KR20110092171A - Simultaneous removal method of petroleum hydrocarbons and heavy metals from contaminated soil - Google Patents

Simultaneous removal method of petroleum hydrocarbons and heavy metals from contaminated soil Download PDF

Info

Publication number
KR20110092171A
KR20110092171A KR1020100011682A KR20100011682A KR20110092171A KR 20110092171 A KR20110092171 A KR 20110092171A KR 1020100011682 A KR1020100011682 A KR 1020100011682A KR 20100011682 A KR20100011682 A KR 20100011682A KR 20110092171 A KR20110092171 A KR 20110092171A
Authority
KR
South Korea
Prior art keywords
carbon dioxide
petroleum
heavy metals
soil
reactor
Prior art date
Application number
KR1020100011682A
Other languages
Korean (ko)
Other versions
KR101136556B1 (en
Inventor
박익범
송일석
김구환
최시림
김동기
문희천
허종원
최필권
Original Assignee
경기도
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경기도 filed Critical 경기도
Priority to KR1020100011682A priority Critical patent/KR101136556B1/en
Publication of KR20110092171A publication Critical patent/KR20110092171A/en
Application granted granted Critical
Publication of KR101136556B1 publication Critical patent/KR101136556B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/08Reclamation of contaminated soil chemically
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • A62D3/10Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by subjecting to electric or wave energy or particle or ionizing radiation
    • A62D3/13Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by subjecting to electric or wave energy or particle or ionizing radiation to sonic energy
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • A62D3/30Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by reacting with chemical agents
    • A62D3/33Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by reacting with chemical agents by chemical fixing the harmful substance, e.g. by chelation or complexation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Soil Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

PURPOSE: A method for simultaneously eliminating petroleum and heavy metal from polluted soil is provided to prevent the generation of secondary pollution such as water pollution and air pollution. CONSTITUTION: A chelating agent is added soil polluted with heavy metal and petroleum in order to obtain a mixture. The mixture is introduced into a reactor(5) and is left at temperature between 40 and 50 degrees Celsius. Carbon dioxide in a supercritical state is supplied to the reactor. The pressure of the reactor is maintained between 12 and 16MPa. Ultrasonic wave is supplied to the reactor to extract pollutants in a static extracting process. Carbon dioxide is discharged to extract pollutants in a dynamic extracting process. The static extracting process and the dynamic extracting process are successively repeated. The carbon dioxide is eliminated from the mixture.

Description

오염된 토양의 석유류 및 중금속을 동시에 제거하는 방법{Simultaneous removal method of petroleum hydrocarbons and heavy metals from contaminated soil}Simultaneous removal method of petroleum hydrocarbons and heavy metals from contaminated soil}

본 발명은 오염된 토양의 석유류 및 중금속을 동시에 한 공정 내에서 제거하는 방법에 관한 것으로, 좀더 상세하게는 초임계 상태의 이산화탄소, 상기 이산화탄소에 잘 용해되는 킬레이트제 및 초음파를 이용하여 오염된 토양으로부터 성질이 서로 다른 석유류와 중금속을 동시에 제거하는 방법에 관한 것이다.The present invention relates to a method of simultaneously removing petroleum and heavy metals of contaminated soil in one process, and more particularly, from supercontaminated carbon dioxide, chelating agents that are well soluble in carbon dioxide, and ultrasonic contaminated soil. The present invention relates to a method of simultaneously removing petroleum and heavy metals having different properties.

국내외적으로 급속한 산업화 및 도시화로 인해 토양오염에 의한 인체 및 생태계의 급ㆍ만성적 피해사례가 증가하고 있으며, 이러한 토양오염은 광역적으로 확산되고 있는 실정이다.Due to rapid industrialization and urbanization both at home and abroad, acute and chronic damages to humans and ecosystems due to soil pollution are increasing, and such soil pollution is spreading globally.

토양오염의 특성은 수질 및 대기오염 등 다른 환경오염에 비해 오염원을 제거해도 오염물질이 장기간에 걸쳐 잔류하는 축적성, 오염피해의 잠재성ㆍ장기성ㆍ시차성 및 토양오염원 식별과 오염물질 거동예측의 난해성, 오염된 토양의 처리를 위한 시간 및 비용이 많이 소요되는 반면에 처리효과는 비가시적이다.Soil pollution is characterized by the accumulation of pollutants remaining over a long period of time even if the pollutant is removed compared to other environmental pollutions such as water quality and air pollution, the potential, long-term, and staggered potential of pollution damage, and the identification of soil pollutant behavior and pollutant behavior. While difficult and time consuming and costly to treat contaminated soil, the treatment effect is invisible.

토양오염의 주요 원인물질로는 석유류, 중금속, 농약, 비료 등을 들 수 있으며, 특히 주유소, 산업시설, 유류저장시설, 폐광산, 군부대 주둔지 등에서 발생되는 석유류와 중금속의 누출은 토양 및 지하수 오염의 심각한 오염원으로 작용하고 있다.Major sources of soil pollution include petroleum, heavy metals, pesticides and fertilizers.In particular, the leakage of petroleum and heavy metals generated at gas stations, industrial facilities, oil storage facilities, abandoned mines, and military bases is a serious cause of soil and groundwater contamination. It acts as a source of pollution.

이러한 석유류와 중금속에 의해 오염된 토양은 오염물질이 물에 거의 용해되지 않고 토양에 계속 잔류ㆍ축적되기 때문에 토양오염이 더욱 가중되고, 다양한 경로를 거쳐 인체 및 생태계에 축적되어 질병 등을 유발하게 된다.Soils contaminated by petroleum and heavy metals become more contaminated by water and continue to accumulate and accumulate in the soil. Soil pollution is further aggravated. .

종래에는 가솔린, 등유, 경유, 중유 등과 같은 석유류로 오염된 토양을 복원하기 위하여 소각(incineration), 열탈착(heat sorption), 토양세척(soil washing), 토양 증기추출(soil vapor extraction) 등의 물리화학적 처리기술과 바이오파일(biopile), 생물분해(biodegradation) 등의 생물학적 처리기술이 적용되어 왔으며, 납, 카드뮴, 구리, 아연 등과 같은 중금속으로 오염된 토양을 복원하기 위하여 토양세척, 소각, 식물정화(phytoremediation), 동전기 복원(electrokinetic remediation), 고형화/안정화(solidification/stabilization) 등의 처리기술이 적용되어 왔다.Conventionally, in order to recover soil contaminated with petroleum such as gasoline, kerosene, diesel, heavy oil, etc., physicochemicals such as incineration, heat sorption, soil washing, soil vapor extraction, etc. Treatment techniques and biological treatment techniques such as bioopile and biodegradation have been applied, and soil washing, incineration and plant purification (to restore soils contaminated with heavy metals such as lead, cadmium, copper and zinc) have been applied. Treatment techniques such as phytoremediation, electrokinetic remediation, and solidification / stabilization have been applied.

실제 오염된 토양은 석유류와 중금속이 혼재하는 경우가 많고, 성질이 서로 다른 석유류(비극성)와 중금속(극성)을 동시에 제거할 수 있는 오염토양 복원기술은 토양세척, 소각, 고형화/안정화 등으로 극히 제한되어 있다.In fact, contaminated soil is often mixed with petroleum and heavy metals, and the contaminated soil restoration technology that can simultaneously remove petroleum (non-polar) and heavy metal (polar) of different properties is very important due to soil washing, incineration, solidification / stabilization, etc. It is limited.

상기 토양세척방법은 다량의 계면활성제 등을 사용하는 방법으로서 상기 계면활성제 등에 의한 토양의 변성 및 비용증가와 더불어 수질오염과 같은 2차오염을 야기하고, 소각방법은 오염된 토양을 소각처리하는 방법으로서 가열로 인한 토양의 변성 및 비용증가와 더불어 대기오염과 같은 2차오염을 유발하며, 고형화/안정화는 시멘트와 같은 고형화제/안정화제를 오염토양과 혼합하여 오염물질을 물리적으로 고립시키고 화학적으로 안정화시키는 방법으로서 매립을 위한 넓은 부지가 필요하고 장기적인 2차 토양오염을 발생시키는 문제가 있다.The soil washing method is a method using a large amount of surfactants, etc., and causes secondary pollution such as water pollution, along with the degeneration and cost increase of the soil by the surfactant, etc., incineration method is a method of incineration of contaminated soil. As a result, it causes secondary pollution such as air pollution along with soil denaturation and cost increase due to heating, and solidification / stabilization mixes solidifying agents / stabilizers such as cement with contaminated soil to physically isolate pollutants and chemically As a stabilization method, a large site for landfill is needed and there is a problem of generating long-term secondary soil pollution.

본 발명이 해결하고자 하는 과제는 오염된 토양을 정화하는데 있어서, 수질ㆍ대기오염 등 2차 오염을 유발하지 않으면서 오염된 토양으로부터 석유류와 중금속을 동시에 한 공정 내에서 제거할 수 있는 방법을 제공함과 동시에, 초음파를 적용하여 오염물질의 제거율을 향상시키는 방법을 제공한다.The problem to be solved by the present invention is to provide a method for removing petroleum and heavy metals from contaminated soil at the same time without causing secondary pollution such as water quality and air pollution in purifying the contaminated soil and At the same time, it provides a method of improving the removal rate of contaminants by applying ultrasonic waves.

상기 과제를 해결하기 위하여 본 발명은, 중금속 및 석유류가 오염된 토양에 킬레이트제를 첨가하여 혼합물을 제조하는 단계; 상기 혼합물을 반응기에 넣은 후 40~50℃로 유지하는 단계; 상기 반응기에 초임계 상태의 이산화탄소를 공급하고 12~16㎫의 압력을 유지한 다음 초음파를 공급하여 오염물질을 추출하는 정적 추출단계; 상기 정적 추출단계의 혼합물에 초음파가 공급되는 상태에서 초임계 이산화탄소를 주입하면서 상기 주입되는 이산화탄소와 동량의 이산화탄소를 배출시켜 오염물질을 추출하는 동적 추출단계; 상기 정적 추출단계 및 동적 추출단계가 순차적으로 한번 더 반복되는 단계; 및 상기 혼합물에서 이산화탄소를 제거하는 단계를 포함하는, 오염된 토양의 석유류 및 중금속을 동시에 제거하는 방법을 제공한다.In order to solve the above problems, the present invention comprises the steps of preparing a mixture by adding a chelating agent to soil contaminated with heavy metals and petroleum; Placing the mixture in a reactor and maintaining at 40 to 50 ° C; Supplying carbon dioxide in a supercritical state to the reactor, maintaining a pressure of 12 to 16 MPa, and then supplying ultrasonic waves to extract contaminants; A dynamic extraction step of extracting contaminants by discharging the same amount of carbon dioxide and the injected carbon dioxide while injecting supercritical carbon dioxide while the ultrasonic wave is supplied to the mixture of the static extraction step; Repeating the static extraction step and the dynamic extraction step once more sequentially; And removing carbon dioxide from the mixture, thereby providing a method for simultaneously removing petroleum and heavy metals of the contaminated soil.

이때, 상기 정적 추출단계는 7~11분 동안 수행되고, 상기 동적 추출단계는 3~5mL/분의 유속으로 5~9분 동안 수행되는 것이 바람직하다.At this time, the static extraction step is carried out for 7 to 11 minutes, the dynamic extraction step is preferably carried out for 5 to 9 minutes at a flow rate of 3 ~ 5mL / min.

또한, 상기 혼합물은 토양 100중량부에 킬레이트제 10~20중량부를 첨가하여 제조되는 것이 바람직하다.In addition, the mixture is preferably prepared by adding 10 to 20 parts by weight of a chelating agent to 100 parts by weight of soil.

또한, 상기 킬레이트제는 비스-(2,4,4-트리메틸펜틸)포스핀산 100중량부에 디-(2-에틸헥실)인산 40~60중량부를 혼합하여 제조되는 것이 바람직하다.In addition, the chelating agent is preferably prepared by mixing 40 to 60 parts by weight of di- (2-ethylhexyl) phosphoric acid to 100 parts by weight of bis- (2,4,4-trimethylpentyl) phosphinic acid.

본 발명에 따르면 오염된 토양으로부터 비극성인 석유류와 극성인 중금속이 동시에 제거되며, 정화과정 중 수질ㆍ대기오염 등 2차 오염이 거의 발생되지 않는다.According to the present invention, nonpolar petroleum and polar heavy metal are simultaneously removed from the contaminated soil, and secondary pollution such as water quality and air pollution is hardly generated during the purification process.

또한 정화과정 중에 초음파를 적용하여 오염물질의 제거율이 향상된다.In addition, the removal rate of contaminants is improved by applying ultrasonic waves during the purification process.

도 1은 본 발명의 일 실시예에 따른, 초임계유체추출과 초음파를 조합한 장치의 개략적인 구성도이다.1 is a schematic configuration diagram of a device combining supercritical fluid extraction and ultrasonic waves according to an embodiment of the present invention.

본 발명은 초임계 상태의 이산화탄소를 이용하여 오염토양으로부터 비극성인 석유류를 제거하고, 상기 이산화탄소에 잘 용해되는 킬레이트제를 이용하여 오염토양으로부터 극성인 중금속을 제거하는 동시에, 상기 과정 중에 초음파를 적용하여 오염물질의 제거율을 향상시키는 것으로서, 상기 과정은 한 공정 내에서 동시에 구현된다.
The present invention removes nonpolar petroleum from the contaminated soil using carbon dioxide in a supercritical state, removes polar heavy metals from the contaminated soil using a chelating agent that is well dissolved in the carbon dioxide, and applies ultrasonic waves during the process. By improving the removal rate of contaminants, the process is implemented simultaneously in one process.

먼저 중금속 및 석유류가 오염된 토양을 준비한 다음 여기에 킬레이트제를 첨가하여 혼합물을 제조한다.First, the soil contaminated with heavy metals and petroleum is prepared, and then a chelating agent is added thereto to prepare a mixture.

상기 킬레이트제는 한 개의 리간드(ligand)가 금속이온과 두 자리 이상에서 배위결합하여 생기는 착이온으로서, 오염된 토양의 중금속과 결합하여 상기 중금속을 제거하기 위하여 사용된다.The chelating agent is a complex ion formed by coordinating one ligand with a metal ion at two or more sites, and is used to remove the heavy metal by binding to a heavy metal of contaminated soil.

본 발명에 사용되는 킬레이트제는 초임계 이산화탄소에 잘 용해되는 킬레이트이면 사용 가능하며, 예를 들어 비스-(2,4,4-트리메틸펜틸)포스핀산(bis-(2,4,4-trimethylpentyl)phosphinic acid) 또는 디-(2-에틸헥실)인산(di-(2-ethylhexyl)phosphoric acid : DEHPA)이 바람직하고, 비스-(2,4,4-트리메틸펜틸)포스핀산 100중량부에 디-(2-에틸헥실)인산 40~60중량부가 혼합된 것이 좀더 바람직하다.The chelating agent used in the present invention can be used as long as it is well soluble in supercritical carbon dioxide, for example, bis- (2,4,4-trimethylpentyl) phosphinic acid (bis- (2,4,4-trimethylpentyl) phosphinic acid) or di- (2-ethylhexyl) phosphoric acid (DEHPA) is preferred, and 100 parts by weight of bis- (2,4,4-trimethylpentyl) phosphinic acid More preferably, 40 to 60 parts by weight of (2-ethylhexyl) phosphoric acid is mixed.

상기 혼합물에서 킬레이트제의 첨가량은 토양의 오염 정도에 따라 달라지는데, 토양 100중량부에 킬레이트제 10~20중량부를 첨가하는 것이 가장 바람직하다.The amount of the chelating agent added in the mixture depends on the degree of soil contamination, and it is most preferable to add 10-20 parts by weight of the chelating agent to 100 parts by weight of the soil.

상기 토양과 킬레이트제의 혼합물을 반응기에 넣은 다음 상기 반응기 온도를 40~50℃로 유지시킨다.The mixture of soil and chelating agent is placed in a reactor and the reactor temperature is maintained at 40-50 ° C.

상기 반응기의 온도는 투입되는 이산화탄소가 초임계 상태를 유지하기 위한 온도로서, 40℃ 미만이면 이산화탄소가 임계점(31.1℃, 7.38㎫)을 벗어나 상기 반응기 내에서 액화될 우려가 있으며, 50℃를 초과하면 필요없는 에너지가 낭비되므로 바람직하지 않다.The temperature of the reactor is a temperature for maintaining the carbon dioxide is supercritical state, if less than 40 ℃ carbon dioxide may liquefy in the reactor beyond the critical point (31.1 ℃, 7.38 MPa), if it exceeds 50 ℃ This is undesirable because unnecessary energy is wasted.

다음은 액상의 이산화탄소를 준비한 다음 상기 반응기 내에 투입하는데, 고압펌프 등을 이용하여 상기 반응기 내부압력이 12~16㎫로 유지되도록 하여 40~50℃로 유지되는 상기 반응기 내에서 투입된 이산화탄소가 초임계 상태가 유지되도록 한다.Next, a liquid carbon dioxide is prepared and then introduced into the reactor, and the carbon dioxide introduced in the reactor maintained at 40 to 50 ° C. is maintained at 12 to 16 MPa by using a high pressure pump. Is maintained.

상기 반응기 내부압력이 12㎫ 미만이면, 상기 반응기 내에서 이산화탄소의 용해력이 약화될 우려가 있으며, 16㎫을 초과하면 고압펌프 및 반응기의 설계압력을 높여야 하므로 바람직하지 않다.If the internal pressure of the reactor is less than 12 MPa, there is a fear that the dissolving power of carbon dioxide in the reactor is weakened, if it exceeds 16 MPa it is not preferable because the design pressure of the high pressure pump and the reactor must be increased.

상기 반응기에 투입되는 이산화탄소가 기화되는 것을 방지하기 위하여 고압펌프 유입 측에 응축기를 설치할 수도 있으며, 상기 투입되는 이산화탄소에 의하여 반응기 내의 온도가 저하되는 것을 방지하기 위하여 반응기 유입 측에 가열장치를 설치할 수도 있다.A condenser may be installed on the inlet side of the high pressure pump to prevent the carbon dioxide introduced into the reactor from vaporizing, and a heating device may be installed on the inlet side of the reactor in order to prevent the temperature in the reactor from being lowered by the input carbon dioxide. .

다음은 초음파 발생기를 이용하여 상기 반응기 내에 초음파가 공급되도록 한다.Next, ultrasonic waves are supplied into the reactor by using an ultrasonic generator.

초음파는 인간이 들을 수 있는 가청주파수의 범위보다 높은 주파수대의 음파를 말하며 세척, 추출, 가공, 비파괴검사, 의료진단 등 다양한 분야에서 활용되어 왔다.Ultrasound refers to sound waves in the higher frequency range than humans can hear and has been used in various fields such as washing, extraction, processing, non-destructive testing, and medical diagnosis.

상기 반응기 내에 공급되는 초음파는 오염물질의 교반 및 진동효과를 야기하여 오염물질의 제거율 향상 및 제거시간을 단축하게 한다.The ultrasonic wave supplied to the reactor causes stirring and vibration effects of the contaminants to improve the removal rate of the contaminants and shorten the removal time.

상기 반응기 내의 토양에 함유된 석유류는 초음파가 공급되는 환경하에서 초임계 상태의 이산화탄소에 용해되나, 토양에 함유된 중금속은 상기 초임계 상태의 이산화탄소에 쉽게 용해되지 않으므로 이산화탄소에 잘 녹는 킬레이트제와 공존시킨 후 초임계 상태의 이산화탄소에 용해되도록 한다.The petroleum contained in the soil in the reactor is dissolved in supercritical carbon dioxide under the ultrasonically supplied environment, but the heavy metals contained in the soil are not easily dissolved in the supercritical carbon dioxide and coexist with chelating agents that are well soluble in carbon dioxide. Then dissolved in supercritical carbon dioxide.

상기와 같이 초임계 상태의 이산화탄소와 킬레이트제를 이용하여 토양으로부터 석유류와 중금속을 추출하는 정적 추출(static extraction)과정을 7~11분 동안 수행한다.As described above, a static extraction process of extracting petroleum and heavy metals from soil using carbon dioxide and chelating agent in a supercritical state is performed for 7-11 minutes.

이와 같이 초임계 상태의 이산화탄소를 이용한 초임계 유체추출방법은 임계점(critical point) 이상의 온도 및 압력조건을 갖는 물, 아세톤, 에탄올, 메탄올, 이산화탄소 등의 초임계 유체를 이용한 추출방법으로서, 식물성 기질로부터의 방향유(essential oil) 추출, 원두커피로부터의 카페인(caffeine) 추출과 같이 식품산업, 제약산업, 정밀화학산업 등의 추출공정, 화학반응공정, 나노입자제조공정 등에 적용되어 왔다.As described above, the supercritical fluid extraction method using carbon dioxide in a supercritical state is an extraction method using supercritical fluids such as water, acetone, ethanol, methanol, and carbon dioxide having a temperature and pressure condition above a critical point. It has been applied to the extraction process of food industry, pharmaceutical industry, fine chemical industry, chemical reaction process, nanoparticle manufacturing process such as extracting essential oil and extracting caffeine from coffee beans.

다음은 상기의 정적 추출과정이 진행된 반응기에 초임계 상태의 이산화탄소를 주입하면서 상기 주입되는 이산화탄소와 동량의 이산화탄소를 배출시키는 동적 추출(dynamic extraction)과정을 3~5mL/분의 유속으로 5~9분 동안 수행함으로써 토양에 오염된 석유류와 중금속이 계속해서 이산화탄소에 용해되면서 이산화탄소와 함께 오염토양으로부터 제거된다.Next, a dynamic extraction process of discharging the same amount of carbon dioxide and the injected carbon dioxide while injecting carbon dioxide in a supercritical state into the reactor in which the static extraction process is performed is performed for 5 to 9 minutes at a flow rate of 3 to 5 mL / min. By doing so, petroleum and heavy metals contaminated with soil continue to dissolve in carbon dioxide and, together with carbon dioxide, are removed from the contaminated soil.

석유류와 중금속을 좀더 제거하기 위하여는 상기 정적 추출과정 및 동적 추출과정을 한번 더 수행하는 것이 바람직하다.In order to further remove petroleum and heavy metals, it is preferable to perform the static extraction process and the dynamic extraction process once more.

즉, 상기 동적 추출과정을 거친 반응기에 초임계 상태의 이산화탄소를 투입하여 7~11분 동안 정적 추출과정을 수행한 다음, 다시 초임계 상태의 이산화탄소를 반응기에 주입하면서 주입되는 이산화탄소와 동량의 이산화탄소를 배출시키는 동적 추출과정을 3~5mL/분의 유속으로 5~9분 동안 수행함으로써 좀더 정화된 토양을 얻을 수 있게 된다.That is, the carbon dioxide in a supercritical state is put into the reactor that has undergone the dynamic extraction process, and the static extraction process is performed for 7 to 11 minutes, and then the carbon dioxide and the same amount of carbon dioxide injected while the supercritical carbon dioxide is injected into the reactor. A more purified soil can be obtained by performing a dynamic extraction process for 5 to 9 minutes at a flow rate of 3 to 5 mL / min.

상기 정적 및 동적 추출과정에서, 초음파는 지속적으로 제공될 수도 있으며 간헐적으로 제공될 수도 있는데, 예를 들어 초음파 발생기를 2~4초간 작동하고 4~6초간 중지하는 것을 반복하여 초음파 발생비용을 절감하는 것도 무방하다.
In the static and dynamic extraction process, the ultrasonic wave may be continuously or intermittently provided, for example, by repeatedly operating the ultrasonic generator for 2-4 seconds and stopping for 4-6 seconds to reduce the ultrasonic generation cost. It is okay.

상기 동적 추출과정이 완료되면 반응기로의 이산화탄소 주입을 중지하고 반응기의 이산화탄소를 모두 배출시킴으로써 오염토양으로부터 석유류와 중금속의 제거가 완료된다.When the dynamic extraction process is completed, the removal of petroleum and heavy metals from the contaminated soil is completed by stopping the carbon dioxide injection into the reactor and discharging all the carbon dioxide from the reactor.

상기 석유류와 중금속이 용해된 이산화탄소를 가열하여 석유류와 중금속으로부터 이산화탄소를 기화ㆍ분리하여 재사용하는 것도 가능하다.It is also possible to heat the carbon dioxide in which the petroleum and the heavy metal are dissolved to vaporize, separate and reuse the carbon dioxide from the petroleum and the heavy metal.

상기와 같이 초임계 상태의 이산화탄소, 킬레이트제 및 초음파를 이용하여 오염된 토양으로부터 성질이 서로 다른 석유류와 중금속이 동시에 제거될 수 있으며, 제거율이 향상되고 제거과정 중 2차 오염이 거의 발생되지 않는다.
As described above, petroleum and heavy metals having different properties may be simultaneously removed from contaminated soil using carbon dioxide, chelating agent, and ultrasonic waves in a supercritical state, and the removal rate is improved and secondary pollution is hardly generated during the removal process.

이하, 본 발명을 하기의 실시예, 비교예 및 시험예에 의거하여 좀더 상세하게 설명하고자 한다.Hereinafter, the present invention will be described in more detail based on the following examples, comparative examples and test examples.

단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명이 하기 실시예에 의해 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 치환 및 균등한 타 실시예로 변경할 수 있음은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어서 명백할 것이다.
It is to be understood, however, that the invention is not to be construed as limited to the embodiments set forth herein, but is capable of modifications and equivalents within the spirit and scope of the invention. Will be apparent to those skilled in the art to which the present invention pertains.

<실시예 1> 초임계 유체추출 및 초음파에 의한 석유류 및 중금속 동시제거 (50℃, 16㎫)Example 1 Simultaneous removal of petroleum and heavy metals by supercritical fluid extraction and ultrasonic waves (50 ° C, 16 MPa)

도 1에는 본 발명의 일 실시예에 따른 오염토양으로부터 석유류 및 중금속의 동시제거를 위한 초임계유체추출과 초음파를 조합한 장치의 개략적인 구성이 부호 100으로서 지시되어 있다.In FIG. 1, a schematic configuration of an apparatus combining supercritical fluid extraction and ultrasonic waves for simultaneous removal of petroleum and heavy metals from contaminated soil according to an embodiment of the present invention is indicated by reference numeral 100.

상기 장치는 초임계유체추출 부분과 초음파 부분으로 구성되는데, 초임계유체추출 부분은 액체 이산화탄소 저장장치(1), 응축기(2), 시린지펌프(syringe pump:3), 가열코일(4), 고압반응기(5), 온도조절기(6), 가열코일(7) 및 분리조(8)로 구성되며, 초음파 부분은 초음파 발생기(9) 및 초음파 제어기(10)로 구성된다.The apparatus is composed of a supercritical fluid extraction portion and an ultrasonic portion, the supercritical fluid extraction portion is a liquid carbon dioxide storage device (1), condenser (2), syringe pump (syringe pump: 3), heating coil (4), high pressure It consists of a reactor (5), a temperature controller (6), a heating coil (7) and a separation tank (8), and the ultrasonic portion is composed of an ultrasonic generator (9) and an ultrasonic controller (10).

상기 고압반응기(유토엔지니어링(주) 제조, 한국:5)에는 압력계(P)와 온도계(T)가 부착되어 상기 고압반응기(5) 내부의 압력과 온도를 지시한다.The high pressure reactor (Uto Engineering Co., Ltd., Korea: 5) is attached to the pressure gauge (P) and the thermometer (T) to indicate the pressure and temperature inside the high pressure reactor (5).

먼저 모래 83.7중량%, 실트(silt) 16.3중량%로 이루어진 토양에 중금속과 석유류를 적당량 첨가하고, 주요 오염성분인 석유계 총 탄화수소(total petroleum hydrocarbon : TPH), 카드늄(Cd), 납(Pb), 구리(Cu) 및 아연(Zn)의 농도를 측정하여 하기 표 1에 나타내었다.First, an appropriate amount of heavy metals and petroleum is added to the soil composed of 83.7% by weight of sand and 16.3% by weight of silt, and total petroleum hydrocarbons (TPH), cadmium (Cd), and lead (Pb) are the main pollutants. , Copper (Cu) and zinc (Zn) concentrations are measured and shown in Table 1 below.

상기 오염된 토양을 체눈크기 2㎜인 체(sieve)에 통과시켜 오염토양 시료를 제조하였다.A soil sample was prepared by passing the contaminated soil through a sieve having a body size of 2 mm.

다음은 고압반응기(5)를 50℃로 유지하고, 85% 비스-(2,4,4-트리메틸펜틸)포스핀산(Cyanex 272) 1.0g에 디-(2-에틸헥실)인산(DEHPA) 0.5g을 혼합한 킬레이트제 1.5g과 상기 제조된 오염토양 시료 10g을 잘 혼합한 후, 이를 상기 고압반응기(5)에 투입하였다.Next, the autoclave 5 was maintained at 50 ° C. and di- (2-ethylhexyl) phosphate (DEHPA) 0.5 was added to 1.0 g of 85% bis- (2,4,4-trimethylpentyl) phosphinic acid (Cyanex 272). 1.5 g of the mixed chelating agent and 10 g of the prepared soil sample were mixed well, and then, this was introduced into the high pressure reactor (5).

상기 고압반응기(5) 내의 압력은 액체 이산화탄소를 이용하여 조절하는데, 상기 액체 이산화탄소는 액체 이산화탄소 저장장치(1)로부터 배출되어 응축기(2)의 냉매(ALPUS, SK케미칼주식회사, 한국)에 의해 냉각되고 시린지펌프(3)에 의하여 가압되며 가열코일(4)에 의해 승온된 후 고압반응기(5) 내부로 투입되어 고압반응기 내는 초임계 상태로 유지된다.The pressure in the high pressure reactor (5) is controlled using liquid carbon dioxide, which is discharged from the liquid carbon dioxide storage device (1) and cooled by the refrigerant (ALPUS, SK Chemicals, Korea) of the condenser (2) Pressurized by the syringe pump (3) and heated by the heating coil (4) and then introduced into the high pressure reactor (5) is maintained in the supercritical state in the high pressure reactor.

상기 시린지펌프(260D, ISCO Inc.사 제조, 미국:3)는 주사통을 사용하여 약액을 일정한 주입속도로 주입하기 위한 펌프로서, 본 발명에서는 액체 이산화탄소를 가압하여 고압반응기(5)에 정량 주입하기 위하여 사용된다.The syringe pump (260D, manufactured by ISCO Inc., USA: 3) is a pump for injecting a chemical liquid at a constant injection speed using a syringe, and in the present invention, pressurized liquid carbon dioxide to meter in a high pressure reactor (5). To be used.

상기 시린지펌프(3)에 의하여 상기 고압반응기(5)의 압력을 16㎫로 유지시킨 다음 투입되는 이산화탄소를 차단하고, 상기 고압반응기(5) 상부에 설치된 초음파 발생기(VCX 750, Sonics & Materials사 제조, 미국:9)(주파수:20㎑)를 가동하고 초음파 제어기(VCX 750, Sonics & Materials사 제조, 미국:10)를 이용하여 3초 가동, 5초 가동중지를 반복하도록 하여 초음파를 상기 고압반응기(5)에 간헐적으로 공급하도록 하였다.Maintaining the pressure of the high-pressure reactor (5) by the syringe pump (3) to 16MPa to block the carbon dioxide introduced, the ultrasonic generator (VCX 750, Sonics & Materials Co., Ltd.) installed on the high-pressure reactor (5) , US: 9) (frequency: 20 kHz) and the ultrasonic controller (VCX 750, manufactured by Sonics & Materials, USA: 10) to repeat the operation for 3 seconds and 5 seconds for the ultrasonic wave to repeat the high pressure reactor. (5) was intermittently supplied.

상기와 같이 오염토양에 함유된 석유류 및 중금속이 초음파가 공급되는 상태에서 초임계 상태의 이산화탄소에 용해되도록 하는 정적추출을 10분간 수행하였다.As described above, the petroleum and heavy metals contained in the contaminated soil were subjected to static extraction for 10 minutes to be dissolved in carbon dioxide in a supercritical state while ultrasonics were supplied.

상기 정적추출 후에는 액체 이산화탄소 저장장치(1)로부터의 이산화탄소를 상기 고압반응기(5)에 5mL/분의 유량으로 투입하면서, 상기 고압반응기(5)로부터 이산화탄소를 5mL/분의 유량으로 배출시키는 동적추출을 8분간 수행하였다.After the static extraction, the carbon dioxide from the liquid carbon dioxide storage device 1 is injected into the high pressure reactor 5 at a flow rate of 5 mL / minute, and the dynamic to discharge carbon dioxide from the high pressure reactor 5 at a flow rate of 5 mL / minute. Extraction was performed for 8 minutes.

상기 동적추출이 완료되면, 상기 정적추출 후 동적추출을 1회 더 수행한 다음, 액체 이산화탄소 주입을 중지하고 2분간에 걸쳐 고압반응기(5)의 이산화탄소를 모두 배출시켰다.When the dynamic extraction was completed, the dynamic extraction was performed once more after the static extraction, and then the injection of liquid carbon dioxide was stopped and all the carbon dioxide of the high pressure reactor 5 was discharged over 2 minutes.

상기 고압반응기(5)에서 배출되는, 석유류 및 중금속을 함유하는 이산화탄소는 가열코일(7)에 의하여 70℃로 가열되어 분리조(8)로 인입되고, 분리조(8)에서 이산화탄소는 기화되어 상방향으로 회수되고 오염물질은 하방향으로 회수되었다.
Carbon dioxide containing petroleum and heavy metal discharged from the high-pressure reactor (5) is heated to 70 ℃ by a heating coil (7) is introduced into the separation tank (8), the carbon dioxide in the separation tank (8) is vaporized Direction and contaminants were recovered downward.

<실시예 2> 초임계 유체추출 및 초음파에 의한 석유류 및 중금속 동시제거(40℃, 16㎫)Example 2 Simultaneous Removal of Petroleum and Heavy Metals by Supercritical Fluid Extraction and Ultrasonics (40 ° C, 16 MPa)

상기 실시예 1에서 고압반응기(5)의 온도를 40℃로 유지한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 오염토양에서 석유류와 중금속을 제거하였다.
Except for maintaining the temperature of the high-pressure reactor (5) in Example 1 in the same manner as in Example 1 to remove the petroleum and heavy metals in the contaminated soil.

<실시예 3> 초임계 유체추출 및 초음파에 의한 석유류 및 중금속 동시제거 (50℃, 12㎫)Example 3 Simultaneous Removal of Petroleum and Heavy Metals by Supercritical Fluid Extraction and Ultrasonics (50 ° C, 12 MPa)

상기 실시예 1에서 고압반응기(5)의 압력을 12㎫로 유지한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 오염토양에서 석유류와 중금속을 제거하였다.
Except that the pressure of the high-pressure reactor (5) was maintained at 12 MPa in Example 1, petroleum and heavy metals were removed from the contaminated soil in the same manner as in Example 1.

<실시예 4> 초임계 유체추출 및 초음파에 의한 석유류 및 중금속 동시제거 (40℃, 12㎫)Example 4 Simultaneous Removal of Petroleum and Heavy Metals by Supercritical Fluid Extraction and Ultrasonic (40 ℃, 12MPa)

상기 실시예 1에서 고압반응기(5)의 온도를 40℃, 압력을 12㎫로 유지한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 오염토양에서 석유류와 중금속을 제거하였다.
Petroleum and heavy metals were removed from the contaminated soil in the same manner as in Example 1 except that the temperature of the high pressure reactor 5 was maintained at 40 ° C. and the pressure was 12 MPa in Example 1.

<비교예 1> 초임계 유체추출에 의한 석유류 및 중금속 동시제거(50℃, 16㎫)Comparative Example 1 Simultaneous removal of petroleum and heavy metals by supercritical fluid extraction (50 ° C, 16 MPa)

상기 실시예 1에서 초음파를 공급하지 않은 것을 제외하고는 상기 실시예 1과 동일한 방법으로 오염토양에서 석유류와 중금속을 제거하였다.
Except that the ultrasonic wave was not supplied in Example 1, petroleum and heavy metals were removed from the contaminated soil in the same manner as in Example 1.

<비교예 2> 초임계 유체추출에 의한 석유류 및 중금속 동시제거(40℃, 16㎫)Comparative Example 2 Simultaneous Removal of Petroleum and Heavy Metals by Supercritical Fluid Extraction (40 ℃, 16MPa)

상기 실시예 2에서 초음파를 공급하지 않은 것을 제외하고는 상기 실시예 2와 동일한 방법으로 오염토양에서 석유류와 중금속을 제거하였다.
Except that the ultrasonic wave was not supplied in Example 2, petroleum and heavy metals were removed from the contaminated soil in the same manner as in Example 2.

<비교예 3> 초임계 유체추출에 의한 석유류 및 중금속 동시제거(50℃, 12㎫)Comparative Example 3 Simultaneous Removal of Petroleum and Heavy Metals by Supercritical Fluid Extraction (50 ℃, 12MPa)

상기 실시예 3에서 초음파를 공급하지 않은 것을 제외하고는 상기 실시예 3과 동일한 방법으로 오염토양에서 석유류와 중금속을 제거하였다.
Except that the ultrasonic wave was not supplied in Example 3, petroleum and heavy metals were removed from the contaminated soil in the same manner as in Example 3.

<비교예 4> 초임계 유체추출에 의한 석유류 및 중금속 동시제거(40℃, 12㎫)Comparative Example 4 Simultaneous Removal of Petroleum and Heavy Metals by Supercritical Fluid Extraction (40 ℃, 12MPa)

상기 실시예 4에서 초음파를 공급하지 않은 것을 제외하고는 상기 실시예 4와 동일한 방법으로 오염토양에서 석유류와 중금속을 제거하였다.
Except that the ultrasonic wave was not supplied in Example 4, petroleum and heavy metals were removed from the contaminated soil in the same manner as in Example 4.

<시험예> 토양의 석유류 및 중금속 함량 측정Test Example Determination of Petroleum and Heavy Metals in Soil

상기 석유류와 중금속이 오염된 토양 및 실시예와 비교예의 오염물질이 제거된 토양의 석유류 및 중금속 함량을 측정하여 하기 표 1에 나타내었다.Petroleum and heavy metal content of the soil contaminated with the petroleum and heavy metals and the soil from which the contaminants of Examples and Comparative Examples were removed are shown in Table 1 below.

상기 석유류는 토양오염공정시험기준(환경부고시 제2008-115호)에 의거하여 가스크로마토그래피(GC-FID : 6890 N, Agilent Technologies사 제조, 미국)를 이용하여 분석하였으며, 중금속은 미국환경보호청시험방법(US EPA Method 3051B)에 의거하여 유도결합플라즈마 발광분석기(ICP-AES : Vista-pro, Varian Inc.사 제조, 미국)를 이용하여 분석하였다.
The petroleum was analyzed using gas chromatography (GC-FID: 6890 N, manufactured by Agilent Technologies, USA) based on the Soil Pollution Process Test Criteria (2008-115). Heavy metals were tested by the US Environmental Protection Agency. According to the method (US EPA Method 3051B) was analyzed using an inductively coupled plasma luminescence analyzer (ICP-AES: Vista-pro, Varian Inc., USA).

석유류 및 중금속 함량 측정결과Measurement result of petroleum and heavy metal content 실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 실시예 4Example 4 비교예 1Comparative Example 1 비교예 2Comparative Example 2 비교예 3Comparative Example 3 비교예 4Comparative Example 4 석유류
(TPH)
Petroleum
(TPH)
처리전
(㎎/㎏)
Before treatment
(Mg / kg)
12145.712145.7
처리후
(㎎/㎏)
After treatment
(Mg / kg)
578.2578.2 640.8640.8 803.6803.6 1100.31100.3 714.1714.1 918.4918.4 1336.31336.3 1910.01910.0
제거율
(%)
Removal rate
(%)
95.295.2 94.794.7 93.493.4 90.990.9 94.194.1 92.492.4 89.089.0 84.384.3
카드뮴
(Cd)
cadmium
(CD)
처리전
(㎎/㎏)
Before treatment
(Mg / kg)
52.652.6
처리후
(㎎/㎏)
After treatment
(Mg / kg)
11.811.8 16.816.8 18.018.0 20.220.2 17.817.8 20.720.7 20.820.8 22.322.3
제거율
(%)
Removal rate
(%)
77.677.6 68.168.1 65.765.7 61.761.7 66.266.2 60.760.7 60.460.4 57.557.5

(Pb)
lead
(Pb)
처리전
(㎎/㎏)
Before treatment
(Mg / kg)
250.4250.4
처리후
(㎎/㎏)
After treatment
(Mg / kg)
56.556.5 78.978.9 87.387.3 95.395.3 82.782.7 94.894.8 95.895.8 105.2105.2
제거율
(%)
Removal rate
(%)
77.477.4 68.568.5 65.165.1 62.062.0 67.067.0 62.162.1 61.761.7 58.058.0
구리
(Cu)
Copper
(Cu)
처리전
(㎎/㎏)
Before treatment
(Mg / kg)
293.2293.2
처리후
(㎎/㎏)
After treatment
(Mg / kg)
64.664.6 88.188.1 95.395.3 103.9103.9 93.293.2 111.0111.0 107.0107.0 117.5117.5
제거율
(%)
Removal rate
(%)
78.078.0 70.070.0 67.567.5 64.664.6 68.268.2 62.262.2 63.563.5 59.959.9
아연
(Z)
zinc
(Z)
처리전
(㎎/㎏)
Before treatment
(Mg / kg)
1657.11657.1
처리후
(㎎/㎏)
After treatment
(Mg / kg)
391.4391.4 481.2481.2 501.3501.3 511.3511.3 419.4419.4 485.2485.2 539.1539.1 542.3542.3
제거율
(%)
Removal rate
(%)
76.476.4 71.071.0 69.869.8 69.169.1 74.774.7 70.770.7 67.567.5 67.367.3

상기 표 1의 결과에서 알 수 있듯이, 오염토양으로부터 초임계 유체추출방법과 초음파를 병행하여 석유류 및 중금속을 동시에 제거하는 실시예가 초음파를 공급하지 않고 초임계 유체추출방법만으로 오염물질을 동시에 제거하는 비교예에 비하여 오염물질 제거율이 매우 높음을 알 수 있다.As can be seen from the results of Table 1, the embodiment of the simultaneous removal of petroleum and heavy metals in parallel with the supercritical fluid extraction method and the ultrasonic wave from the contaminated soil, the simultaneous removal of contaminants by only the supercritical fluid extraction method without supplying ultrasonic waves Compared to the example, the removal rate of pollutants is very high.

특히, 중금속의 경우 초음파가 공급됨으로써 킬레이트반응이 촉진되어 제거율이 상당히 상승함을 알 수 있다.
In particular, in the case of heavy metals it can be seen that the ultrasonication is supplied to promote the chelation reaction to significantly increase the removal rate.

이상에서 살펴본 바와 같이 본 발명의 제거방법에 따르면, 오염된 토양으로부터 비극성인 석유류와 극성인 중금속이 동시에 제거되며, 정화과정 중에 초음파를 공급함으로써 오염물질의 제거율이 향상되는 효과를 얻을 수 있다.As described above, according to the removal method of the present invention, non-polar petroleum and polar heavy metal are simultaneously removed from the contaminated soil, and the removal rate of the pollutant can be improved by supplying ultrasonic waves during the purification process.

100:초임계유체추출과 초음파를 조합한 장치, 1:저장장치, 2:응축기, 3:시린지펌프, 4:가열코일, 5:고압반응기, 6:온도조절기, 7:가열코일, 8:분리조, 9: 초음파 발생기, 10:초음파 제어기, P:압력계, T:온도계100: combined supercritical fluid extraction and ultrasonic, 1: storage device, 2: condenser, 3: syringe pump, 4: heating coil, 5: high pressure reactor, 6: temperature controller, 7: heating coil, 8: separation Joe, 9: Ultrasonic generator, 10: Ultrasonic controller, P: Pressure gauge, T: Thermometer

Claims (5)

중금속 및 석유류가 오염된 토양에 킬레이트제를 첨가하여 혼합물을 제조하는 단계;
상기 혼합물을 반응기에 넣은 후 40~50℃로 유지하는 단계;
상기 반응기에 초임계 상태의 이산화탄소를 공급하고 12~16㎫의 압력을 유지한 다음 초음파를 공급하여 오염물질을 추출하는 정적 추출단계;
상기 정적 추출단계의 혼합물에 초음파가 공급되는 상태에서 초임계 이산화탄소를 주입하면서 상기 주입되는 이산화탄소와 동량의 이산화탄소를 배출시켜 오염물질을 추출하는 동적 추출단계;
상기 정적 추출단계 및 동적 추출단계가 순차적으로 한번 더 반복되는 단계; 및
상기 혼합물에서 이산화탄소를 제거하는 단계를 포함하는, 오염된 토양의 석유류 및 중금속을 동시에 제거하는 방법.
Preparing a mixture by adding a chelating agent to soil contaminated with heavy metals and petroleum;
Placing the mixture in a reactor and maintaining at 40 to 50 ° C;
Supplying carbon dioxide in a supercritical state to the reactor, maintaining a pressure of 12 to 16 MPa, and then supplying ultrasonic waves to extract contaminants;
A dynamic extraction step of extracting contaminants by discharging the same amount of carbon dioxide and the injected carbon dioxide while injecting supercritical carbon dioxide while ultrasonic waves are supplied to the mixture of the static extraction step;
Repeating the static extraction step and the dynamic extraction step once more sequentially; And
Removing carbon dioxide from the mixture; simultaneously removing petroleum and heavy metals of the contaminated soil.
제1항에 있어서,
상기 정적 추출단계는 7~11분 동안 수행되고, 상기 동적 추출단계는 3~5mL/분의 유속으로 5~9분 동안 수행되는 것을 특징으로 하는, 오염된 토양의 석유류 및 중금속을 동시에 제거하는 방법.
The method of claim 1,
The static extraction step is carried out for 7 to 11 minutes, the dynamic extraction step is carried out for 5 to 9 minutes at a flow rate of 3 ~ 5mL / min, the method of removing petroleum and heavy metals of contaminated soil at the same time .
제1항에 있어서,
상기 혼합물은 토양 100중량부에 킬레이트제 10~20중량부를 첨가하여 제조되는 것을 특징으로 하는, 오염된 토양의 석유류 및 중금속을 동시에 제거하는 방법.
The method of claim 1,
The mixture is prepared by adding 10 to 20 parts by weight of a chelating agent to 100 parts by weight of the soil, the method of removing petroleum and heavy metals of the contaminated soil at the same time.
제1항에 있어서,
상기 킬레이트제는 비스-(2,4,4-트리메틸펜틸)포스핀산 100중량부에 디-(2-에틸헥실)인산 40~60중량부를 혼합하여 제조되는 것을 특징으로 하는, 오염된 토양의 석유류 및 중금속을 동시에 제거하는 방법.
The method of claim 1,
The chelating agent is prepared by mixing 40 to 60 parts by weight of di- (2-ethylhexyl) phosphate to 100 parts by weight of bis- (2,4,4-trimethylpentyl) phosphinic acid, petroleum of contaminated soil And simultaneously removing heavy metals.
제1항에 있어서,
상기 반응기에 적용되는 초음파는 간헐적으로 제공되는 것을 특징으로 하는, 오염된 토양의 석유류 및 중금속을 동시에 제거하는 방법.
The method of claim 1,
Ultrasonic waves applied to the reactor is provided intermittently, the method of removing petroleum and heavy metals in the contaminated soil at the same time.
KR1020100011682A 2010-02-08 2010-02-08 Simultaneous removal method of petroleum hydrocarbons and heavy metals from contaminated soil KR101136556B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100011682A KR101136556B1 (en) 2010-02-08 2010-02-08 Simultaneous removal method of petroleum hydrocarbons and heavy metals from contaminated soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100011682A KR101136556B1 (en) 2010-02-08 2010-02-08 Simultaneous removal method of petroleum hydrocarbons and heavy metals from contaminated soil

Publications (2)

Publication Number Publication Date
KR20110092171A true KR20110092171A (en) 2011-08-17
KR101136556B1 KR101136556B1 (en) 2012-04-17

Family

ID=44929152

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100011682A KR101136556B1 (en) 2010-02-08 2010-02-08 Simultaneous removal method of petroleum hydrocarbons and heavy metals from contaminated soil

Country Status (1)

Country Link
KR (1) KR101136556B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109382403A (en) * 2017-08-08 2019-02-26 寰宇生物科技股份有限公司 Soil pollution processing system and its method
FR3100142A1 (en) 2019-08-28 2021-03-05 Rmv Equipement Device for the extraction and decontamination of organic and / or inorganic substances from solid or semi-solid materials under the control of several parameters

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000246232A (en) 1999-03-02 2000-09-12 Nkk Corp Method for making contaminated soil harmless and method for making contaminated soil harmless and utilizing it
JP2004057992A (en) * 2002-07-31 2004-02-26 Mitsubishi Heavy Ind Ltd Method and apparatus for purifying contaminated soil
JP2006272144A (en) 2005-03-29 2006-10-12 Sumitomo Osaka Cement Co Ltd Heavy metal insolubilizing material and method of treating heavy metal
KR20090030897A (en) * 2007-09-21 2009-03-25 에스케이에너지 주식회사 Liquid composition of microorganisms for bioremediation of hydrocarbon-contaminated soil, method of preparing the same, and bioremediation using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109382403A (en) * 2017-08-08 2019-02-26 寰宇生物科技股份有限公司 Soil pollution processing system and its method
FR3100142A1 (en) 2019-08-28 2021-03-05 Rmv Equipement Device for the extraction and decontamination of organic and / or inorganic substances from solid or semi-solid materials under the control of several parameters

Also Published As

Publication number Publication date
KR101136556B1 (en) 2012-04-17

Similar Documents

Publication Publication Date Title
Hauser et al. Column extraction of heavy metals from soils using the biodegradable chelating agent EDDS
EP2060613A1 (en) Method of treating subterranean formations by in-situ hydrolysis of organic acid esters
US5986159A (en) Chemical tailoring of steam to remediate underground mixed waste contaminents
US10875062B2 (en) Sintered wave porous media treatment, apparatus and process for removal of organic compounds and nondestructive removal and condensation of per and polyfluoroalkyl substances and related fluorinated compounds
CN103639190A (en) Method for restoring lead polluted soil with amino trimethylene phosphonic acid (ATMP)
KR101136556B1 (en) Simultaneous removal method of petroleum hydrocarbons and heavy metals from contaminated soil
CN109332369A (en) Repair system and technique in a kind of petroleum hydrocarbon contaminated soil, underground water
JP2016532549A (en) Colloidal agent for aquifer purification
KR100798763B1 (en) The method to remediate pol(petroleum, oil, lubricant) contaminated soil by in-situ thermal desorption approach, and the apparatus for the same
CN101879519A (en) Ultrasonic in situ extraction process for remediating heavy metal-polluted soil
KR20030087915A (en) Method for purifying a layer of contaminated soil and apparatus
Wong et al. In situ Fenton remediation for diesel contaminated clayey zone assisted by thermal plasma blasting: Synergism and cost estimation
Moshtaghi et al. Different augmentations of absorbed hydrogen under elastic straining in high-pressure gaseous hydrogen environment by as-quenched and as-tempered martensitic steels: Combined experimental and simulation study
KR101146785B1 (en) Method for ex-situ restoration of contaminated soil
US5265978A (en) Method for in situ cleaning of contaminated soil
US11253895B2 (en) Methods for remediating contaminated soil and groundwater using solid-phase organic materials
KR101205123B1 (en) Semi-batch Apparatus for remediation of Contaminated soils using surfactant foam
Lassalle et al. Electron beam remediation of soils impacted with heavy hydrocarbons
Al-Marzouqi et al. Optimization of supercritical fluid extraction of hydrocarbons from a contaminated soil: An experimental approach
US10252303B2 (en) Method to remediate soil and groundwater
Ha et al. A green approach to efficient soil decontamination using supercritical carbon dioxide and ethanol
Christodoulis et al. Remediation of oil-drilling cuttings by ozonation in semibatch bubble column reactors
Park et al. Remediation of diesel-contaminated soil using supercritical carbon dioxide and ultrasound
Chao Supercritical water oxidation of wastewater-based drilling fluid with glycol addition
Rubin et al. Carbon dioxide-based supercritical fluids as IC manufacturing solvents

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150303

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160321

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170406

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee