KR20110101091A - 통신 시스템에서 데이터 송신 장치 및 방법 - Google Patents
통신 시스템에서 데이터 송신 장치 및 방법 Download PDFInfo
- Publication number
- KR20110101091A KR20110101091A KR1020110019461A KR20110019461A KR20110101091A KR 20110101091 A KR20110101091 A KR 20110101091A KR 1020110019461 A KR1020110019461 A KR 1020110019461A KR 20110019461 A KR20110019461 A KR 20110019461A KR 20110101091 A KR20110101091 A KR 20110101091A
- Authority
- KR
- South Korea
- Prior art keywords
- parity check
- ldpc
- modulation
- check matrix
- code
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/03—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
- H03M13/05—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
- H03M13/11—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
- H03M13/1102—Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/03—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
- H03M13/05—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
- H03M13/13—Linear codes
- H03M13/15—Cyclic codes, i.e. cyclic shifts of codewords produce other codewords, e.g. codes defined by a generator polynomial, Bose-Chaudhuri-Hocquenghem [BCH] codes
- H03M13/151—Cyclic codes, i.e. cyclic shifts of codewords produce other codewords, e.g. codes defined by a generator polynomial, Bose-Chaudhuri-Hocquenghem [BCH] codes using error location or error correction polynomials
- H03M13/155—Shortening or extension of codes
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/63—Joint error correction and other techniques
- H03M13/635—Error control coding in combination with rate matching
- H03M13/6362—Error control coding in combination with rate matching by puncturing
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/63—Joint error correction and other techniques
- H03M13/635—Error control coding in combination with rate matching
- H03M13/6362—Error control coding in combination with rate matching by puncturing
- H03M13/6368—Error control coding in combination with rate matching by puncturing using rate compatible puncturing or complementary puncturing
- H03M13/6393—Rate compatible low-density parity check [LDPC] codes
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/65—Purpose and implementation aspects
- H03M13/6502—Reduction of hardware complexity or efficient processing
- H03M13/6505—Memory efficient implementations
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/65—Purpose and implementation aspects
- H03M13/6508—Flexibility, adaptability, parametrability and configurability of the implementation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/02—Transmitters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0009—Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
- H04L1/0013—Rate matching, e.g. puncturing or repetition of code symbols
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0041—Arrangements at the transmitter end
- H04L1/0043—Realisations of complexity reduction techniques, e.g. use of look-up tables
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Probability & Statistics with Applications (AREA)
- Theoretical Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mathematical Physics (AREA)
- Quality & Reliability (AREA)
- Algebra (AREA)
- General Physics & Mathematics (AREA)
- Pure & Applied Mathematics (AREA)
- Error Detection And Correction (AREA)
Abstract
본 발명은, 통신 시스템에서 저밀도 패리티 검사(LDPC: Low-Density Parity Check) 부호화 방식을 이용하여 데이터를 송신하는 데이터 송신 장치 및 방법에 관한 것으로, 전송하고자 하는 데이터에 적용되는 가변 부호화율 및 변조 차수를 기반으로 저밀도 패리티 검사 부호의 패리티 검사 행렬을 생성하고, 상기 가변 부호화율 및 변조 차수를 지원하도록 상기 생성한 패리티 검사 행렬에 천공(puncturing) 또는 확장(extending)을 고려하여 최적의 패리티 검사 행렬을 생성하고, 상기 최적의 패리티 검사 행렬을 통해 상기 전송하고자 하는 데이터의 정보 비트를 저밀도 패리티 검사 부호화하며, 상기 저밀도 패리티 검사 부호화된 정보 비트를 전송 우선 순위에 따라 분류한 후, 변조 심볼에 매핑하여 송신한다.
Description
본 발명은 통신 시스템에 관한 것으로서, 특히 통신 시스템에서 저밀도 패리티 검사(LDPC: Low-Density Parity Check, 이하 'LDPC'라 칭하기로 함) 부호화 방식을 이용하여 데이터를 송신하는 데이터 송신 장치 및 방법에 관한 것이다.
차세대 통신 시스템에서는 고속의 전송 속도를 가지는 다양한 서비스 품질(QoS: Quality of Service, 이하 'QoS'라 칭하기로 함)의 서비스들을 사용자들에게 제공하기 위한 활발한 연구가 진행되고 있다. 이러한 차세대 통신 시스템은, 다양한 형태의 데이터를 한정된 자원을 통해 빠르고 안정적으로 사용자에게 전송하여 통신 서비스를 제공하기 위한 방안들이 제안되고 있다. 다시 말해, 통신 시스템은, 사용자에게 다양한 형태의 통신 서비스를 빠르고 안정적으로 제공하도록 데이터의 전송 효율을 향상시키기 위해 많은 데이터 전송 방안들이 제안되고 있으며, 특히 대용량의 데이터를 보다 안정적으로 전송하기 위해 다양한 부호화 및 복호화 방식들이 제안되고 있다.
한편, 통신에서 가장 근본적인 문제는 한정된 자원, 예컨대 채널(channel)을 통해 얼마나 효율적이고 신뢰성 있게(reliably) 데이터를 전송할 수 있느냐 하는 것이다. 특히, 차세대 통신 시스템에서는 영상 등의 대용량 데이터를 고속으로 처리 및 전송할 수 있는 고속 통신 시스템이 요구됨에 따라 시스템에 적절한 채널 부호화 방식을 사용하여 시스템의 효율을 높이는 것이 필수적이다. 통신 시스템에 존재하는 채널 환경은 간섭(interference), 쉐도잉(shadowing), 감쇠, 잡음, 페이딩(fading) 등과 같은 여러 요인들이 존재하며, 이러한 채널 환경에서의 데이터 전송 시에는 불가피한 오류가 발생하여 정보의 손실이 발생한다. 이러한 정보 손실을 감소시키기 위해 채널의 성격에 따라 다양한 에러 제어 기법(error-control technique)을 이용하여 시스템의 신뢰도를 높이는데, 이러한 에러 제어 기법 중에 가장 기본적인 방안으로 에러 정정 부호(error-correcting code)를 사용한다.
이렇게 통신 시스템에서 대용량의 데이터를 고속 및 안정적으로 전송하며, 채널 환경에서의 정보 손실을 감소시키기 위한 에러 정정 부호의 일 예로 터보 부호(Turbo code)와 LDPC 부호를 이용하여 데이터를 부호화 및 복호화하는 방안이 제안되었다. 여기서, 상기 터보 부호와 LDPC 부호는 새넌(Shannon) 채널 용량에 근접하는 탁월한 성능을 바탕으로 그 동안 활발한 연구가 진행되어 왔으며, 다양한 표준에 적용되어 활용되고 있다. 또한, 상기 오류 정정 부호와 고효율 전송을 위한 고차 변조(high-order modulation)를 결합하여 대역폭 측면에서 효율적인 전송 방식으로 부호화 변조(coded modulation) 방식에 대한 연구가 활발히 진행되고 있으며, 일 예로 비트 인터리브 부호화 변조(BICM: Bit Interleaved Coded Modulation, 이하 'BICM'이라 칭하기로 함) 방식과 다중 레벨 부호화(MLC: Multi-Level Coding, 이하 'MLC'라 칭하기로 함) 방식 등이 있다.
여기서, 상기 BICM 방식은 이진(binary) 오류 정정 부호와 비트 단위의 인터리빙(interleaving), 및 고차 M-어레이(M-ary) 변조 방식을 결합하여 대역폭 효율을 극대화할 수 있는 전송 방식이다. 한편, 상기 BICM 방식이 M-ary 변조 방식과 같이 고차 변조 방식을 이용할 경우, 변조 심볼을 구성하는 각각의 비트들이 다른 차수(order)의 보호(protection) 레벨을 갖는 변조 심볼의 차등 오류 보호(UEP: Unequal Error Protection, 이하 'UEP'라 칭하기로 함) 특성을 고려하면, 상기 BICM 방식은, 멀티-스테이지(multistage) 복호화 방식을 사용하는 MLC 방식이 보다 우수한 성능을 갖는다.
또한, LDPC 부호 기반의 고차 부호화 변조 방식에 대한 연구 또한 활발히 진행되고 있으며, 상기 LDPC 부호 기반의 고차 부호화 변조 방식은, LDPC의 UEP 특성뿐만 아니라 고차 변조 심볼의 구성 비트가 마찬가지로 UEP 특성을 갖도록 하여 데이터 전송 성능을 보다 개선시키고자 한다. 여기서, LDPC 부호 기반의 고차 부호화 변조 방식에서, 상기 LDPC 부호의 변수 노드 차수(VND: Variable Node Degree, 이하 'VND'라 칭하기로 함)가 각 부호 비트(code bit)에 따라 다름에 따라 오류 정정 성능이 차이가 발생하는 UEP 특성이 제안되었다.
이러한 UEP 특성을 고려하여 상기 LDPC 부호 기반의 고차 부호화 변조 방식에서는, 일반적으로 VND가 높은 시스터메틱 비트(systematic bit)를 고차 변조 심볼의 최상위 비트(MSB: Most Significant Bit, 이하 'MSB'라 칭하기로 함)에 할당하고, VND가 낮은 패리티 비트(parity bit)를 최하위 비트(LSB: Least Significant Bit, 이하 'LSB'라 칭하기로 함)에 할당하여 보다 우수한 성능을 획득한다. 또한, 상기 LDPC 부호 기반의 고차 부호화 변조 방식에서는, LDPC의 특징을 고려하여 동일한 검사 노드(check node)에 연결된 변수 노드가 동일한 변조 심볼에 할당되지 않도록 컬럼 트위스트 인터리버(column twisted interleaver)를 사용하고, 변조 심볼에 부호화 비트를 할당하는 매핑 방식을 정의한 역다중화기(de-multiplexer)가 제안되었다. 아울러, 상기 LDPC 부호 기반의 고차 부호화 변조 방식에서는, 멀티-에지 타입(MET: Multi-Edge Type, 이하 'MET'라 칭하기로 함) LDPC에 대해 밀도 에볼루션(density evolution) 방식을 사용하여 최적의 차수 분포(degree distribution)을 찾고, 상기 최적의 차수 분포를 기반으로 고차 변조 심볼에 매핑하는 방식이 제안되었다.
하지만, 전술한 바와 같은, LDPC 부호 기반의 부호화 방식은, 가변 부호화율(coding rate)을 지원하지 않으며, 특히 LDPC 부호 기반의 고차 부호화 변조 방식에서 LDPC 기반의 고차 변조 매핑 방식은, 매 부호화율마다 패리티 검사 행렬(parity-check matrix)을 정의하고, 상기 정의된 패리티 검사 행렬을 기반으로 변조 심볼에 매핑한다. 그에 따라, 상기 LDPC 기반의 고차 변조 매핑 방식은, 데이터 전송 시에 적용되는 부호화율 개수만큼 부호기 및 변조기의 하드웨어 구조를 달리해야 함으로, 메모리 크기의 증가 및 하드웨어 구조의 복잡도가 증가하는 문제점이 있다.
예컨대, LDPC 부호 기반 고차 심볼 매핑 방식은, 각 부호화율에 따라 패리티 검사 행렬을 각각 정의하며, 또한 변조 차수(modulation order)에 따라 부호화 비트를 변조 심볼에 매핑하는 방식을 정의한다. 이러한 정의에 상응하여 부호기 및 변조기를 하드웨어로 구현할 경우, 부호화율의 개수 및 변조 차수의 개수에 비례하여 부호기 및 변조기의 복잡도가 증가하는 문제점이 있다.
따라서, 본 발명의 목적은 통신 시스템에서 데이터 송신 장치 및 방법을 제공함에 있다.
또한, 본 발명의 다른 목적은, 통신 시스템에서 저밀도 패리티 검사(LDPC: Low-Density Parity Check) 부호화 방식을 이용하여 데이터를 송신하는 데이터 송신 장치 및 방법을 제공함에 있다.
그리고, 본 발명의 또 다른 목적은, 통신 시스템에서 데이터 전송 시에 적용되는 부호화율 및 변조 차수에 상응하여 동적으로 적합한(compatible) 저밀도 패리티 검사(LDPC: Low-Density Parity Check) 부호화 방식을 통해 데이터를 송신하는 데이터 송신 장치 및 방법을 제공함에 있다.
상기한 목적들을 달성하기 위한 본 발명의 장치는, 통신 시스템에서 데이터 송신 장치에 있어서, 전송하고자 하는 데이터에 적용되는 가변 부호화율 및 변조 차수를 기반으로 저밀도 패리티 검사(LDPC: Low-Density Parity Check) 부호의 패리티 검사 행렬을 생성하는 부호기; 상기 가변 부호화율 및 변조 차수를 지원하도록 상기 생성한 패리티 검사 행렬에 천공(puncturing) 또는 확장(extending)을 고려하여 최적의 패리티 검사 행렬을 생성하는 천공기; 및 상기 최적의 패리티 검사 행렬을 통해 저밀도 패리티 검사 부호화된 정보 비트를 변조 심볼에 매핑하여 송신하는 변조기;를 포함한다.
상기한 목적들을 달성하기 위한 본 발명의 방법은, 통신 시스템에서 데이터 송신 방법에 있어서, 전송하고자 하는 데이터에 적용되는 가변 부호화율 및 변조 차수를 기반으로 저밀도 패리티 검사(LDPC: Low-Density Parity Check) 부호의 패리티 검사 행렬을 생성하는 단계; 상기 가변 부호화율 및 변조 차수를 지원하도록 상기 생성한 패리티 검사 행렬에 천공(puncturing) 또는 확장(extending)을 고려하여 최적의 패리티 검사 행렬을 생성하는 단계; 상기 최적의 패리티 검사 행렬을 통해 상기 전송하고자 하는 데이터의 정보 비트를 저밀도 패리티 검사 부호화하는 단계; 및 상기 저밀도 패리티 검사 부호화된 정보 비트를 전송 우선 순위에 따라 분류한 후, 변조 심볼에 매핑하여 송신하는 단계;를 포함한다.
본 발명은, 통신 시스템에서 데이터 전송 시에 적용되는 가변적인 부호화율 및 변조 차수를 지원하는 저밀도 패리티 검사(LDPC: Low-Density Parity Check) 부호를 생성함으로써, 가변적인 부호화율 및 변조 차수에 상응하여 동적으로 적합한(compatible) LDPC 부호화 방식을 통해 대용량의 데이터를 고속으로 전송할 수 있으며, 그에 따라 한정된 자원의 사용 효율을 극대화하며, 아울러 한정된 자원을 통해 고속으로 대용량의 데이터를 전송하여 통신 서비스를 안정적으로 제공할 수 있다.
또한, 본 발명은, 통신 시스템에서 가변적인 부호화율 및 변조 차수를 지원하는 저밀도 패리티 검사 부호화 방식을 통해 데이터를 전송함으로써, 통신 시스템의 부호화기 및 변조기 하드웨어 구조를 단순화하며, 아울러 통신 시스템의 메모리 크기를 감소시킬 수 있다.
도 1은 본 발명의 실시 예에 따른 통신 시스템에서 송신기 및 수신기의 구조를 개략적으로 도시한 도면.
도 2는 본 발명의 실시 예에 따른 통신 시스템에서 LDPC 부호화 방식을 통한 데이터 송신을 위해 사용되는 블록 LDPC의 패리티 검사 행렬 구조를 개략적으로 도시한 도면.
도 3은 본 발명의 실시 예에 따른 통신 시스템에서 LDPC 부호화 방식을 통한 데이터 송신을 위해 사용되는 블록 LDPC의 이중 대각 패리티 구조를 개략적으로 도시한 도면.
도 4는 본 발명의 실시 예에 따른 통신 시스템에서 LDPC 부호화 방식을 통한 데이터 송신을 위해 부호화된 정보 비트의 분류를 설명하기 위한 도면.
도 5 및 도 6은 본 발명의 실시 예에 따른 통신 시스템에서 송신기의 동작 과정을 개략적으로 도시한 도면.
도 2는 본 발명의 실시 예에 따른 통신 시스템에서 LDPC 부호화 방식을 통한 데이터 송신을 위해 사용되는 블록 LDPC의 패리티 검사 행렬 구조를 개략적으로 도시한 도면.
도 3은 본 발명의 실시 예에 따른 통신 시스템에서 LDPC 부호화 방식을 통한 데이터 송신을 위해 사용되는 블록 LDPC의 이중 대각 패리티 구조를 개략적으로 도시한 도면.
도 4는 본 발명의 실시 예에 따른 통신 시스템에서 LDPC 부호화 방식을 통한 데이터 송신을 위해 부호화된 정보 비트의 분류를 설명하기 위한 도면.
도 5 및 도 6은 본 발명의 실시 예에 따른 통신 시스템에서 송신기의 동작 과정을 개략적으로 도시한 도면.
이하, 본 발명에 따른 바람직한 실시 예를 첨부한 도면을 참조하여 상세히 설명한다. 하기의 설명에서는 본 발명에 따른 동작을 이해하는데 필요한 부분만이 설명되며 그 이외 부분의 설명은 본 발명의 요지를 흩뜨리지 않도록 생략될 것이라는 것을 유의하여야 한다.
본 발명은, 통신 시스템에서 저밀도 패리티 검사(LDPC: Low-Density Parity Check, 이하 'LDPC'라 칭하기로 함) 부호화 방식을 이용하여 데이터를 송신하는 데이터 송신 장치 및 방법을 제안한다. 여기서, 본 발명의 실시 예에서는, 통신 시스템에서 한정된 자원을 통해 고속의 전송 속도를 가지는 다양한 서비스 품질(QoS: Quality of Service, 이하 'QoS'라 칭하기로 함)의 서비스들을 사용자들에게 제공하기 위해, 대용량의 데이터를 빠르고 안정적으로 전송하도록, LDCP 부호화 방식을 이용하여 데이터를 송수신하는 방안을 제안한다.
또한, 본 발명의 실시 예에서는, 통신 시스템에서 채널 환경에 따라 데이터 전송 시에 불가피하게 발생하는 오류, 및 이러한 오류에 의해 발생하는 전송 데이터의 정보 손실을 감소시키기 위해 에러 정정 부호(error-correcting code)로 사용되는 LDPC 부호를 통해 대용량의 데이터를 송신하는 장치 및 방법을 제안한다. 여기서, 상기 LDPC 부호화 방식에서 이용되는 LDPC 부호는, 차등 오류 보호(UEP: Unequal Error Protection, 이하 'UEP'라 칭하기로 함) 특성을 가짐, 다시 말해 패리티 검사 행렬(parity check matrix)의 구성에 따라 채널 부호화된 부호 비트의 차수(degree)가 변경되며, 상기 변경되는 부호 비트의 차수에 상응하여 오류 정정의 차이가 존재하는 특성을 갖는다. 또한, 본 발명의 실시 예에서는, LDPC 부호화 방식을 이용함에 따라, 상기 UEP 특성을 통해 고차 변조(high-order modulation) 및 복조 방식과, 다중 셀 협력 전송 등의 전송 방식과 결합되어 보다 향상된 데이터 전송 성능을 획득한다.
다시 말해, 본 발명의 실시 예에서는, 통신 시스템에서 데이터 전송 시에 적용되는 가변적인 부호화율 및 변조 차수를 하나의 모 부호(mother code)로 지원하는 가변 부호화율 및 변조 차수에 동적으로 적합한(compatible) LDPC 부호의 UEP 특성을 갖는다. 특히, 본 발명의 실시 예에서는, 단일 부호화율을 지원하는 패리티 검사 행렬에 의한 LDPC 부호화 방식을 이용하는 종래의 데이터 송신과는 달리, 다양한 가변적인 부호화율을 하나의 모 부호로 지원하는 LDPC 부호에 대해 최적의 성능을 갖는 부호화율 차수(degree) 분포를 산출하여 LDPC 부호를 생성한다. 다시 말해, 본 발명의 실시 예에서는, LDPC 부호의 모 부호가 최적의 성능을 갖도록 지원하며, 아울러 LDPC 부호의 천공(puncturing) 또는 확장(extending)을 고려하여 최적의 패리티 검사 행렬을 생성, 즉 가변 부호화율 및 변조 차수에 상응하여 동적으로 적합한 LDPC 부호를 생성하며, 이렇게 생성된 가변 부호화율을 지원하는 LDPC 부호를 사용하여 고차 변조 심볼에 매핑한다.
즉, 본 발명의 실시 예에서는, 가변 부호화율 및 변조 차수를 지원하는 LDPC 부호의 생성 및 고차 변조 심볼에 매핑하여 한정된 자원을 통해 대용량의 데이터를 빠르고 안정적으로 전송한다. 여기서, 본 발명의 실시 예에서는, 가변 부호화율을 지원하는 LDPC 부호를 생성함으로써, 단일 패리티 검사 행렬에 따른 부호기와 복호기의 구조를 단순화시키며, 이때 모 부호 패리티 검사 행렬에서 천공 또는 확장 방식만을 변경하여 다양한 가변적인 부호화율을 지원하며, 각각의 부호화율에 상응하는 천공 또는 확장 방식을 위한 하드웨어 구조가, 상기 각각의 부호화율에 상응하는 패리티 검사 행렬을 위한 하드웨어 구조보다 상대적으로 단순함으로, 부호기와 복호기의 구조를 단순화시킨다.
그리고, 본 발명의 실시 예에서는, 전술한 바와 같이 가변 부호화율을 지원하는 LDPC 부호의 패리티 검사 행렬을 기반으로 고차 변조 심볼에 매핑함으로, 송신기의 구조를 보다 단순화시킨다. 그리고, 본 발명의 실시 예에서는, 단일 구조를 갖는 모 부호 패리티 검사 행렬을 통해 LDPC 부호를 생성하고, 전송 우선순위에 따라 전송할 데이터를 버퍼에 저장함으로써, 다양한 가변 부호화율과, 고차 변조 심볼 매핑 및 순서를 결정하며, 그에 따라 시스템의 구조가 간단해지고 메모리의 사용량 등을 감소시킨다. 그러면 여기서, 도 1을 참조하여 본 발명의 실시 예에 따른 통신 시스템에서 송수신기에 대해 보다 구체적으로 설명하기로 한다.
도 1은 본 발명의 실시 예에 따른 통신 시스템에서 송신기 및 수신기의 구조를 개략적으로 도시한 도면이다.
도 1을 참조하면, 송신기(100)는 한정된 자원을 통해 전송하고자 하는 데이터의 정보 비트를 LDPC 부호화하는 LDPC 부호기(110), 상기 LDPC 부호기(110)로부터 출력되는 데이터에 천공 또는 확장을 적용하여 LDPC 부호화하는 천공기(120), 상기 천공기(120)로부터 출력되는 데이터를 변조 심볼에 매핑하여 수신기(150)로 송신하는 변조기(130)를 포함한다.
상기 수신기(150)는, 상기 송신기(100)로부터 수신되는 데이터를 복조하는 복조기(160), 상기 복조기(160)로부터 출력되는 데이터에 제로(zero)를 패딩(padding)하는 제로 패딩 유닛(170), 및 상기 제로 패딩 유닛(170)으로부터 출력되는 데이터를 복호하여 원 데이터의 정보 비트를 출력하는 LDPC 복호기(180)를 포함한다.
여기서, 상기 송신기(100)의 LDPC 부호기(110)는, 데이터 전송 시에 적용되는 가변 부호화율 및 변조 차수에 상응하여 동적으로 적합한 LDPC 부호를 생성, 다시 말해 최적의 성능을 모 부호 패리티 검사 행렬, 즉 단일 패리티 검사 행렬을 생성하며, 상기 천공기(120)는, 상기 LDPC 부호기(110)에서 생성된 모 부호 패리티 검사 행렬에서 가변 부호화율 및 변조 차수를 지원하기 위해 천공 또는 확장 방식만을 변경하여 LDPC 부호의 패리티 검사 행렬을 생성한다. 즉, 상기 LDPC 부호기(110) 및 상기 천공기(120)는, LDPC 부호화 방식을 사용하여 데이터를 전송하도록 데이터의 정보 비트를 LDPC 부호로 부호화하며, 이때 다양한 가변 부호화율 및 변조 차수에 상응하여 동적으로 적합한 LDPC 부호를 생성한다. 또한, 상기 LDPC 부호기(110)는, 가변 부호화율 및 변조 차수에 상응하여 동적으로 적합한 LDPC 부호의 모 부호 패리티 검사 행렬 생성 시에, 블록 LDPC(block LDPC) 부호를 고려하여 블럭 LDPC 부호의 패리티 검사 행렬을 생성한다.
또한, 상기 송신기(100)의 변조기(110)는, 상기 LDPC 부호기(110) 및 상기 천공기(120)를 통해 LDPC 부호화된 데이터를 변조하며, 이때 다양한 가변하는 고차 변조 차수를 지원하기 위해 고차 심볼 매핑 및 순서를 결정하여 LDPC 부호화된 데이터를 고차 심볼에 매핑한다. 그러면 여기서, 도 2 내지 도 도 6을 참조하여 본 발명의 실시 예에 따른 통신 시스템에서 데이터 송신을 위한 LDPC 부호화 및 변조에 대해 보다 구체적으로 설명하기로 한다.
우선, 상기 송신기(100)는, 도 2 및 도 3에 도시한 바와 같이 LDPC 부호화 방식을 사용하여 데이터를 송신하기 위해 LDPC 부호의 패리티 검사 행렬을 생성한다. 여기서, 도 2는 본 발명의 실시 예에 따른 통신 시스템에서 LDPC 부호화 방식을 통한 데이터 송신을 위해 사용되는 블록 LDPC의 패리티 검사 행렬 구조를 개략적으로 도시한 도면이고, 도 3은 본 발명의 실시 예에 따른 통신 시스템에서 LDPC 부호화 방식을 통한 데이터 송신을 위해 사용되는 블록 LDPC의 이중 대각 패리티 구조를 개략적으로 도시한 도면이다.
즉, 상기 송신기(100)는, 도 2에 도시한 바와 같이 m×n의 LDPC 부호의 패리티 검사 행렬(H), 예컨대 모 부호 패리티 검사 행렬을 생성하며, 이때 상기 송신기(100)는, 다양한 가변 부호화율 및 고차 변조 차수를 동적으로 지원하기 위해 천공 또는 확장 방식을 고려하여 패리티 검사 행렬을 생성한다. 여기서, 상기 생성된 m×n의 LDPC 부호의 패리티 검사 행렬(H)은, 도 3에 도시한 바와 같이 패리티 부분이 이중 대각 행렬과 유사한 형태를 갖는다. 이렇게 본 발명의 실시 예에 따른 송신기(100)가 생성한 패리티 검사 행렬이 이중 대각 패리티 구조를 가짐으로써, 천공 또는 확장 시에 규칙성을 가지며, 그에 따라 단일 모 부호 패리티 검사 행렬에서 천공 또는 확장 방식만을 변경하여 다양한 가변적인 부호화율 및 고차 변조 차수를 지원하며, 각각의 부호화율에 상응하는 천공 또는 확장 방식을 위한 하드웨어 구조가 단순함으로 부호기와 복호기의 구조를 단순화시킨다.
또한, 상기 송신기(100)는, 패리티 검사 행렬을 통해 전송하고자 하는 데이터의 정보 비트를 LDPC 부호로 부호화하며, 이렇게 부호화된 정보 비트는 도 4에 도시한 바와 같이 전송 우선 순위에 따라 분류한다. 여기서, 도 4는 본 발명의 실시 예에 따른 통신 시스템에서 LDPC 부호화 방식을 통한 데이터 송신을 위해 부호화된 정보 비트의 분류를 설명하기 위한 도면이다.
도 4를 참조하면, 상기 송신기(100)는, 전송하고자 하는 데이터의 부호화된 비트(coded bit), 즉 데이터의 부호화된 정보 비트, 예컨대 패리티 노드 블럭(410)의 정보 비트를 전송 우선 순위에 따라 버퍼(420)에 분류하며, 상기 버퍼(420)에 분류된 정보 비트를 블럭 셔플링(block shuffling)하며(440), 상기 블럭 셔플링된 버퍼(430)의 정보 비트는, 변조기(130)로 출력된다. 여기서, 도 4는, (96z x 64z)의 구조를 갖는 부호율 1/3의 블록 LDPC의 패리티 비트를 전송 우선 순위에 따른 송신기(100)에서의 분류를 개략적으로 도시한 도면이다. 그리고, 상기 블럭 셔플링된 버퍼(430)의 정보 비트는, 가변적인 부호화율 및 고차 변조 차수를 지원하기 위해 동적으로 적합한 LDPC 부호로 부호화된 정보 비트가 되며, 가변적인 부호화율 및 고차 변조 차수에 상응하여 상기 LDPC 부호기(110) 및 상기 천공기(120)가 단일 모 부호 패리티 검사 행렬에서 천공 또는 확장 방식을 통해 생성한 LDPC 패리티 검사 행렬을 이용하여 LDPC 부호로 부호한 비트를 의미한다.
또한, 상기 송신기(100)는, 전술한 바와 같이, LDPC 부호로 오류정정 부호화된 부호 비트를 변조기(130)가 고차 변조 심볼에 매핑한다. 여기서, 가변적인 고차 변조 차수를 지원하기 위해 상기 송신기(100)는, 부호화된 비트를 고차 변조 심볼에 매핑하는 방식을 결정하여 매핑한다. 예를 들어, 상기 송신기(100)는, 2m-ary 변조 방식과 같은 고차 변조 방식을 사용할 경우 변조 심볼을 구성하는 각각의 비트들이 다른 차수(order)의 보호(protection) 레벨을 갖는 UEP 특성을 고려하여 그레이 매핑(Gray mapping) 방식을 사용하는 경우, 최하위 비트(LSB: Least Significant Bit, 이하 'LSB'라 칭하기로 함)가 가장 약한 보호 레벨을 가지며, 최상위 비트(MSB: Most Significant Bit, 이하 'MS'라 칭하기로 함)가 강력한 보호 레벨을 갖는다.
여기서, 각 고차 변조 방식에서의 보호 레벨은, 심볼을 이루는 각 비트의 소프트 메시지(soft message), 예컨대 로그 우도비(LLR: Log-Likelihood Ratio, 이하 'LLR'이라 칭하기로 함)을 고려하여 측정되며, 상기 송신기(100)는, 터보 부호(Turbo code)와 LDPC 부호의 점근적(asymptotic) 성능 예측과 반복 복호 알고리즘의 점근적 분석을 위해 엑시트 차트(EXIT Chart), 가우시안 근사치(Gaussian Approximation), 및 밀도 에볼루션(density evolution) 방식을 사용하여 최적의 차수 분포(degree distribution)을 찾고, 상기 최적의 차수 분포를 기반으로 고차 변조 심볼에 매핑한다.
일 예로, 상기 송신기(100)가 밀도 에볼루션 방식을 사용할 경우, 상기 밀도 에볼루션 방식은, 각 비트의 추정값에 대한 신뢰도를 나타내는 LLR과 같은 소프트 메시지의 분포 함수가 반복 복호에 따라 어떻게 변화하는지 추적하는 방식으로, 본 발명의 실시 예에 따른 상기 송신기(100)는, UEP 특성을 갖는 각 비트, 예컨대 MSB 또는 LSB의 소프트 메시지에 대해 밀도 에볼루션 분석을 사용하여 UEP에 의한 성능 변화를 분석하고, 점근적 성능을 예측한다.
또한, 상기 송신기(100)는, UEP 특성을 고려한 UEP 그룹을 구성함에 있어, 시스터메틱 비트(systematic bit)의 경우, 해당 시스터메틱 비트와 연결된 검사 노드(check node)의 개수, 즉 상기 시스터메틱 비트의 변수 노드 차수(VND: Variable Node Degree, 이하 'VND'라 칭하기로 함)가 큰 경우 보다 상위의 전송 우선 순위를 갖도록 결정하며, 상기 시스터메틱 비트의 VND가 동일할 경우에는 시스터메틱 비트와 연결된 검사 노드와의 에지(edge) 연결 상태를 고려하여 게스(girth)가 큰 시스터메틱 비트가 상위의 전송 우선 순위를 갖도록 결정한다.
아울러, 상기 송신기(100)는, UEP 특성을 고려한 UEP 그룹을 구성함에 있어, 패리티 비트의 전송 우선 순위는 상기 천공기(120)에서의 천공 패턴에 의해 결정한다. 다시 말해, 상기 송신기(100)는, 모 부호 패리티 검사 행렬에 대해 천공 기반으로 가변 부호화율에 동적으로 적합한 LDPC 부호를 생성하며, 이때 상기 모 부호 패리티 검사 행렬을 통해 부호화된 부호화 비트를 복호 성능의 결정에 크게 미치는 비트와 적게 미치는 비트를 분류하여 전송 순위를 결정하며, 상기 결정한 전송 순위에서 전송 우선 순위가 낮은 비트를 우선적으로 천공함으로써 해당 전송 우선 순위가 낮은 비트를 전송하지 않는 방식을 사용하여 데이터를 송신한다. 여기서, 전체적인 전송 순위는 정보 비트 그룹이 패리티 비트 그룹보다 우선 순위를 갖는다. 그러면 여기서, 도 5 및 도 6을 참조하여 본 발명의 실시 예에 따른 통신 시스템에서 송신기의 LDPC 부호화 방식을 사용한 데이터 송신 동작을 보다 구체적으로 설명하기로 한다.
도 5 및 도 6은 본 발명의 실시 예에 따른 통신 시스템에서 송신기의 동작 과정을 개략적으로 도시한 도면이다. 여기서, 도 5는, 송신기가 가변 부호화율 및 고차 변조 차수에 따라 동적으로 적합한 LDPC 부호 및 변조를 결정하는 동작 과정을 나타낸 도면이고, 도 6은, 송신기가 도 5와 같이 결정한 LDPC 부호 및 변조를 통해 데이터를 송신하는 과정을 개략적으로 도시한 도면이다.
우선, 도 5를 참조하면, 상기 송신기는, 510단계에서, LDPC 부호화 방식을 사용하여 데이터를 전송하기 위해, 데이터 전송 시에 적용되는 가변 부호화율 및 변조 차수를 지원하기 위한 패리티 검사 행렬, 즉 모 부호 패리티 검사 행렬을 생성한다. 그리고, 520단계에서, 상기 생성한 모 부호 패리티 검사 행렬에서 천공 또는 확장 방식을 고려하여 가변 부호화율 및 변조 차수를 지원하기 위해, 상기 천공 또는 확장 방식을 결정한다.
여기서, 가변 부호화율 및 변조 차수를 지원하기 위해 상기 생성한 모 부호 패리티 검사 행렬에 천공 또는 확장을 수행하면, 전술한 바와 같이 변수 노드(variable node)와 검사 노드 간의 연결 상태가 변경되며, 그에 따라 차수 분포가 변경된다. 그 결과, 데이터 전송 시에 적용되는 가변적인 부호화율, 및 상기 가변적인 부호화율에 상응하는 천공 또는 확장 방식을 고려하여 가장 우수한 성능 갖도록 패리티 검사 행렬을 생성한다. 이때, 앞서 설명한 바와 같이 가장 우수한 성능을 갖는 패리티 검사 행렬의 생성을 위해, 송신기는, 엑시트 차트 및 밀도 에볼루션 방식을 사용하여 최적의 차수 분포를 찾고, 상기 최적의 차수 분포를 기반으로 가변 부호화율 및 변조 차수를 지원하는 LDPC 부호를 생성한다.
즉, 상기 송신기는, 가변 부호화율 및 변조 차수에 상응하여 동적으로 적합한 LDPC 부호를 생성하며, 상기 생성된 LDPC 부호는, 다양한 가변 부호율을 지원하도록 천공 또는 확장 패턴(방식)에 따라 전술한 바와 같이 UEP 특성을 갖는다. 다시 말해, 기본적으로 LDPC 부호의 VND에 따라 시스터매틱 비트들이 각각의 UEP 레벨을 가지며, 또한 패리티 비트들 또한 천공 또는 확장 패턴에 따라 상이한 UEP 레벨을 갖는다.
그런 다음, 상기 송신기는, 530단계에서, LDPC 부호화 방식을 사용하여 부호화된 부호화 비트를 전송 우선 순위에 따라 분류하기 위한 분류 방식을 결정한다. 여기서, 상기 송신기는, 상기 가변 부호화율 및 변조 차수에 상응하여 동적으로 적합하도록 생성한 LDPC 부호의 UEP 특성을 분석하여 오류 정정 레벨에 따라 부호화된 비트들의 UEP 그룹을 생성하며, 이때 상기 UEP 그룹은, 정보 비트와 패리티 비트들에 따라 그룹 생성 방식이 상이할 수 있다.
예컨대, 상기 송신기는, 전술한 바와 같이 UEP 그룹을 구성함에 있어, 시스터메틱 비트의 경우, 해당 시스터메틱 비트와 연결된 검사 노드의 개수, 즉 상기 시스터메틱 비트의 VND가 큰 경우 보다 상위의 전송 우선 순위를 갖도록 결정하며, 상기 시스터메틱 비트의 VND가 동일할 경우에는 시스터메틱 비트와 연결된 검사 노드와의 에지 연결 상태를 고려하여 게스가 큰 시스터메틱 비트가 상위의 전송 우선 순위를 갖도록 결정한다. 아울러, 상기 송신기는, UEP 특성을 고려한 UEP 그룹을 구성함에 있어, 패리티 비트의 전송 우선 순위는 천공 패턴에 의해 결정한다. 다시 말해, 상기 송신기는, 모 부호 패리티 검사 행렬에 대해 천공 기반으로 가변 부호화율에 동적으로 적합한 LDPC 부호를 생성하며, 이때 상기 모 부호 패리티 검사 행렬을 통해 부호화된 부호화 비트를 복호 성능의 결정에 크게 미치는 비트와 적게 미치는 비트를 분류하여 전송 순위를 결정하며, 상기 결정한 전송 순위에서 전송 우선 순위가 낮은 비트를 우선적으로 천공함으로써 해당 전송 우선 순위가 낮은 비트를 전송하지 않는 방식을 사용하여 데이터를 송신한다. 여기서, 전체적인 전송 순위는 정보 비트 그룹이 패리티 비트 그룹보다 우선 순위를 갖는다.
다음으로, 상기 송신기는, 540단계에서, 가변적인 부호화율 및 변조 차수를 지원하기 위해, LDPC 부호로 부호화된 비트를 변조 심볼에 매핑하기 위한 매핑 방식을 결정한다. 여기서, 상기 송신기는, UEP 특성을 활용하여 전송 우선 순위에 따라 부호화 비트들을 그룹화하고 부호화율과 변조 차수가 결정되면, 전송할 부호 비트의 개수를 결정한 후 전송 우선 순위의 순서대로 고차 변조 심볼에 상기 부호 비트를 매핑한다. 이때, 전송 우선 순위가 상위인 부호 비트를 고차 변조 심볼의 MSB에 매핑하고, 전송 우선 순위가 하위인 부호 비트를 저차(low-oder) 변조 심볼에 매핑하며, 복수의 변조 심볼들을 전송할 경우, 각 변조 심볼에 매핑되는 부호 비트에서의 VND의 총 합이 서로 유사한 값을 갖도록 매핑한다. 그러면 여기서, 도 6을 참조하여 본 발명의 실시 예에 따른 통신 시스템에서 송신기가 LDPC 부호화 방식을 이용하여 데이터를 송신하는 동작을 보다 구체적으로 설명하기로 한다.
도 6을 참조하면, 상기 송신기는, 610단계에서, 데이터 전송 시에 적용되는 가변 부호화율 및 변조 차수를 지원하기 위해, 가변 부호화율 및 변조 차수에 상응하여 동적으로 적합하게 생성한 LDPC 부호의 패리티 검사 행렬을 통해, 전송하고자 하는 데이터의 정보 비트를 부호화한다. 여기서, 상기 LDPC 부호의 모 부호 패리티 검사 행렬의 생성, 및 천공 또는 확장을 고려한 패리티 검사 행렬 생성에 대해서는 앞서 구체적으로 설명하였음으로 여기서는 그에 관한 구체적인 설명을 생략하기로 한다.
그런 다음. 620단계에서, 상기 송신기는, LDPC 부호화된 부호화 비트를 전송 우선 순위에 따라 분류하여 버퍼에 저장하며, 이때 상기 버퍼에 저장된 부호화 비트는 블럭 셔플링되어 분류된다. 그리고, 630단계에서, 상기 송신기는, 전술한 바와 같이 UEP 특성을 활용하여 전송 우선 순위에 따라 부호화 비트들을 그룹화하고 부호화율과 변조 차수가 결정되면, 전송할 부호 비트의 개수를 결정하고, 전송 우선 순위에 따라 전송할 부호 비트의 순서를 결정한다.
다음으로, 640단계에서, 상기 송신기는, 상기 전송 우선 순위의 순서대로 고차 변조 심볼에 상기 부호 비트를 매핑한다. 이때, 전송 우선 순위가 상위인 부호 비트를 고차 변조 심볼의 MSB에 매핑하고, 전송 우선 순위가 하위인 부호 비트를 저차 변조 심볼에 매핑하며, 복수의 변조 심볼들을 전송할 경우, 각 변조 심볼에 매핑되는 부호 비트에서의 VND의 총 합이 서로 유사한 값을 갖도록 매핑한다.
한편, 본 발명의 상세한 설명에서는 구체적인 실시 예에 관해 설명하였으나, 본 발명의 범위에서 벗어나지 않는 한도 내에서 여러 가지 변형이 가능함은 물론이다. 그러므로, 본 발명의 범위는 설명된 실시 예에 국한되어 정해져서는 안되며 후술하는 특허청구의 범위뿐만 아니라 이 특허청구의 범위와 균등한 것들에 의해 정해져야 한다.
Claims (1)
- 통신 시스템에서 데이터 송신 장치에 있어서,
전송하고자 하는 데이터에 적용되는 가변 부호화율 및 변조 차수를 기반으로 저밀도 패리티 검사(LDPC: Low-Density Parity Check) 부호의 패리티 검사 행렬을 생성하는 부호기;
상기 가변 부호화율 및 변조 차수를 지원하도록 상기 생성한 패리티 검사 행렬에 천공(puncturing) 또는 확장(extending)을 고려하여 최적의 패리티 검사 행렬을 생성하는 천공기; 및
상기 최적의 패리티 검사 행렬을 통해 저밀도 패리티 검사 부호화된 정보 비트를 변조 심볼에 매핑하여 송신하는 변조기;를 포함하는 것을 특징으로 하는 데이터 송신 장치.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20100019663 | 2010-03-05 | ||
KR1020100019663 | 2010-03-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20110101091A true KR20110101091A (ko) | 2011-09-15 |
Family
ID=44953278
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020110019461A KR20110101091A (ko) | 2010-03-05 | 2011-03-04 | 통신 시스템에서 데이터 송신 장치 및 방법 |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20110101091A (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10445175B2 (en) | 2016-09-07 | 2019-10-15 | SK Hynix Inc. | Controller and operating method thereof |
-
2011
- 2011-03-04 KR KR1020110019461A patent/KR20110101091A/ko not_active Application Discontinuation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10445175B2 (en) | 2016-09-07 | 2019-10-15 | SK Hynix Inc. | Controller and operating method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101492634B1 (ko) | 저밀도 패리티 검사 부호를 사용하는 통신 시스템에서 데이터 송수신 장치 및 방법 | |
JP5648224B2 (ja) | 低密度パリティ検査符号を使用するシステムにおけるチャネル符号化及び復号化方法並びにその装置 | |
US7584401B2 (en) | Channel interleaving/deinterleaving apparatus in a communication system using low density parity check code and control method thereof | |
JP5235629B2 (ja) | 無線通信装置の符号化及び変調方法、並びに復号方法 | |
KR100987692B1 (ko) | 통신 시스템에서 신호 송수신 장치 및 방법 | |
JP5506878B2 (ja) | 低密度パリティ検査符号のパリティ検査行列生成方法 | |
KR102694927B1 (ko) | 통신 또는 방송 시스템에서 채널 부호화/복호화 방법 및 장치 | |
JP2008529448A (ja) | データの送信方法、データの受信方法、送信機、受信機、並びにコンピュータプログラム製品 | |
TWI325259B (en) | An interleaving scheme for an ldpc coded 16apsk system | |
JP4177824B2 (ja) | 符号化方法、復号化方法および符号化システム | |
US20050152408A1 (en) | Apparatus and method for transmitting and receiving coded data by encoder having unequal error probability in mobile communication system | |
KR102549344B1 (ko) | 통신 또는 방송 시스템에서 채널 부호화/복호화 방법 및 장치 | |
KR101503656B1 (ko) | 저밀도 패리티 검사 부호를 사용하는 통신 시스템에서의 채널 부호화/복호화 방법 및 장치 | |
KR101413320B1 (ko) | 통신 시스템에서 채널 인터리빙/디인터리빙 장치 및 방법 | |
JP2007306469A (ja) | 無線通信装置および変調信号生成方法 | |
KR20150134505A (ko) | 송신 장치 및 그의 신호 처리 방법 | |
US20140068387A1 (en) | Transmitting apparatus, receiving apparatus, transmitting method and receiving method for communicating data coded with low density parity check (ldpc) codes | |
KR101145673B1 (ko) | 특정 구조를 가지는 lt코드를 이용한 부호화 방법 및 이를 기반으로 하는 랩터 코드를 이용한 부호화 방법 | |
KR20110101091A (ko) | 통신 시스템에서 데이터 송신 장치 및 방법 | |
KR20090026709A (ko) | 블록 길이가 가변적인 저밀도 패리티 검사 부호를 이용한채널 부호화/복호화 방법 및 장치 | |
CN101150378A (zh) | 低密度奇偶校验编码的32apsk系统的交织方案 | |
KR101128804B1 (ko) | 참조 행렬을 이용한 lpdc 부호화 및 복호화 방법 | |
JP5153588B2 (ja) | 無線通信装置 | |
KR20080084178A (ko) | 복수의 레이어들을 이용하여 ldpc 복호화를 수행하는방법 | |
KR101503655B1 (ko) | 저밀도 패리티 검사 부호를 사용하는 통신 시스템에서 채널 부호/복호 방법 및 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WITN | Withdrawal due to no request for examination |