KR20110079356A - Carbon fiber reinforced plastic containing carbon fiber prepared by using silicon oil solution - Google Patents

Carbon fiber reinforced plastic containing carbon fiber prepared by using silicon oil solution Download PDF

Info

Publication number
KR20110079356A
KR20110079356A KR1020090136375A KR20090136375A KR20110079356A KR 20110079356 A KR20110079356 A KR 20110079356A KR 1020090136375 A KR1020090136375 A KR 1020090136375A KR 20090136375 A KR20090136375 A KR 20090136375A KR 20110079356 A KR20110079356 A KR 20110079356A
Authority
KR
South Korea
Prior art keywords
carbon fiber
emulsion
reinforced plastic
fiber
fibers
Prior art date
Application number
KR1020090136375A
Other languages
Korean (ko)
Other versions
KR101154059B1 (en
Inventor
김우성
왕영수
이병민
정희록
Original Assignee
주식회사 효성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 효성 filed Critical 주식회사 효성
Priority to KR1020090136375A priority Critical patent/KR101154059B1/en
Publication of KR20110079356A publication Critical patent/KR20110079356A/en
Application granted granted Critical
Publication of KR101154059B1 publication Critical patent/KR101154059B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/06Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D10/00Physical treatment of artificial filaments or the like during manufacture, i.e. during a continuous production process before the filaments have been collected
    • D01D10/02Heat treatment
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/77Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/12Applications used for fibers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Fibers (AREA)

Abstract

PURPOSE: A carbon fiber-reinforced plastic containing carbon fibers is provided to ensure excellent stability since a silicon film layer is present on the surface of fibers and to maintain an internal structure of carbon fibers in a constant thickness. CONSTITUTION: A carbon fiber-reinforced plastic including carbon fibers is prepared by: adding an emulsion including a silicon-based compound of chemical formula 1 and spinning an acrylic fiber composition to obtain acrylic fibers; heating the acrylic fibers to which the emulsion is added and cross-linking a silicon component of the emulsion; converting the acrylic fibers into chlorinated fibers in an oxidizing atmosphere; and carbonizing the chlorinated fibers under an inert atmosphere.

Description

실리콘계 화합물 유제를 사용하여 제조된 탄소섬유를 포함하는 탄소섬유 강화 플라스틱{Carbon fiber reinforced plastic containing carbon fiber prepared by using silicon oil solution}Carbon fiber reinforced plastic containing carbon fiber prepared by using silicon oil solution

본 발명은 가교 되지 않은 실리콘계 화합물을 포함하는 탄소섬유 제조용 유제를 방사한 뒤 열처리하여 그물상의 실리콘이 생성된 탄소섬유를 포함한 탄소섬유 강화 플라스틱에 관한 것이다. The present invention relates to a carbon fiber reinforced plastic including carbon fiber in which a silicon is formed on a net by spinning and then heat-treating an emulsion for producing a carbon fiber including an uncrosslinked silicon-based compound.

탄소섬유는 그 우수한 기계적 특성을 이용하여, 매트릭스 수지라고 불리는 플라스틱과의 복합재료용 보강섬유로서, 항공우주용도, 스포츠용도, 일반 산업용도 등으로 폭 넓게 이용되고 있다.Carbon fiber is widely used in aerospace, sports, general industrial use, and the like as a reinforcing fiber for composite materials with plastics called matrix resins by utilizing its excellent mechanical properties.

또한 상기 탄소섬유를 포함하는 탄소 섬유 강화 플라스틱(Carbon Fiber Reinforced Polymer, CFRP)는 경량 또한 고강성이고, 또한 내부식성이 우수하기 때문에 자동차를 비롯한 수송 기기나 각종 산업 기계의 외판으로서 사용이 시도되고 있다. 예를 들면, 자동차의 본네트나 펜더 등의 외판에는, SMC (시트 몰딩 콤파운 드)라는 CFRP가 널리 사용되고 있다.Carbon Fiber Reinforced Polymer (CFRP) containing carbon fiber has been tried to be used as an outer plate of transportation equipment or various industrial machines including automobiles because of its light weight and high rigidity and excellent corrosion resistance. . For example, CFRP called SMC (Sheet Molding Compound) is widely used for outer panels of automobile bonnets and fenders.

탄소섬유를 제조하는 방법으로서는, 프리커서를 산화성 분위기 하에서 내염화(耐炎化) 섬유로 전환시키고, 계속해서 고온의 불활성 분위기 하에서 탄소화시키는 방법이 일반적이다. 그러나, 이들을 고열에 의해 소성시킬 때에는, 단섬유(單纖維)끼리의 융착이 발생하여, 얻어진 탄소섬유의 품질, 품위를 저하시키는 문제가 있다.As a method for producing the carbon fiber, a method of converting a precursor into a flame resistant fiber under an oxidizing atmosphere and then carbonizing it under a high temperature inert atmosphere is common. However, when baking these at high heat, fusion of short fibers arises, and there exists a problem of reducing the quality and quality of the obtained carbon fiber.

상기의 융착을 방지하기 위하여, 우수한 내열성 및 섬유-섬유 사이의 평활성에 의한 우수한 박리성을 갖는 실리콘계 유제, 특히 가교반응에 의해 내열성을 더욱 향상시킬 수 있는 아미노변성 실리콘계 유제를 프리커서에 부여하는 기술이 개발되고 있으며, 공업적으로 널리 이용되고 있다.In order to prevent the fusion, a technique for imparting a silicone-based emulsion having excellent heat resistance and excellent peelability due to smoothness between fibers and fibers, particularly an amino-modified silicone-based emulsion capable of further improving heat resistance by a crosslinking reaction, to the precursor Is being developed and widely used industrially.

특히 일본공개특허 제1999-012855호에서는 아미노 변성 실리콘계 섬유를 사용하여 단섬우의 융착을 방지하고자 하였으나, 산화로중 비산되는 미립자 성분에 의한 산화로내의 오염으로 탄소섬유의 강도가 저하되는 문제가 있다. In particular, Japanese Laid-Open Patent Publication No. 1999-012855 attempts to prevent fusion of short-sized cows using amino-modified silicone-based fibers, but there is a problem in that the strength of carbon fibers is reduced due to contamination in the oxidation furnace by particulate components scattered in the oxidation furnace.

그리고, 일본공개특허 제2005-264361호에서는 반응성 관능기를 가지는 화합물을 이용하여 부착성을 높였으나 방사 롤러 및 가이드에 퇴적이 일어나 생산성을 저하시키는 문제가 있다. In Japanese Laid-Open Patent Publication No. 2005-264361, although the adhesion is increased by using a compound having a reactive functional group, there is a problem that deposition occurs on the spinning roller and the guide, thereby lowering the productivity.

또한 아미노 변성 실리콘 유제의 사용은 실리콘 유제가 섬유로부터 탈락하여 점착물이 되고, 그것이 프리커서 제조공정에 있어서의 건조롤러나 가이드 등에 퇴적하여, 섬유가 감겨붙거나 실을 끊는 등 조업성을 저하시키는 원인이 되는 문제가 있었다. 그리고 내염화처리 공정의 산화성 분위기 하에서 그 일부로부터 산화규 소를 생성하고, 탄소화 공정의 불활성 분위기 하에서는 불활성 가스로서 질소가 사용되는 경우에는, 질화규소를 생성한다. 결국 스케일이 퇴적하여, 조업성이나 가동성을 저하시키거나, 소성로의 손상을 초래하는 등의 문제를 야기한다. In addition, the use of an amino-modified silicone emulsion causes the silicone emulsion to fall off from the fiber and become an adhesive, which is deposited on a drying roller or a guide in the precursor manufacturing process to reduce the operability such as the fibers being wound up or the thread broken. There was a problem that caused it. Then, silicon oxide is produced from a part of it under an oxidizing atmosphere of the flameproof treatment step, and silicon nitride is produced when nitrogen is used as an inert gas under an inert atmosphere of the carbonization step. As a result, the scale accumulates, causing problems such as deterioration of operability and operability or damage to the kiln.

이에 본 발명자들은, 상기 문제점을 해결하기 위하여 연구, 노력한 결과, 극성 반응기를 포함하는 미가교 상태의 실리콘계 화합물을 아크릴 섬유 조성물을 유제로 사용하고 이를 특정 조건에서 방사, 내염화, 탄소화 처리하여 방사 롤러 및 가이드에의 퇴적과 소성로의 손상을 최소화할 수 있음을 확인하고 이에 따라 제조된 탄소섬유를 고분자 수지와 복합재로 제조하여 탄소 섬유 강화 플라스틱을 제조할 수 있음을 발견함으로써 본 발명을 완성하게 되었다. Accordingly, the present inventors have studied and tried to solve the above problems, and as a result, an uncrosslinked silicone-based compound including a polar reactor was used as an emulsion of an acrylic fiber composition and spun under specific conditions, spinning, flameproofing, and carbonizing The present invention has been completed by finding that the deposition of rollers and guides and the damage of the kiln can be minimized, and that the carbon fibers prepared according to the present invention can be made of polymer resin and composite to produce carbon fiber reinforced plastics. .

따라서 본 발명은 미가교 상태의 실리콘계 화합물을 포함한 탄소섬유 제조용 유제와 이를 사용하여 고온 조건에서 방사, 내염화, 탄소화처리하여 얻은 탄소섬유를 이용한 탄소 섬유 강화 플라스틱을 제공하는 것을 그 목적으로 한다. Accordingly, an object of the present invention is to provide an emulsion for producing carbon fibers including a silicon-based compound in an uncrosslinked state, and a carbon fiber reinforced plastic using carbon fibers obtained by spinning, flameproofing, and carbonizing at high temperature using the same.

상술한 바와 같은 목적을 구현하기 위한 본 발명의 탄소섬유를 포함하는 탄소섬유 강화 플라스틱은 하기 화학식 1의 실리콘계 화합물을 포함한 유제에 아크릴 섬유 조성물을 혼합시키는 단계; 아크릴 섬유 조성물이 혼합된 유제를 방사하여 아크릴 섬유를 얻는 단계; 상기 아크릴섬유를 산화성 분위기 하에서 내염화 섬유로 전환시키는 단계; 및 상기 내염화 섬유를 불활성 분위기 하에서 탄화시키는 탄소화처리 단계를 포함하여 이루어지는 것을 특징으로 한다. Carbon fiber reinforced plastic comprising a carbon fiber of the present invention for achieving the object as described above comprises the steps of mixing an acrylic fiber composition with an oil containing a silicone-based compound of formula (1); Spinning an emulsion in which the acrylic fiber composition is mixed to obtain acrylic fibers; Converting the acrylic fiber into a flame resistant fiber under an oxidizing atmosphere; And carbonizing the carbonized flame resistant fiber under an inert atmosphere.

Figure 112009082251236-PAT00001
Figure 112009082251236-PAT00001

본 발명의 제조방법에 따르는 경우 유제의 실리콘 성분이 방사공정 중에는 가교 되지 않은 상태로 존재하므로 방사 롤러 및 가이드에 퇴적되지 않으며, 방사 단계에서의 열처리에 의하여 가교가 일어나므로, 내염, 탄소화 등의 소성 공정에서는 그물성의 실리콘으로 존재하므로 비산을 최소화하여 탄소섬유의 물성을 극대화할 수 있다. 또한 본 발명의 탄소섬유 강화 플라스틱은 섬유 표면의 실리콘 피막층이 매우 균일한 두께로 존재하게 되어 안정성이 우수하므로, 플라즈마 에칭에 의해 탄소섬유의 내부구조가 파되된 이후에도 일정 두께의 형상을 유지할 수 있는 장점이 있다.According to the manufacturing method of the present invention, since the silicone component of the emulsion is not cross-linked during the spinning process, it is not deposited on the spinning roller and the guide, and crosslinking occurs by heat treatment in the spinning step, such as flame resistance, carbonization, and the like. In the firing process, since it exists as a net silicon, it is possible to maximize the physical properties of the carbon fiber by minimizing scattering. In addition, the carbon fiber reinforced plastic of the present invention has a very uniform thickness of the silicon film layer on the surface of the fiber is excellent in stability, the advantage that can maintain the shape of a certain thickness even after the internal structure of the carbon fiber is destroyed by plasma etching There is this.

본 발명은 가교되지 않은 실리콘계 화합물을 포함하는 탄소섬유 제조용 유제 를 방사한 뒤 열처리하여 얻은 탄소섬유를 포함하는 탄소섬유 강화 플라스틱에 관한 것으로서, 이하에서 보다 구체적으로 설명한다. The present invention relates to a carbon fiber reinforced plastic comprising carbon fibers obtained by spinning and then heat-treating an emulsion for producing carbon fibers containing a silicone-based compound that is not crosslinked, which will be described in more detail below.

본 발명의 탄소섬유 제조용 유제는 하기 화학식 1의 실리콘계 화합물을 포함하여 이루어진다. Emulsion for producing carbon fiber of the present invention comprises a silicone-based compound of formula (1).

Figure 112009082251236-PAT00002
Figure 112009082251236-PAT00002

상기 실리콘계 화합물은 1 이상의 극성 반응기를 포함하고 있으며, 열처리에 따른 중합에 의하여 폴리실리콘이 형성되며, 더 나아가 가교되어 그물망 구조가 형성될 수 있다. 상기 그물망 구조의 실리콘 화합물을 형성할 수 있는 실리콘계 화합물로는 화합물 1로 예시된 바와 같이 Si 혹은 Si와 직접연결된 알킬 단위에 에폭시, 아민, 카르복실릭 애시드, 애시드 할라이드, 반응성이 있는 기타 카르복실릭 유도체 등이 포함된 화합물이 사용 가능하며, 바람직하게는 아민 및 에폭시 화합물이 사용될 수 있다.The silicon-based compound includes at least one polar reactor, polysilicon is formed by polymerization by heat treatment, and further crosslinked to form a network structure. Examples of the silicon-based compound capable of forming the silicon compound of the network structure include epoxy, amine, carboxylic acid, acid halide, and other carboxylic compounds reactive to Si or an alkyl unit directly connected to Si, as illustrated in compound 1. Compounds containing derivatives and the like may be used, and amine and epoxy compounds may be preferably used.

또한 본 발명의 유제는 산화방지제 또는 계면활성제를 추가적으로 포함할 수 있다. 산화방지제는, 내염화처리 공정에 있어서의 가열에 의해 유제의 열분해를 효과적으로 억제하여, 섬유-섬유 사이의 융착 방지효과를 향상시키는 성분이다. 산화 방지제로서는 특별히 한정되는 것은 아니나, 예를 들면, 4,4'-부틸리덴비스(3-메틸-6-t-부틸페놀, 트리옥타데실포스파이트, N,N'-디페닐-p-페닐렌디아민, 트리에틸렌글리콜비스[3-(3-t-부틸-4-하이드록시-5-메틸페닐)프로피오네이트], 디올레일-티오디프로피오네이트 등이 사용될 수 있다. In addition, the emulsion of the present invention may further include an antioxidant or a surfactant. Antioxidant is a component which suppresses thermal decomposition of an oil agent effectively by the heating in a flameproofing process, and improves the fusion prevention effect between fiber and fiber. Although it does not specifically limit as antioxidant, For example, 4,4'-butylidenebis (3-methyl-6-t-butylphenol, a trioctadecyl phosphite, N, N'- diphenyl-p- Phenylenediamine, triethylene glycol bis [3- (3-t-butyl-4-hydroxy-5-methylphenyl) propionate], dioleyl-thiodipropionate and the like can be used.

또한 계면활성제는 유화제로서 사용되어, 유제를 수중에서 유화 또는 분산시킨 상태로 하는 성분이며, 섬유에 대한 균일한 부착성 및 작업환경의 안전성을 향상시킬 수가 있다.Moreover, surfactant is used as an emulsifier, and it is a component which emulsifies or disperse | distributes an oil agent in water, and can improve the uniform adhesiveness to a fiber, and safety of a work environment.

계면활성제로서는, 특별히 한정되지 않으나, 비(非)이온계 계면활성제, 음이온계 계면활성제, 양이온계 계면활성제 및 양성(兩性) 계면활성제로부터, 공지의 것을 적당히 선택하여 사용할 수가 있다. 비이온계 계면활성제로서는, 예를 들면, 알킬렌옥사이드가 부가된 비이온계 계면활성제(고급 알코올, 고급 지방산, 알킬페놀, 스티렌화 페놀, 벤질페놀, 소르비탄, 소르비탄에스테르, 피마자유, 경화 피마자유 등에, 에틸렌 옥사이드, 프로필렌옥사이드 등의 적어도 1종의 알킬렌옥사이드를 부가시킨 생성물), 폴리알킬렌글리콜에 고급 지방산 등을 부가시킨 생성물, 에틸렌옥사이드/프로필렌옥사이드 공중합체 등을 사용할 수 있다.Although it does not specifically limit as surfactant, A well-known thing can be selected suitably from nonionic surfactant, anionic surfactant, cationic surfactant, and amphoteric surfactant, and can be used suitably. As a nonionic surfactant, For example, Nonionic surfactant to which alkylene oxide was added (higher alcohol, higher fatty acid, alkylphenol, styrenated phenol, benzyl phenol, sorbitan, sorbitan ester, castor oil, hardening) Castor oil, etc., the product which added at least 1 sort (s) of alkylene oxide, such as ethylene oxide and a propylene oxide), the product which added higher fatty acid, etc. to polyalkylene glycol, the ethylene oxide / propylene oxide copolymer, etc. can be used.

음이온계 계면활성제로서는 카복실산염, 고급 알코올, 고급 알코올에테르의 황산에스테르염, 술폰산염, 고급 알코올, 고급 알코올에테르의 인산에스테르염 등을 들 수가 있다. 양이온계 계면활성제로서는, 제4급 암모늄염형 양이온계 계면 활성제(라우릴트리메틸암모늄 클로라이드, 올레일메틸에틸암모늄 에토설페이트 등), 아민염형 양이온계 계면활성제(폴리옥시에틸렌라우릴아민젖산염 등) 등이 사용될 수 있다. 그리고 양성 계면활성제로서는, 아미노산형 양성 계면활성제(라우릴아미노프로피온산나트륨 등), 베타인형 양성 계면활성제(스테아릴디메틸베타인, 라우릴디하이드록시에틸베타인 등) 등이 사용될 수 있다.  Examples of the anionic surfactants include carboxylates, higher alcohols, sulfate ester salts of higher alcohol ethers, sulfonates, higher alcohols, and phosphate ester salts of higher alcohol ethers. As cationic surfactants, quaternary ammonium salt type cationic surfactants (lauryltrimethylammonium chloride, oleylmethylethylammonium ethosulfate, etc.), amine salt type cationic surfactants (polyoxyethylene laurylamine lactate, etc.) Can be used. As the amphoteric surfactant, amino acid type amphoteric surfactants (such as sodium laurylaminopropionate), betaine type amphoteric surfactants (stearyl dimethyl betaine, lauryl dihydroxyethyl betaine and the like) and the like can be used.

본 발명은 상기 유제에 아크릴 섬유 조성물을 혼합시키고, 이를 방사하여 아크릴 섬유를 얻는 뒤, 상기 아크릴 섬유를 산화성 분위기 하에서 내염화 섬유로 전환시키고, 불활성 분위기 하에서 탄화시키는 탄소화 처리하여 탄소섬유를 제조하는 것을 특징으로 한다. The present invention is to prepare a carbon fiber by mixing the acrylic fiber composition in the emulsion, spinning it to obtain an acrylic fiber, and then converting the acrylic fiber into a flame resistant fiber under an oxidizing atmosphere, and carbonization treatment to carbonize under an inert atmosphere It is characterized by.

상기 방사는 아크릴로 니트릴의 함량이 93%이상인 아크릴계 공중합물을 DMSO 용제에 녹인 Dope를 습식 또는 건습식 방사법에 의해 3000 hole의 Nozzle을 통과시켜 응고, 수세, 연신, 유제, 건조 등의 공정을 거쳐 탄소섬유용 프리커서를 제조한다. 그리고 아크릴 섬유조성물내에 적절한 중량비로 유제를 부여한 후 가교반응이 일어날 수 있도록 유제 부여공정 이후에 160 ~ 190도의 온도에서 2분간의 열처리를 가한다. 이때 온도가 160도이하이면 충분한 가교화도를 얻을 수 없으며 190도 이상이면 섬유의 산화반응이 일어나게 된다. The spinning is carried out through the process of solidification, washing, drawing, emulsion, drying by passing through a 3000 hole nozzle through a wet or dry spinning method of a dope in which an acrylic copolymer having an acrylonitrile content of 93% or more is dissolved in a DMSO solvent. A precursor for carbon fiber is prepared. After the emulsion is added to the acrylic fiber composition in an appropriate weight ratio, a heat treatment for 2 minutes is performed at a temperature of 160 to 190 degrees after the emulsion addition process so that a crosslinking reaction can occur. At this time, if the temperature is 160 degrees or less, sufficient crosslinking degree cannot be obtained. If the temperature is 190 degrees or more, the oxidation reaction of the fiber occurs.

이때 실리콘계 화합물을 포함한 유제와 아크릴 섬유 조성물은 중량비 0.5 : 95.5 ~ 2.5 : 97.5 비율로 혼합되어 방사되는 것이 바람직하며, 0.5 : 95.5 미만인 경우에는 섬유와 섬유사이의 융착방지성이 불충분해져서 제조된 탄소섬유의 강도가 저하되는 문제가 있고, 95.5 ~ 2.5 : 97.5 를 초과하면 소성시의 조업성이 나빠지고 제조경비가 높아지는 문제가 있다.At this time, it is preferable that the emulsion and the acrylic fiber composition including the silicone-based compound are mixed and spun at a weight ratio of 0.5: 95.5 to 2.5: 97.5, and when the ratio is less than 0.5: 95.5, carbon fibers manufactured by insufficient fusion resistance between the fibers and the fibers. There is a problem that the strength of the resin is lowered, and when it exceeds 95.5 to 2.5: 97.5, there is a problem that the operability at the time of firing is deteriorated and the manufacturing cost is increased.

상기 방사된 아크릴 섬유를 200 ~ 300℃의 산화성 분위기 하에서 내염화 섬유로 전환시키는 내염화처리 공정과, 상기 내염화 섬유를 다시 300 ~ 2000℃의 불활성 분위기 하에서 탄화시키는 탄소화처리 공정을 거치면 물성이 우수한 탄소섬유를 얻을 수 있다. The flame retardant process converts the spun acrylic fiber into flame resistant fiber under an oxidizing atmosphere of 200 to 300 ° C. and the carbonization treatment process of carbonizing the flame resistant fiber under an inert atmosphere of 300 to 2000 ° C. again. Excellent carbon fiber can be obtained.

이때, 산화성 분위기란, 통상적으로 공기 분위기가 바람직하며, 방사된 아크릴 섬유에 대하여, 연신비 0.90 ~ 1.10의 장력을 걸면서, 20 ~ 100분간에 걸쳐서 열처리를 진행하면 분자내 환화(環化) 및 환으로의 산소부가를 거쳐, 내염화구조를 갖는 내염화 섬유가 제조된다.In this case, the oxidizing atmosphere is preferably an air atmosphere, and the intramolecular cyclization and ringing are performed when the heat treatment is performed for 20 to 100 minutes while applying a tension of 0.90 to 1.10 to the spun acrylic fiber. The flame resistant fiber which has a flameproof structure is manufactured through oxygen addition to the furnace.

또한 상기 탄소화처리 공정은 질소, 아르곤 등 불활성 분위기 하 300℃~800℃의 온도 구배를 갖는 소성로에서, 내염화 섬유에 대하여 연신비 0.95 ~ 1.15의 장력을 걸면서, 수분간 열처리하여, 예비 탄소화처리 공정(제1탄소화처리)을 실시한 뒤, 그라파이트화를 진행시키기 위하여, 질소, 아르곤 등의 불활성 분위기 하 제1탄소화처리 공정에 대하여 연신비 0.95 ~ 1.05의 장력을 걸면서, 수분간 열처리하는 제2탄소화처리 공정을 실시하여, 내염화 섬유를 탄소화시키는 것이 바람직하며, 제2탄소화처리 공정에 있어서의 열처리 온도의 제어에 대해서는, 온도 구배를 걸면서, 최고 온도를 1000℃ 이상으로 하는 것이 좋으며, 이는 탄소섬유의 요구 특 성에 따라 조절될 수 있다. In addition, the carbonization process is heat-treated for several minutes while applying a tension ratio of 0.95 to 1.15 with respect to the flame-resistant fiber in a firing furnace having a temperature gradient of 300 ℃ to 800 ℃ in an inert atmosphere such as nitrogen, argon, pre-carbonization After performing the treatment step (first carbonization treatment), in order to proceed with the graphite, heat treatment for several minutes while applying a tension ratio of 0.95 to 1.05 with respect to the first carbonization treatment process under an inert atmosphere such as nitrogen and argon. It is preferable to carry out a 2nd carbonization process process and carbonize a flame resistant fiber, and to control the heat processing temperature in a 2nd carbonation process process, making maximum temperature 1000 degreeC or more, making a temperature gradient. It is recommended that it be adjusted according to the required properties of the carbon fiber.

상기 제조방법에 의하여 얻은 탄소섬유는 고분자 수지와 혼합되어 탄소섬유 강화 플라스틱으로 제조될 수 있다. The carbon fiber obtained by the manufacturing method may be mixed with a polymer resin to be produced as a carbon fiber reinforced plastic.

이때 상기 고분자 수지는 상기 탄소섬유 100 중량부에 대하여 50 ~ 150 중량부가 포함될 수 있으며, 상기 고분자 수지로는 에폭시 계 수지 중에서 선택된 1종 또는 2종 이상의 혼합물이 사용될 수 있다. In this case, the polymer resin may include 50 to 150 parts by weight based on 100 parts by weight of the carbon fiber, and the polymer resin may be one or a mixture of two or more selected from epoxy resins.

이하, 본 발명을 하기 실시예에 의거하여 좀더 상세하게 설명한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐 한정하지는 않으며, 본 발명의 실시예 및 비교예에서 제조된 사의 각종 물성 평가는 다음과 같은 방법으로 실시하였다. Hereinafter, the present invention will be described in more detail based on the following examples. However, the following examples are not intended to limit the present invention, but are not limited thereto. Various physical property evaluations of the companies manufactured in Examples and Comparative Examples of the present invention were performed by the following method.

(1) 유제 부여 균일성 (OPU CV%)(1) emulsion uniformity (OPU CV%)

제조 완료된 제품사 5 g을 취하여 120도에서 4시간 진공건조후 섬유의 무게를 측정하고 (W1), 건조된 섬유를 Ethylacetate/n-Hexane = 50/50 (wt%) 혼합 용제를 200 ml 이용하여 10 hr 이상 Soxhlet 추출법에 의해 유제를 제거한 후 전과 동일한 방법으로 건조하여 무게를 측정한다 (W2). 이 후 아래의 식에 적용하여 유제부여율 측정한다.Take 5 g of the finished product and measure the weight of the fiber after vacuum drying at 120 ° C for 4 hours (W1), and dry the fiber using 200 ml of Ethylacetate / n-Hexane = 50/50 (wt%) mixed solvent. After removing the emulsion by Soxhlet extraction method for more than 10 hrs and dried in the same manner as before to measure the weight (W2). After that, the emulsion emulsification rate is measured by applying the following equation.

O P U = (W1 - W2) / W1 X 100 (%)               O P U = (W1-W2) / W1 X 100 (%)

이후 20회 반복 실시한 결과의 OPU의 평균값과(AVG) 표준편차값(STDV)값을 이용해 CV% 값을 구하여 균일성을 평가한다.After that, the CV% value is calculated using the average value of the OPU (AVG) and the standard deviation value (STDV) of the result of 20 repetitions, and the uniformity is evaluated.

CV% = STDV / AVG X 100 (%)               CV% = STDV / AVG X 100 (%)

(2) 탄소섬유 단면의 피막 관찰(2) Carbon film cross section observation

탄소섬유 Bundle을 에폭시에 함침 및 경화시킨 후 Plasma 에칭을 실시하여 탄소섬유를 제거한 뒤 연속상의 피막이 잔류하는지의 여부를 SEM - Image analysing 기법을 이용해 관찰하였다. After the carbon fiber bundle was impregnated and cured in epoxy, plasma etching was performed to remove the carbon fiber, and then a continuous film was observed using SEM-Image analysing technique.

(3) 탄소섬유의 강도(3) the strength of carbon fiber

JIS R 7601에 따라 에폭시수지에 함침 및 경화된 탄소섬유 Strand를 인장하여 탄소섬유의 강도값을 평가함.Tensile carbon fiber strands impregnated and cured in epoxy resin were tensioned according to JIS R 7601 to evaluate the strength of carbon fiber.

[실시예 1]Example 1

[PAN 프리커서 섬유의 제조][Production of PAN Precursor Fiber]

본 발명의 탄소섬유용 PAN 프리커서의 제조에 쓰이는 유제는 아래의 구조식 1의 구조를 가지는 실리콘계 화합물을 주성분으로 30 ~ 60 % 함유한다. The emulsion used in the preparation of the PAN precursor for carbon fiber of the present invention contains 30 to 60% of the main component of the silicone-based compound having the structure of the following formula (1).

Figure 112009082251236-PAT00003
Figure 112009082251236-PAT00003

실리콘계 화합물이외의 부성분으로는 에스테르계 유화제 30 ~ 50%, 대전방지제, 산화방지제 등을 포함한다. 본 유제는 에멀젼화 된 원액을 조제한 후 실리콘계 화합물 기준 1 ~ 15% 가량의 희석용액을 제조하여 방사공정 중에 섬유에 부여하는 방식으로 사용 된다. 이 때 가교반응을 이용하지 하지 않고 분자량이 큰 실리콘계 화합물이 함유된 유제를 사용할 경우 소성조업성과 탄소섬유 강도에는 효과가 있으나 유제의 방사조업성과 균일부착성이 나빠진다.Additional components other than the silicone-based compound include 30 to 50% of ester-based emulsifiers, antistatic agents, antioxidants and the like. This emulsion is prepared by preparing emulsified stock solution and preparing dilution solution of 1 ~ 15% of silicone-based compound and giving it to fiber during spinning process. At this time, when using an emulsion containing a silicone-based compound having a large molecular weight without using a crosslinking reaction, the plasticity and carbon fiber strength is effective, but the spinning operation and uniform adhesion of the emulsion are deteriorated.

아크릴로 니트릴의 함량이 93%이상인 아크릴계 공중합물을 DMSO 용제에 녹인 Dope를 습식 또는 건습식 방사법에 의해 3000 hole의 Nozzle을 통과시켜 응고, 수세, 연신, 유제, 건조 등의 공정을 거쳐 탄소섬유용 프리커서를 제조한다. 이때 실리콘계 화합물을 포함한 유제와 아크릴 섬유 조성물은 중량비 0.5 : 95.5 ~ 2.5 : 97.5 비율로 조정하여 가교반응이 일어날 수 있도록 유제 부여공정 이후에 170도의 온도에서 2분간의 열처리를 가한다.Dope obtained by dissolving acrylic copolymer with acrylonitrile content of 93% or more in DMSO solvent through 3000-hole nozzle by wet or dry spinning method, and then solidifying, washing, stretching, emulsion, drying, etc. Prepare a precursor. At this time, the emulsion containing the silicone compound and the acrylic fiber composition is adjusted to a weight ratio of 0.5: 95.5 to 2.5: 97.5, and subjected to heat treatment for 2 minutes at a temperature of 170 degrees after the emulsion applying step so that crosslinking reaction can occur.

[탄소 섬유의 제조][Production of Carbon Fiber]

상기 제조된 PAN 프리커서 섬유를 이용하여 탄소섬유의 물성을 평가하기 위하여 프리커서 섬유를 210~230도 30분, 240~250도 30분간의 산화열처리를 거 친 후, 재차 650도에서 40초간 1200도에서 40초간의 탄화공정 및 후처리 공정을 거쳐 탄소섬유를 제조한다.In order to evaluate the physical properties of the carbon fiber using the prepared PAN precursor fiber, the precursor fiber was subjected to oxidation heat treatment for 210 to 230 degrees 30 minutes and 240 to 250 degrees 30 minutes, and then again 1200 to 1200 for 40 seconds. In the figure, a carbon fiber is manufactured through a carbonization process and a post-treatment process for 40 seconds.

[실시예 2 및 비교예 1 내지 3]Example 2 and Comparative Examples 1 to 3

유제 내 실리콘계 화합물 중의 반응성 말단의 양과 열처리 온도를 표 1에 나타낸 바와 같이 변화시키면서 상기 실시예 1과 동일한 방법으로 실험을 수행한 결과를 표 1에 나타내었다.Table 1 shows the results of experiments performed in the same manner as in Example 1 while varying the amount of reactive terminals and heat treatment temperature in the silicone-based compound in the emulsion.

[표1]Table 1

Figure 112009082251236-PAT00004
Figure 112009082251236-PAT00004

상기 표 1의 결과로부터 알 수 있는 바와 같이 실리콘 화합물의 반응성 말단 비가 본 발명의 범위에 드는 경우 강도가 우수하게 유지되는 동시에, 유제부여 균일성, 가교열처리 생성 및 피막형성에 있어서 우수하다는 것을 확인할 수 있다.As can be seen from the results of Table 1, when the reactive terminal ratio of the silicone compound falls within the scope of the present invention, it can be confirmed that the strength is excellent, and the emulsion uniformity, crosslinking heat treatment generation and film formation are excellent. have.

Claims (6)

하기 화학식 1의 실리콘계 화합물을 포함한 유제를 부여하여 아크릴 섬유 조성물을 방사하여 아크릴 섬유를 얻는 단계;To give an emulsion containing a silicone-based compound of Formula 1 to spin the acrylic fiber composition to obtain an acrylic fiber;
Figure 112009082251236-PAT00005
Figure 112009082251236-PAT00005
유제가 부여된 아크릴 섬유를 열처리 하여 유제의 실리콘 성분을 가교시키는 단계;Heat treating the acrylic fiber imparted with the emulsion to crosslink the silicone component of the emulsion; 상기 아크릴섬유를 산화성 분위기 하에서 내염화 섬유로 전환시키는 단계; 및 상기 내염화 섬유를 불활성 분위기 하에서 탄화시키는 탄소화처리 단계에 의하여 제조된 탄소섬유를 포함하는 것을 특징으로 하는 탄소섬유 강화 플라스틱.Converting the acrylic fiber into a flame resistant fiber under an oxidizing atmosphere; And carbon fiber prepared by a carbonization treatment step of carbonizing the flame resistant fiber under an inert atmosphere.
제1항에 있어서, 플라즈마 에칭처리에 의해 탄소섬유의 결정구조 소멸이후에도 탄소섬유의 피막형상이 유지되는 것을 특징으로 하는 탄소섬유 강화 플라스틱.2. The carbon fiber reinforced plastic according to claim 1, wherein the film shape of the carbon fiber is maintained even after the crystal structure of the carbon fiber is extinguished by the plasma etching process. 제2항에 있어서, 탄소섬유 피막에 실리콘 성분이 1 wt% 이상 검출되는 것을 특징으로 하는 탄소섬유 강화 플라스틱.The carbon fiber reinforced plastic according to claim 2, wherein at least 1 wt% of a silicon component is detected in the carbon fiber film. 제1항 또는 제2항에 있어서, 상기 탄소섬유에 추가로 고분자 수지가 포함되고, 상기 고분자 수지로는 에폭시계 수지 중에서 선택된 1종 또는 2종 이상의 혼합물 중에서 선택되는 것을 특징으로 하는 탄소섬유 강화 플라스틱. [Claim 3] The carbon fiber reinforced plastic according to claim 1 or 2, wherein the carbon fiber further includes a polymer resin, and the polymer resin is selected from one or a mixture of two or more selected from epoxy resins. . 제1항에 있어서, 상기 실리콘계 화합물의 반응성기는 에폭시 또는 아민 중에서 선택된 화합물인 것을 특징으로 하는 탄소섬유 강화 플라스틱.The carbon fiber reinforced plastic according to claim 1, wherein the reactive group of the silicone-based compound is a compound selected from epoxy and amine. 제1항에 있어서, 상기 아크릴 섬유 조성물이 유제를 부여한 뒤 160 ~ 190 ℃에서 열처리되는 것을 특징으로 하는 탄소섬유 강화 플라스틱.The carbon fiber reinforced plastic according to claim 1, wherein the acrylic fiber composition is heat-treated at 160 to 190 ° C after imparting an emulsion.
KR1020090136375A 2009-12-31 2009-12-31 Carbon fiber reinforced plastic containing carbon fiber prepared by using silicon oil solution KR101154059B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090136375A KR101154059B1 (en) 2009-12-31 2009-12-31 Carbon fiber reinforced plastic containing carbon fiber prepared by using silicon oil solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090136375A KR101154059B1 (en) 2009-12-31 2009-12-31 Carbon fiber reinforced plastic containing carbon fiber prepared by using silicon oil solution

Publications (2)

Publication Number Publication Date
KR20110079356A true KR20110079356A (en) 2011-07-07
KR101154059B1 KR101154059B1 (en) 2012-06-11

Family

ID=44918739

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090136375A KR101154059B1 (en) 2009-12-31 2009-12-31 Carbon fiber reinforced plastic containing carbon fiber prepared by using silicon oil solution

Country Status (1)

Country Link
KR (1) KR101154059B1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3949777B2 (en) * 1997-06-20 2007-07-25 三菱レイヨン株式会社 Carbon fiber precursor acrylic fiber
JP4370836B2 (en) 2003-07-10 2009-11-25 東レ株式会社 Oil for carbon fiber production and method for producing carbon fiber
KR101324045B1 (en) * 2005-12-09 2013-11-01 마쓰모토유시세이야쿠 가부시키가이샤 Oil solution for acrylic fiber for use in the manufacture of carbon fiber, and method for manufacture of carbon fiber using the same
JP4942502B2 (en) * 2007-02-01 2012-05-30 三菱レイヨン株式会社 Method for producing flame-resistant fiber bundle

Also Published As

Publication number Publication date
KR101154059B1 (en) 2012-06-11

Similar Documents

Publication Publication Date Title
EP2554725B1 (en) Method for preparing carbon fiber and precursor fiber for carbon fiber
JP6510299B2 (en) Flame-resistant fiber bundle, carbon fiber precursor fiber bundle, and method for producing carbon fiber comprising the same
KR20180087924A (en) Method of preparing carbon fiber having an excellent dimensional stability and carbon fiber by the same
WO2019203088A1 (en) Carbon fiber bundle, manufacturing method therefor, prepeg, and carbon-fiber-reinforced composite material
JP4305081B2 (en) Oil for carbon fiber production and method for producing carbon fiber
KR101140940B1 (en) Oil solution for carbon fiber and method of preparing carbon fiber using the same
WO2021045462A1 (en) Carbon fiber production method and carbon fiber produced using same
KR101154059B1 (en) Carbon fiber reinforced plastic containing carbon fiber prepared by using silicon oil solution
JP4838595B2 (en) Carbon fiber bundle manufacturing method
KR101909892B1 (en) The method of producing the polyacrylonitrile precursor for carbon fiber and the method of producing carbon fiber
KR101957061B1 (en) Process for preparing carbon fiber having high strength
JP4942502B2 (en) Method for producing flame-resistant fiber bundle
JP2004300601A (en) Flame resistant fiber fabric, carbon fiber fabric and method for producing them
KR20140074136A (en) Precursor manufacturing device of carbon fiber
JP2002371476A (en) Silicone oil solution for carbon fiber and method for producing carbon fiber
JP2001248025A (en) Method for producing carbon fiber
KR20110078249A (en) Preparation method of polyacrylonitrile precursor based carbon fiber
JP2011208290A (en) Method for producing polyacrylonitrile-based fiber and carbon fiber
JPH0433891B2 (en)
JP2004270095A (en) Flame-resistant short fiber, flame-resistant fiber fabric and method for producing those
KR101885018B1 (en) Precursor fiber for carbon fiber manufacturing method and precursor fiber for carbon fiber using the same
KR101470250B1 (en) Method of manufacturing precursor for carbon fiber
JP2012117161A (en) Method for manufacturing carbon fiber bundle
KR20100074798A (en) Apparatus and method for preparing carbon fiber precursor using vertical spinning
JP4995754B2 (en) Carbon fiber precursor acrylic fiber bundle and method for producing the same

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160414

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170413

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180411

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20190411

Year of fee payment: 8