KR101146785B1 - Method for ex-situ restoration of contaminated soil - Google Patents

Method for ex-situ restoration of contaminated soil Download PDF

Info

Publication number
KR101146785B1
KR101146785B1 KR1020110133574A KR20110133574A KR101146785B1 KR 101146785 B1 KR101146785 B1 KR 101146785B1 KR 1020110133574 A KR1020110133574 A KR 1020110133574A KR 20110133574 A KR20110133574 A KR 20110133574A KR 101146785 B1 KR101146785 B1 KR 101146785B1
Authority
KR
South Korea
Prior art keywords
soil
contaminated soil
hydrogen peroxide
contaminated
catalyst
Prior art date
Application number
KR1020110133574A
Other languages
Korean (ko)
Inventor
민병준
엘 와델 제븐스
김진섭
김성환
Original Assignee
주식회사 그린솔루션
김성환
김진섭
트리엄 인바이런멘탈 솔루션 인크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 그린솔루션, 김성환, 김진섭, 트리엄 인바이런멘탈 솔루션 인크 filed Critical 주식회사 그린솔루션
Priority to KR1020110133574A priority Critical patent/KR101146785B1/en
Application granted granted Critical
Publication of KR101146785B1 publication Critical patent/KR101146785B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/08Reclamation of contaminated soil chemically
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • A62D3/30Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by reacting with chemical agents
    • A62D3/38Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by reacting with chemical agents by oxidation; by combustion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/008Details of the reactor or of the particulate material; Processes to increase or to retard the rate of reaction

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Business, Economics & Management (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Management (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Soil Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

PURPOSE: A method for ex-situ restoration of contaminated soil is provided to shorten times required for treatment by excavating contaminated soil and oxidizing oil contained in the contaminated soil using hydrogen peroxide and catalyst. CONSTITUTION: Soil contaminated with oil is excavated and spread on the surface of the ground. Otherwise, moisture is supplied to the soil in an excavating place. 100 parts by weight of 5-35% hydrogen peroxide aqueous solution, 0.05-3.0 parts by weight of ferrous chloride or ferrous sulfate, and 0.005-2.0 parts by weight of a promoter are injected into the soil with moisture to be mixed. The mixture is stirred. The promoter is one selected from ethylenediaminetetraacetic acid, N-(2-hydroxyethyl) iminodiacetic acid, S,S''-ethylene diamine disuccinate, and nitrilotriacetic acid.

Description

오염토양의 지상처리 복원방법 {Method for Ex-situ Restoration of Contaminated Soil}{Method for Ex-situ Restoration of Contaminated Soil}

본 발명은 각종 유류로 오염된 토양을 정화하기 위한 오염토양의 지상처리 복원방법에 관한 것으로서, 더욱 상세하게는 오염된 토양을 굴착기로 굴착하여 지표면에 깔아놓거나 굴착한 터 내에서 산화제인 과산화수소와 촉매를 사용하여 오염토양에 함유된 유류를 산화시킴으로써 오염토양을 정화시켜 복원하는 방법에 관한 것이다.The present invention relates to a method for restoring the surface treatment of contaminated soil to purify soil contaminated with various oils, and more specifically, to excavate contaminated soil with an excavator and lay it on the surface or excavate the hydrogen peroxide and the catalyst in the ground. The present invention relates to a method for purifying and restoring contaminated soil by oxidizing oil contained in contaminated soil.

현대사회는 산업의 고도화 및 다양화가 가속됨에 따라 에너지원 및 여러 화학제품의 원료로서 유류 소비량이 기하급수적으로 급증하고 있으며, 이에 따른 유류 저장시설 및 운송 취급량의 증가로 인하여 그로부터 야기되는 부수적 문제로서 유류에 의한 토양오염이 심각한 환경 문제로 대두되고 있는 실정이다. As the modernization and diversification of the industry is accelerating, the consumption of oil as an energy source and raw materials of various chemical products is increasing exponentially. As a result of the increase of oil storage facilities and transportation handling, oil is a secondary problem caused by it. Soil pollution is a serious environmental problem.

토양오염은 토양 자체의 1차 오염, 주변 하천 및 지하수에 대한 2차 오염 등의 광역오염을 유발시킬 수 있는 심각한 환경오염 중 하나이고, 현재 국내에는 12,917개소의 주유소 및 7,347개소의 석유류 저장 산업시설 등이 설치되어 있는데, 이들은 유류 관련 토양오염 유발시설로 관리되고 있다. 그러나 근래에 들어 이들 설비의 노후화 및 취급 부주의 등의 이유로 인하여 누출된 유류가 상당한 양의 토양 및 지하수를 오염시키기도 한다.    Soil pollution is one of the serious environmental pollution that can cause wide area pollution such as primary pollution of soil itself, secondary pollution to surrounding rivers and groundwater. Currently, 12,917 gas stations and 7,347 oil storage industry facilities in Korea Etc., which are managed as oil-related soil pollution causing facilities. In recent years, however, leaked oil contaminates a significant amount of soil and groundwater due to aging and inadequate handling of these facilities.

이들 시설에 저장된 연료는 물에 잘 용해되지 않는 소수성이므로 일단 토양에 유출되면, 토양과 강한 흡착을 이루거나 비수용액체상(Non-Aqueous Phase Liquids, NAPL)으로 남아 오랜 기간 잔류하게 된다. 또한 이들은 매우 복잡한 석유계 탄화수소로 구성되어 있고, 인체 및 토양생물에 유해한 성분들을 많이 함유하고 있기 때문에 오염토양에 대한 적절한 처리가 필요한 실정이다.   Fuel stored in these facilities is hydrophobic, insoluble in water, and once spilled into the soil, it can form strong adsorption with the soil or remain non-aqueous phase liquids (NAPL) for a long time. In addition, since they are composed of very complex petroleum hydrocarbons and contain a lot of harmful components to human body and soil organisms, it is necessary to properly treat the contaminated soil.

한편, 국내에서는 1996년부터 토양환경보전법을 시행하여 일정규모 이상의 석유류, 유독물 제조 및 저장설치시설 등을 특정 토양오염유발시설로 분류하고 3년 이내에서 주기적으로 토양오염도검사를 실시하고 있으며, 검사결과 부적합판정을 받을 시에는 오염토양 개선 시정명령을 내리는 등 석유류, 유독물 등 16개 물질을 토양오염 규제대상 물질로 규정하여 관리하고 있다.    In Korea, the Soil Environment Conservation Act has been in force since 1996 to classify more than a certain scale of petroleum and toxic substance manufacturing and storage facilities as specific soil contamination facilities, and periodically conduct soil contamination tests within three years. In case of non-compliance, 16 substances including petroleum and toxic substances are regulated and controlled as soil pollution regulations by issuing a corrective order to improve the contaminated soil.

유류로 오염된 토양을 정화시키는 기술은 처리위치 별로 지중 처리기술(In-situ)과 지상 처리기술(Ex-situ)로 분류되며, 처리방법 별로 물리적 방법(굴착 제거, 차폐, 양수, 진공 추출, 고형화, 수압 파쇄, 열분해, 플라즈마 등), 화학적 방법(산화, 중화, 이온교환, 토양 세척, 계면활성제 세척, 동결, 유리화 등), 생물학적 방법(분해, 통기, 토양경작 등) 등이 알려져 있다. 그 중 화학적 산화방법, 즉 대표적인 산화제로서 과산화수소를 사용하여 유류 오염물질과 지중에서 접촉시켜 이산화탄소와 물로 분해시키는 기술은 타 기술에 비하여 유류 오염물질을 원위치에서 빠른 시간 내에 분해하여 처리할 수 있고,    The technology to purify soil contaminated with oil is classified into In-situ and Ex-situ by treatment location, and physical methods (excavation removal, shielding, pumping, vacuum extraction, Solidification, hydraulic fracturing, pyrolysis, plasma, etc.), chemical methods (oxidation, neutralization, ion exchange, soil washing, surfactant washing, freezing, vitrification, etc.), biological methods (decomposition, aeration, soil cultivation, etc.) are known. Among them, the chemical oxidation method, that is, the technique of using hydrogen peroxide as a representative oxidant and contacting with oil pollutants in the ground to decompose them into carbon dioxide and water, can disintegrate and treat oil pollutants in the home in a short time.

어디에서나 쉽게 구현할 수 있는 장점이 있으므로 가장 많이 이용되고 있는 실정이나, 이 방법은 범위가 넓고 저 농도로 오염된 지역에서는 비용면에서 경제적이지 못하고, 과량의 과산화수소와 철 촉매의 투입으로 인한 처리비용의 증가와 생태계에 큰 영향을 미치는 문제 등의 단점이 있다. This method is most widely used because it can be easily implemented anywhere, but this method is not economically economical in a wide range and low concentration of contaminated areas, and it is a cost-effective treatment of excessive hydrogen peroxide and iron catalyst. There are disadvantages such as growth and problems that have a big impact on the ecosystem.

종래기술의 구체적인 예로서, 등록특허공보 제10-0476134호(2005. 3. 14.)에는 과산화수소, 자외선 및 유류 분해 미생물의 순차적 병합처리에 의한 유류 오염토양 및 지하수의 복원방법이 개시되어 있는데, 이 방법은 과산화수소의 화학적 반응에 의한 유류 분해와 미생물에 의한 생물학적 유류 분해를 접목하여 각 방법의 장점만을 취하고 복합 사용시 일어날 수 있는 단점을 제거하였다고 하나, 지중 처리기술로서 복원기간이 길고, 공정이 복잡하여 관리가 어렵다는 문제점이 있다. 또한 공개특허공보 제10-2010-0090506호(2010. 8. 16.)에는 스팀 주입을 통하여 토양을 가열하고, 수분의 함량을 증가시킴으로써 유기 오염물의 용해도 및 증기압을 증가시켜 탈착을 유도하고, 증기 추출을 통하여 토양 내 오염물질을 제거한 후 잔류한 유기 오염물에 미생물을 주입하여 추가적으로 분해 제거하고 나서, 마지막으로 산(酸) 세척을 통해 중금속을 제거하는 방법이나, 이 방법 역시 지중 처리기술로서 복원기간이 길고, 공정이 복잡하여 관리가 어렵다는 문제점이 있다.   As a specific example of the prior art, Korean Patent Publication No. 10-0476134 (Mar. 14., 2005) discloses a method for restoring soil contaminated soil and groundwater by sequential merging of hydrogen peroxide, ultraviolet rays and oil decomposition microorganisms. This method combines oil permeation by chemical reaction of hydrogen peroxide with biological oil decomposition by microorganisms to take advantage of each method and eliminates the disadvantages that can occur in combination use.However, as the underground treatment technology, the restoration period is long and the process is complicated. There is a problem that management is difficult. In addition, Korean Patent Laid-Open Publication No. 10-2010-0090506 (August 16, 2010) discloses desorption by increasing the solubility and vapor pressure of organic pollutants by heating the soil through steam injection and increasing the moisture content, and steam After removing the contaminants in the soil through extraction, microorganisms are added to the remaining organic contaminants to further decompose and remove them, and finally, heavy metals are removed by acid washing. This long, complex process is difficult to manage.

한편, 화학적 방법에 의한 처리 후에 생물학적 방법을 처리하여 연계시킬 경우에는 잔류하는 화학물질에 의해 미생물의 성장 및 유류 분해활성이 저해받는 경우가 많으며, 생물학적 방법에 의한 처리 후에 화학적 방법에 의한 처리를 연계시키는 경우에는 초기 정화효율이 다소 떨어지는 문제점 등이 남아있다.    On the other hand, when biological processes are linked after treatment by chemical methods, microbial growth and oil degradation activity are often inhibited by residual chemicals, and after treatment by biological methods, treatment by chemical methods is linked. In the case of making the initial purification efficiency slightly lowered, such problems remain.

이에 본 발명자들은 지중 처리기술과 달리 지상 처리기술을 적용한 화학적 방법과 생물학적 방법을 효과적으로 연계시키는 기술을 연구한 결과 각 단위 공정의 단점들을 극복하고 장점만을 취할 수 있는 유류 오염토양의 지상처리 복원방법을 발명하게 되었다.   Therefore, the present inventors have studied a method of effectively linking the chemical method and the biological method applied to the ground treatment technology, unlike the ground treatment technology, to overcome the disadvantages of each unit process and to restore the surface treatment of oil-contaminated soil that can take advantage only. Invented.

본 발명은 위와 같은 문제점을 해결하기 위하여 안출된 것으로서, 각종 유류로 오염된 토양을 굴착기로써 굴착하여 지표면에 깔아놓거나 굴착한 터 내에서 수분을 공급한 다음 산화제인 과산화수소와 촉매를 사용하여 오염토양에 포함된 유류를 산화시킴으로써 오염토양을 지상에서 정화시켜 복원하는 방법의 제공을 그 과제로 하고 있다. The present invention has been made to solve the above problems, by excavating soil contaminated with various oils with an excavator to spread the surface or supply water in the excavated site and then to the contaminated soil using hydrogen peroxide and catalyst as oxidant An object of the present invention is to provide a method of purifying and restoring contaminated soil from the ground by oxidizing the oil contained therein.

본 발명은 오염토양을 지상처리에 의하여 복원하는 방법으로서, The present invention is a method for restoring contaminated soil by surface treatment,

1) 유류로 오염된 토양을 굴착기로써 굴착하여 지표면에 깔아놓거나 굴착한 터 내에서 수분을 공급하는 수분공급단계; 2) 상기 수분공급단계에서 수분이 공급된 오염토양에 과산화수소 및 촉매를 주입하여 산화시키는 산화단계; 3) 상기 산화단계에서 과산화수소 및 촉매가 주입된 오염토양을 굴착기로써 교반하여 뒤집어주는 토양산화단계;를 포함하는 것을 특징으로 하는 오염토양 지상처리의 복원방법을 제공한다.1) a water supply step of excavating soil contaminated with oil with an excavator and laying it on the surface or supplying water in the excavated site; 2) an oxidation step of injecting hydrogen peroxide and a catalyst into the contaminated soil supplied with moisture in the water supply step; 3) the soil oxidation step of inverting by stirring the soil contaminated with hydrogen peroxide and catalyst in the oxidation step with an excavator; provides a method for restoring contaminated soil surface treatment comprising a.

또한 본 발명은 상기 산화단계 중 과산화수소는 5~35% 수용액이며, 촉매는 제1염화철(FeCl2) 또는 황산제1철(FeSO4)이고, 그 혼합비는 100 : 0.05~3.0중량부인 것을 특징으로 하는 오염토양 지상처리의 복원방법을 제공한다.In the present invention, the hydrogen peroxide is 5 to 35% aqueous solution in the oxidation step, the catalyst is ferrous chloride (FeCl 2 ) or ferrous sulfate (FeSO 4 ), the mixing ratio is 100: 0.05 ~ 3.0 parts by weight Provides a method of restoring contaminated soil surface treatment.

또한 본 발명은 상기 산화단계에서 상기 촉매 외에 조촉매가 더 혼합되며, 그 혼합비는 과산화수소 100 : 조촉매 0.005~2.0중량부인 것을 특징으로 하는 오염토양의 지상처리 복원방법을 제공한다.   In addition, the present invention provides a method for restoring contaminated soil surface treatment, characterized in that the promoter is further mixed in addition to the catalyst in the oxidation step, the mixing ratio is hydrogen peroxide 100: 0.005 ~ 2.0 parts by weight of the promoter.

또한 본 발명은 상기 조촉매가 에틸렌디아민 테트라 아세틱에시드(EDTA), N-(2-히드록시에틸)이미노 디아세틱에시드, S,S'-에틸렌디아민디석시네이트(SS-EDDS), 니트릴로 트리에세틱에시드(NTA) 중에서 선택된 어느 하나인 것을 특징으로 하는 오염토양 지상처리 복원방법을 제공한다.   In the present invention, the promoter is ethylenediamine tetraacetic acid (EDTA), N- (2-hydroxyethyl) imino diacetic acid, S, S'-ethylenediaminedisuccinate (SS-EDDS), nitrile It provides a method for restoring contaminated soil surface treatment, characterized in that any one selected from low tri-acetic acid (NTA).

또한 본 발명은 상기 과산화수소가 과황산나트륨(Sodium Persulfate), 칼슘퍼옥사이드(Calcium Peroxide), 소다회(Sodium Carbonate) 중에서 선택된 어느 하나의 산화제와 혼합 사용하는 것을 특징으로 하는 오염토양의 지상처리 복원방법을 제공한다.   In another aspect, the present invention provides a method for restoring contaminated soil surface treatment, characterized in that the hydrogen peroxide is mixed with any one oxidant selected from sodium persulfate, calcium peroxide, soda ash (Sodium Carbonate). do.

마지막으로, 본 발명은 상기 과산화수소와 산화제의 혼합비율은 100 : 5 중량부인 것을 특징으로 하는 오염토양 지상처리 복원방법을 제공한다.   Finally, the present invention provides a contaminated soil surface treatment restoration method, characterized in that the mixing ratio of the hydrogen peroxide and the oxidant is 100: 5 parts by weight.

본 발명에 의한 오염토양의 지중처리 복원방법은 오염된 토양을 굴착기로 굴착하여 지표면에 깔아놓거나 굴착한 터 내에서 산화제인 과산화수소와 촉매를 사용하여 오염토양에 함유된 유류를 산화시켜 오염토양을 정화시킴으로써 지중 처리방법과 달리 그 처리기간을 현저히 단축시킬 수 있을 뿐만 아니라 공정이 간단하고 별도의 시설 없이 부지만 충분히 확보될 경우 적용이 가능한 장점이 있는 등 현저한 효과가 있다.Underground treatment restoration method of contaminated soil according to the present invention is to excavate the contaminated soil with an excavator and spread it on the surface or by oxidizing the oil contained in the contaminated soil using hydrogen peroxide and a catalyst in the excavated ground to purify the contaminated soil. By doing so, unlike the underground treatment method, the treatment period can be remarkably shortened, and the process is simple.

[도 1]은 본 발명에 따른 토양산화경작장의 개략도이다.1 is a schematic diagram of a soil oxidation farm according to the present invention.

본 발명에 따른 오염토양의 지상처리 복원방법에 대하여 도면을 참고하여 상세히 설명한다. The ground treatment restoration method of the contaminated soil according to the present invention will be described in detail with reference to the accompanying drawings.

본 발명의 첫 번째 단계인 유류로 오염된 토양에 수분을 공급하는 수분공급단계는 본 발명의 준비단계로서 일반적으로 오염토양의 수분함량은 5~18wt%인 것으로 알려져 있는데, 이때 본 발명에 따른 오염토양의 지상처리복원방법을 적용하기 위해서는 토양 내에 적당한 수분을 필요로 하며, 오염토양의 적절한 수분함량은 20~25wt%의 범위인 것이 바람직하다.    The water supply step of supplying water to the soil contaminated with oil, which is the first step of the present invention, is a preparatory step of the present invention, and it is generally known that the water content of the contaminated soil is 5 to 18 wt%. In order to apply the soil surface restoration method, appropriate moisture is required in the soil, and the appropriate moisture content of the contaminated soil is preferably in the range of 20-25 wt%.

수분함량이 높은 토양의 경우 토양공극 사이로 공기의 흐름을 막아 산소의 공급을 방해하고, 토양이 건조할 경우 미생물의 활동을 억제하기도 한다.    Soils with high moisture content can block the flow of air between the soil pores, disrupting the oxygen supply, and inhibiting the activity of microorganisms when the soil is dry.

일반적으로 오염토양의 굴착된 오염토양의 수분함량은 18wt% 미만으로서 본 발명을 적용하는 데에는 수분이 약간 부족하므로 오염토양에 물을 분사기로써 살포하여 주기적으로 수분을 보충함으로써 수분부족을 해결할 수 있다. 또 강우로 인해 수분이 과다해진 경우 처리효율 저하 등에 대비하여 하우스 등의 빗물유입 차단시설의 설치도 고려하여야 한다.In general, the moisture content of the excavated contaminated soil of contaminated soil is less than 18wt%, so the water is slightly lacking in applying the present invention, and water can be solved by spraying water on the contaminated soil with an injector periodically to solve the water shortage. In addition, in case of excessive moisture due to rainfall, installation of rainwater inflow blocking facilities such as houses should be considered in order to reduce treatment efficiency.

본 발명의 두 번째 단계인 산화단계는 상기 수분공급단계에서 수분이 공급된 오염토양에 과산화수소 및 촉매를 주입하여 산화시키는 단계로서, 적절한 농도의 과산화수소 수용액과 촉매를 오염토양에 주입하여 수산화라디칼을 형성하게 함으로써 오염토양에 존재하는 유류와 반응하도록 한다.   In the second step of the present invention, the oxidation step is a step of injecting hydrogen peroxide and a catalyst into the contaminated soil supplied with moisture in the water supply step, and injecting an aqueous solution of hydrogen peroxide and a catalyst at an appropriate concentration into the contaminated soil to form radicals. This allows them to react with the oil present in the contaminated soil.

상기 산화단계에서 사용하는 과산화수소는 과산화수소 탱크로부터 유출되어 적절한 농도로 희석되어 촉매와 혼합된 후 오염토양에 공급됨으로써 하기 반응식 1과 같이 수산화라디칼(OH?)을 생성한다.
The hydrogen peroxide used in the oxidation step is discharged from the hydrogen peroxide tank, diluted to an appropriate concentration, mixed with the catalyst, and then supplied to the contaminated soil to produce radical hydroxide (OH?) As in Scheme 1 below.

H2O2 → 2?OH - - - - - - (반응식 1)
H 2 O 2 → 2? OH------(Scheme 1)

상기와 같이 과산화수소로부터 생성된 수산화라디칼(OH?)은 하기 반응식 2와 같이 오염된 토양에 존재하는 유류와 반응하여 유류를 분해할 수 있다.
Radical hydroxide (OH?) Generated from hydrogen peroxide as described above may decompose the oil by reacting with the oil present in the contaminated soil as in Scheme 2 below.

?OH + M(유류) → 분해 생성물 - - - - - - (반응식 2)
OH + M (oil) → decomposition products------(Scheme 2)

그런데, 과산화수소는 그 구조가 불안정한 물질로서, 하기 반응식 3과 같이 토양 내의 다른 매체와 반응하거나, 또는 스스로 분해되는 성질이 있다.
However, hydrogen peroxide is a material having an unstable structure, and has a property of reacting with other media in the soil or decomposing itself as shown in Scheme 3 below.

2H2O2 + X(토양) → O2 + 2H2O - - - - - - (반응식 3)
2H 2 O 2 + X (soil) → O 2 + 2H 2 O------(Scheme 3)

상기와 같이 오염토양에 주입된 과산화수소의 일부는 유류와 반응하며, 또 다른 일부는 토양 내의 다른 매체와 반응하므로, 효과적인 유류 분해를 위해서는 토양과의 반응에 의한 소실 분을 고려하여 최종적으로 적정량의 과산화수소가 유류와 반응할 수 있도록 과산화수소의 공급량을 조절한다. 이때 최적의 주입량을 찾기 위해 과산화수소와 오염된 토양의 처리율을 확인하는 방법이 필요하며, 일반적으로 위 반응은 1차적으로 일어나므로 하기 반응식 4와 같은 1차 반응식을 이용하여 반응속도상수를 구하고 과산화수소의 투여량 대비 속도상수 값의 비교를 통해 최적조건을 도출한다.   As described above, part of the hydrogen peroxide injected into the contaminated soil reacts with oil, and another part reacts with other media in the soil. Therefore, in order to effectively decompose the oil, an appropriate amount of hydrogen peroxide is finally considered in consideration of the loss from the reaction with the soil. Adjust the supply of hydrogen peroxide to allow oil to react with the oil. At this time, a method of checking the treatment rate of hydrogen peroxide and contaminated soil is needed to find the optimal injection amount.In general, since the above reaction occurs firstly, a reaction rate constant is obtained by using a first-order reaction equation such as the following Equation 4 and the Optimal conditions are derived by comparing the rate constant versus the dose.

dC/dt=kC - - - - - - (반응식 4)
dC / dt = kC------(Scheme 4)

위 반응식에서 C : 오염된 유류의 농도를 나타낸다.
In the above scheme, C is the concentration of contaminated oil.

상기 반응식 4에 따라 본 발명의 복원방법에 있어서 과산화수소는 5~35% 범위의 과산화수소 수용액을 사용하는 것이 바람직한데, 그 농도가 5% 미만일 경우에는 산화력이 약하여 산화가 거의 일어나지 않고, 35%를 초과하는 경우 산화력은 증가하나 안정성이 결여되어 폭발이 일어날 수 있다.   In the restoration method of the present invention according to Scheme 4, it is preferable to use hydrogen peroxide aqueous solution in the range of 5 to 35%. When the concentration is less than 5%, the oxidizing power is weak and almost no oxidation occurs, and more than 35%. In this case, the oxidative power may increase, but the stability may be insufficient and an explosion may occur.

이때 과산화수소를 오염토양에 투여할 때는 과산화수소를 단독으로 사용하는 것보다 과산화수소와 촉매의 혼합 사용이 처리효율을 높이는 데에 바람직하다. 상기 촉매는 과산화수소와 반응하여 수산화라디칼을 발생시킬 수 있는 화합물로서 입상 또는 분말상의 것을 사용함이 좋은데, 제1염화철(FeCl2), 황산제1철(FeSO4)이 열거될 수 있다, 상기 촉매와 함께 조촉매를 사용하면 산화력을 더욱 증가시킬 수 있는데, 그 종류로서는 에틸렌디아민 테트라 아세틱에시드(EDTA), N-(2-히드록시에틸)이미노 디아세틱에시드, S,S'-에틸렌디아민디석시네이트(SS-EDDS), 니트릴로 트리에세틱에시드(NTA)가 포함된다.At this time, when the hydrogen peroxide is administered to the contaminated soil, it is preferable to use a mixture of hydrogen peroxide and a catalyst rather than to use hydrogen peroxide alone to increase the treatment efficiency. The catalyst is preferably a granular or powdery one as a compound capable of reacting with hydrogen peroxide to generate radicals. Examples of the catalyst include ferrous chloride (FeCl 2 ) and ferrous sulfate (FeSO 4 ). Co-catalysts can be used to further increase the oxidizing power, such as ethylenediamine tetraacetic acid (EDTA), N- (2-hydroxyethyl) imino diacetic acid, S, S'-ethylenediaminedistone Cinates (SS-EDDS), nitrilo triacetic acid (NTA).

상기 촉매가 포함된 과산화수소는 오염토양의 표면에 직접 살포하여 공급하며, 살포 공정을 실시할 때에는 토양 표면에 전면적으로 골고루 살포될 수 있도록 하여 과산화수소 용액이 중력에 의해 오염된 토양 내부로 자연 유하되도록 한다. 이때 과산화수소와 촉매의 혼합은 100 : 0.05~3.0중량부의 비율로 하는 것이 바람직하며, 혼합비가 0.05중량부 미만일 경우에는 산화반응이 거의 일어나지 않고, 3.0중량부를 초과하면, 산화력의 증가가 미미하며 과촉매 사용으로 인하여 비용이 증가한다. 계속하여 추가로 조촉매를 사용 시에는 과산화수소와 조촉매의 혼합은 100 : 0.005~2.0중량부의 비율로 하는 것이 바람직한데, 혼합비가 0.005중량부 미만일 경우에는 촉매 사용 시보다 산화반응이 거의 증가하지 않으며, 2.0중량부를 초과하면, 산화력의 증가가 촉매 사용 시보다 미미하고 과촉매 사용으로 인하여 비용이 증가한다.    Hydrogen peroxide containing the catalyst is directly sprayed on the surface of the contaminated soil and supplied, and when the spraying process is carried out so that it can be spread evenly over the surface of the soil so that the hydrogen peroxide solution naturally flows into the soil contaminated by gravity. . At this time, the mixing of the hydrogen peroxide and the catalyst is preferably in a ratio of 100: 0.05 to 3.0 parts by weight. When the mixing ratio is less than 0.05 parts by weight, the oxidation reaction hardly occurs. Cost increases due to use. In the case of further use of the promoter, it is preferable to mix the hydrogen peroxide and the promoter in a ratio of 100: 0.005 to 2.0 parts by weight. When the mixing ratio is less than 0.005 parts by weight, the oxidation reaction is hardly increased as compared with the use of the catalyst. If it exceeds 2.0 parts by weight, the increase in oxidizing power is less than that in the case of using the catalyst and the cost increases due to the use of the overcatalyst.

한편, 본 발명은 액체인 과산화수소와 함께 고체 산화제인 과황산나트륨(Sodium Persulfate, Na2S2O8), 칼슘퍼옥사이드(Calcium Peroxide, CaO2), 칼슘카보네이트(Calcium Carbonate, Na2CO3) 중에서 선택된 하나를 혼합 사용할 수 있는데, 이들의 혼합비율은 100 : 5의 중량부인 것이 바람직하다.
Meanwhile, the present invention is a solid oxidizing agent sodium persulfate (Na 2 S 2 O 8 ), calcium peroxide (Calcium Peroxide, CaO 2 ), calcium carbonate (Calcium Carbonate, Na 2 CO 3 ) together with hydrogen peroxide as a liquid One selected may be mixed and used, and the mixing ratio thereof is preferably 100 parts by weight.

본 발명의 마지막 단계인 토양산화단계는 상기 산화단계에서 과산화수소 및 촉매가 주입된 오염토양을 굴착기로써 교반하여 뒤집어주는 단계로서, 도면 1과 같이 토양산화경작장에 쌓여진 오염토양을 주기적으로 굴착기로써 교반하여 뒤집어주면서 이랑을 형성함으로써 오염토양의 산화반응을 촉진시켜 그 처리 효율을 증가시키는 마무리 단계이다.   The soil oxidation step, the final step of the present invention, is a step of inverting the contaminated soil in which the hydrogen peroxide and the catalyst are injected in the oxidation step with an excavator, and the contaminated soil accumulated in the soil oxidation farm as shown in FIG. 1 is periodically stirred with the excavator. It is a finishing step to increase the treatment efficiency by promoting the oxidation reaction of contaminated soil by forming a gyrus while flipping over.

나아가 토양산화경작장에는 추가 오염물질의 확산을 방지하기 위하여 방지턱 및 접근로를 설치할 추가 부지가 필요하며, 토양산화경작장의 배치는 부지여건, 접근의 용이성 및 굴착지역과 이동거리가 가장 짧은 거리에 위치하고, 정화기간에 따라 단일 및 복수로 설치할 수 있다. 오염된 토양의 경작주기는 오염물질의 제거효율실험을 통하여 도출된 제거속도를 바탕으로 하여 1회당 소요되는 기간으로 경작주기를 결정하며, 경작횟수는 총정화기간과 경작주기를 이용하여 경작횟수를 결정한다. 예를 들면, 총정화기간이 48시간 이내이고 경작주기가 12시간이면 경작횟수는 4회가 된다. 이와 별도로 휘발성이 강한 유종으로 오염된 토양을 처리하는 경우에도 토양산화경작장 내에서 휘발성 유기화합물에 의한 배기가스처리장치 등의 설치는 필요하지 않다.
Furthermore, the soil oxidation cultivation site needs additional sites to install the barriers and access roads to prevent the spread of additional pollutants, and the layout of the soil oxidization cultivation site is located at the shortest distance from the excavation site and the excavation area It can be located and installed in single and plural depending on the purification period. The cultivation cycle of the contaminated soil is determined by the time required per one time based on the removal rate derived through the removal efficiency test of the pollutants. The cultivation frequency is determined by the total purification period and the cultivation cycle. Decide For example, if the total purification period is within 48 hours and the tilling cycle is 12 hours, the number of tillages is four. Separately, even in the case of treating soil contaminated with highly volatile oil species, it is not necessary to install an exhaust gas treatment device using a volatile organic compound in a soil oxidation farm.

[실험준비][Preparation for experiment]

유류 저장탱크가 위치하였던 부지에서 약 50㎡ 면적을 깊이 2m 정도까지 굴착기로써 100㎥의 오염토양을 굴착한 후 그 중 500g을 채취하여 오염토양의 수분을 측정한 결과 17중량%의 수분을 함유하고 있음을 확인하였고, 이어서 상기 오염토양에 물을 분사기로 살포한 후 수분을 측정한 결과 23중량%의 수분을 함유하고 있음을 확인할 수 있어 이를 시료로 하였다.
From the site where the oil storage tank was located, excavated 100㎥ of contaminated soil with an excavator up to about 2m in depth of about 50m2, and collected 500g of it and measured the moisture of the contaminated soil. It was confirmed that, after spraying water on the contaminated soil with an injector, the moisture was measured and found to contain 23% by weight of water was used as a sample.

[오염토양의 성분분석][Component Analysis of Soil Contamination]

상기 시료의 오염토양 성분을 분석하기 위하여 가스크로마토그라피(HP 6890 Plus)를 이용하여 토양공정시험법에 의해 벤젠, 톨루엔, 에틸벤젠, 크실렌, 석유계총탄화수소(Total Petroleum Hydrocarbon, TPH)의 함량을 분석한 결과는 다음 [표 1]과 같다.   Analyze the content of benzene, toluene, ethylbenzene, xylene, total petroleum hydrocarbon (TPH) by soil process test using gas chromatography (HP 6890 Plus) to analyze the contaminated soil component of the sample. The results are shown in Table 1 below.

오염토양의 처리 전 성분분석 Analysis of ingredients before treatment of contaminated soil 오염물질pollutant 벤젠benzene 톨루엔toluene 에틸벤젠Ethylbenzene 크실렌xylene TPHTPH 농도(ppm)Concentration (ppm) 0.0190.019 0.0180.018 0.0090.009 0.0480.048 573573

본 실시예는 토양산화경작장에 깔아놓은 오염토양 10에 17% 과산화수소 수용액 750kg, 촉매인 황산제1철(FeSO4)?7H2O 20kg을 미리 혼합하여 투여한 후 굴삭기에 의해 혼합하였다. 그 후 토양산화경작장의 이랑을 굴착기로써 4회 교반하여 뒤집어주면서 48시간 동안 과산화수소가 오염토양을 산화시킴으로써 복원작업을 수행하였으며, 복원작업을 완료한 오염토양 500g을 채취하여 시료로 하였다.
In this example, 750 kg of 17% hydrogen peroxide aqueous solution and 20 kg of ferrous sulfate (FeSO 4 ) 7H 2 O, which are catalysts, were mixed in an soil 10 laid on a soil oxidation farm in advance and mixed by an excavator. Thereafter, the oxidized soil of the soil cultivation plant was stirred four times with an excavator and turned over, while hydrogen peroxide oxidized the contaminated soil for 48 hours, and 500 g of contaminated soil was recovered and sampled.

실시예 1에서 촉매인 황산제1철 외에 조촉매인 에틸렌디아민 테트라 아세틱에시드(EDTA) 10kg을 추가로 투입하는 것을 제외하고는 동일한 방법으로 실시하여 오염토양의 복원작업을 수행한 후 시료를 얻었다.
A sample was obtained after the contaminated soil restoration work was carried out in the same manner, except that 10 kg of ethylenediamine tetraacetic acid (EDTA), a promoter, was added to the ferrous sulfate as a catalyst. .

실시예 1에서 촉매인 황산제1철 대신에 칼슘퍼옥사이드(Calcium Peroxide, CaO2) 37.5kg을 투입하여 과산화수소와 혼합 사용하는 것을 제외하고는 동일한 방법으로 실시하여 오염토양의 복원작업을 수행한 후 시료를 얻었다.
In Example 1, instead of ferrous sulfate as a catalyst, 37.5 kg of calcium peroxide (Calcium Peroxide, CaO 2 ) was added and mixed with hydrogen peroxide. A sample was obtained.

실시예 1에서 촉매인 황산제1철 20kg 대신에 30kg을 투입하는 것을 제외하고는 동일한 방법으로 실시하여 오염토양의 복원작업을 수행한 후 시료를 얻었다.
A sample was obtained after performing contaminated soil restoration work in the same manner except that 30 kg was added instead of 20 kg of ferrous sulfate as a catalyst in Example 1.

실시예 2에서 조촉매인 에틸렌디아민 테트라 아세틱에시드(EDTA) 10kg을 추가로 투입하는 대신에 20kg을 투입하는 것을 제외하고는 동일한 방법으로 실시하여 오염토양의 복원작업을 수행한 후 시료를 얻었다.
In Example 2, instead of additionally adding 10 kg of ethylenediamine tetraacetic acid (EDTA) as a promoter, the sample was obtained by performing the same method as the contaminated soil except that 20 kg was added.

실시예 3에서 칼슘퍼옥사이드(Calcium Peroxide, CaO2) 37.5kg을 투입하는 대신에 30kg을 투입하는 것을 제외하고는 동일한 방법으로 실시하여 오염토양의 복원작업을 수행한 후 시료를 얻었다.
In Example 3, instead of adding 37.5 kg of calcium peroxide (Calcium Peroxide, CaO 2 ), except that 30 kg was added, the sample was obtained by performing the restoration process of contaminated soil.

[오염토양의 처리 후 성분분석][Component Analysis after Treatment of Polluted Soil]

상기 실시예 1 내지 6에서 각각 채취된 시료들의 오염토양 성분을 분석하기 위하여 가스크로마토그라피(HP 6890 Plus)를 이용하여 토양공정시험법에 의해 벤젠, 톨루엔, 에틸벤젠, 크실렌, 석유계총탄화수소(TPH)의 함량을 분석한 결과는 다음 [표 2]와 같고, 이를 오염토양의 처리 전 분석결과와 서로 비교하였다.
In order to analyze the contaminated soil components of the samples collected in Examples 1 to 6, benzene, toluene, ethylbenzene, xylene, and petroleum-based hydrocarbons (TPH) were analyzed by soil process test using gas chromatography (HP 6890 Plus). ) The results of analyzing the content are shown in the following [Table 2], and compared with the analysis results before the treatment of contaminated soil.

벤젠benzene 톨루엔toluene 에틸벤젠Ethylbenzene 크실렌xylene TPHTPH 저감율(%)Reduction rate (%) 처리 전Before processing 0.0190.019 0.0180.018 0.0090.009 0.0480.048 573573 -- 실시예 1Example 1 0.0070.007 0.0110.011 0.0060.006 0.0200.020 203203 64.664.6 실시예 2Example 2 0.0050.005 0.0080.008 0.0050.005 0.0090.009 153153 73.373.3 실시예 3Example 3 0.0060.006 0.0090.009 0.0050.005 0.0100.010 104104 82.882.8 실시예 4Example 4 0.0110.011 0.0150.015 0.0060.006 0.0170.017 253253 55.255.2 실시예 5Example 5 0.0160.016 0.0140.014 0.0060.006 0.0190.019 239239 58.358.3 실시예 6Example 6 0.0080.008 0.0130.013 0.0070.007 0.0210.021 274274 52.252.2

상기 [표 2]로부터 본 발명의 수치한정 범위에 속하는 실시예 1 내지 3은 오염토양의 성분들이 처리 전이나, 본 발명의 수치한정 범위를 벗어나는 실시예 4 내지 6보다 현저히 저감되었으며, 특히 실시예 3인 산화제로서 과산화수소와 칼슘퍼옥사이드를 혼합 사용하였을 때가 과산화수소와 촉매인 황산제1철을 사용했을 경우보다 저감율 등이 현저히 향상되었음을 알 수 있었다.
Examples 1 to 3, which fall within the numerical limits of the present invention from Table 2, are significantly reduced than those of Examples 4 to 6 before the treatment of the contaminated soil or outside the numerical limits of the present invention. When the hydrogen peroxide and calcium peroxide were used as the oxidizing agent of 3, the reduction rate and the like were remarkably improved compared with the case of using the hydrogen peroxide and ferrous sulfate as a catalyst.

Claims (6)

삭제delete 삭제delete 오염 토양을 지상처리에 의하여 복원하는 방법으로서,
1) 유류로 오염된 토양을 굴착기로써 굴착하여 지표면에 깔아놓거나 굴착한 터 내에서 수분을 공급하는 수분공급단계;
2) 상기 수분공급단계에서 수분이 공급된 오염 토양에 5~35% 과산화수소 수용액 100중량부, 제1염화철(FeCl2) 또는 황산제1철(FeSO4) 0.05~3.0중량부로 된 촉매 및 조촉매 0.005~2.0중량부를 혼합 주입하여 산화시키는 산화단계;
3) 상기 산화단계에서 상기 과산화수소 수용액, 촉매 및 조촉매가 혼합 주입된 오염토양을 굴착기로써 교반하여 뒤집어주는 토양산화단계;를 포함하는 것을 특징으로 하는 오염 토양의 지상처리 복원방법.
As a method of restoring contaminated soil by surface treatment,
1) a water supply step of excavating soil contaminated with oil with an excavator and laying it on the surface or supplying water in the excavated site;
2) a catalyst and a promoter comprising 100 parts by weight of aqueous solution of 5 to 35% hydrogen peroxide, 0.05 to 3.0 parts by weight of ferrous chloride (FeCl 2 ) or ferrous sulfate (FeSO 4 ) in the contaminated soil supplied with moisture in the moisture supplying step. An oxidation step of oxidizing by mixing injection of 0.005 to 2.0 parts by weight;
And 3) soil oxidation step of inverting the soil by mixing the hydrogen peroxide aqueous solution, catalyst and cocatalyst in the oxidation step with an excavator and inverting the soil.
제3항에 있어서,
상기 조촉매는 에틸렌디아민 테트라 아세틱에시드(EDTA), N-(2-히드록시에틸)이미노 디아세틱에시드, S,S'-에틸렌디아민디석시네이트(SS-EDDS), 니트릴로 트리에세틱에시드(NTA) 중에서 선택된 어느 하나인 것을 특징으로 하는 오염토양의 지상처리 복원방법.

The method of claim 3,
The promoters are ethylenediamine tetraacetic acid (EDTA), N- (2-hydroxyethyl) imino diacetic acid, S, S'-ethylenediaminedisuccinate (SS-EDDS), nitrile triacetic Surface treatment restoration method of contaminated soil, characterized in that any one selected from acid (NTA).

삭제delete 삭제delete
KR1020110133574A 2011-12-13 2011-12-13 Method for ex-situ restoration of contaminated soil KR101146785B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110133574A KR101146785B1 (en) 2011-12-13 2011-12-13 Method for ex-situ restoration of contaminated soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110133574A KR101146785B1 (en) 2011-12-13 2011-12-13 Method for ex-situ restoration of contaminated soil

Publications (1)

Publication Number Publication Date
KR101146785B1 true KR101146785B1 (en) 2012-05-22

Family

ID=46272226

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110133574A KR101146785B1 (en) 2011-12-13 2011-12-13 Method for ex-situ restoration of contaminated soil

Country Status (1)

Country Link
KR (1) KR101146785B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101196987B1 (en) * 2012-06-15 2012-11-05 주식회사 그린솔루션 Method for Ex-situ Restoration of Contaminated Soil
KR101600748B1 (en) 2015-05-22 2016-03-07 한국토양복원기술(주) Method for Ex-situ Restoration of Contaminated Soil
KR101671753B1 (en) * 2016-03-10 2016-11-03 효림산업주식회사 In-situ remediation system of contaminants in subsurface by soil flushing and chemical oxidation and extraction
CN113351640A (en) * 2021-06-03 2021-09-07 西安理工大学 Method for repairing cadmium and lead combined polluted soil by combining chelating agent with ryegrass
CN114798707A (en) * 2022-04-15 2022-07-29 海南省智慧环境投资控股有限公司 Organic pollutant soil remediation method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09239352A (en) * 1996-03-06 1997-09-16 Shimizu Corp Physical and chemical treatment of polluted soil
US6276871B1 (en) * 1997-11-04 2001-08-21 Bruce L. Bruso Soil remediation method
KR20100009704A (en) * 2008-07-21 2010-01-29 한국토양복원기술(주) Remediation method of petroleum contaminated soil with iron salt and hydrogen peroxide

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09239352A (en) * 1996-03-06 1997-09-16 Shimizu Corp Physical and chemical treatment of polluted soil
US6276871B1 (en) * 1997-11-04 2001-08-21 Bruce L. Bruso Soil remediation method
KR20100009704A (en) * 2008-07-21 2010-01-29 한국토양복원기술(주) Remediation method of petroleum contaminated soil with iron salt and hydrogen peroxide

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101196987B1 (en) * 2012-06-15 2012-11-05 주식회사 그린솔루션 Method for Ex-situ Restoration of Contaminated Soil
KR101600748B1 (en) 2015-05-22 2016-03-07 한국토양복원기술(주) Method for Ex-situ Restoration of Contaminated Soil
WO2016187707A1 (en) * 2015-05-22 2016-12-01 Trium Environmental Inc. Method of ex-situ remediation for contaminated soil
US20180056345A1 (en) * 2015-05-22 2018-03-01 Trium Enironmental Inc. Method of ex-situ remediation for contaminated soil
KR101671753B1 (en) * 2016-03-10 2016-11-03 효림산업주식회사 In-situ remediation system of contaminants in subsurface by soil flushing and chemical oxidation and extraction
CN113351640A (en) * 2021-06-03 2021-09-07 西安理工大学 Method for repairing cadmium and lead combined polluted soil by combining chelating agent with ryegrass
CN114798707A (en) * 2022-04-15 2022-07-29 海南省智慧环境投资控股有限公司 Organic pollutant soil remediation method

Similar Documents

Publication Publication Date Title
US10369604B2 (en) In-situ subsurface decontamination of sodic soil, clay and ground water
Valderrama et al. Oxidation by Fenton's reagent combined with biological treatment applied to a creosote-comtaminated soil
KR101146785B1 (en) Method for ex-situ restoration of contaminated soil
KR101278088B1 (en) Complex treatment-type PRB for purifying chemically and biologically contaminants in soil and underground water
US20130087512A1 (en) Soil and Water Remediation Method and Apparatus
KR101600748B1 (en) Method for Ex-situ Restoration of Contaminated Soil
CN111069260B (en) In-situ treatment of non-aqueous contaminants in soil and groundwater
KR101768006B1 (en) Soil Treatment System Using Nanobubble and Multi-Stage Washing of Inorganic Acid
KR20030087915A (en) Method for purifying a layer of contaminated soil and apparatus
CA3040696C (en) Treatment of hydrogen sulfide gas under aerobic conditions
KR100341957B1 (en) Method of purifying soil contaminated with oil and an apparatus thereof
KR101196987B1 (en) Method for Ex-situ Restoration of Contaminated Soil
JP2009285609A (en) Method of purifying underground soil zone by chemical oxidation in situ
CN110142287B (en) Oxidation potential water leaching remediation method for soil polluted by persistent organic matters
CA2950755C (en) In-situ subsurface extraction and decontamination
JP2007253075A (en) Soil purifying method
KR100811105B1 (en) Composition of Soil Remediation
KR100476134B1 (en) Remediation method of contaminated soil and groundwater by the sequentially combined treatment of hydrogen peroxide, ultraviolet ray and biological treatment
CN114653735B (en) Method for restoring heavy metal contaminated soil and/or groundwater
Taylor The Chemical Oxidation of Polycyclic Aromatic Hydrocarbons at a Former Manufactured Gas Plant in Bay Shore, New York
Fruechtenicht et al. Microbiological in situ remediation of an aquifer contaminated with waste oil from a refinery
Xu Remediation of Diesel-Contaminated Soils
Foget PENTACHLOROPHENOL REMEDIATION AT A FORMER CALIFORNIA WOOD TREATING FACILITY
US20120048812A1 (en) Groundwater Remediation Process

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee