KR101125683B1 - Organic Light Emitting Material and Organic Light Emitting Diode Having The Same - Google Patents

Organic Light Emitting Material and Organic Light Emitting Diode Having The Same Download PDF

Info

Publication number
KR101125683B1
KR101125683B1 KR1020100058580A KR20100058580A KR101125683B1 KR 101125683 B1 KR101125683 B1 KR 101125683B1 KR 1020100058580 A KR1020100058580 A KR 1020100058580A KR 20100058580 A KR20100058580 A KR 20100058580A KR 101125683 B1 KR101125683 B1 KR 101125683B1
Authority
KR
South Korea
Prior art keywords
formula
organic electroluminescent
electroluminescent device
added
compound
Prior art date
Application number
KR1020100058580A
Other languages
Korean (ko)
Other versions
KR20110138596A (en
Inventor
박종억
김정미
김명주
이혜진
이상진
배유진
백용구
김진영
Original Assignee
주식회사 이엘엠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 이엘엠 filed Critical 주식회사 이엘엠
Priority to KR1020100058580A priority Critical patent/KR101125683B1/en
Publication of KR20110138596A publication Critical patent/KR20110138596A/en
Application granted granted Critical
Publication of KR101125683B1 publication Critical patent/KR101125683B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 발명은 유기 전기발광 소자에 사용되는 화합물 유도체와 이를 이용한 유기 전기발광 소자에 관한 것으로, 더욱 자세하게는 플루오레닐카바졸 유도체 화합물을 제조하고, 이를 유기 전기발광 소자의 정공전달물질로 사용하여 소자의 수명을 증가시키며, 발광 휘도와 발광 효율이 우수한 유기 전기발광 소자를 제공하는 것이다.The present invention relates to a compound derivative used in an organic electroluminescent device and an organic electroluminescent device using the same. More particularly, a fluorenylcarbazole derivative compound is prepared, and the device is used as a hole transport material for an organic electroluminescent device. It is to provide an organic electroluminescent device which increases the service life of the light emitting diode and is excellent in light emission luminance and light emission efficiency.

Description

유기 전기 발광 조성물 및 이를 포함하는 유기 전기 발광 소자{Organic Light Emitting Material and Organic Light Emitting Diode Having The Same}Organic electroluminescent composition and organic electroluminescent device comprising same TECHNICAL FIELD

본 발명은 유기 전기 발광 소자에 대한 것으로, 특히 유기 전기 발광 소자의 발광 재료로 사용되는 플루오레닐카바졸 유도체에 대한 것이며, 더욱 자세하게는 플루오레닐카바졸 화합물을 제조하고 이를 유기 전기발광 소자의 정공전달물질로 사용하여 소자의 수명을 증가시키며, 발광 휘도와 발광 효율이 우수한 유기 전기발광 소자를 제공하는 것이다.
The present invention relates to an organic electroluminescent device, and more particularly, to a fluorenylcarbazole derivative used as a light emitting material of an organic electroluminescent device, and more particularly to preparing a fluorenylcarbazole compound and It is used as a hole transport material to increase the life of the device, to provide an organic electroluminescent device excellent in light emission luminance and light emission efficiency.

저 전압구동, 자기발광, 경량 박형, 광 시야각 그리고 빠른 응답속도 등의 여러 가지 장점을 가진 유기 전기발광 소자는 LCD를 대체할 차세대 평판 디스플레이 중의 하나로서 최근 가장 연구가 활발히 이루어지고 있는 분야이다.
Organic electroluminescent devices with various advantages such as low voltage driving, self-luminous, light weight, wide viewing angle and fast response speed are one of the most researched fields as one of the next generation flat panel displays to replace LCD.

미국 특허 제 4,356,429 호에서, 탕(Tang) 등은 양극과 음극 사이에 놓인 2개의 유기층(정공전달층과 발광층)을 포함하는 이층구조의 유기 전기발광 소자를 개시하였다. 즉, 양극에 인접한 정공전달층은 정공전달물질을 함유하며 유기 전기발광 소자 장치 내에서 단지 정공(hole)만을 주로 발광층에 전달하는 기능을 갖는다. 이와 유사하게, 음극에 인접한 전자수송층은 전자전달물질을 함유하며 유기 전기발광 소자 장치 내에서 단지 전자만을 주로 전달하도록 선택된 이층구조의 유기 전기발광 소자 장치는 높은 발광 효율을 달성하여 상당부분 유기 전기발광 소자의 기술을 개선시켰다. 따라서, 발광효율적인 면에서 정공주입층(hole injection layer)과 정공수송층(hole transporting layer) 같은 정공전달층, 전자수송층(electron transporting layer), 정공차단층(hole blocking layer) 등을 포함하는 다층 구조(multilayer system)를 이용하지 않으면 고효율 및 고휘도의 발광특성을 기대하기는 불가능하다.
In US Pat. No. 4,356,429, Tang et al. Disclosed a two-layered organic electroluminescent device comprising two organic layers (hole transport layer and light emitting layer) sandwiched between an anode and a cathode. That is, the hole transport layer adjacent to the anode contains a hole transport material and has a function of transferring only holes to the light emitting layer mainly in the organic electroluminescent device. Similarly, the electron transport layer adjacent to the cathode contains an electron transport material, and the organic electroluminescent device device having a two-layer structure selected to mainly transmit only electrons within the organic electroluminescent device device achieves high luminous efficiency and thus substantially organic electroluminescence. The technology of the device was improved. Therefore, in terms of luminous efficiency, a multilayer structure including a hole transport layer such as a hole injection layer and a hole transporting layer, an electron transporting layer, a hole blocking layer, and the like ( Without the multilayer system, it is impossible to expect high efficiency and high luminance.

유기 전기발광 소자 장치를 실용화하기 위해서는 위의 다층 구조로 소자를 구성하는 것 이외에 소자 재료 특히, 정공전달물질의 역할이 매우 중요하다. 장 수명의 소자를 위해서는 정공전달물질이 열적 그리고 전기적으로 안정성을 지니고 있어야한다. 왜냐하면 전압을 걸어주었을 때 소자에서 발생되는 열로 인하여 열안정성이 낮은 분자는 결정 안정성이 낮아 재배열현상이 일어나게 되고, 결국 국부적으로 결정화가 발생되어 불균질 부분이 존재한다면, 전기장이 이 부분에 집중하여 소자의 열화 및 파괴를 가져오는 것으로 받아들여지기 때문이다. 따라서 유기층은 통상적으로 비결정질 상태로 사용된다. 더욱이, 유기 전기발광 소자는 전류주입형 소자이기 때문에, 만약 사용되는 재료가 낮은 유리전이온도(Tg)를 갖는다면, 사용 중 발생하는 열이 유기 전기발광 소자의 열화를 초래하여 소자의 수명을 단축시키게 된다. 이런 점에서, 높은 유리전이온도를 갖는 재료가 바람직하다.
In order to realize the organic electroluminescent device device, in addition to configuring the device in the above multilayer structure, the role of the device material, in particular, the hole transport material is very important. For long life devices, the hole transport material must be thermally and electrically stable. Because of the heat generated by the device when the voltage is applied, molecules with low thermal stability have low crystal stability, resulting in rearrangement. Finally, if localization occurs and an inhomogeneous part exists, the electric field concentrates on this part. This is because it is accepted to bring about deterioration and destruction of the device. Therefore, the organic layer is usually used in an amorphous state. Furthermore, since the organic electroluminescent device is a current injection type device, if the material used has a low glass transition temperature (Tg), the heat generated during use causes the organic electroluminescent device to deteriorate and shorten the life of the device. Let's go. In this respect, materials having a high glass transition temperature are preferred.

기존에 사용되고 있는 정공전달물질의 대표적인 예로는 CuPC[구리 프탈로시아닌], m-MTDATA[4,4',4"-트리스(N-3-메틸페닐-N-페닐아미노)-트리페닐아민], 하기 화학식 1의 2-TNATA[4,4',4"-트리스(N-(나프틸렌-2-일)-N-페닐아미노)-트리페닐아민], TPD[N,N'-디페닐-N,N'-디(3-메틸페닐)-4,4'-디아미노비페닐] 그리고 하기 화학식 2의 NPB[N,N'-디(나프탈렌-1-일)-N,N'-디페닐벤지딘] 등이 있다.Representative examples of hole-transfer materials used in the past include CuPC [copper phthalocyanine], m-MTDATA [4,4 ′, 4 ”-tris ( N- 3-methylphenyl- N -phenylamino) -triphenylamine], 2-TNATA [4,4 ', 4 "-tris ( N- (naphthylene-2-yl) -N -phenylamino) -triphenylamine] of 1, TPD [ N, N' -diphenyl- N, N' -di (3-methylphenyl) -4,4'-diaminobiphenyl] and NPB [ N, N' -di (naphthalen-1-yl) -N, N' -diphenylbenzidine] Etc.

[화학식 1] [화학식 2][Formula 1] [Formula 2]

Figure 112010039691519-pat00001
Figure 112010039691519-pat00002

Figure 112010039691519-pat00001
Figure 112010039691519-pat00002

그러나, CuPC는 금속착화합물이므로 ITO 기판과의 접착성이 우수하고 가장 안정하기 때문에 널리 사용되지만 가시광선 영역에서 흡수가 일어나므로 총 천연색을 구현하는 것이 어렵고, m-MTDATA나 2-TNATA는 유리전이온도가 78℃ 및 108℃로 낮을 뿐만 아니라 대량화 하는 과정에서 단점이 많이 발생하기 때문에, 이 역시 총 천연색을 구현하는 데는 문제점이 있다. 또한, TPD나 NPB도 유리전이온도(Tg)가 각각 60 ℃ 및 96 ℃로 낮기 때문에 상기와 같은 이유로 소자의 수명을 단축시킨다는 치명적인 단점이 있다.
However, since CuPC is a metal complex, it is widely used because it has excellent adhesion to ITO substrate and is the most stable, but it is difficult to realize total color due to absorption in the visible region, and m-MTDATA or 2-TNATA have a glass transition temperature. Since not only is low as 78 ℃ and 108 ℃ but also a lot of disadvantages in the process of mass production, this also has a problem in realizing the total color. In addition, TPD or NPB also has a fatal disadvantage of shortening the life of the device for the same reason because the glass transition temperature (Tg) as low as 60 ℃ and 96 ℃, respectively.

최근에는, 이들을 개량한 정공전달물질로서, 대한민국 등록특허 제10-0846586호에는 하기 화학식 3에 따른 화합물이 기재되어 있고, 대한민국 공개특허 제10-2009-0035729에는 하기 화학식 4에 따른 화합물이 기재되어 있다. 그러나, 이러한 화합물을 정공주입층 재료 또는 정공수송층 재료로 사용하였지만, 여전히 발광 효율이 충분하지 않다는 단점이 있다.Recently, as a hole transport material to improve these, the Republic of Korea Patent No. 10-0846586 describes a compound according to the following formula (3), Republic of Korea Patent Publication No. 10-2009-0035729 describes a compound according to the formula (4) have. However, although these compounds are used as the hole injection layer material or the hole transport layer material, there is still a disadvantage that the luminous efficiency is not sufficient.

[화학식 3] [화학식 4][Formula 3] [Formula 4]

Figure 112010039691519-pat00003
Figure 112010039691519-pat00004

Figure 112010039691519-pat00003
Figure 112010039691519-pat00004

상기와 같이 종래의 유기 전기발광 소자에 사용되는 정공전달물질은 여전히 많은 문제점을 내포하고 있으며, 우수한 물리적 특성을 가지는 성능 개량이 요구되고 있다. 따라서 유기 전기발광 소자의 발광효율을 향상시키고, 높은 열안정성과 높은 유리전이온도를 갖는 우수한 재료에 대한 개발이 절실히 요구된다.
As described above, the hole transport material used in the conventional organic electroluminescent device still contains many problems, and there is a demand for improved performance having excellent physical properties. Therefore, there is an urgent need for development of an excellent material having an improved luminous efficiency of an organic electroluminescent device and having high thermal stability and high glass transition temperature.

상기한 문제점을 해결하기 위한 본 발명은 높은 유리전이온도를 갖는 플루오레닐카바졸 화합물 유도체와 이것을 포함하는 유기 전기 발광 조성물, 유기 전기 발광 소자를 제공하는데 그 목적이 있다. 본 발명의 다른 목적은 유기 전기발광 소자의 발광 효율을 향상시키고 소자의 수명을 증가시킬 수 있는 우수한 열안정성을 가진 유기 전기발광 소자용 정공전달 물질 및 그 제조방법을 제공하는 것이다. 본 발명의 또 다른 목적은 높은 발광 효율을 나타내는 유기 전기발광 소자를 제공하는 것이다. 본 발명의 또 다른 목적은 연장된 수명을 갖는 유기 전기발광 소자를 제공하는 것이다.
The present invention for solving the above problems is to provide a fluorenyl carbazole compound derivative having a high glass transition temperature, an organic electroluminescent composition comprising the same, and an organic electroluminescent device. Another object of the present invention is to provide a hole transport material for an organic electroluminescent device having excellent thermal stability and a method of manufacturing the same, which can improve the luminous efficiency of the organic electroluminescent device and increase the lifetime of the device. Still another object of the present invention is to provide an organic electroluminescent device exhibiting high luminous efficiency. Another object of the present invention is to provide an organic electroluminescent device having an extended lifetime.

먼저, 본 발명은 유기 전기 발광 소자의 발광 재료로 사용되며, 하기 화학식 I로 표시되는 플루오레닐카바졸 유도체를 포함하는 것을 특징으로 하는 유기 전기 발광 조성물이다. First, the present invention is an organic electroluminescent composition, which is used as a light emitting material of an organic electroluminescent device and comprises a fluorenylcarbazole derivative represented by the following general formula (I).

[화학식 I][Formula I]

Figure 112010039691519-pat00005
Figure 112010039691519-pat00005

(상기 화학식 I에서, R1 및 R2는 각각 치환되거나 비치환된 아릴기, 또는 치환되거나 비치환된 헤테로아릴기이고, R3는 치환되거나 비치환된 아릴기, 치환되거나 비치환된 헤테로아릴기, 또는 알킬기이고, R4 및 R5는 각각 수소, 치환되거나 비치환된 아릴기, 치환되거나 비치환된 헤테로아릴기, 또는 알킬기이고, D는 치환되거나 비치환된 아릴렌기, 또는 치환되거나 비치환된 헤테로아릴렌기이다. 단, R1 및 R2는 모두 플루오렌기를 포함하지 않는다.)
(In Formula I, R1 and R2 are each a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group, R3 is a substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl group, or An alkyl group, R4 and R5 are each hydrogen, a substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl group, or an alkyl group, and D is a substituted or unsubstituted arylene group, or a substituted or unsubstituted heteroarylene group Provided that both R1 and R2 do not contain fluorene groups.)

본 발명의 다른 실시형태는 상술한 유기 전기 발광 조성물을 포함하여 이루어진 유기층을 하나 이상 포함하는 것을 특징으로 하는 유기 전기 발광 소자이다. 여기서, 상기 유기 전기 발광 소자는 유기 발광 다이오드, 유기 전계-효과 트랜지스터, 유기 박막 트랜지스터, 유기 레이저 다이오드, 유기 태양 전지, 유기 발광 전기화학 전지 또는 유기 집적 회로를 포함하고, 본 발명은 상기한 유기 발광 다이오드 등에 다양하게 적용될 수 있다는 것은 이 기술분야에서 보통의 지식을 가진자에게 명백하다.
Another embodiment of the invention is an organic electroluminescent device comprising at least one organic layer comprising the organic electroluminescent composition described above. Here, the organic electroluminescent device includes an organic light emitting diode, an organic field-effect transistor, an organic thin film transistor, an organic laser diode, an organic solar cell, an organic light emitting electrochemical cell, or an organic integrated circuit. It is apparent to those skilled in the art that various applications such as diodes can be made.

기타 다른 실시예들은 후술하는 발명의 상세한 설명 및 도면에 기재되어 있다.
Other embodiments are described in the detailed description and drawings below.

본 발명에 따른 플루오레닐카바졸 유도체는 140℃ 이상의 높은 유리전이온도와 높은 열분해 온도를 갖고 있기 때문에 열적 안정성이 우수하고, 이것을 포함하는 조성물을 유기 전기 발광 소자의 정공전달물질 등으로 사용하여 발광특성을 평가한 결과, 기존의 정공전달물질인 상기 화학식 1 내지 화학식 4보다 전류 밀도, 휘도, 최고 휘도 그리고 발광 효율 여러 면에서 우수한 발광 특성을 나타내었다.
The fluorenylcarbazole derivatives according to the present invention have excellent thermal stability because they have a high glass transition temperature and a high pyrolysis temperature of 140 ° C. or higher, and emit light using a composition including the same as a hole transport material of an organic electroluminescent device. As a result of evaluating the characteristics, the present invention showed better emission characteristics in terms of current density, luminance, highest luminance, and luminous efficiency than those of Chemical Formulas 1 to 4.

이에 따라, 본 발명에 따른 플루오레닐카바졸 유도체를 정공전달물질 등으로 사용하여 유기 전기발광 소자를 제작하면, 기존의 유기 전기발광 소자의 가장 큰 단점인 발광 휘도와 발광 효율이 낮은 문제를 동시에 해결할 수 있을 뿐만 아니라, 유리전이온도도 높기 때문에 유기 전기발광 소자의 열적 안정성까지 뛰어나므로, 고성능의 유기 전기발광 소자의 제작이 가능할 뿐만 아니라 고효율, 고휘도 및 장수명이 요구되는 총천연색의 유기 전기발광 소자의 상용화에 크게 기여할 수 있다.
Accordingly, when an organic electroluminescent device is manufactured using the fluorenylcarbazole derivative according to the present invention as a hole transporting material, the problem of low emission luminance and low luminous efficiency, which is the biggest disadvantage of the conventional organic electroluminescent device, is simultaneously achieved. In addition to the high glass transition temperature, the thermal stability of the organic electroluminescent device is excellent. Therefore, it is not only possible to manufacture a high-performance organic electroluminescent device, but also to achieve a high efficiency, high brightness, and a long life. It can greatly contribute to commercialization.

도 1은 본 발명의 일 실시예에 따른 화학식 12의 플루오레닐카바졸 유도체에 대한 UV/Vis. 및 형광 스펙트럼 그래프이다.
도 2는 본 발명의 일 실시예에 따른 화학식 12의 플루오레닐카바졸 유도체에 대한 시차주사열량계(DSC) 곡선 그래프이다.
도 3은 본 발명의 일 실시예에 따른 화학식 37의 플루오레닐카바졸 유도체에 대한 UV/Vis. 및 형광 스펙트럼 그래프이다.
도 4는 본 발명의 일 실시예에 따른 화학식 37의 플루오레닐카바졸 유도체에 대한 시차주사열량계(DSC) 곡선 그래프이다.
도 5는 본 발명의 일 실시예에 따른 플루오레닐카바졸 유도체를 이용하여 제작된 유기 전기발광 소자의 다층 구조를 나타내는 도면이다.
1 is a UV / Vis for the fluorenyl carbazole derivative of formula 12 according to an embodiment of the present invention. And fluorescence spectral graphs.
2 is a differential scanning calorimetry (DSC) curve graph of the fluorenylcarbazole derivative of Formula 12 according to an embodiment of the present invention.
Figure 3 is a UV / Vis for the fluorenyl carbazole derivative of formula 37 according to an embodiment of the present invention. And fluorescence spectral graphs.
4 is a differential scanning calorimetry (DSC) curve graph of the fluorenylcarbazole derivative of Formula 37 according to an embodiment of the present invention.
5 is a diagram showing a multilayer structure of an organic electroluminescent device manufactured using a fluorenylcarbazole derivative according to an embodiment of the present invention.

본 발명은 유기 전기 발광 소자에서 정공전달물질 또는 유기 전기 발광 재료로써 사용하기에 유용한 하기 화학식 I로 표시되는 플루오레닐카바졸 유도체로써, 이러한 플루오레닐카바졸 유도체는 높은 유리 전이 온도와 우수한 정공 주입, 수송 능력을 갖고 있기 때문에, 이를 정공전달물질 등으로 사용하여 유기 전기 발광 소자를 제작하면 발광 효율을 높이고 소자의 수명을 증가시킬 수 있는 것이다.The present invention is a fluorenylcarbazole derivative represented by the following formula (I), which is useful for use as a hole transport material or an organic electroluminescent material in an organic electroluminescent device, and such fluorenylcarbazole derivatives have high glass transition temperature and excellent hole Since the organic electroluminescent device is manufactured by using it as a hole transporting material, it is possible to increase the luminous efficiency and increase the lifespan of the device.

[화학식 I][Formula I]

Figure 112010039691519-pat00006
Figure 112010039691519-pat00006

(상기 화학식 I에서, R1 및 R2는 각각 치환되거나 비치환된 아릴기, 또는 치환되거나 비치환된 헤테로아릴기이고, R3는 치환되거나 비치환된 아릴기, 치환되거나 비치환된 헤테로아릴기, 또는 알킬기이고, R4 및 R5는 각각 수소, 치환되거나 비치환된 아릴기, 치환되거나 비치환된 헤테로아릴기, 또는 알킬기이고, D는 치환되거나 비치환된 아릴렌기, 또는 치환되거나 비치환된 헤테로아릴렌기이다. 단, R1 및 R2는 모두 플루오렌기를 포함하지 않는다.)
(In Formula I, R1 and R2 are each a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group, R3 is a substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl group, or An alkyl group, R4 and R5 are each hydrogen, a substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl group, or an alkyl group, and D is a substituted or unsubstituted arylene group, or a substituted or unsubstituted heteroarylene group Provided that both R1 and R2 do not contain fluorene groups.)

상기 화학식 I 에서, 치환되거나 비치환된 아릴기라 함은, 특정한 작용기에 의해 치환되거나 또는 어떠한 작용기에 의해서도 치환되지 않은 아릴기를 뜻하며, 이러한 아릴기의 예로써는 페닐기, 나프틸기, 페난트릴기, 안트릴기, 비페닐기, 터페닐기, 플루오렌기 등을 포함한다.
In the above formula (I), the substituted or unsubstituted aryl group means an aryl group which is substituted by a specific functional group or is not substituted by any functional group, and examples of such an aryl group are phenyl group, naphthyl group, phenanthryl group and anthryl Groups, biphenyl groups, terphenyl groups, fluorene groups and the like.

이에 따라, 상기 화학식 I의 구조를 갖는 플루오레닐카바졸 유도체로서, 특별히 높은 발광효율과 긴 수명의 유기 전기 발광 소자를 가능하게 하는 구체적인 예는 하기 화학식 11 내지 화학식 62에서 선택된 화합물을 포함한다. 하지만 본 발명은 이들로 한정되지는 않는다.Accordingly, specific examples of the fluorenylcarbazole derivative having the structure of Formula (I), which enables the organic electroluminescent device having a particularly high luminous efficiency and long life, include a compound selected from the following Chemical Formulas 11 to 62. However, the present invention is not limited to these.

[화학식 11] [화학식 12][Formula 11] [Formula 12]

Figure 112010039691519-pat00007
Figure 112010039691519-pat00008
Figure 112010039691519-pat00007
Figure 112010039691519-pat00008

[화학식 13] [화학식 14][Formula 13] [Formula 14]

Figure 112010039691519-pat00009
Figure 112010039691519-pat00010
Figure 112010039691519-pat00009
Figure 112010039691519-pat00010

[화학식 15] [화학식 16][Formula 15] [Formula 16]

Figure 112010039691519-pat00011
Figure 112010039691519-pat00012
Figure 112010039691519-pat00011
Figure 112010039691519-pat00012

[화학식 17] [화학식 18][Formula 17] [Formula 18]

Figure 112010039691519-pat00013
Figure 112010039691519-pat00014
Figure 112010039691519-pat00013
Figure 112010039691519-pat00014

[화학식 19] [화학식 20][Formula 19] [Formula 20]

Figure 112010039691519-pat00015
Figure 112010039691519-pat00016
Figure 112010039691519-pat00015
Figure 112010039691519-pat00016

[화학식 21] [화학식 22][Formula 21] [Formula 22]

Figure 112010039691519-pat00017
Figure 112010039691519-pat00018
Figure 112010039691519-pat00017
Figure 112010039691519-pat00018

[화학식 23] [화학식 24][Formula 23] [Formula 24]

Figure 112010039691519-pat00019
Figure 112010039691519-pat00020
Figure 112010039691519-pat00019
Figure 112010039691519-pat00020

[화학식 25] [화학식 26][Formula 25] [Formula 26]

Figure 112010039691519-pat00021
Figure 112010039691519-pat00022
Figure 112010039691519-pat00021
Figure 112010039691519-pat00022

[화학식 27] [화학식 28][Formula 27] [Formula 28]

Figure 112010039691519-pat00023
Figure 112010039691519-pat00024
Figure 112010039691519-pat00023
Figure 112010039691519-pat00024

[화학식 29] [화학식 30][Formula 29] [Formula 30]

Figure 112010039691519-pat00025
Figure 112010039691519-pat00026
Figure 112010039691519-pat00025
Figure 112010039691519-pat00026

[화학식 31] [화학식 32][Formula 31] [Formula 32]

Figure 112010039691519-pat00027
Figure 112010039691519-pat00028
Figure 112010039691519-pat00027
Figure 112010039691519-pat00028

[화학식 33] [화학식 34][Formula 33] [Formula 34]

Figure 112010039691519-pat00029
Figure 112010039691519-pat00030
Figure 112010039691519-pat00029
Figure 112010039691519-pat00030

[화학식 35] [화학식 36][Formula 35] [Formula 36]

Figure 112010039691519-pat00031
Figure 112010039691519-pat00032
Figure 112010039691519-pat00031
Figure 112010039691519-pat00032

[화학식 37] [화학식 38][Formula 37] [Formula 38]

Figure 112010039691519-pat00033
Figure 112010039691519-pat00034
Figure 112010039691519-pat00033
Figure 112010039691519-pat00034

[화학식 39] [화학식 40][Formula 39] [Formula 40]

Figure 112010039691519-pat00035
Figure 112010039691519-pat00036
Figure 112010039691519-pat00035
Figure 112010039691519-pat00036

[화학식 41] [화학식 42][Formula 41] [Formula 42]

Figure 112010039691519-pat00037
Figure 112010039691519-pat00038
Figure 112010039691519-pat00037
Figure 112010039691519-pat00038

[화학식 43] [화학식 44][Formula 43] [Formula 44]

Figure 112010039691519-pat00039
Figure 112010039691519-pat00040
Figure 112010039691519-pat00039
Figure 112010039691519-pat00040

[화학식 45] [화학식 46][Formula 45] [Formula 46]

Figure 112010039691519-pat00041
Figure 112010039691519-pat00042
Figure 112010039691519-pat00041
Figure 112010039691519-pat00042

[화학식 47] [화학식 48][Formula 47] [Formula 48]

Figure 112010039691519-pat00043
Figure 112010039691519-pat00044
Figure 112010039691519-pat00043
Figure 112010039691519-pat00044

[화학식 49] [화학식 50][Formula 49] [Formula 50]

Figure 112010039691519-pat00045
Figure 112010039691519-pat00046
Figure 112010039691519-pat00045
Figure 112010039691519-pat00046

[화학식 51] [화학식 52][Formula 51] [Formula 52]

Figure 112010039691519-pat00047
Figure 112010039691519-pat00048
Figure 112010039691519-pat00047
Figure 112010039691519-pat00048

[화학식 53] [화학식 54][Formula 53] [Formula 54]

Figure 112010039691519-pat00049
Figure 112010039691519-pat00050
Figure 112010039691519-pat00049
Figure 112010039691519-pat00050

[화학식 55] [화학식 56][Formula 55] [Formula 56]

Figure 112010039691519-pat00051
Figure 112010039691519-pat00052
Figure 112010039691519-pat00051
Figure 112010039691519-pat00052

[화학식 57] [화학식 58][Formula 57] [Formula 58]

Figure 112010039691519-pat00053
Figure 112010039691519-pat00054
Figure 112010039691519-pat00053
Figure 112010039691519-pat00054

[화학식 59] [화학식 60][Formula 59] [Formula 60]

Figure 112010039691519-pat00055
Figure 112010039691519-pat00056
Figure 112010039691519-pat00055
Figure 112010039691519-pat00056

[화학식 61] [화학식 62][Formula 61] [Formula 62]

Figure 112010039691519-pat00057
Figure 112010039691519-pat00058

Figure 112010039691519-pat00057
Figure 112010039691519-pat00058

본 발명은 상기와 같이 유기 전기 발광 소자의 발광 재료로 사용될 수 있는 플루오레닐카바졸 유도체이거나 이를 포함하는 유기 발광 조성물 또는 유기 발광 재료일 수 있다. 이러한 유도체, 조성물 또는 재료를 유기 전기 발광 소자의 정공전달물질로 사용하면 고 발광효율을 얻을 수 있고, 상기 플루오레닐카바졸 유도체의 유리전이 온도가 높기 때문에 우수한 내구성을 갖는 소자를 제작할 수 있다. 여기에서 상기 정공전달물질은 정공주입층 또는 정공수송층에 사용되는 물질을 말하며, 일부 경우에는 발광층에 사용하는 물질일 수도 있다.
The present invention may be an organic light emitting composition or an organic light emitting material or a fluorenylcarbazole derivative which may be used as a light emitting material of an organic electroluminescent device as described above. The use of such derivatives, compositions, or materials as hole transporting materials for organic electroluminescent devices yields high luminous efficiency, and because of the high glass transition temperature of the fluorenylcarbazole derivatives, devices with excellent durability can be fabricated. Here, the hole transport material refers to a material used for the hole injection layer or the hole transport layer, in some cases may be a material used for the light emitting layer.

그리고, 본 발명에 따른 플루오레닐카바졸 유도체들은 고순도를 요구하는 유기 전기 발광 소자의 특성상 재결정과 승화법을 이용하여 정제를 하는 것도 가능하다.
In addition, the fluorenylcarbazole derivatives according to the present invention may be purified using recrystallization and sublimation methods due to the characteristics of the organic electroluminescent device requiring high purity.

이하, 본 발명을 실시예와 비교예를 참조하여 더욱 상세히 설명한다. 본 발명은 하기의 실시예와 비교예에 의하여 보다 더 잘 이해될 수 있으며, 하기의 실시예는 본 발명을 예시하기 위한 것이며 첨부된 특허청구범위에 의하여 한정되는 보호범위를 제한하고자 하는 것은 아니다.
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. The invention can be better understood by the following examples and comparative examples, which are intended to illustrate the invention and are not intended to limit the scope of protection defined by the appended claims.

[실시예 1] 화학식 11의 제조Example 1 Preparation of Chemical Formula 11

본 발명에서 상기 화학식 I로 표시되는 플루오레닐카바졸 유도체는 하기 반응식 1과 같은 합성 경로에 의해 제조할 수 있다. In the present invention, the fluorenylcarbazole derivative represented by Chemical Formula I may be prepared by a synthetic route as in Scheme 1 below.

[반응식 1]
[Reaction Scheme 1]

1-1. 화학식 103의 제조1-1. Preparation of Chemical Formula 103

3000-mL, 4구 둥근바닥플라스크에 질소 분위기 하에서 카바졸 (화학식 101) 200 g (1.196 mol), 2-브로모-9,9-디메틸-9H-플루오렌 (화학식 102) 343 g, 팔라디움 아세테이트(II) 1.3 g, 트리-(t-부틸)포스핀 (50% 헥산용액) 1.8 g, 소디움 t-부톡시드 150 g 그리고 O-자일렌 2000 mL를 투입하였다. 반응액을 8시간 동안 환류 시킨 후 실온으로 냉각하고 과량의 메탄올에 부어 고체를 석출시켰다. 얻어진 고체를 여과하고 진공건조하여 목적화합물 340 g (수율 79%)을 얻었다.200 g (1.196 mol) of carbazole (101), 343 g of 2-bromo-9,9-dimethyl-9 H -fluorene (102) in a 3000-mL, four-necked round bottom flask under nitrogen atmosphere 1.3 g of acetate (II), 1.8 g of tri- (t-butyl) phosphine (50% hexane solution), 150 g of sodium t-butoxide and 2000 mL of O-xylene were added. The reaction solution was refluxed for 8 hours, cooled to room temperature and poured into excess methanol to precipitate a solid. The obtained solid was filtered and dried in vacuo to give 340 g (yield 79%) of the title compound.

1H NMR (400 MHz, DMSO-d 6): δ 8.25 (d, J = 8.0 Hz, 2H), 8.09 (d, J = 7.6 Hz, 1H), 7.93 (d, J = 8.0 Hz, 1H), 7.84 (s, 1H), 7.60-7.56 (m, 2H), 7.47-7.34 (m, 6H), 7.31-7.27 (m, 2H), 1.53 (s, 6H).
1 H NMR (400 MHz, DMSO- d 6 ): δ 8.25 (d, J = 8.0 Hz, 2H), 8.09 (d, J = 7.6 Hz, 1H), 7.93 (d, J = 8.0 Hz, 1H), 7.84 (s, 1H), 7.60-7.56 (m, 2H), 7.47-7.34 (m, 6H), 7.31-7.27 (m, 2H), 1.53 (s, 6H).

1-2. 화학식 104의 제조1-2. Preparation of Formula 104

10000-mL, 5구 둥근바닥플라스크에 실시예 1-1에서 제조한 화학식 103 화합물 200 g (0.556 mol)을 투입하고 클로로포름 4000 mL로 희석시켰다. 이 희석액을 0℃로 냉각 후 N-브로모숙신이미드 (NBS) 99 g을 서서히 투입하고 3시간동안 교반시켰다. 반응액에 증류수 4000 mL를 투입 후 30분간 교반한 다음 유기층을 분리하였다. 분리된 유기층을 건조 후 농축한 다음 아세톤과 메탄올로 재결정하고 진공건조하여 목적화합물 183 g (수율 75%)을 얻었다.200 g (0.556 mol) of the compound of formula 103 prepared in Example 1-1 were added to a 10000-mL, 5-neck round bottom flask and diluted with 4000 mL of chloroform. The diluent was cooled to 0 ° C., and then 99 g of N -bromosuccinimide (NBS) was slowly added thereto and stirred for 3 hours. 4000 mL of distilled water was added to the reaction solution, stirred for 30 minutes, and the organic layer was separated. The separated organic layer was dried, concentrated and then recrystallized with acetone and methanol and dried in vacuo to give 183 g (yield 75%) of the title compound.

1H NMR (400 MHz, DMSO-d 6): δ 8.52 (s, 1H), 8.32 (d, J = 8.0 Hz, 1H), 8.10 (d, J = 8.4 Hz, 1H), 7.93 (d, J = 8.0 Hz, 1H), 7.86 (s, 1H), 7.62-7.54 (m, 3H), 7.50-7.35 (m, 6H), 1.53 (s, 6H).
1 H NMR (400 MHz, DMSO- d 6 ): δ 8.52 (s, 1H), 8.32 (d, J = 8.0 Hz, 1H), 8.10 (d, J = 8.4 Hz, 1H), 7.93 (d, J = 8.0 Hz, 1H), 7.86 (s, 1H), 7.62-7.54 (m, 3H), 7.50-7.35 (m, 6H), 1.53 (s, 6H).

1-3. 화학식 105의 제조1-3. Preparation of Formula 105

5000-mL, 5구 둥근바닥플라스크에 실시예 1-2에서 제조한 화학식 104 화합물 150 g (0.342 mol)을 투입하고 테트라하이드로퓨란 3500 mL로 희석시켰다. 이 희석액에 벤젠보론 산 50 g, 3M-탄산칼륨 수용액 342 mL 그리고 테트라키스(트리페닐포스핀)팔라디움(0) 5.1 g을 투입 후 반응액을 1일 동안 환류시켰다. 반응액을 실온으로 냉각 후 테트라하이드로퓨란을 농축한 다음 메탄올을 가하여 석출된 고체를 진공 여과하였다. 모아진 고체 화합물을 진공건조하여 목적화합물 137 g (수율 92%)을 얻었다.150 g (0.342 mol) of the compound of Formula 104 prepared in Example 1-2 were added to a 5000-mL, 5-neck round bottom flask and diluted with 3500 mL of tetrahydrofuran. 50 g of benzeneboronic acid, 342 mL of 3M-potassium carbonate aqueous solution and 5.1 g of tetrakis (triphenylphosphine) palladium (0) were added to the diluent, and the reaction solution was refluxed for 1 day. After cooling the reaction solution to room temperature, tetrahydrofuran was concentrated, methanol was added, and the precipitated solid was vacuum filtered. The collected solid compound was vacuum dried to obtain 137 g (yield 92%) of the title compound.

1H NMR (400 MHz, DMSO-d 6): δ 8.45 (s, 1H), 8.24 (d, J = 7.6 Hz, 1H), 7.97 (d, J = 8.0 Hz, 1H), 7.79 (d, J = 7.2 Hz, 1H), 7.75 (s, 1H), 7.70-7.61 (m, 3H), 7.50-7.46 (m, 3H), 7.42-7.30 (m, 5H), 7.29-7.16 (m, 3H), 1.53 (s, 6H).
1 H NMR (400 MHz, DMSO- d 6 ): δ 8.45 (s, 1H), 8.24 (d, J = 7.6 Hz, 1H), 7.97 (d, J = 8.0 Hz, 1H), 7.79 (d, J = 7.2 Hz, 1H), 7.75 (s, 1H), 7.70-7.61 (m, 3H), 7.50-7.46 (m, 3H), 7.42-7.30 (m, 5H), 7.29-7.16 (m, 3H), 1.53 (s, 6 H).

1-4. 화학식 106의 제조1-4. Preparation of Formula 106

10000-mL, 5구 둥근바닥플라스크에 실시예 1-3에서 제조한 화학식 105 화합물 128 g (0.294 mol)을 투입하고 클로로포름 2500 mL로 희석시켰다. 이 희석액을 0 ℃로 냉각 후 N-브로모숙신이미드 (NBS) 53 g 을 서서히 투입하고 6시간동안 교반시켰다. 반응액에 증류수 2500 mL를 투입 후 30분간 교반한 다음 유기층을 분리하였다. 분리된 유기층을 건조 후 농축한 다음 아세톤과 메탄올로 재결정하고 진공건조하여 목적화합물 129 g (수율 85%)을 얻었다.Into a 10000-mL, five-necked round bottom flask, 128 g (0.294 mol) of the Formula 105 compound prepared in Example 1-3 were added and diluted with 2500 mL of chloroform. After cooling the dilution solution to 0 ° C., 53 g of N -bromosuccinimide (NBS) was slowly added thereto, followed by stirring for 6 hours. 2500 mL of distilled water was added to the reaction solution, stirred for 30 minutes, and the organic layer was separated. The separated organic layer was dried, concentrated and then recrystallized with acetone and methanol and dried in vacuo to give 129 g (yield 85%) of the title compound.

1H NMR (400 MHz, DMSO-d 6): δ 8.69 (s, 1H), 8.63 (s, 1H), 8.10 (d, J = 7.6 Hz, 1H), 7.93 (d, J = 6.4 Hz, 1H), 7.88 (s, 1H), 7.81-7.78 (m, 3H), 7.59 (s, 3H), 7.48-7.46 (m, 3H), 7.39-7.35 (m, 4H), 1.53 (s, 6H).
1 H NMR (400 MHz, DMSO- d 6 ): δ 8.69 (s, 1H), 8.63 (s, 1H), 8.10 (d, J = 7.6 Hz, 1H), 7.93 (d, J = 6.4 Hz, 1H ), 7.88 (s, 1H), 7.81-7.78 (m, 3H), 7.59 (s, 3H), 7.48-7.46 (m, 3H), 7.39-7.35 (m, 4H), 1.53 (s, 6H).

1-5. 화학식 107의 제조1-5. Preparation of Formula 107

3000-mL, 4구 둥근바닥플라스크에 실시예 1-4에서 제조한 화학식 106 화합물 100 g (0.194 mol)을 투입하고 테트라하이드로퓨란 2000 mL로 희석시켰다. 이 희석액에 4-클로로벤젠보론 산 35 g, 3M-탄산칼륨 수용액 194 mL 그리고 테트라키스(트리페닐포스핀)팔라디움(0) 5 g을 투입 후 반응액을 1일 동안 환류시켰다. 반응액을 실온으로 냉각 후 테트라하이드로퓨란을 농축한 다음 메탄올을 가하여 석출된 고체를 진공 여과하였다. 모아진 고체 화합물을 진공건조하여 목적화합물 89 g (수율 84%)을 얻었다.100 g (0.194 mol) of the formula 106 compound prepared in Example 1-4 were added to a 3000-mL, four-necked round bottom flask, and diluted with 2000 mL of tetrahydrofuran. 35 g of 4-chlorobenzeneboronic acid, 194 mL of 3M-potassium carbonate aqueous solution, and 5 g of tetrakis (triphenylphosphine) palladium (0) were added to the diluent, and the reaction solution was refluxed for 1 day. After cooling the reaction solution to room temperature, tetrahydrofuran was concentrated, methanol was added, and the precipitated solid was vacuum filtered. The collected solid compound was vacuum dried to obtain 89 g (yield 84%) of the title compound.

1H NMR (400 MHz, DMSO-d 6): 8.76 (d, J = 11.6 Hz, 2H), 8.11 (d, J = 8 Hz, 1H), 7.94-7.90 (m, 2H), 7.85-7.78 (m, 6H), 7.61-7.42 (m, 7H), 7.38-7.35 (m, 4H), 1.55 (s, 6H).
1 H NMR (400 MHz, DMSO- d 6 ): 8.76 (d, J = 11.6 Hz, 2H), 8.11 (d, J = 8 Hz, 1H), 7.94-7.90 (m, 2H), 7.85-7.78 ( m, 6H), 7.61-7.42 (m, 7H), 7.38-7.35 (m, 4H), 1.55 (s, 6H).

1-6. 화학식 11의 제조1-6. Preparation of Formula 11

1000-mL, 4구 둥근바닥플라스크에 질소 분위기 하에서 실시예 1-5에서 제조한 화학식 107 화합물 40 g (0.073 mol), 디페닐아민 13.6 g, 팔라디움 아세테이트(II) 0.08 g, 트리-(t-부틸)포스핀 (50% 헥산용액) 0.3 g, 소디움 t-부톡시드 9 g 그리고 o-자일렌 400 mL를 투입하였다. 반응액을 3시간 동안 환류 시킨 후 냉각하고 과량의 메탄올에 부어 고체를 석출시켰다. 얻어진 고체를 여과하고 진공건조하여 목적화합물 45 g (수율 91%)을 얻었다. MS(m/z, [M]+): C51H38N2: 678.47
40 g (0.073 mol) of Formula 107 compound prepared in Example 1-5 in a 1000-mL, four-necked round bottom flask under nitrogen atmosphere, 13.6 g of diphenylamine, 0.08 g of palladium acetate (II), tri- (t- 0.3 g of butyl) phosphine (50% hexane solution), 9 g of sodium t-butoxide and 400 mL of o-xylene were added. The reaction solution was refluxed for 3 hours, cooled, and poured into excess methanol to precipitate a solid. The obtained solid was filtered and dried under vacuum to obtain 45 g (yield 91%) of the title compound. MS ( m / z , [M] + ): C51H38N2: 678.47

[실시예 2] 화학식 12의 제조Example 2 Preparation of Chemical Formula 12

Figure 112010039691519-pat00059
Figure 112010039691519-pat00059

1000-mL, 4구 둥근바닥플라스크에 질소 분위기 하에서 실시예 1-5에서 제조한 화학식 107 화합물 40 g (0.073 mol), N-페닐-1-나프틸아민 17.7 g, 팔라디움 아세테이트(II) 0.08 g, 트리-(t-부틸)포스핀 (50% 헥산용액) 0.3 g, 소디움 t-부톡시드 9 g 그리고 o-자일렌 400 mL를 투입하였다. 반응액을 3시간 동안 환류 시킨 후 냉각하고 과량의 메탄올에 부어 고체를 석출시켰다. 얻어진 고체를 여과하고 진공건조하여 목적화합물 42 g (수율 79%)을 얻었다.40 g (0.073 mol) of Formula 107 compound prepared in Example 1-5 in a 1000-mL, four-necked round bottom flask under nitrogen atmosphere, 17.7 g of N -phenyl-1-naphthylamine, 0.08 g of palladium acetate (II) 0.3 g of tri- (t-butyl) phosphine (50% hexane solution), 9 g of sodium t-butoxide and 400 mL of o-xylene were added. The reaction solution was refluxed for 3 hours, cooled, and poured into excess methanol to precipitate a solid. The obtained solid was filtered and dried in vacuo to give 42 g (yield 79%) of the title compound.

1H NMR (400 MHz, DMSO-d 6): δ 8.67 (d, J = 8.4 Hz, 2H), 8.11 (d, J = 8.4 Hz, 2H), 8.01 (d, J = 8 Hz, 2H), 7.94-7.77 (m, 7H), 7.73-7.69 (m, 3H), 7.63-7.57 (m, 3H), 7.54-7.32 (m, 10H), 7.25 (t, J = 7.2 Hz, 2H), 7.04-6.94 (m, 5H), 1.53 (s, 6H). 1 H NMR (400 MHz, DMSO- d 6 ): δ 8.67 (d, J = 8.4 Hz, 2H), 8.11 (d, J = 8.4 Hz, 2H), 8.01 (d, J = 8 Hz, 2H), 7.94-7.77 (m, 7H), 7.73-7.69 (m, 3H), 7.63-7.57 (m, 3H), 7.54-7.32 (m, 10H), 7.25 (t, J = 7.2 Hz, 2H), 7.04- 6.94 (m, 5 H), 1.53 (s, 6 H).

UV (λmax) : 328 nm PL : 445 nm (도 1 참조)UV (λ max ): 328 nm PL: 445 nm (see Fig. 1)

유리전이온도 (Tg, DSC에 의한 측정) : 148 ℃ (도 2 참조)
Glass transition temperature (measured by Tg, DSC): 148 ℃ (see Figure 2)

[실시예 3] 화학식 13의 제조Example 3 Preparation of Chemical Formula 13

Figure 112010039691519-pat00060
Figure 112010039691519-pat00060

1000-mL, 4구 둥근바닥플라스크에 질소 분위기 하에서 실시예 1-5에서 제조한 화학식 107 화합물 40 g (0.073 mol), N-페닐-2-나프틸아민 17.7 g, 팔라디움 아세테이트(II) 0.08 g, 트리-(t-부틸)포스핀 (50% 헥산용액) 0.3 g, 소디움 t-부톡시드 9 g 그리고 o-자일렌 400 mL를 투입하였다. 반응액을 3시간 동안 환류 시킨 후 냉각하고 과량의 메탄올에 부어 고체를 석출시켰다. 얻어진 고체를 여과하고 진공건조하여 목적화합물 46 g (수율 87%)을 얻었다.40 g (0.073 mol) of Formula 107 compound prepared in Example 1-5, 17.7 g of N -phenyl-2-naphthylamine, 0.08 g of palladium acetate (II) in a 1000-mL, four-necked round bottom flask under nitrogen atmosphere 0.3 g of tri- (t-butyl) phosphine (50% hexane solution), 9 g of sodium t-butoxide and 400 mL of o-xylene were added. The reaction solution was refluxed for 3 hours, cooled, and poured into excess methanol to precipitate a solid. The obtained solid was filtered and dried in vacuo to give 46 g (yield 87%) of the title compound.

1H NMR (400 MHz, DMSO-d 6): δ 8.72 (s, 2H), 8.11 (d, J = 8.0 Hz ,1H), 7.94-7.91 (m, 2H), 7.86-7.76 (m, 8H), 7.71 (d, J = 8.0 Hz ,1H), 7.64-7.59 (m, 2H), 7.51-7.25 (m, 12H), 7.17-7.06 (m, 6H), 1.54 (s, 6H). 1 H NMR (400 MHz, DMSO- d 6 ): δ 8.72 (s, 2H), 8.11 (d, J = 8.0 Hz, 1H), 7.94-7.91 (m, 2H), 7.86-7.76 (m, 8H) , 7.71 (d, J = 8.0 Hz, 1H), 7.64-7.59 (m, 2H), 7.51-7.25 (m, 12H), 7.17-7.06 (m, 6H), 1.54 (s, 6H).

UV (λmax) : 330 nm PL : 424 nmUV (λ max ): 330 nm PL: 424 nm

유리전이온도 (Tg, DSC에 의한 측정) : 144 ℃
Glass transition temperature (measured by Tg, DSC): 144 ℃

[실시예 4] 화학식 21의 제조Example 4 Preparation of Chemical Formula 21

Figure 112010039691519-pat00061
Figure 112010039691519-pat00061

1000-mL, 4구 둥근바닥플라스크에 질소 분위기 하에서 실시예 1-5에서 제조한 화학식 107 화합물 40 g (0.073 mol), 디(2-나프틸)아민 21.7 g, 팔라디움 아세테이트(II) 0.08 g, 트리-(t-부틸)포스핀 (50% 헥산용액) 0.3 g, 소디움 t-부톡시드 9 g 그리고 o-자일렌 400 mL를 투입하였다. 반응액을 5시간 동안 환류 시킨 후 냉각하고 과량의 메탄올에 부어 고체를 석출시켰다. 얻어진 고체를 여과하고 진공건조하여 목적화합물 46 g (수율 81%)을 얻었다. MS(m/z, [M]+): C59H42N2: 778.46
40 g (0.073 mol) of Formula 107 compound prepared in Example 1-5 in a 1000-mL, four-necked round bottom flask under nitrogen atmosphere, 21.7 g of di (2-naphthyl) amine, 0.08 g of palladium acetate (II), 0.3 g of tri- (t-butyl) phosphine (50% hexane solution), 9 g of sodium t-butoxide and 400 mL of o-xylene were added. The reaction solution was refluxed for 5 hours, cooled, and poured into excess methanol to precipitate a solid. The obtained solid was filtered and dried in vacuo to give 46 g (yield 81%) of the title compound. MS ( m / z , [M] + ): C59H42N2: 778.46

[실시예 5] 화학식 22의 제조Example 5 Preparation of Chemical Formula 22

Figure 112010039691519-pat00062
Figure 112010039691519-pat00062

1000-mL, 4구 둥근바닥플라스크에 질소 분위기 하에서 실시예 1-5에서 제조한 화학식 107 화합물 40 g (0.073 mol), N-(4-비페닐)-2-나프틸아민 23.8 g, 팔라디움 아세테이트(II) 0.08 g, 트리-(t-부틸)포스핀 (50% 헥산용액) 0.3 g, 소디움 t-부톡시드 9 g 그리고 o-자일렌 400 mL를 투입하였다. 반응액을 3시간 동안 환류 시킨 후 냉각하고 과량의 메탄올에 부어 고체를 석출시켰다. 얻어진 고체를 여과하고 진공건조하여 목적화합물 45 g (수율 76%)을 얻었다.40 g (0.073 mol) of Formula 107 compound prepared in Example 1-5, 23.8 g of N- (4-biphenyl) -2-naphthylamine, palladium acetate, prepared in Example 1-5 in a 1000-mL, four-neck round bottom flask. (II) 0.08 g, tri- (t-butyl) phosphine (50% hexane solution) 0.3 g, sodium t-butoxide 9 g and 400 mL of o-xylene were added. The reaction solution was refluxed for 3 hours, cooled, and poured into excess methanol to precipitate a solid. The obtained solid was filtered and dried in vacuo to give 45 g (yield 76%) of the title compound.

1H NMR (400 MHz, DMSO-d 6): δ 8.73 (s, 2H), 8.08 (d, J = 8 Hz, 1H), 7.92-7.71 (m, 11H), 7.63-7.56 (m, 6H), 7.52-7.27 (m, 14H), 7.15 (dd, J = 13.6, 8.4 Hz, 4H), 1.53 (s, 6H). 1 H NMR (400 MHz, DMSO- d 6 ): δ 8.73 (s, 2H), 8.08 (d, J = 8 Hz, 1H), 7.92-7.71 (m, 11H), 7.63-7.56 (m, 6H) , 7.52-7.27 (m, 14H), 7.15 (dd, J = 13.6, 8.4 Hz, 4H), 1.53 (s, 6H).

UV(λmax) : 339 nm PL : 428 nmUV (λ max ): 339 nm PL: 428 nm

유리전이온도 (Tg, DSC에 의한 측정) : 158 ℃
Glass transition temperature (measured by Tg, DSC): 158 ℃

[실시예 6] 화학식 25의 제조Example 6 Preparation of Chemical Formula 25

Figure 112010039691519-pat00063
Figure 112010039691519-pat00063

1000-mL, 4구 둥근바닥플라스크에 질소 분위기 하에서 실시예 1-5에서 제조한 화학식 107 화합물 40 g (0.073 mol), 디(4-비페닐)아민 25.9 g, 팔라디움 아세테이트(II) 0.08 g, 트리-(t-부틸)포스핀 (50% 헥산용액) 0.3 g, 소디움 t-부톡시드 9 g 그리고 o-자일렌 400 mL를 투입하였다. 반응액을 5시간 동안 환류 시킨 후 냉각하고 과량의 메탄올에 부어 고체를 석출시켰다. 얻어진 고체를 여과하고 진공건조하여 목적화합물 43 g (수율 71%)을 얻었다. MS(m/z, [M]+): C63H46N2: 830.46
40 g (0.073 mol) of Formula 107 compound prepared in Example 1-5, 25.9 g of di (4-biphenyl) amine, 0.08 g of palladium acetate (II), in a 1000-mL, four-necked round bottom flask under nitrogen atmosphere 0.3 g of tri- (t-butyl) phosphine (50% hexane solution), 9 g of sodium t-butoxide and 400 mL of o-xylene were added. The reaction solution was refluxed for 5 hours, cooled, and poured into excess methanol to precipitate a solid. The obtained solid was filtered and dried in vacuo to give 43 g (yield 71%) of the title compound. MS ( m / z , [M] + ): C63H46N2: 830.46

[실시예 7] 화학식 28의 제조Example 7 Preparation of Chemical Formula 28

Figure 112010039691519-pat00064
Figure 112010039691519-pat00064

7-1. 화학식 108의 제조7-1. Preparation of Formula 108

5000-mL, 5구 둥근바닥플라스크에 실시예 1-2에서 제조한 화학식 104 화합물 150 g (0.342 mol)을 투입하고 테트라하이드로퓨란 3500 mL로 희석시켰다. 이 희석액에 1-나프탈렌보론 산 68 g, 3M-탄산칼륨 수용액 342 mL 그리고 테트라키스(트리페닐포스핀)팔라디움(0) 5.1 g을 투입 후 반응액을 1일 동안 환류시켰다. 반응액을 실온으로 냉각 후 테트라하이드로퓨란을 농축한 다음 메탄올을 가하여 석출된 고체를 진공 여과하였다. 모아진 고체 화합물을 진공건조하여 목적화합물 135 g (수율 81%)을 얻었다.
150 g (0.342 mol) of the compound of Formula 104 prepared in Example 1-2 were added to a 5000-mL, 5-neck round bottom flask and diluted with 3500 mL of tetrahydrofuran. 68 g of 1-naphthalene boronic acid, 342 mL of 3M-potassium carbonate aqueous solution and 5.1 g of tetrakis (triphenylphosphine) palladium (0) were added to the diluent, and the reaction solution was refluxed for 1 day. After cooling the reaction solution to room temperature, tetrahydrofuran was concentrated, methanol was added, and the precipitated solid was vacuum filtered. The collected solid compound was vacuum dried to obtain 135 g (yield 81%) of the title compound.

7-2. 화학식 109의 제조7-2. Preparation of Formula 109

10000-mL, 5구 둥근바닥플라스크에 실시예 7-1에서 제조한 화학식 108 화합물 130 g (0.268 mol)을 투입하고 클로로포름 2600 mL로 희석시켰다. 이 희석액을 0 ℃로 냉각 후 N-브로모숙신이미드 (NBS) 50 g을 서서히 투입하고 6시간동안 교반시켰다. 반응액에 증류수 2600 mL를 투입 후 30분간 교반한 다음 유기층을 분리하였다. 분리된 유기층을 건조 후 농축한 다음 아세톤과 메탄올로 재결정하고 진공건조하여 목적화합물 133 g (수율 88%)을 얻었다.
Into a 10000-mL, 5-neck round bottom flask, 130 g (0.268 mol) of the compound of Formula 108 prepared in Example 7-1 were added and diluted with 2600 mL of chloroform. The diluent was cooled to 0 ° C., and then 50 g of N -bromosuccinimide (NBS) was slowly added thereto and stirred for 6 hours. 2600 mL of distilled water was added to the reaction solution, stirred for 30 minutes, and the organic layer was separated. The separated organic layer was dried, concentrated and then recrystallized with acetone and methanol and dried in vacuo to give 133 g (yield 88%) of the title compound.

7-3. 화학식 110의 제조7-3. Preparation of Formula 110

3000-mL, 4구 둥근바닥플라스크에 실시예 7-2에서 제조한 화학식 109 화합물 110 g (0.194 mol)을 투입하고 테트라하이드로퓨란 2200 mL로 희석시켰다. 이 희석액에 4-클로로벤젠보론 산 35 g, 3M-탄산칼륨 수용액 194 mL 그리고 테트라키스(트리페닐포스핀)팔라디움(0) 5 g을 투입 후 반응액을 1일 동안 환류시켰다. 반응액을 실온으로 냉각 후 테트라하이드로퓨란을 농축한 다음 메탄올을 가하여 석출된 고체를 진공 여과하였다. 모아진 고체 화합물을 진공건조하여 목적화합물 88 g (수율 76%)을 얻었다.
110 g (0.194 mol) of Chemical Formula 109 prepared in Example 7-2 were added to a 3000-mL, four-necked round bottom flask, and diluted with 2200 mL of tetrahydrofuran. 35 g of 4-chlorobenzeneboronic acid, 194 mL of 3M-potassium carbonate aqueous solution, and 5 g of tetrakis (triphenylphosphine) palladium (0) were added to the diluent, and the reaction solution was refluxed for 1 day. After cooling the reaction solution to room temperature, tetrahydrofuran was concentrated, methanol was added, and the precipitated solid was vacuum filtered. The collected solid compound was vacuum dried to obtain 88 g (yield 76%) of the title compound.

7-4. 화학식 28의 제조7-4. Preparation of Formula 28

1000-mL, 4구 둥근바닥플라스크에 질소 분위기 하에서 실시예 7-3에서 제조한 화학식 110 화합물 43.5 g (0.073 mol), N-페닐-2-나프틸아민 17.7 g, 팔라디움 아세테이트(II) 0.08 g, 트리-(t-부틸)포스핀 (50% 헥산용액) 0.3 g, 소디움 t-부톡시드 9 g 그리고 o-자일렌 400 mL를 투입하였다. 반응액을 3시간 동안 환류 시킨 후 냉각하고 과량의 메탄올에 부어 고체를 석출시켰다. 얻어진 고체를 여과하고 진공건조하여 목적화합물 48 g (수율 84%)을 얻었다. MS(m/z, [M]+): C59H42N2: 778.45
43.5 g (0.073 mol) of Formula 110 compound prepared in Example 7-3, 17.7 g of N -phenyl-2-naphthylamine, 0.08 g of palladium acetate (II) in a 1000-mL, four-necked round bottom flask under nitrogen atmosphere 0.3 g of tri- (t-butyl) phosphine (50% hexane solution), 9 g of sodium t-butoxide and 400 mL of o-xylene were added. The reaction solution was refluxed for 3 hours, cooled, and poured into excess methanol to precipitate a solid. The obtained solid was filtered and dried in vacuo to give 48 g (yield 84%) of the title compound. MS ( m / z , [M] + ): C59H42N2: 778.45

[실시예 8] 화학식 34의 제조Example 8 Preparation of Chemical Formula 34

Figure 112010039691519-pat00065
Figure 112010039691519-pat00065

1000-mL, 4구 둥근바닥플라스크에 질소 분위기 하에서 실시예 7-3에서 제조한 화학식 110 화합물 43.5 g (0.073 mol), N-(4-비페닐)-2-나프틸아민 23.8 g, 팔라디움 아세테이트(II) 0.08 g, 트리-(t-부틸)포스핀 (50% 헥산용액) 0.3 g, 소디움 t-부톡시드 9 g 그리고 o-자일렌 400 mL를 투입하였다. 반응액을 3시간 동안 환류 시킨 후 냉각하고 과량의 메탄올에 부어 고체를 석출시켰다. 얻어진 고체를 여과하고 진공건조하여 목적화합물 49 g (수율 79%)을 얻었다. MS(m/z, [M]+): C65H46N2: 854.48
43.5 g (0.073 mol) of Formula 110 compound prepared in Example 7-3, 23.8 g of N- (4-biphenyl) -2-naphthylamine, palladium acetate, prepared in Example 7-3 in a 1000-mL, four-neck round bottom flask; (II) 0.08 g, tri- (t-butyl) phosphine (50% hexane solution) 0.3 g, sodium t-butoxide 9 g and 400 mL of o-xylene were added. The reaction solution was refluxed for 3 hours, cooled, and poured into excess methanol to precipitate a solid. The obtained solid was filtered and dried in vacuo to give 49 g (yield 79%) of the title compound. MS ( m / z , [M] + ): C65H46N2: 854.48

[실시예 9] 화학식 36의 제조Example 9 Preparation of Chemical Formula 36

Figure 112010039691519-pat00066
Figure 112010039691519-pat00066

9-1. 화학식 111의 제조9-1. Preparation of Formula 111

5000-mL, 5구 둥근바닥플라스크에 실시예 1-2에서 제조한 화학식 104 화합물 150 g (0.342 mol)을 투입하고 테트라하이드로퓨란 3500 mL로 희석시켰다. 이 희석액에 1-나프탈렌보론 산 68 g, 3M-탄산칼륨 수용액 342 mL 그리고 테트라키스(트리페닐포스핀)팔라디움(0) 5.1 g을 투입 후 반응액을 1일 동안 환류시켰다. 반응액을 실온으로 냉각 후 테트라하이드로퓨란을 농축한 다음 메탄올을 가하여 석출된 고체를 진공 여과하였다. 모아진 고체 화합물을 진공건조하여 목적화합물 143 g (수율 81%)을 얻었다.150 g (0.342 mol) of the compound of Formula 104 prepared in Example 1-2 were added to a 5000-mL, 5-neck round bottom flask and diluted with 3500 mL of tetrahydrofuran. 68 g of 1-naphthalene boronic acid, 342 mL of 3M-potassium carbonate aqueous solution and 5.1 g of tetrakis (triphenylphosphine) palladium (0) were added to the diluent, and the reaction solution was refluxed for 1 day. After cooling the reaction solution to room temperature, tetrahydrofuran was concentrated, methanol was added, and the precipitated solid was vacuum filtered. The collected solid compound was vacuum dried to obtain 143 g (yield 81%) of the title compound.

1H NMR (400 MHz, DMSO-d 6): δ 8.77 (s, 1H), 8.41 (d, J = 7.6 Hz, 1H), 8.34 (s, 1H), 8.12 (d, J = 8 Hz, 1H), 7.95-7.89 (m, 7H), 7.64-7.32 (m, 10H), 1.53 (s, 6H).
1 H NMR (400 MHz, DMSO- d 6 ): δ 8.77 (s, 1H), 8.41 (d, J = 7.6 Hz, 1H), 8.34 (s, 1H), 8.12 (d, J = 8 Hz, 1H ), 7.95-7.89 (m, 7H), 7.64-7.32 (m, 10H), 1.53 (s, 6H).

9-2. 화학식 112의 제조9-2. Preparation of Formula 112

10000-mL, 5구 둥근바닥플라스크에 실시예 9-1에서 제조한 화학식 111 화합물 130 g (0.268 mol)을 투입하고 클로로포름 2600 mL로 희석시켰다. 이 희석액을 0 ℃로 냉각 후 N-브로모숙신이미드 (NBS) 50 g을 서서히 투입하고 6시간동안 교반시켰다. 반응액에 증류수 2600 mL를 투입 후 30분간 교반한 다음 유기층을 분리하였다. 분리된 유기층을 건조 후 농축한 다음 아세톤과 메탄올로 재결정하고 진공건조하여 목적화합물 135 g (수율 89%)을 얻었다.Into a 10000-mL, 5-necked round bottom flask, 130 g (0.268 mol) of Formula 111 compound prepared in Example 9-1 were added and diluted with 2600 mL of chloroform. The diluent was cooled to 0 ° C., and then 50 g of N -bromosuccinimide (NBS) was slowly added thereto and stirred for 6 hours. 2600 mL of distilled water was added to the reaction solution, stirred for 30 minutes, and the organic layer was separated. The separated organic layer was dried, concentrated and then recrystallized with acetone and methanol and dried in vacuo to give 135 g (yield 89%) of the title compound.

1H NMR (400 MHz, DMSO-d 6): δ 8.87 (s, 1H), 8.68 (s, 1H), 8.34 (s, 1H), 8.13 (d, J = 7.6 Hz, 1H), 8.06-7.90 (m, 6H), 7.64-7.49 (m, 7H), 7.43-7.34 (m, 3H), 1.53 (s, 6H).
1 H NMR (400 MHz, DMSO- d 6 ): δ 8.87 (s, 1H), 8.68 (s, 1H), 8.34 (s, 1H), 8.13 (d, J = 7.6 Hz, 1H), 8.06-7.90 (m, 6H), 7.64-7.49 (m, 7H), 7.43-7.34 (m, 3H), 1.53 (s, 6H).

9-3. 화학식 113의 제조9-3. Preparation of Formula 113

3000-mL, 4구 둥근바닥플라스크에 실시예 9-2에서 제조한 화학식 112 화합물 110 g (0.194 mol)을 투입하고 테트라하이드로퓨란 2200 mL로 희석시켰다. 이 희석액에 4-클로로벤젠보론 산 35 g, 3M-탄산칼륨 수용액 194 mL 그리고 테트라키스(트리페닐포스핀)팔라디움(0) 5 g을 투입 후 반응액을 1일 동안 환류시켰다. 반응액을 실온으로 냉각 후 테트라하이드로퓨란을 농축한 다음 메탄올을 가하여 석출된 고체를 진공 여과하였다. 모아진 고체 화합물을 진공건조하여 목적화합물 94 g (수율 81%)을 얻었다.110 g (0.194 mol) of the Formula 112 compound prepared in Example 9-2 were added to a 3000-mL, four-necked round bottom flask and diluted with 2200 mL of tetrahydrofuran. 35 g of 4-chlorobenzeneboronic acid, 194 mL of 3M-potassium carbonate aqueous solution, and 5 g of tetrakis (triphenylphosphine) palladium (0) were added to the diluent, and the reaction solution was refluxed for 1 day. After cooling the reaction solution to room temperature, tetrahydrofuran was concentrated, methanol was added, and the precipitated solid was vacuum filtered. The collected solid compound was vacuum dried to obtain 94 g (yield 81%) of the title compound.

1H NMR (400 MHz, DMSO-d 6): δ 8.91 (s, 1H), 8.81 (s, 1H), 8.34 (s, 1H), 8.12 (d, J = 7.6 Hz, 1H), 8.03-7.92 (m, 7H), 7.85 (d, J = 8.4 Hz, 2H), 7.79 (d, J = 8.4 Hz, 1H), 7.65-7.42 (m, 8H), 7.40-7.35 (m, 2H), 1.53 (s, 6H).
1 H NMR (400 MHz, DMSO- d 6 ): δ 8.91 (s, 1H), 8.81 (s, 1H), 8.34 (s, 1H), 8.12 (d, J = 7.6 Hz, 1H), 8.03-7.92 (m, 7H), 7.85 (d, J = 8.4 Hz, 2H), 7.79 (d, J = 8.4 Hz, 1H), 7.65-7.42 (m, 8H), 7.40-7.35 (m, 2H), 1.53 ( s, 6H).

9-4. 화학식 36의 제조9-4. Preparation of Formula 36

1000-mL, 4구 둥근바닥플라스크에 질소 분위기 하에서 실시예 9-3에서 제조한 화학식 113 화합물 43.5 g (0.073 mol), N-페닐-1-나프틸아민 17.7 g, 팔라디움 아세테이트(II) 0.08 g, 트리-(t-부틸)포스핀 (50% 헥산용액) 0.3 g, 소디움 t-부톡시드 9 g 그리고 o-자일렌 400 mL를 투입하였다. 반응액을 3시간 동안 환류 시킨 후 냉각하고 과량의 메탄올에 부어 고체를 석출시켰다. 얻어진 고체를 여과하고 진공건조하여 목적화합물 46 g (수율 81%)을 얻었다.43.5 g (0.073 mol) of Formula 113 compound prepared in Example 9-3, 17.7 g of N -phenyl-1-naphthylamine, 0.08 g of palladium acetate (II) in a 1000-mL, four-necked round bottom flask under nitrogen atmosphere 0.3 g of tri- (t-butyl) phosphine (50% hexane solution), 9 g of sodium t-butoxide and 400 mL of o-xylene were added. The reaction solution was refluxed for 3 hours, cooled, and poured into excess methanol to precipitate a solid. The obtained solid was filtered and dried in vacuo to give 46 g (yield 81%) of the title compound.

1H NMR (400 MHz, DMSO-d 6): δ 8.89 (s, 1H), 8.72 (s, 1H), 8.36 (s, 1H), 8.14 (d, J = 8.1 Hz, 1H), 8.05-7.91 (m, 10H), 7.77-7.37 (m, 15H), 7.28 (d, J = 7.3 Hz, 2H), 7.07-6.96 (m, 5H), 1.56 (s, 6H). 1 H NMR (400 MHz, DMSO- d 6 ): δ 8.89 (s, 1H), 8.72 (s, 1H), 8.36 (s, 1H), 8.14 (d, J = 8.1 Hz, 1H), 8.05-7.91 (m, 10H), 7.77-7.37 (m, 15H), 7.28 (d, J = 7.3 Hz, 2H), 7.07-6.96 (m, 5H), 1.56 (s, 6H).

UV(λmax) : 330 nm PL : 445 nm
UV (λ max ): 330 nm PL: 445 nm

[실시예 10] 화학식 37의 제조Example 10 Preparation of Chemical Formula 37

Figure 112010039691519-pat00067
Figure 112010039691519-pat00067

1000-mL, 4구 둥근바닥플라스크에 질소 분위기 하에서 실시예 9-3에서 제조한 화학식 113 화합물 43.5 g (0.073 mol), N-페닐-2-나프틸아민 17.7 g, 팔라디움 아세테이트(II) 0.08 g, 트리-(t-부틸)포스핀 (50% 헥산용액) 0.3 g, 소디움 t-부톡시드 9 g 그리고 o-자일렌 400 mL를 투입하였다. 반응액을 3시간 동안 환류 시킨 후 냉각하고 과량의 메탄올에 부어 고체를 석출시켰다. 얻어진 고체를 여과하고 진공건조하여 목적화합물 42 g (수율 74%)을 얻었다.43.5 g (0.073 mol) of Formula 113 compound prepared in Example 9-3, 17.7 g of N -phenyl-2-naphthylamine, 0.08 g of palladium acetate (II) in a 1000-mL, four-necked round bottom flask under nitrogen atmosphere 0.3 g of tri- (t-butyl) phosphine (50% hexane solution), 9 g of sodium t-butoxide and 400 mL of o-xylene were added. The reaction solution was refluxed for 3 hours, cooled, and poured into excess methanol to precipitate a solid. The obtained solid was filtered and dried in vacuo to give 42 g (yield 74%) of the title compound.

1H NMR (400 MHz, DMSO-d 6): δ 8.90 (s, 1H), 8.76 (s, 1H), 8.35 (s, 1H), 8.12 (d, J = 7.6 Hz, 1H), 8.03-7.93 (m, 7H), 7.86-7.76 (m, 5H), 7.71 (d, J = 7.6 Hz, 1H), 7.65-7.46 (m, 7H), 7.43-7.32 (m, 6H), 7.27 (dd, J = 13.0, 7.8 Hz, 1H), 7.18-7.07 (m, 5H), 1.53 (s, 6H). 1 H NMR (400 MHz, DMSO- d 6 ): δ 8.90 (s, 1H), 8.76 (s, 1H), 8.35 (s, 1H), 8.12 (d, J = 7.6 Hz, 1H), 8.03-7.93 (m, 7H), 7.86-7.76 (m, 5H), 7.71 (d, J = 7.6 Hz, 1H), 7.65-7.46 (m, 7H), 7.43-7.32 (m, 6H), 7.27 (dd, J = 13.0, 7.8 Hz, 1H), 7.18-7.07 (m, 5H), 1.53 (s, 6H).

UV(λmax) : 332 nm PL : 424 nm (도 3 참조)UV (λ max ): 332 nm PL: 424 nm (see FIG. 3)

유리전이온도 (Tg, DSC에 의한 측정) : 147 ℃ (도 4 참조)
Glass transition temperature (measured by Tg, DSC): 147 ℃ (see Figure 4)

[실시예 11] 화학식 42의 제조Example 11 Preparation of Chemical Formula 42

Figure 112010039691519-pat00068
Figure 112010039691519-pat00068

1000-mL, 4구 둥근바닥플라스크에 질소 분위기 하에서 실시예 9-3에서 제조한 화학식 113 화합물 43.5 g (0.073 mol), N-(4-비페닐)-2-나프틸아민 23.8 g, 팔라디움 아세테이트(II) 0.08 g, 트리-(t-부틸)포스핀 (50% 헥산용액) 0.3 g, 소디움 t-부톡시드 9 g 그리고 o-자일렌 400 mL를 투입하였다. 반응액을 3시간 동안 환류 시킨 후 냉각하고 과량의 메탄올에 부어 고체를 석출시켰다. 얻어진 고체를 여과하고 진공건조하여 목적화합물 44 g (수율 71%)을 얻었다.43.5 g (0.073 mol) of Formula 113 compound prepared in Example 9-3, 23.8 g of N- (4-biphenyl) -2-naphthylamine, palladium acetate, prepared in Example 9-3 in a 1000-mL, four-necked round bottom flask under nitrogen atmosphere (II) 0.08 g, tri- (t-butyl) phosphine (50% hexane solution) 0.3 g, sodium t-butoxide 9 g and 400 mL of o-xylene were added. The reaction solution was refluxed for 3 hours, cooled, and poured into excess methanol to precipitate a solid. The obtained solid was filtered and dried in vacuo to give 44 g (yield 71%) of the title compound.

1H NMR (400 MHz, CDCl3): δ 8.53 (s, 1H), 8.45 (s, 1H), 8.16 (s, 1H), 7.96-7.86 (m, 4H), 7.83-7.75 (m, 4H), 7.71-7.46 (m, 18H), 7.44-7.32 (m, 7H), 7.30-7.24 (m, 4H), 1.54 (s, 6H). 1 H NMR (400 MHz, CDCl 3 ): δ 8.53 (s, 1H), 8.45 (s, 1H), 8.16 (s, 1H), 7.96-7.86 (m, 4H), 7.83-7.75 (m, 4H) , 7.71-7.46 (m, 18H), 7.44-7.32 (m, 7H), 7.30-7.24 (m, 4H), 1.54 (s, 6H).

UV(λmax) : 338 nm PL : 425 nm
UV (λ max ): 338 nm PL: 425 nm

[실시예 12] 화학식 47의 제조Example 12 Preparation of Chemical Formula 47

Figure 112010039691519-pat00069
Figure 112010039691519-pat00069

1000-mL, 4구 둥근바닥플라스크에 질소 분위기 하에서 실시예 9-3에서 제조한 화학식 113 화합물 43.5 g (0.073 mol), 디(4-비페닐)아민 25.8 g, 팔라디움 아세테이트(II) 0.08 g, 트리-(t-부틸)포스핀 (50% 헥산용액) 0.3 g, 소디움 t-부톡시드 9 g 그리고 o-자일렌 400 mL를 투입하였다. 반응액을 3시간 동안 환류 시킨 후 냉각하고 과량의 메탄올에 부어 고체를 석출시켰다. 얻어진 고체를 여과하고 진공건조하여 목적화합물 44 g (수율 68%)을 얻었다.43.5 g (0.073 mol) of Formula 113 compound prepared in Example 9-3, 25.8 g of di (4-biphenyl) amine, 0.08 g of palladium acetate (II), in a 1000-mL, four-necked round bottom flask under nitrogen atmosphere 0.3 g of tri- (t-butyl) phosphine (50% hexane solution), 9 g of sodium t-butoxide and 400 mL of o-xylene were added. The reaction solution was refluxed for 3 hours, cooled, and poured into excess methanol to precipitate a solid. The obtained solid was filtered and dried in vacuo to give 44 g (yield 68%) of the title compound.

1H NMR (400 MHz, DMSO-d 6): δ 8.88 (s, 1H), 8.68 (s, 1H), 8.34 (s, 1H), 8.14 (d, J = 8.0 Hz, 1H), 8.03-7.92 (m, 7H), 7.79-7.71 (m, 4H), 7.66-7.35 (m, 18H), 7.29-7.15 (m, 5H), 6.99 (d, J = 8.4 Hz, 2H), 6.94 (d, J = 8 Hz, 2H), 1.55 (s, 6H). 1 H NMR (400 MHz, DMSO- d 6 ): δ 8.88 (s, 1H), 8.68 (s, 1H), 8.34 (s, 1H), 8.14 (d, J = 8.0 Hz, 1H), 8.03-7.92 (m, 7H), 7.79-7.71 (m, 4H), 7.66-7.35 (m, 18H), 7.29-7.15 (m, 5H), 6.99 (d, J = 8.4 Hz, 2H), 6.94 (d, J = 8 Hz, 2H), 1.55 (s, 6H).

UV(λmax) : 344 nm PL : 431 nm
UV (λ max ): 344 nm PL: 431 nm

[실시예 13] 화학식 52의 제조Example 13 Preparation of Chemical Formula 52

Figure 112010039691519-pat00070
Figure 112010039691519-pat00070

13-1. 화학식 114의 제조13-1. Preparation of Formula 114

3000-mL, 4구 둥근바닥플라스크에 실시예 9-2에서 제조한 화학식 112 화합물 110 g (0.194 mol)을 투입하고 테트라하이드로퓨란 2200 mL로 희석시켰다. 이 희석액에 4-클로로나프탈렌보론 산 48 g, 3M-탄산칼륨 수용액 194 mL 그리고 테트라키스(트리페닐포스핀)팔라디움(0) 5 g을 투입 후 반응액을 1일 동안 환류시켰다. 반응액을 실온으로 냉각 후 테트라하이드로퓨란을 농축한 다음 메탄올을 가하여 석출된 고체를 진공 여과하였다. 모아진 고체 화합물을 진공건조하여 목적화합물 78 g (수율 62%)을 얻었다.
110 g (0.194 mol) of the Formula 112 compound prepared in Example 9-2 were added to a 3000-mL, four-necked round bottom flask and diluted with 2200 mL of tetrahydrofuran. 48 g of 4-chloronaphthalene boronic acid, 194 mL of 3M-potassium carbonate aqueous solution, and 5 g of tetrakis (triphenylphosphine) palladium (0) were added to the diluted solution, and the reaction solution was refluxed for 1 day. After cooling the reaction solution to room temperature, tetrahydrofuran was concentrated, methanol was added, and the precipitated solid was vacuum filtered. The collected solid compound was vacuum dried to obtain 78 g (yield 62%) of the title compound.

13-2. 화학식 52의 제조13-2. Preparation of Formula 52

1000-mL, 4구 둥근바닥플라스크에 질소 분위기 하에서 실시예 13-1에서 제조한 화학식 114 화합물 47 g (0.073 mol), N-페닐-1-나프틸아민 17.7 g, 팔라디움 아세테이트(II) 0.08 g, 트리-(t-부틸)포스핀 (50% 헥산용액) 0.3 g, 소디움 t-부톡시드 9 g 그리고 o-자일렌 400 mL를 투입하였다. 반응액을 3시간 동안 환류 시킨 후 냉각하고 과량의 메탄올에 부어 고체를 석출시켰다. 얻어진 고체를 여과하고 진공건조하여 목적화합물 39 g (수율 65%)을 얻었다. MS(m/z, [M]+): C63H44N2: 828.51
47 g (0.073 mol) of Formula 114 compound prepared in Example 13-1, 17.7 g of N -phenyl-1-naphthylamine, 0.08 g of palladium acetate (II) in a 1000-mL, four-necked round bottom flask under nitrogen atmosphere 0.3 g of tri- (t-butyl) phosphine (50% hexane solution), 9 g of sodium t-butoxide and 400 mL of o-xylene were added. The reaction solution was refluxed for 3 hours, cooled, and poured into excess methanol to precipitate a solid. The obtained solid was filtered and dried under vacuum to obtain 39 g (yield 65%) of the title compound. MS ( m / z , [M] + ): C63H44N2: 828.51

[실시예 14] 화학식 58의 제조Example 14 Preparation of Chemical Formula 58

Figure 112010039691519-pat00071
Figure 112010039691519-pat00071

Figure 112010039691519-pat00072
Figure 112010039691519-pat00072

14-1. 화학식 116의 제조14-1. Preparation of Formula 116

5000-mL, 5구 둥근바닥플라스크에 화학식 115 화합물 100 g (0.284 mol)을 투입하고 테트라하이드로퓨란 2000 mL로 희석시켰다. 이 희석액에 벤젠보론 산 35 g, 3M-탄산칼륨 수용액 284 mL 그리고 테트라키스(트리페닐포스핀)팔라디움(0) 4 g을 투입 후 반응액을 1일 동안 환류시켰다. 반응액을 실온으로 냉각 후 테트라하이드로퓨란을 농축한 다음 메탄올을 가하여 석출된 고체를 진공 여과하였다. 얻어진 고체 화합물을 실리카젤 관 크로마토그라피로 분리정제하여 목적화합물 52 g (수율 52%)을 얻었다.
100 g (0.284 mol) of the Formula 115 compound were added to a 5000-mL, 5-neck round bottom flask, and diluted with 2000 mL of tetrahydrofuran. 35 g of benzeneboronic acid, 284 mL of 3M-potassium carbonate aqueous solution and 4 g of tetrakis (triphenylphosphine) palladium (0) were added to the diluent, and the reaction solution was refluxed for 1 day. After cooling the reaction solution to room temperature, tetrahydrofuran was concentrated, methanol was added, and the precipitated solid was vacuum filtered. The resulting solid compound was purified by silica gel column chromatography to obtain 52 g (yield 52%) of the title compound.

14-2. 화학식 117의 제조14-2. Preparation of Formula 117

상기 그림에 나타난 바와 같이, 실시예 1의 반응식 1에서 화합물 102 대신 상기 실시예 14-1에 따라 제조한 화학식 116 화합물을 사용하여 상기 실시예 1에 따른 방법에 의해 화학식 104와 유사한 화합물을 제조하였고, 이것을 이용하여 실시예 9에 따른 방법에 의해 화학식 113과 유사한 화학식 117의 화합물을 제조하였다.
As shown in the figure, a compound similar to Formula 104 was prepared by the method according to Example 1 using Formula 116 prepared according to Example 14-1 instead of Compound 102 in Scheme 1 of Example 1 Using this, a compound of formula 117 similar to formula 113 was prepared by the method according to Example 9.

14-3. 화학식 58의 제조14-3. Preparation of Formula 58

1000-mL, 4구 둥근바닥플라스크에 질소 분위기 하에서 실시예 14-2에서 제조한 화학식 117 화합물 49 g (0.073 mol), N-페닐-2-나프틸아민 17.7 g, 팔라디움 아세테이트(II) 0.08 g, 트리-(t-부틸)포스핀 (50% 헥산용액) 0.3 g, 소디움 t-부톡시드 9 g 그리고 o-자일렌 400 mL를 투입하였다. 반응액을 3시간 동안 환류 시킨 후 냉각하고 과량의 메탄올에 부어 고체를 석출시켰다. 얻어진 고체를 여과하고 진공건조하여 목적화합물 37 g (수율 60%)을 얻었다. MS(m/z, [M]+): C65H46N2: 854.49
49 g (0.073 mol) of Formula 117 compound prepared in Example 14-2 in a 1000-mL, four-necked round bottom flask under nitrogen atmosphere, 17.7 g of N -phenyl-2-naphthylamine, 0.08 g of palladium acetate (II) 0.3 g of tri- (t-butyl) phosphine (50% hexane solution), 9 g of sodium t-butoxide and 400 mL of o-xylene were added. The reaction solution was refluxed for 3 hours, cooled, and poured into excess methanol to precipitate a solid. The obtained solid was filtered and dried in vacuo to give 37 g (yield 60%) of the title compound. MS ( m / z , [M] + ): C65H46N2: 854.49

[실시예 15] 화학식 61의 제조Example 15 Preparation of Chemical Formula 61

Figure 112010039691519-pat00073
Figure 112010039691519-pat00073

15-1. 화학식 119의 제조15-1. Preparation of Formula 119

상기 그림에 나타난 바와 같이, 실시예 1의 반응식 1에서 화합물 102 대신 화학식 118의 화합물을 사용한 것을 제외하고는 상기 실시예 1에서 화합물 107을 제조하는 것과 동일한 방법으로 화합물 119을 제조하였다.
As shown in the figure, Compound 119 was prepared by the same method as preparing Compound 107 in Example 1, except that Compound 118 was used instead of Compound 102 in Scheme 1 of Example 1.

15-2. 화학식 61의 제조15-2. Preparation of Formula 61

1000-mL, 4구 둥근바닥플라스크에 질소 분위기 하에서 실시예 15-1에서 제조한 화학식 119 화합물 49 g (0.073 mol), N-페닐-1-나프틸아민 17.7 g, 팔라디움 아세테이트(II) 0.08 g, 트리-(t-부틸)포스핀 (50% 헥산용액) 0.3 g, 소디움 t-부톡시드 9 g 그리고 o-자일렌 400 mL를 투입하였다. 반응액을 3시간 동안 환류 시킨 후 냉각하고 과량의 메탄올에 부어 고체를 석출시켰다. 얻어진 고체를 여과하고 진공건조하여 목적화합물 32 g (수율 52%)을 얻었다. MS(m/z, [M]+): C65H44N2: 852.47
49 g (0.073 mol) of Formula 119 compound prepared in Example 15-1 in a 1000-mL, four-necked round bottom flask under nitrogen atmosphere, 17.7 g of N -phenyl-1-naphthylamine, 0.08 g of palladium acetate (II) 0.3 g of tri- (t-butyl) phosphine (50% hexane solution), 9 g of sodium t-butoxide and 400 mL of o-xylene were added. The reaction solution was refluxed for 3 hours, cooled, and poured into excess methanol to precipitate a solid. The obtained solid was filtered and dried in vacuo to give 32 g (yield 52%) of the title compound. MS ( m / z , [M] + ): C65H44N2: 852.47

[실시예 16]Example 16

화학식 11을 사용한 유기 전기발광 소자 제작Fabrication of Organic Electroluminescent Device Using Formula 11

25 mm × 75 mm × 1.1 mm 크기의 유리 기판 상에 막 두께가 750 Å 인 인듐 주석 산화물 (ITO)의 투명성 양극을 형성시켰다. 상기 유리 기판을 진공 증착장치에 넣어 약 10-7 torr로 감압하였다. 이어서 하기 화학식 1의 2-TNATA를 두께가 600 Å이 되도록 증착시켜 정공주입층을 형성시켰다. 이어서 본 발명의 상기 화학식 11을 두께가 600 Å이 되도록 증착시켜 정공수송층을 형성하였다. 이어서 청색 호스트인 상기 화학식 5의 a-ADN과 청색 도판트인 상기 화학식 6의 퍼릴렌을 중량비 95 : 5 비율로 동시에 증착하여 두께가 300 Å이 되도록 발광층을 형성하였다. 이어서 상기 화학식 7의 Alq3를 두께가 200 Å이 되도록 증착시켜 전자수송층을 형성하였다. 이어서 리튬 프루오라이드 (LiF)를 두께가 10 Å이 되도록 증착시켜 전자주입층을 형성하였다. 최종적으로 알루미늄을 두께가 1000 Å이 되도록 증착하여 음극을 형성시켰다. 상기와 같이 제작된 유기 전기발광 소자에 전압을 인가하여 발광시험을 실시하였다. 측정된 최고 휘도, 최대 발광 효율 그리고 발광색을 표 1에 나타내었다.
A transparent anode of indium tin oxide (ITO) having a film thickness of 750 kPa was formed on a glass substrate having a size of 25 mm × 75 mm × 1.1 mm. The glass substrate was placed in a vacuum deposition apparatus to reduce the pressure to about 10 −7 torr. Subsequently, 2-TNATA of Chemical Formula 1 was deposited to have a thickness of 600 GPa to form a hole injection layer. Subsequently, the formula 11 of the present invention was deposited to a thickness of 600 kPa to form a hole transport layer. Subsequently, the light emitting layer was formed by simultaneously depositing a-ADN of Formula 5, which is a blue host, and perylene of Formula 6, which is a blue dopant, in a weight ratio of 95: 5. Subsequently, Alq 3 of Chemical Formula 7 was deposited to have a thickness of 200 GPa to form an electron transport layer. Subsequently, lithium fluoride (LiF) was deposited to have a thickness of 10 GPa to form an electron injection layer. Finally, aluminum was deposited to have a thickness of 1000 GPa to form a cathode. The luminescence test was performed by applying a voltage to the organic electroluminescent device manufactured as described above. The measured highest luminance, maximum luminous efficiency and luminous color are shown in Table 1.

[화학식 1] [화학식 5][Formula 1] [Formula 5]

Figure 112010039691519-pat00074
Figure 112010039691519-pat00075
Figure 112010039691519-pat00074
Figure 112010039691519-pat00075

[화학식 6] [화학식 7][Formula 6] [Formula 7]

Figure 112010039691519-pat00076
Figure 112010039691519-pat00077

Figure 112010039691519-pat00076
Figure 112010039691519-pat00077

[실시예 17 내지 30][Examples 17 to 30]

본 발명에 따른 플루오레닐카바졸 유도체를 사용한 유기 전기발광 소자 제작Fabrication of organic electroluminescent device using fluorenylcarbazole derivatives according to the present invention

상기 실시예 16에서, 정공수송층으로 화학식 11 대신 표 1에 기재된 플루오레닐카바졸 유도체를 사용한 것을 제외하고는 실시예 16과 동일하게 유기 전기발광 소자를 제작하고 평가하였다. 측정된 최고 휘도, 최대 발광 효율 그리고 발광색을 표 1에 나타내었다.
In Example 16, an organic electroluminescent device was manufactured and evaluated in the same manner as in Example 16, except that the fluorenylcarbazole derivatives shown in Table 1 were used as the hole transport layer. The measured highest luminance, maximum luminous efficiency and luminous color are shown in Table 1.

[비교예 1 내지 3][Comparative Examples 1 to 3]

비교 화합물을 사용한 유기 전기발광 소자 제작Fabrication of Organic Electroluminescent Device Using Comparative Compound

상기 실시예 16에서, 정공수송층으로 화학식 11 대신 표 1에 기재된 하기 화학식 2 내지 4를 사용한 것을 제외하고는 실시예 16과 동일하게 유기 전기발광 소자를 제작하고 평가하였다. 측정된 최고 휘도, 최대 발광 효율 그리고 발광색을 표 1에 나타내었다.In Example 16, an organic electroluminescent device was manufactured and evaluated in the same manner as in Example 16, except for using the following Chemical Formulas 2 to 4 shown in Table 1 as the hole transport layer. The measured highest luminance, maximum luminous efficiency and luminous color are shown in Table 1.

[화학식 2] [화학식 3][Formula 2] [Formula 3]

Figure 112010039691519-pat00078
Figure 112010039691519-pat00079
Figure 112010039691519-pat00078
Figure 112010039691519-pat00079

[화학식 4][Formula 4]

Figure 112010039691519-pat00080

Figure 112010039691519-pat00080

유기 전기발광 소자의 발광 특성Luminescence Characteristics of Organic Electroluminescent Devices 실시예Example 정공수송층의 화합물Compound of hole transport layer 최대휘도
(cd/m2)
Brightness
(cd / m 2 )
최대효율
(cd/A)
Efficiency
(cd / A)
발광색Luminous color
실시예 16Example 16 화학식 11Formula 11 1252012520 4.304.30 청색blue 실시예 17Example 17 화학식 12Formula 12 1405014050 7.417.41 청색blue 실시예 18Example 18 화학식 13Formula 13 97259725 6.566.56 청색blue 실시예 19Example 19 화학식 21Formula 21 2005020050 6.706.70 청색blue 실시예 20Example 20 화학식 22Formula 22 1581015810 7.167.16 청색blue 실시예 21Example 21 화학식 25Formula 25 1087010870 7.147.14 청색blue 실시예 22Example 22 화학식 28Formula 28 1002210022 4.954.95 청색blue 실시예 23Example 23 화학식 34Formula 34 1762817628 7.527.52 청색blue 실시예 24Example 24 화학식 36Formula 36 2351623516 6.036.03 청색blue 실시예 25Example 25 화학식 37Formula 37 1821018210 4.754.75 청색blue 실시예 26Example 26 화학식 42Formula 42 1468214682 6.116.11 청색blue 실시예 27Example 27 화학식 47Formula 47 2185421854 5.845.84 청색blue 실시예 28Example 28 화학식 52Formula 52 99549954 3.743.74 청색blue 실시예 29Example 29 화학식 58Formula 58 1825618256 4.774.77 청색blue 실시예 30Example 30 화학식 61Formula 61 1600216002 4.554.55 청색blue 비교예 1Comparative Example 1 화학식 2Formula 2 75467546 3.223.22 청색blue 비교예 2Comparative Example 2 화학식 3Formula 3 96549654 3.713.71 청색blue 비교예 3Comparative Example 3 화학식 4Formula 4 85618561 3.483.48 청색blue

상기 표 1에서 알 수 있는 바와 같이, 본 발명의 실시예 16 내지 30에 따른 유기 전기발광 소자는 전체적으로 비교예 1 내지 3 보다 현저히 높은 휘도 및 효율을 가지고 있음을 확인할 수 있다.
As can be seen in Table 1, it can be seen that the organic electroluminescent device according to Examples 16 to 30 of the present invention has a significantly higher brightness and efficiency than Comparative Examples 1 to 3 as a whole.

본 발명의 단순한 변형 또는 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함될 수 있다.
Simple modifications or changes of the present invention can be easily made by those skilled in the art, and all such modifications or changes can be included in the scope of the present invention.

본 발명에 따른 유기 발광 조성물 및 이를 포함하는 유기 전기 발광 소자는 유기 발광 다이오드 뿐만 아니라 유기 전계-효과 트랜지스터, 유기 박막 트랜지스터, 유기 레이저 다이오드, 유기 태양 전지, 유기 발광 전기화학 전지 및 유기 집적 회로 등의 분야에서도 사용할 수 있다. The organic light emitting composition and the organic electroluminescent device including the same according to the present invention are not only organic light emitting diodes but also organic field-effect transistors, organic thin film transistors, organic laser diodes, organic solar cells, organic light emitting electrochemical cells, and organic integrated circuits. Can also be used in the field.

Claims (3)

유기 전기 발광 소자의 발광 재료로 사용되며, 하기 화학식 I로 표시되는 플루오레닐카바졸 유도체를 포함하는 것을 특징으로 하는 유기 전기 발광 조성물.
[화학식 I]
Figure 112010039691519-pat00081

(상기 화학식 I에서, R1 및 R2는 각각 치환되거나 비치환된 아릴기, 또는 치환되거나 비치환된 헤테로아릴기이고, R3는 치환되거나 비치환된 아릴기, 치환되거나 비치환된 헤테로아릴기, 또는 알킬기이고, R4 및 R5는 각각 수소, 치환되거나 비치환된 아릴기, 치환되거나 비치환된 헤테로아릴기, 또는 알킬기이고, D는 치환되거나 비치환된 아릴렌기, 또는 치환되거나 비치환된 헤테로아릴렌기이다. 단, R1 및 R2는 모두 플루오렌기를 포함하지 않는다.)
An organic electroluminescent composition, which is used as a light emitting material of an organic electroluminescent device and comprises a fluorenylcarbazole derivative represented by the following general formula (I).
(I)
Figure 112010039691519-pat00081

(In Formula I, R1 and R2 are each a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group, R3 is a substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl group, or An alkyl group, R4 and R5 are each hydrogen, a substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl group, or an alkyl group, and D is a substituted or unsubstituted arylene group, or a substituted or unsubstituted heteroarylene group Provided that both R1 and R2 do not contain fluorene groups.)
제1항에 있어서, 상기 화학식 I은 하기 화학식 11 내지 화학식 62로 이루어진 군에서 선택된 것임을 특징으로 하는 유기 전기 발광 조성물.
[화학식 11] [화학식 12]
Figure 112010039691519-pat00082
Figure 112010039691519-pat00083

[화학식 13] [화학식 14]
Figure 112010039691519-pat00084
Figure 112010039691519-pat00085

[화학식 15] [화학식 16]
Figure 112010039691519-pat00086
Figure 112010039691519-pat00087

[화학식 17] [화학식 18]
Figure 112010039691519-pat00088
Figure 112010039691519-pat00089

[화학식 19] [화학식 20]
Figure 112010039691519-pat00090
Figure 112010039691519-pat00091

[화학식 21] [화학식 22]
Figure 112010039691519-pat00092
Figure 112010039691519-pat00093

[화학식 23] [화학식 24]
Figure 112010039691519-pat00094
Figure 112010039691519-pat00095

[화학식 25] [화학식 26]
Figure 112010039691519-pat00096
Figure 112010039691519-pat00097

[화학식 27] [화학식 28]
Figure 112010039691519-pat00098
Figure 112010039691519-pat00099

[화학식 29] [화학식 30]
Figure 112010039691519-pat00100
Figure 112010039691519-pat00101

[화학식 31] [화학식 32]
Figure 112010039691519-pat00102
Figure 112010039691519-pat00103

[화학식 33] [화학식 34]
Figure 112010039691519-pat00104
Figure 112010039691519-pat00105

[화학식 35] [화학식 36]
Figure 112010039691519-pat00106
Figure 112010039691519-pat00107

[화학식 37] [화학식 38]
Figure 112010039691519-pat00108
Figure 112010039691519-pat00109

[화학식 39] [화학식 40]
Figure 112010039691519-pat00110
Figure 112010039691519-pat00111

[화학식 41] [화학식 42]
Figure 112010039691519-pat00112
Figure 112010039691519-pat00113

[화학식 43] [화학식 44]
Figure 112010039691519-pat00114
Figure 112010039691519-pat00115

[화학식 45] [화학식 46]
Figure 112010039691519-pat00116
Figure 112010039691519-pat00117

[화학식 47] [화학식 48]
Figure 112010039691519-pat00118
Figure 112010039691519-pat00119

[화학식 49] [화학식 50]
Figure 112010039691519-pat00120
Figure 112010039691519-pat00121

[화학식 51] [화학식 52]
Figure 112010039691519-pat00122
Figure 112010039691519-pat00123

[화학식 53] [화학식 54]
Figure 112010039691519-pat00124
Figure 112010039691519-pat00125

[화학식 55] [화학식 56]
Figure 112010039691519-pat00126
Figure 112010039691519-pat00127

[화학식 57] [화학식 58]
Figure 112010039691519-pat00128
Figure 112010039691519-pat00129

[화학식 59] [화학식 60]
Figure 112010039691519-pat00130
Figure 112010039691519-pat00131

[화학식 61] [화학식 62]
Figure 112010039691519-pat00132
Figure 112010039691519-pat00133

The organic electroluminescent composition according to claim 1, wherein Chemical Formula I is selected from the group consisting of Chemical Formula 11 to Chemical Formula 62.
[Formula 11] [Formula 12]
Figure 112010039691519-pat00082
Figure 112010039691519-pat00083

[Formula 13] [Formula 14]
Figure 112010039691519-pat00084
Figure 112010039691519-pat00085

[Formula 15] [Formula 16]
Figure 112010039691519-pat00086
Figure 112010039691519-pat00087

[Formula 17] [Formula 18]
Figure 112010039691519-pat00088
Figure 112010039691519-pat00089

[Formula 19] [Formula 20]
Figure 112010039691519-pat00090
Figure 112010039691519-pat00091

[Formula 21] [Formula 22]
Figure 112010039691519-pat00092
Figure 112010039691519-pat00093

[Formula 23] [Formula 24]
Figure 112010039691519-pat00094
Figure 112010039691519-pat00095

[Formula 25] [Formula 26]
Figure 112010039691519-pat00096
Figure 112010039691519-pat00097

[Formula 27] [Formula 28]
Figure 112010039691519-pat00098
Figure 112010039691519-pat00099

[Formula 29] [Formula 30]
Figure 112010039691519-pat00100
Figure 112010039691519-pat00101

[Formula 31] [Formula 32]
Figure 112010039691519-pat00102
Figure 112010039691519-pat00103

[Formula 33] [Formula 34]
Figure 112010039691519-pat00104
Figure 112010039691519-pat00105

[Formula 35] [Formula 36]
Figure 112010039691519-pat00106
Figure 112010039691519-pat00107

[Formula 37] [Formula 38]
Figure 112010039691519-pat00108
Figure 112010039691519-pat00109

[Formula 39] [Formula 40]
Figure 112010039691519-pat00110
Figure 112010039691519-pat00111

[Formula 41] [Formula 42]
Figure 112010039691519-pat00112
Figure 112010039691519-pat00113

[Formula 43] [Formula 44]
Figure 112010039691519-pat00114
Figure 112010039691519-pat00115

[Formula 45] [Formula 46]
Figure 112010039691519-pat00116
Figure 112010039691519-pat00117

[Formula 47] [Formula 48]
Figure 112010039691519-pat00118
Figure 112010039691519-pat00119

[Formula 49] [Formula 50]
Figure 112010039691519-pat00120
Figure 112010039691519-pat00121

[Formula 51] [Formula 52]
Figure 112010039691519-pat00122
Figure 112010039691519-pat00123

[Formula 53] [Formula 54]
Figure 112010039691519-pat00124
Figure 112010039691519-pat00125

[Formula 55] [Formula 56]
Figure 112010039691519-pat00126
Figure 112010039691519-pat00127

[Formula 57] [Formula 58]
Figure 112010039691519-pat00128
Figure 112010039691519-pat00129

[Formula 59] [Formula 60]
Figure 112010039691519-pat00130
Figure 112010039691519-pat00131

[Formula 61] [Formula 62]
Figure 112010039691519-pat00132
Figure 112010039691519-pat00133

제1항 또는 제2항에 따른 유기 전기 발광 조성물을 포함하여 이루어진 유기층을 하나 이상 포함하는 것을 특징으로 하는 유기 전기 발광 소자.An organic electroluminescent device comprising at least one organic layer comprising the organic electroluminescent composition according to claim 1.
KR1020100058580A 2010-06-21 2010-06-21 Organic Light Emitting Material and Organic Light Emitting Diode Having The Same KR101125683B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100058580A KR101125683B1 (en) 2010-06-21 2010-06-21 Organic Light Emitting Material and Organic Light Emitting Diode Having The Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100058580A KR101125683B1 (en) 2010-06-21 2010-06-21 Organic Light Emitting Material and Organic Light Emitting Diode Having The Same

Publications (2)

Publication Number Publication Date
KR20110138596A KR20110138596A (en) 2011-12-28
KR101125683B1 true KR101125683B1 (en) 2012-03-27

Family

ID=45504386

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100058580A KR101125683B1 (en) 2010-06-21 2010-06-21 Organic Light Emitting Material and Organic Light Emitting Diode Having The Same

Country Status (1)

Country Link
KR (1) KR101125683B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200100299A (en) 2019-02-18 2020-08-26 주식회사 이엘엠 Organic Light Emitting Material and Organic Light Emitting Diode Having The Same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10147888B2 (en) 2011-02-07 2018-12-04 Idemitsu Kosan Co., Ltd. Biscarbazole derivative and organic electroluminescent element using same
TWI591154B (en) 2011-02-07 2017-07-11 Idemitsu Kosan Co Biscarbazole derivatives and organic electroluminescent devices using the same
KR102154271B1 (en) * 2013-11-05 2020-09-09 덕산네오룩스 주식회사 Compound for organic electronic element, organic electronic element using the same, and an electronic device thereof
CN103666459B (en) * 2013-12-16 2015-01-21 深圳市华星光电技术有限公司 Blue-fluorescence organic material and organic light emitting diode panel employing same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070114562A (en) * 2006-05-29 2007-12-04 삼성에스디아이 주식회사 An organic light emitting device and a flat panel display device comprising the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070114562A (en) * 2006-05-29 2007-12-04 삼성에스디아이 주식회사 An organic light emitting device and a flat panel display device comprising the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200100299A (en) 2019-02-18 2020-08-26 주식회사 이엘엠 Organic Light Emitting Material and Organic Light Emitting Diode Having The Same

Also Published As

Publication number Publication date
KR20110138596A (en) 2011-12-28

Similar Documents

Publication Publication Date Title
KR102148296B1 (en) Organic light emitting diode including boron compounds
KR102213030B1 (en) Novel boron compounds and Organic light emitting diode including the same
KR101555816B1 (en) Organic Light Emitting Material and Organic Light Emitting Diode Having The Same
KR101007516B1 (en) Organic light emitting material and organic light emitting diode having the same
KR101529878B1 (en) Organic Light Emitting Material and Organic Light Emitting Diode Having The Same
KR20110088898A (en) Organic light emitting material and organic light emitting diode having the same
KR20080055891A (en) Light-emitting device material and light-emitting device
KR20220091405A (en) Heterocyclic compound and organic electroluminescent device comprising same
KR100910134B1 (en) Organic luminescent material and organic light emitting device using the same
KR101202410B1 (en) Organic Light Emitting Material and Organic Light Emitting Diode Having The Same
KR20110100762A (en) Spirocabazole compund having spiro framework and organic electroric element using the same, terminal thererof
KR20130133515A (en) Organic light emitting material and organic light emitting diode having the same
KR100753454B1 (en) High-Efficient Organic light emitting material and Organic Light Emitting Diode
KR101023624B1 (en) Organic Light Emitting Material and Organic Light Emitting Diode Having The Same
KR101125683B1 (en) Organic Light Emitting Material and Organic Light Emitting Diode Having The Same
KR101312471B1 (en) Organic Light Emitting Material and Organic Light Emitting Diode Having The Same
KR101125682B1 (en) Organic Light Emitting Material and Organic Light Emitting Diode Having The Same
KR101134575B1 (en) Organic Light Emitting Material and Organic Light Emitting Diode Having The Same
KR20150033074A (en) Organic Light Emitting Material Having Asymmetric Aromatic Amine Derivative and Organic Light Emitting Diode Using The Same
KR20090112137A (en) Organic Light Emitting Material and Organic Light Emitting Diode Having The Same
KR101160387B1 (en) Organic Light Emitting Material and Organic Light Emitting Diode Having The Same
KR101149721B1 (en) high-efficiency organic light emitting material with thermal stability and preparation thereof
KR20120043878A (en) Organic compounds for organic electroluminescentdevice and organic electroluminescent device using same
KR101159729B1 (en) Organic Light Emitting Material and Organic Light Emitting Diode Having The Same
US20130043460A1 (en) Carbazole serial compounds

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150227

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160905

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190306

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20200305

Year of fee payment: 9