.24 (m, 12H), 7.20 (d, J = 8.8 Hz, 2H), 7.15 (d, J = 8.8 Hz, 2H), 7.06 (dd, J = 8.1, 1.8 Hz, 1 H), 1.41 (s, 6 H).

UV(λmax) : 355nm PL : 415nmUV (λ max ): 355nm PL: 415nm

유리전이온도(Tg, DSC에 의한 측정) : 170℃
Glass transition temperature (measured by Tg, DSC): 170 ℃

[실시예 6]Example 6

화학식 12를 사용한 유기 전기발광 소자 제작Fabrication of Organic Electroluminescent Device Using Chemical Formula 12

25mm × 75mm × 1.1mm 크기의 유리 기판 상에 막 두께가 750Å 인 인듐 주석 산화물(ITO)의 투명성 양극을 형성시켰다. 상기 유리 기판을 진공 증착장치에 넣어 약 10-7torr로 감압하였다. 이어서 본 발명의 상기 화학식 12를 두께가 600Å이 되도록 증착시켜 정공주입층을 형성시켰다. 이어서 하기 화학식 2의 NPB를 두께가 600Å이 되도록 증착시켜 정공수송층을 형성하였다. 이어서 청색 호스트인 하기 화학식 3의 α-ADN과 청색 도판트인 하기 화학식 4의 퍼릴렌을 중량비 95 : 5 비율로 동시에 증착하여 두께가 300Å이 되도록 발광층을 형성하였다. 이어서 하기 화학식 5의 Alq3를 두께가 200Å이 되도록 증착시켜 전자수송층을 형성하였다. 이어서 리튬 프루오라이드(LiF)를 두께가 10Å이 되도록 증착시켜 전자주입층을 형성하였다. 최종적으로 알루미늄을 두께가 1000Å이 되도록 증착하여 음극을 형성시켰다(도 5 참조). 상기와 같이 제작된 유기 전기발광 소자에 전압을 인가하여 발광시험을 실시하였다. 측정된 최고 휘도와 발광 효율을 표 10에 나타내었다.A transparent anode of indium tin oxide (ITO) having a thickness of 750 kPa was formed on a glass substrate having a size of 25 mm x 75 mm x 1.1 mm. The glass substrate was placed in a vacuum deposition apparatus to reduce the pressure to about 10 −7 torr. Subsequently, the chemical formula 12 of the present invention was deposited to a thickness of 600 kPa to form a hole injection layer. Subsequently, NPB of Formula 2 was deposited to a thickness of 600 kPa, thereby forming a hole transport layer. Subsequently, the light emitting layer was formed by simultaneously depositing α-ADN of Formula 3, which is a blue host, and perylene of Formula 4, which is a blue dopant, in a weight ratio of 95: 5. Subsequently, Alq 3 of Formula 5 was deposited to a thickness of 200 μs, thereby forming an electron transport layer. Subsequently, lithium fluoride (LiF) was deposited to a thickness of 10 GPa to form an electron injection layer. Finally, aluminum was deposited to have a thickness of 1000 Å to form a cathode (see FIG. 5). The luminescence test was performed by applying a voltage to the organic electroluminescent device manufactured as described above. The measured highest luminance and luminous efficiency are shown in Table 10.

[화학식 2] [화학식 3][Formula 2] [Formula 3]

Figure pat00044
Figure pat00045
Figure pat00044
Figure pat00045

[화학식 4] [화학식 5][Formula 4] [Formula 5]

Figure pat00046
Figure pat00047

Figure pat00046
Figure pat00047

[실시예 7]Example 7

화학식 29를 사용한 유기 전기발광 소자 제작Fabrication of Organic Electroluminescent Device Using Chemical Formula 29

상기 실시예 6에서, 정공주입층으로 화학식 12 대신 화학식 29를 사용한 것을 제외하고는 실시예 6과 동일하게 유기 전기발광 소자를 제작하고 평가하였다. 측정된 최고 휘도와 발광 효율을 표 10에 나타내었다.
In Example 6, an organic electroluminescent device was manufactured and evaluated in the same manner as in Example 6, except that Chemical Formula 29 was used instead of Chemical Formula 12 as the hole injection layer. The measured highest luminance and luminous efficiency are shown in Table 10.

[실시예 8]Example 8

화학식 32를 사용한 유기 전기발광 소자 제작Fabrication of Organic Electroluminescent Device Using Chemical Formula 32

상기 실시예 6에서, 정공주입층으로 화학식 12 대신 화학식 32를 사용한 것을 제외하고는 실시예 6과 동일하게 유기 전기발광 소자를 제작하고 평가하였다. 측정된 최고 휘도와 발광 효율을 표 10에 나타내었다.In Example 6, an organic electroluminescent device was manufactured and evaluated in the same manner as in Example 6, except that Chemical Formula 32 was used instead of Chemical Formula 12 as the hole injection layer. The measured highest luminance and luminous efficiency are shown in Table 10.

[실시예 9]Example 9

화학식 33을 사용한 유기 전기발광 소자 제작Fabrication of Organic Electroluminescent Device Using Chemical Formula 33

상기 실시예 6에서, 정공주입층으로 화학식 12 대신 화학식 33을 사용한 것을 제외하고는 실시예 6과 동일하게 유기 전기발광 소자를 제작하고 평가하였다. 측정된 최고 휘도와 발광 효율을 표 10에 나타내었다.
In Example 6, an organic electroluminescent device was manufactured and evaluated in the same manner as in Example 6, except that Chemical Formula 33 was used instead of Chemical Formula 12 as the hole injection layer. The measured highest luminance and luminous efficiency are shown in Table 10.

[실시예 10]Example 10

화학식 35를 사용한 유기 전기발광 소자 제작Fabrication of Organic Electroluminescent Device Using Chemical Formula 35

상기 실시예 6에서, 정공주입층으로 화학식 12 대신 화학식 35를 사용한 것을 제외하고는 실시예 6과 동일하게 유기 전기발광 소자를 제작하고 평가하였다. 측정된 최고 휘도와 발광 효율을 표 10에 나타내었다.
In Example 6, an organic electroluminescent device was manufactured and evaluated in the same manner as in Example 6, except that Chemical Formula 35 was used instead of Chemical Formula 12 as the hole injection layer. The measured highest luminance and luminous efficiency are shown in Table 10.

[실시예 11]Example 11

화학식 69를 사용한 유기 전기발광 소자 제작Fabrication of Organic Electroluminescent Device Using Chemical Formula 69

상기 실시예 6에서, 정공주입층으로 화학식 12 대신 화학식 69를 사용한 것을 제외하고는 실시예 6과 동일하게 유기 전기발광 소자를 제작하고 평가하였다. 측정된 최고 휘도와 발광 효율을 표 10에 나타내었다.
In Example 6, an organic electroluminescent device was manufactured and evaluated in the same manner as in Example 6, except that Chemical Formula 69 was used instead of Chemical Formula 12 as the hole injection layer. The measured highest luminance and luminous efficiency are shown in Table 10.

[실시예 12]Example 12

화학식 116을 사용한 유기 전기발광 소자 제작Fabrication of Organic Electroluminescent Device Using Chemical Formula 116

상기 실시예 6에서, 정공주입층으로 화학식 12 대신 화학식 116을 사용한 것을 제외하고는 실시예 6과 동일하게 유기 전기발광 소자를 제작하고 평가하였다. 측정된 최고 휘도와 발광 효율을 표 10에 나타내었다.
In Example 6, an organic electroluminescent device was manufactured and evaluated in the same manner as in Example 6, except that Chemical Formula 116 was used instead of Chemical Formula 12 as the hole injection layer. The measured highest luminance and luminous efficiency are shown in Table 10.

[실시예 13]Example 13

화학식 120을 사용한 유기 전기발광 소자 제작Fabrication of Organic Electroluminescent Device Using Chemical Formula 120

25mm × 75mm × 1.1mm 크기의 유리 기판 상에 막 두께가 750Å 인 인듐 주석 산화물(ITO)의 투명성 양극을 형성시켰다. 상기 유리 기판을 진공 증착장치에 넣어 약 10-7torr로 감압하였다. 이어서 하기 화학식 1의 2-TNATA를 두께가 600Å이 되도록 증착시켜 정공주입층을 형성시켰다. 이어서 본 발명의 상기 화학식 120을 두께가 600Å이 되도록 증착시켜 정공수송층을 형성하였다. 이어서 청색 호스트인 상기 화학식 3의 α-ADN과 청색 도판트인 상기 화학식 4의 퍼릴렌을 중량비 95 : 5 비율로 동시에 증착하여 두께가 300Å이 되도록 발광층을 형성하였다. 이어서 상기 화학식 5의 Alq3를 두께가 200Å이 되도록 증착시켜 전자수송층을 형성하였다. 이어서 리튬 프루오라이드(LiF)를 두께가 10Å이 되도록 증착시켜 전자주입층을 형성하였다. 최종적으로 알루미늄을 두께가 1000Å이 되도록 증착하여 음극을 형성시켰다. 상기와 같이 제작된 유기 전기발광 소자에 전압을 인가하여 발광시험을 실시하였다. 측정된 최고 휘도와 발광 효율을 표 10에 나타내었다.
A transparent anode of indium tin oxide (ITO) having a thickness of 750 kPa was formed on a glass substrate having a size of 25 mm x 75 mm x 1.1 mm. The glass substrate was placed in a vacuum deposition apparatus to reduce the pressure to about 10 −7 torr. Subsequently, 2-TNATA of Chemical Formula 1 was deposited to have a thickness of 600 μs to form a hole injection layer. Then, the chemical formula 120 of the present invention was deposited to a thickness of 600 kPa to form a hole transport layer. Subsequently, the light emitting layer was formed by simultaneously depositing α-ADN of Formula 3, which is a blue host, and perylene of Formula 4, which is a blue dopant, in a weight ratio of 95: 5. Subsequently, Alq 3 of Formula 5 was deposited to have a thickness of 200 μs to form an electron transport layer. Subsequently, lithium fluoride (LiF) was deposited to a thickness of 10 GPa to form an electron injection layer. Finally, aluminum was deposited to have a thickness of 1000 mW to form a cathode. The luminescence test was performed by applying a voltage to the organic electroluminescent device manufactured as described above. The measured highest luminance and luminous efficiency are shown in Table 10.

[화학식 1][Formula 1]

Figure pat00048

Figure pat00048

[실시예 14]Example 14

화학식 121을 사용한 유기 전기발광 소자 제작Fabrication of Organic Electroluminescent Device Using Chemical Formula 121

상기 실시예 13에서, 정공수송층으로 화학식 120 대신 화학식 121을 사용한 것을 제외하고는 실시예 13과 동일하게 유기 전기발광 소자를 제작하고 평가하였다. 측정된 최고 휘도와 발광 효율을 표 10에 나타내었다.
In Example 13, an organic electroluminescent device was manufactured and evaluated in the same manner as in Example 13, except that Chemical Formula 121 was used instead of Chemical Formula 120 as the hole transport layer. The measured highest luminance and luminous efficiency are shown in Table 10.

[실시예 15]Example 15

화학식 125를 사용한 유기 전기발광 소자 제작Fabrication of Organic Electroluminescent Device Using Chemical Formula 125

상기 실시예 13에서, 정공수송층으로 화학식 120 대신 화학식 125를 사용한 것을 제외하고는 실시예 13과 동일하게 유기 전기발광 소자를 제작하고 평가하였다. 측정된 최고 휘도와 발광 효율을 표 10에 나타내었다.
In Example 13, an organic electroluminescent device was manufactured and evaluated in the same manner as in Example 13, except that Chemical Formula 125 was used instead of Chemical Formula 120 as the hole transport layer. The measured highest luminance and luminous efficiency are shown in Table 10.

[실시예 16]Example 16

화학식 129를 사용한 유기 전기발광 소자 제작Fabrication of Organic Electroluminescent Device Using Chemical Formula 129

상기 실시예 13에서, 정공수송층으로 화학식 120 대신 화학식 129를 사용한 것을 제외하고는 실시예 13과 동일하게 유기 전기발광 소자를 제작하고 평가하였다. 측정된 최고 휘도와 발광 효율을 표 10에 나타내었다.
In Example 13, an organic electroluminescent device was manufactured and evaluated in the same manner as in Example 13, except that Chemical Formula 129 was used instead of Chemical Formula 120 as the hole transport layer. The measured highest luminance and luminous efficiency are shown in Table 10.

[실시예 17]Example 17

화학식 131을 사용한 유기 전기발광 소자 제작Fabrication of Organic Electroluminescent Device Using Chemical Formula 131

상기 실시예 13에서, 정공수송층으로 화학식 120 대신 화학식 131을 사용한 것을 제외하고는 실시예 13과 동일하게 유기 전기발광 소자를 제작하고 평가하였다. 측정된 최고 휘도와 발광 효율을 표 10에 나타내었다.
In Example 13, an organic electroluminescent device was manufactured and evaluated in the same manner as in Example 13, except that Chemical Formula 131 was used instead of Chemical Formula 120 as the hole transport layer. The measured highest luminance and luminous efficiency are shown in Table 10.

[실시예 18]Example 18

화학식 133을 사용한 유기 전기발광 소자 제작Fabrication of Organic Electroluminescent Device Using Chemical Formula 133

상기 실시예 13에서, 정공수송층으로 화학식 120 대신 화학식 133을 사용한 것을 제외하고는 실시예 13과 동일하게 유기 전기발광 소자를 제작하고 평가하였다. 측정된 최고 휘도와 발광 효율을 표 10에 나타내었다.
In Example 13, an organic electroluminescent device was manufactured and evaluated in the same manner as in Example 13, except that Formula 133 was used instead of Formula 120 as the hole transport layer. The measured highest luminance and luminous efficiency are shown in Table 10.

[실시예 19]Example 19

화학식 134를 사용한 유기 전기발광 소자 제작Fabrication of Organic Electroluminescent Device Using Chemical Formula 134

상기 실시예 13에서, 정공수송층으로 화학식 120 대신 화학식 134를 사용한 것을 제외하고는 실시예 13과 동일하게 유기 전기발광 소자를 제작하고 평가하였다. 측정된 최고 휘도와 발광 효율을 표 10에 나타내었다.
In Example 13, an organic electroluminescent device was manufactured and evaluated in the same manner as in Example 13, except that Formula 134 was used instead of Formula 120 as the hole transport layer. The measured highest luminance and luminous efficiency are shown in Table 10.

[실시예 20]Example 20

화학식 135 사용한 유기 전기발광 소자 제작Fabrication of Organic Electroluminescent Device Using Chemical Formula 135

상기 실시예 13에서, 정공수송층으로 화학식 120 대신 화학식 135를 사용한 것을 제외하고는 실시예 13과 동일하게 유기 전기발광 소자를 제작하고 평가하였다. 측정된 최고 휘도와 발광 효율을 표 10에 나타내었다.
In Example 13, an organic electroluminescent device was manufactured and evaluated in the same manner as in Example 13, except that Chemical Formula 135 was used instead of Chemical Formula 120 as the hole transport layer. The measured highest luminance and luminous efficiency are shown in Table 10.

[실시예 21]Example 21

화학식 207을 사용한 유기 전기발광 소자 제작Fabrication of Organic Electroluminescent Device Using Formula 207

상기 실시예 13에서, 정공수송층으로 화학식 120 대신 화학식 207을 사용한 것을 제외하고는 실시예 13과 동일하게 유기 전기발광 소자를 제작하고 평가하였다. 측정된 최고 휘도와 발광 효율을 표 10에 나타내었다.
In Example 13, an organic electroluminescent device was manufactured and evaluated in the same manner as in Example 13, except that Chemical Formula 207 was used instead of Chemical Formula 120 as the hole transport layer. The measured highest luminance and luminous efficiency are shown in Table 10.

[실시예 22][Example 22]

화학식 208을 사용한 유기 전기발광 소자 제작Fabrication of Organic Electroluminescent Device Using Chemical Formula 208

상기 실시예 13에서, 정공수송층으로 화학식 120 대신 화학식 208을 사용한 것을 제외하고는 실시예 13과 동일하게 유기 전기발광 소자를 제작하고 평가하였다. 측정된 최고 휘도와 발광 효율을 표 10에 나타내었다.
In Example 13, an organic electroluminescent device was manufactured and evaluated in the same manner as in Example 13, except that Formula 208 was used instead of Formula 120 as the hole transport layer. The measured highest luminance and luminous efficiency are shown in Table 10.

[비교예 1]Comparative Example 1

2-TNATA와 NPB를 사용한 유기 전기발광 소자 제작Fabrication of organic electroluminescent device using 2-TNATA and NPB

25mm × 75mm × 1.1mm 크기의 유리 기판 상에 막 두께가 750Å 인 인듐 주석 산화물(ITO)의 투명성 양극을 형성시켰다. 상기 유리 기판을 진공 증착장치에 넣어 약 10-7torr로 감압하였다. 이어서 상기 화학식 1의 2-TNATA를 두께가 600Å이 되도록 증착시켜 정공주입층을 형성시켰다. 이어서 상기 화학식 2의 NPB를 두께가 600Å이 되도록 증착시켜 정공수송층을 형성하였다. 이어서 청색 호스트인 상기 화학식 3의 α-ADN과 청색 도판트인 상기 화학식 4의 퍼릴렌을 중량비 95 : 5 비율로 동시에 증착하여 두께가 300Å이 되도록 발광층을 형성하였다. 이어서 상기 화학식 5의 Alq3를 두께가 200Å이 되도록 증착시켜 전자수송층을 형성하였다. 이어서 리튬 프루오라이드(LiF)를 두께가 10Å이 되도록 증착시켜 전자주입층을 형성하였다. 최종적으로 알루미늄을 두께가 1000Å이 되도록 증착하여 음극을 형성시켰다. 상기와 같이 제작된 유기 전기발광 소자에 전압을 인가하여 발광시험을 실시하였다. 측정된 최고 휘도와 발광 효율을 표 11에 나타내었다.
A transparent anode of indium tin oxide (ITO) having a film thickness of 750 kPa was formed on a glass substrate having a size of 25 mm x 75 mm x 1.1 mm. The glass substrate was placed in a vacuum deposition apparatus to reduce the pressure to about 10 −7 torr. Subsequently, 2-TNATA of Chemical Formula 1 was deposited to have a thickness of 600 μs to form a hole injection layer. Subsequently, NPB of Formula 2 was deposited to a thickness of 600 kPa, thereby forming a hole transport layer. Subsequently, the light emitting layer was formed by simultaneously depositing α-ADN of Formula 3, which is a blue host, and perylene of Formula 4, which is a blue dopant, in a weight ratio of 95: 5. Subsequently, Alq 3 of Formula 5 was deposited to have a thickness of 200 μs to form an electron transport layer. Subsequently, lithium fluoride (LiF) was deposited to a thickness of 10 GPa to form an electron injection layer. Finally, aluminum was deposited to have a thickness of 1000 mW to form a cathode. The luminescence test was performed by applying a voltage to the organic electroluminescent device manufactured as described above. The measured highest luminance and luminous efficiency are shown in Table 11.

유기 전기발광 소자의 발광 특성Luminescence Characteristics of Organic Electroluminescent Devices 실시예Example 정공주입층의 화합물Compound of hole injection layer 정공수송층의 화합물Compound of hole transport layer 최대휘도
(cd/m2)
Brightness
(cd / m 2 )
최대효율
(cd/A)
Efficiency
(cd / A)
실시예 6Example 6 화학식 12Formula 12 NPBNPB 91199119 4.634.63 실시예 7Example 7 화학식 29Formula 29 NPBNPB 1862018620 3.713.71 실시예 8Example 8 화학식 32Formula 32 NPBNPB 1161011610 3.503.50 실시예 9Example 9 화학식 33Formula 33 NPBNPB 99709970 4.294.29 실시예 10Example 10 화학식 35Formula 35 NPBNPB 2044020440 3.573.57 실시예 11Example 11 화학식 69Formula 69 NPBNPB 1221012210 3.663.66 실시예 12Example 12 화학식 116Formula 116 NPBNPB 1208012080 3.593.59 실시예 13Example 13 2-TNATA2-TNATA 화학식 120Formula 120 1330913309 3.793.79 실시예 14Example 14 2-TNATA2-TNATA 화학식 121Formula 121 1059010590 3.953.95 실시예 15Example 15 2-TNATA2-TNATA 화학식 125Formula 125 1524015240 5.865.86 실시예 16Example 16 2-TNATA2-TNATA 화학식 129Formula 129 1098010980 4.664.66 실시예 17Example 17 2-TNATA2-TNATA 화학식 131Formula 131 1417014170 3.823.82 실시예 18Example 18 2-TNATA2-TNATA 화학식 133Formula 133 2049020490 4.754.75 실시예 19Example 19 2-TNATA2-TNATA 화학식 134Formula 134 2044020440 3.723.72 실시예 20Example 20 2-TNATA2-TNATA 화학식 135Formula 135 1417014170 4.024.02 실시예 21Example 21 2-TNATA2-TNATA 화학식 207Formula 207 94919491 4.034.03 실시예 22Example 22 2-TNATA2-TNATA 화학식 208Formula 208 84988498 3.823.82 비교예 1Comparative Example 1 2-TNATA2-TNATA NPBNPB 75467546 3.223.22

상기 표 11에서 알 수 있는 바와 같이, 본 발명의 실시예 6 내지 22에 따른 유기 전기발광 소자는 대체로 비교예 1보다 높은 휘도 및 효율을 가지고 있음을 알 수 있다.
As can be seen in Table 11, it can be seen that the organic electroluminescent device according to Examples 6 to 22 of the present invention has a higher luminance and efficiency than Comparative Example 1.

본 발명의 단순한 변형 또는 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함될 수 있다.
Simple modifications or changes of the present invention can be easily made by those skilled in the art, and all such modifications or changes can be included in the scope of the present invention.

본 발명에 따른 유기 발광 조성물 및 이를 포함하는 유기 전기 발광 소자는 유기 발광 다이오드 뿐만 아니라 유기 전계-효과 트랜지스터, 유기 박막 트랜지스터, 유기 레이저 다이오드, 유기 태양 전지, 유기 발광 전기화학 전지 및 유기 집적 회로 등의 분야에서도 사용할 수 있다. The organic light emitting composition and the organic electroluminescent device including the same according to the present invention are not only organic light emitting diodes but also organic field-effect transistors, organic thin film transistors, organic laser diodes, organic solar cells, organic light emitting electrochemical cells, and organic integrated circuits. Can also be used in the field.

Claims (3)

유기 전기 발광 소자의 발광 재료로 사용되며, 하기 화학식 I로 표시되는 카바졸 유도체를 포함하는 것을 특징으로 하는 유기 전기 발광 조성물.
[화학식 I]
Figure pat00049

(상기 화학식 I에서, R1 및 R2는 각각 수소, 치환되거나 비치환된 아릴기, 치환되거나 비치환된 헤테로아릴기, 또는 알킬기이고, R3 내지 R5는 각각 치환되거나 비치환된 아릴기, 또는 치환되거나 비치환된 헤테로아릴기이고, D는 연결기(linker), 치환되거나 비치환된 아릴렌기, 또는 치환되거나 비치환된 헤테로아릴렌기이다.)
An organic electroluminescent composition, which is used as a light emitting material of an organic electroluminescent device, comprises a carbazole derivative represented by the following general formula (I).
(I)
Figure pat00049

(In Formula I, R1 and R2 are each hydrogen, a substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl group, or an alkyl group, and R3 to R5 are each a substituted or unsubstituted aryl group, or substituted Unsubstituted heteroaryl group, D is a linker, a substituted or unsubstituted arylene group, or a substituted or unsubstituted heteroarylene group.)
제1항에 있어서, 상기 화학식 I은 하기 화학식 12, 29, 32, 33, 35, 69, 116, 120, 121, 125, 129, 131, 133, 134, 135, 207 또는 208 중의 어느 하나 인 것을 특징으로 하는 유기 전기 발광 조성물.
[화학식 12] [화학식 29]
Figure pat00050
Figure pat00051

[화학식 32] [화학식 33]
Figure pat00052
Figure pat00053

[화학식 35] [화학식 69]
Figure pat00054
Figure pat00055

[화학식 116] [화학식 120]
Figure pat00056
Figure pat00057

[화학식 121] [화학식 125]
Figure pat00058
Figure pat00059

[화학식 129] [화학식 131]
Figure pat00060
Figure pat00061

[화학식 133] [화학식 134]
Figure pat00062
Figure pat00063

[화학식 135] [화학식 207]
Figure pat00064
Figure pat00065

[화학식 208]
Figure pat00066

According to claim 1, wherein the formula I is any one of the following formula 12, 29, 32, 33, 35, 69, 116, 120, 121, 125, 129, 131, 133, 134, 135, 207 or 208 An organic electroluminescent composition characterized by.
[Formula 12] [Formula 29]
Figure pat00050
Figure pat00051

[Formula 32] [Formula 33]
Figure pat00052
Figure pat00053

[Formula 35] [Formula 69]
Figure pat00054
Figure pat00055

[Formula 116] [Formula 120]
Figure pat00056
Figure pat00057

[Formula 121] [Formula 125]
Figure pat00058
Figure pat00059

[Formula 129] [Formula 131]
Figure pat00060
Figure pat00061

[Formula 133] [Formula 134]
Figure pat00062
Figure pat00063

[Formula 135] [Formula 207]
Figure pat00064
Figure pat00065

Formula 208
Figure pat00066

제1항 또는 제2항에 따른 유기 전기 발광 조성물을 포함하여 이루어진 유기층을 하나 이상 포함하는 것을 특징으로 하는 유기 전기 발광 소자.An organic electroluminescent device comprising at least one organic layer comprising the organic electroluminescent composition according to claim 1.
KR1020100024932A 2010-03-19 2010-03-19 Organic Light Emitting Material and Organic Light Emitting Diode Having The Same KR101125682B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100024932A KR101125682B1 (en) 2010-03-19 2010-03-19 Organic Light Emitting Material and Organic Light Emitting Diode Having The Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100024932A KR101125682B1 (en) 2010-03-19 2010-03-19 Organic Light Emitting Material and Organic Light Emitting Diode Having The Same

Publications (2)

Publication Number Publication Date
KR20110105664A true KR20110105664A (en) 2011-09-27
KR101125682B1 KR101125682B1 (en) 2012-03-27

Family

ID=45421037

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100024932A KR101125682B1 (en) 2010-03-19 2010-03-19 Organic Light Emitting Material and Organic Light Emitting Diode Having The Same

Country Status (1)

Country Link
KR (1) KR101125682B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015502338A (en) * 2011-10-27 2015-01-22 メルク パテント ゲーエムベーハー Materials for electronic devices
JP2017165769A (en) * 2012-03-15 2017-09-21 ユニバーサル ディスプレイ コーポレイション Secondary hole transporting layer with diarylamino-phenyl-carbazole compounds
EP3336917A1 (en) * 2016-12-13 2018-06-20 Samsung Display Co., Ltd. Condensed cyclic compound and organic electroluminescence device including the same
US10062852B2 (en) 2015-06-23 2018-08-28 Samsung Electronics Co., Ltd. Condensed cyclic compound and organic light-emitting device including the same
CN111253302A (en) * 2018-12-03 2020-06-09 北京鼎材科技有限公司 Novel compound and application thereof in organic electroluminescent device
US10749118B2 (en) 2014-06-26 2020-08-18 Samsung Display Co., Ltd. Heterocyclic compound and organic light-emitting device including the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090112137A (en) * 2008-04-23 2009-10-28 주식회사 이엘엠 Organic Light Emitting Material and Organic Light Emitting Diode Having The Same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015502338A (en) * 2011-10-27 2015-01-22 メルク パテント ゲーエムベーハー Materials for electronic devices
US9812643B2 (en) 2011-10-27 2017-11-07 Merck Patent Gmbh Materials for electronic devices
JP2017165769A (en) * 2012-03-15 2017-09-21 ユニバーサル ディスプレイ コーポレイション Secondary hole transporting layer with diarylamino-phenyl-carbazole compounds
US10749118B2 (en) 2014-06-26 2020-08-18 Samsung Display Co., Ltd. Heterocyclic compound and organic light-emitting device including the same
US10062852B2 (en) 2015-06-23 2018-08-28 Samsung Electronics Co., Ltd. Condensed cyclic compound and organic light-emitting device including the same
EP3336917A1 (en) * 2016-12-13 2018-06-20 Samsung Display Co., Ltd. Condensed cyclic compound and organic electroluminescence device including the same
CN108610378A (en) * 2016-12-13 2018-10-02 三星显示有限公司 Fused ring compound and Organnic electroluminescent device including the fused ring compound
CN111253302A (en) * 2018-12-03 2020-06-09 北京鼎材科技有限公司 Novel compound and application thereof in organic electroluminescent device

Also Published As

Publication number Publication date
KR101125682B1 (en) 2012-03-27

Similar Documents

Publication Publication Date Title
KR20110088898A (en) Organic light emitting material and organic light emitting diode having the same
KR101555816B1 (en) Organic Light Emitting Material and Organic Light Emitting Diode Having The Same
KR100867526B1 (en) New diamine derivatives, preparation method thereof and organic electronic device using the same
KR101317511B1 (en) New compounds and organic electronic device using the same
KR100893044B1 (en) Anthracene derivatives, organic electronic devices using the same and electronic apparatuses comprising the same
KR101007516B1 (en) Organic light emitting material and organic light emitting diode having the same
EP2937347B1 (en) Novel compound and organic electronic element using same
KR20100099460A (en) Bis-carbazole chemiclal and organic electroric element using the same, terminal thererof
KR20100079458A (en) Bis-carbazole chemiclal and organic electroric element using the same, terminal thererof
KR101202410B1 (en) Organic Light Emitting Material and Organic Light Emitting Diode Having The Same
KR101720079B1 (en) Quinoxaline derivative compound and organic electroluminescent device using the same
KR101125682B1 (en) Organic Light Emitting Material and Organic Light Emitting Diode Having The Same
KR20110084797A (en) Aromatic amine compund having various permutator and organic electroric element using the same, terminal thererof
KR101312471B1 (en) Organic Light Emitting Material and Organic Light Emitting Diode Having The Same
JP4783395B2 (en) Electron transporting material and organic light emitting device using the same
KR101023624B1 (en) Organic Light Emitting Material and Organic Light Emitting Diode Having The Same
KR101334204B1 (en) A New Pyrene Compounds, Method of Producing the Same and Organic Electroluminescent Device Comprising the Same
KR20090112137A (en) Organic Light Emitting Material and Organic Light Emitting Diode Having The Same
KR101134575B1 (en) Organic Light Emitting Material and Organic Light Emitting Diode Having The Same
KR20070079680A (en) High-efficient organic light emitting material and organic light emitting diode
KR101219485B1 (en) Chemical comprising dibenzocarbazole and organic electroric element using the same, terminal thererof
KR101125683B1 (en) Organic Light Emitting Material and Organic Light Emitting Diode Having The Same
KR101160387B1 (en) Organic Light Emitting Material and Organic Light Emitting Diode Having The Same
KR101149721B1 (en) high-efficiency organic light emitting material with thermal stability and preparation thereof
KR20180082360A (en) Compound and organic light emitting device comprising the same

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150227

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160905

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170330

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190306

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20200305

Year of fee payment: 9