JP2008190056A - Method for producing flameproof fiber bundle - Google Patents

Method for producing flameproof fiber bundle Download PDF

Info

Publication number
JP2008190056A
JP2008190056A JP2007022881A JP2007022881A JP2008190056A JP 2008190056 A JP2008190056 A JP 2008190056A JP 2007022881 A JP2007022881 A JP 2007022881A JP 2007022881 A JP2007022881 A JP 2007022881A JP 2008190056 A JP2008190056 A JP 2008190056A
Authority
JP
Japan
Prior art keywords
fiber bundle
mass
carbon fiber
oil
precursor acrylic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007022881A
Other languages
Japanese (ja)
Other versions
JP4942502B2 (en
Inventor
Takahiro Okuya
孝浩 奥屋
Katsumi Wakabayashi
巧己 若林
Naoki Sugiura
直樹 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2007022881A priority Critical patent/JP4942502B2/en
Publication of JP2008190056A publication Critical patent/JP2008190056A/en
Application granted granted Critical
Publication of JP4942502B2 publication Critical patent/JP4942502B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Artificial Filaments (AREA)
  • Inorganic Fibers (AREA)
  • Chemical Treatment Of Fibers During Manufacturing Processes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a flameproof fiber bundle and a carbon fiber bundle in which suppression of deterioration in bundling properties of the fiber bundle with static electricity and suppression of formation of fine powder derived from a silicone-based compound can simultaneously be achieved. <P>SOLUTION: The method for producing the flameproof fiber bundle is carried out as follows: A spinning finish composition containing the silicone-based compound in an amount of 0.1-3.0 mass% based on the fiber mass of a carbon fiber precursor acrylic fiber bundle is applied thereto and a flameproofing finish composition containing 60-90 mass% of a specific aromatic ester, 1-10 mass% of an antioxidant, and 9-35 mass% of a nonionic surfactant with a residual ratio of ≤1.0 mass% after heating at 250°C for 2 h in an amount of 0.1-3.0 mass% based on the fiber mass, is applied to the carbon fiber precursor acrylic fiber bundle just before carrying out a flameproofing treatment thereof. The resultant fiber bundle is then heated in an oxidizing atmosphere at 200-300°C. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、耐炎化繊維束の製造方法に関する。   The present invention relates to a method for producing a flameproof fiber bundle.

一般に、炭素繊維前駆体アクリル繊維束を用いて炭素繊維束を製造する方法としては、アクリル繊維の単繊維を数千から数万本束ねた繊維束を、200〜300℃の酸化性雰囲気下で加熱処理(以下、耐炎化処理あるいは耐炎化工程)を行って耐炎化繊維束を得た後、300〜1000℃の不活性ガス雰囲気下で加熱処理(以下、前炭素化処理あるいは前炭素化工程)し、次いで1000℃以上の不活性ガス雰囲気下で加熱処理(以下、炭素化処理あるいは炭素化工程)を行う方法が知られている。   Generally, as a method for producing a carbon fiber bundle using a carbon fiber precursor acrylic fiber bundle, a fiber bundle obtained by bundling thousands to tens of thousands of single fibers of an acrylic fiber under an oxidizing atmosphere at 200 to 300 ° C. After heat treatment (hereinafter referred to as flame resistance treatment or flame resistance process) to obtain a flame resistant fiber bundle, heat treatment (hereinafter referred to as pre carbonization process or pre carbonization process) in an inert gas atmosphere at 300 to 1000 ° C. Then, a method of performing a heat treatment (hereinafter, carbonization treatment or carbonization step) in an inert gas atmosphere at 1000 ° C. or higher is known.

この耐炎化処理は発熱を伴う酸化反応であるため、処理時の温度や酸化反応に伴う多量の発熱のために単繊維間に融着現象が発生し易い。この融着現象が発生した耐炎化繊維束の品質は著しく低下し、例えばその後の炭素化工程において毛羽発生や糸切れといった障害が発生する。   Since this flameproofing treatment is an oxidation reaction accompanied by heat generation, a fusion phenomenon is likely to occur between the single fibers due to the temperature during the treatment and the large amount of heat generation accompanying the oxidation reaction. The quality of the flame-resistant fiber bundle in which the fusion phenomenon has occurred is remarkably lowered. For example, in the subsequent carbonization process, troubles such as generation of fluff and yarn breakage occur.

この融着を回避するためには、炭素繊維前駆体アクリル繊維束に付与する油剤が重要であることが知られており、多くの油剤が検討されてきている。その中でも、高い耐熱性を有し融着を効果的に抑えることから、シリコ−ン系化合物含有油剤がよく使用されている(例えば特許文献1)。   In order to avoid this fusion, it is known that the oil agent applied to the carbon fiber precursor acrylic fiber bundle is important, and many oil agents have been studied. Among these, a silicone compound-containing oil agent is often used because it has high heat resistance and effectively suppresses fusion (for example, Patent Document 1).

炭素繊維前駆体アクリル繊維束を耐炎化繊維束に転換する耐炎化工程においては、ヒ−タ−などで加熱した酸化性気体をファンにより耐炎化処理炉内に循環させている。この場合、シリコ−ン系化合物含有油剤の一部は耐炎化工程中に酸化性気体中へ揮発し、揮発したシリコ−ン系化合物は耐炎化炉内に長期間滞留することになる。   In the flameproofing step of converting the carbon fiber precursor acrylic fiber bundle into the flameproofed fiber bundle, an oxidizing gas heated by a heater or the like is circulated in the flameproofing furnace by a fan. In this case, a part of the silicone compound-containing oil agent volatilizes into the oxidizing gas during the flameproofing step, and the volatilized silicone compound stays in the flameproofing furnace for a long time.

また、耐炎化炉中に長時間滞在化したシリコ−ン系化合物は固化し、それが微粉体として処理中の繊維束にも付着する。該微粉体の付着点は、その後の高温炭素化工程で毛羽の発生や単糸切れの発生起点となり、得られる炭素繊維の性能を著しく低下させる。   Further, the silicon-based compound that has remained in the flameproofing furnace for a long time is solidified and adheres to the fiber bundle being processed as a fine powder. The adhesion point of the fine powder becomes a starting point of generation of fluff and single yarn breakage in the subsequent high-temperature carbonization step, and remarkably deteriorates the performance of the obtained carbon fiber.

シリコーン系化合物以外の油剤成分やアクリロニトリル系共重合体成分由来のタール成分、粉塵なども炭素繊維の強度を低下させる要因とはなるが、シリコーン系化合物に起因した前記シリコーン系化合物の微粉体による影響が特に顕著である。   Oil components other than silicone compounds, tar components derived from acrylonitrile copolymer components, dust, etc. are also factors that reduce the strength of carbon fiber, but the influence of fine powder of the silicone compounds caused by silicone compounds Is particularly prominent.

したがって、長期にわたって耐炎化処理工程を稼動させ続けることは困難であり、時に稼動を停止して炉内清掃を行う必要がある。しかし、粒径が数μm程度の微粒子を完全に除去することは困難であり、特に大型設備の場合には炉内清掃に要する人員、時間を多大に費やすこととなる。   Therefore, it is difficult to keep the flameproofing process in operation for a long period of time, and it is sometimes necessary to stop the operation and clean the inside of the furnace. However, it is difficult to completely remove fine particles having a particle size of about several μm, and particularly in the case of a large facility, a great amount of personnel and time are required for cleaning the inside of the furnace.

また炉内を清掃した後の再稼動時の初期に得られる耐炎化繊維束の単繊維表面には、微粉体が多く存在し、その耐炎繊維束を炭素化して得られる炭素繊維の強度が著しく低下する現象が確認されている。   In addition, there are many fine powders on the surface of the single fiber of the flame resistant fiber bundle obtained at the initial stage of restart after cleaning the inside of the furnace, and the strength of the carbon fiber obtained by carbonizing the flame resistant fiber bundle is remarkably high. A decreasing phenomenon has been confirmed.

またシリコ−ン系油剤を用いた場合、シリコーン系化合物の持つ撥水性のため静電気が発生しやすい。このため、製造工程中に配された金属製のローラー等において静電気が発生し、繊維束の収束性が低下し、ローラーに巻き付きが発生することも課題であった。   Further, when a silicone oil is used, static electricity is likely to occur due to the water repellency of the silicone compound. For this reason, static electricity is generated in a metal roller or the like disposed in the manufacturing process, the convergence property of the fiber bundle is lowered, and winding of the roller is also a problem.

特許文献2には静電気を抑制するために、炭素繊維前駆体アクリル繊維束にシリコーン系油剤を付着し、かつ含水率を10質量%以上となるように水分量を調節し、水分の発散を防止するために高湿度下に保存しながら耐炎化処理炉に供給し、焼成することが提案されている。
しかしながら、200〜300℃の雰囲気下で加熱処理される耐炎化処理炉内に供給された直後には水分の蒸発が起こり、耐炎化工程における繊維束の収束性を維持し、ローラーへの巻き付きを抑制するには十分ではなかった。
In Patent Document 2, in order to suppress static electricity, a silicone-based oil agent is attached to the carbon fiber precursor acrylic fiber bundle, and the moisture content is adjusted so that the water content is 10% by mass or more, thereby preventing moisture divergence. In order to do so, it has been proposed to supply and burn to a flameproofing furnace while preserving it under high humidity.
However, immediately after being supplied into a flameproofing furnace that is heat-treated in an atmosphere of 200 to 300 ° C., water evaporation occurs, maintaining the convergence of the fiber bundle in the flameproofing process, and winding around the roller. It was not enough to suppress.

また特許文献3では、耐炎化処理炉内におけるシリコーン系化合物由来の微粉体生成の抑制と、静電気による繊維束の収束性低下を抑制するために、シリコーン系化合物と非シリコーン系化合物をブレンドして紡糸工程油剤として使用している。   In Patent Document 3, a silicone compound and a non-silicone compound are blended in order to suppress generation of fine powder derived from a silicone compound in a flameproofing furnace and to suppress a decrease in convergence of a fiber bundle due to static electricity. Used as a spinning process oil.

しかし、紡糸工程用の油剤は、通常水膨潤状態の繊維束に付与するため、繊維内部へ浸透しやすい。繊維内部に浸透した非シリコーン化合物は、シリコーン系化合物に比べて耐熱性が劣るため、炭素繊維に転換する際に欠陥になりやすく、得られる炭素繊維の品質が低下する懸念がある。
また、シリコーン系化合物と非シリコーン系化合物をブレンドすると、耐炎化処理炉に投入するまでの時間の経過とともに、シリコーン系化合物と非シリコーン系化合物のマイグレーションが起こり、炭素繊維前駆体アクリル繊維束への均一付着性を保ち難い。さらに、繊維表面付近に存在するシリコーンは耐炎化において、耐炎化工程で酸化性雰囲気中へ揮発しやすい。
However, since the oil agent for the spinning process is usually applied to the fiber bundle in a water-swollen state, it easily penetrates into the fiber. Since the non-silicone compound that has penetrated into the fiber is inferior in heat resistance to the silicone compound, it tends to be defective when converted to carbon fiber, and there is a concern that the quality of the obtained carbon fiber is lowered.
In addition, when a silicone compound and a non-silicone compound are blended, the migration of the silicone compound and the non-silicone compound occurs with the passage of time until being put into the flameproofing treatment furnace, and the carbon fiber precursor acrylic fiber bundle is transferred to the bundle. It is difficult to maintain uniform adhesion. Furthermore, the silicone present in the vicinity of the fiber surface tends to volatilize in an oxidizing atmosphere during the flame resistance process.

特開平11−12855号公報Japanese Patent Laid-Open No. 11-12855 特開昭61−132632号公報JP 61-132632 A 特開2000−199183号公報JP 2000-199183 A

本発明は、静電気による繊維束の収束性低下の抑制と、シリコーン系化合物由来の微粉体発生の抑制を同時に達成可能な、耐炎化繊維束および炭素繊維束の製造方法を提供することを目的とする。   An object of the present invention is to provide a method for producing a flame-resistant fiber bundle and a carbon fiber bundle, which can simultaneously achieve suppression of decrease in convergence of a fiber bundle due to static electricity and suppression of generation of fine powder derived from a silicone compound. To do.

即ち本発明の要旨は、シリコーン系化合物を含有する油剤組成物を炭素繊維前駆体アクリル繊維束の繊維質量当たり0.1〜3.0質量%付与し、その後耐炎化処理する直前に、該炭素繊維前駆体アクリル繊維束に、更に下記混合物Aからなる油剤組成物を繊維質量当たり0.1〜3.0質量%付与し、200〜300℃の酸化性雰囲気中で加熱する耐炎化繊維束の製造方法である。
混合物A:
下記(1)で示される芳香族エステルを60〜90質量%と、酸化防止剤を1〜10質量%と、250℃で2時間加熱後の残渣率が1.0質量%以下のノニオン系界面活性剤を9〜35質量%とを含有する。

Figure 2008190056
(式中、R及びRは、それぞれ独立して炭素数7〜21のアルキル基であり、A及びAは、それぞれ独立してエチレン基又はプロピレン基であり、m及びnは、それぞれ独立して1〜5の整数を表す) That is, the gist of the present invention is to provide an oil agent composition containing a silicone compound in an amount of 0.1 to 3.0% by mass per fiber mass of the carbon fiber precursor acrylic fiber bundle, and then immediately before the flame resistance treatment, An oil-resistant composition comprising the following mixture A is further added to the fiber precursor acrylic fiber bundle in an amount of 0.1 to 3.0% by mass per fiber mass and heated in an oxidizing atmosphere at 200 to 300 ° C. It is a manufacturing method.
Mixture A:
Nonionic interface having an aromatic ester represented by the following (1) of 60 to 90% by mass, an antioxidant of 1 to 10% by mass, and a residue ratio after heating at 250 ° C. for 2 hours of 1.0% by mass or less. Contains 9-35% by weight of activator.
Figure 2008190056
(Wherein R 1 and R 2 are each independently an alkyl group having 7 to 21 carbon atoms, A 1 and A 2 are each independently an ethylene group or a propylene group, and m and n are Each independently represents an integer from 1 to 5)

本発明によれば、静電気による繊維束の収束性低下の抑制と、シリコーン系化合物由来の微粉体発生の抑制を同時に達成可能となり、耐炎化工程での操業性、工程通過性が著しく改善され、また、同時に物性や品質が優れるとともに安定である耐炎化繊維束および炭素繊維束を製造できる。   According to the present invention, it is possible to simultaneously suppress the decrease in the convergence of the fiber bundle due to static electricity and the suppression of the generation of fine powder derived from the silicone compound, the operability in the flameproofing process, the process passability is significantly improved, At the same time, it is possible to produce flame-resistant fiber bundles and carbon fiber bundles that have excellent physical properties and quality and are stable.

以下に本発明について詳細に説明する。
本発明の耐炎化繊維束の製造方法は、シリコーン系化合物を含有する油剤組成物を炭素繊維前駆体アクリル繊維束の繊維質量当たり0.1〜3.0質量%付与し、その後耐炎化処理する直前に、該炭素繊維前駆体アクリル繊維束に、更に混合物Aからなる油剤組成物を繊維質量当たり0.1〜3.0質量%付与し、200〜300℃の酸化性雰囲気中で加熱する。
The present invention is described in detail below.
In the method for producing a flame-resistant fiber bundle of the present invention, an oil agent composition containing a silicone compound is applied in an amount of 0.1 to 3.0% by mass per fiber mass of the carbon fiber precursor acrylic fiber bundle, and then subjected to flame resistance treatment. Immediately before, 0.1 to 3.0% by mass of the oil agent composition consisting of the mixture A is further added to the carbon fiber precursor acrylic fiber bundle per mass of the fiber and heated in an oxidizing atmosphere at 200 to 300 ° C.

以下、本発明の耐炎化繊維束の製造方法を順次説明する。
(紡糸)
本発明の炭素繊維前駆体アクリル繊維束は、アクリルニトリル系重合体を、有機溶剤あるいは無機溶剤に溶解し、通常用いられる方法にて紡糸されるもので、紡糸方法、条件には特に制限はない。ここで、アクリロニトリル系重合体としては特に制限はないが、アクリロニトリル85質量%以上、より好ましくは90質量%以上を含有する重合体を使用する。このアクリロニトリル系重合体としては、アクリロニトリルの単独重合体または共重合体あるいはこれらの混合重合体を使用し得る。アクリロニトリル共重合体はアクリロニトリルと共重合しうる単量体とアクリロニトリルとの共重合生成物であり、アクリロニトリルと共重合しうる単量体としては、メチル(メタ)アクリレ−ト、エチル(メタ)アクリレ−ト、プロピル(メタ)アクリレ−ト、ブチル(メタ)アクリレ−ト、ヘキシル(メタ)アクリレ−ト等の(メタ)アクリル酸エステル類、塩化ビニル、臭化ビニル、塩化ビニリデン等のハロゲン化ビニル類、(メタ)アクリル酸、イタコン酸、クロトン酸等の酸類およびそれらの塩類やマレイン酸イミド、フェニルマレイミド、(メタ)アクリルアミド、スチレン、α−メチルスチレン、酢酸ビニル、更にはスチレンスルホン酸ソ−ダ、アリルスルホン酸ソ−ダ、β−スチレンスルホン酸ソ−ダ、メタアリルスルホン酸ソ−ダ等のスルホン基を含む重合性不飽和単量体、2−ビニルピリジン、2−メチル−5−ビニルピリジン等のピリジン基を含む重合性不飽和単量体等が挙げられるが、これらに限定されるものではない。
Hereinafter, the manufacturing method of the flame-resistant fiber bundle of this invention is demonstrated sequentially.
(spinning)
The carbon fiber precursor acrylic fiber bundle of the present invention is prepared by dissolving an acrylonitrile-based polymer in an organic solvent or an inorganic solvent and spinning by a commonly used method, and the spinning method and conditions are not particularly limited. . Here, although there is no restriction | limiting in particular as an acrylonitrile-type polymer, The polymer containing 85 mass% or more of acrylonitrile, More preferably, 90 mass% or more is used. As the acrylonitrile-based polymer, a homopolymer or copolymer of acrylonitrile or a mixed polymer thereof can be used. The acrylonitrile copolymer is a copolymerized product of a monomer that can be copolymerized with acrylonitrile and acrylonitrile. Examples of the monomer that can be copolymerized with acrylonitrile include methyl (meth) acrylate and ethyl (meth) acrylate. -(Meth) acrylic acid esters such as propyl (meth) acrylate, butyl (meth) acrylate, hexyl (meth) acrylate, and vinyl halides such as vinyl chloride, vinyl bromide and vinylidene chloride , Acids such as (meth) acrylic acid, itaconic acid, crotonic acid and their salts, maleic imide, phenylmaleimide, (meth) acrylamide, styrene, α-methylstyrene, vinyl acetate, and styrene sulfonic acid , Allyl sulfonic acid soda, β-styrene sulfonic acid soda, methallyl sulfonic acid Examples thereof include polymerizable unsaturated monomers containing a sulfone group such as soda, polymerizable unsaturated monomers containing a pyridine group such as 2-vinylpyridine and 2-methyl-5-vinylpyridine, etc. It is not limited to.

重合法については、従来公知の溶液重合、懸濁重合、乳化重合などを適用することができる。アクリル系重合体溶液に使用される溶媒は、ジメチルスルホキシド、ジメチルアセトアミド、ジメチルホルムアミド、塩化亜鉛水溶液、硝酸などを使用することができる。   As the polymerization method, conventionally known solution polymerization, suspension polymerization, emulsion polymerization and the like can be applied. As the solvent used in the acrylic polymer solution, dimethyl sulfoxide, dimethylacetamide, dimethylformamide, an aqueous zinc chloride solution, nitric acid, or the like can be used.

紡糸方法には、湿式紡糸法、乾湿式紡糸法、乾式紡糸法などを採用できる。紡糸して得られた凝固糸は一次延伸することが好ましい。一次延伸は、凝固糸を凝固浴中または延伸浴中で延伸してもよいし、一部空中延伸した後に、浴中で延伸してもよい。浴中で延伸する際は通常50〜98℃の延伸浴中で1回あるいは2回以上の多段に分割して行うことができる。その前後、あるいは同時に洗浄を行ってもよい。   As the spinning method, a wet spinning method, a dry wet spinning method, a dry spinning method, or the like can be employed. The coagulated yarn obtained by spinning is preferably subjected to primary stretching. In primary stretching, the coagulated yarn may be stretched in a coagulation bath or a stretching bath, or may be stretched in the bath after partially stretching in the air. When extending | stretching in a bath, it can carry out by dividing | segmenting into multiple steps of 1 time or 2 times or more normally in a 50-98 degreeC extending | stretching bath. You may perform washing | cleaning before or after that, or simultaneously.

(シリコーン系化合物を含有する油剤組成物の付与)
次に、シリコーン系化合物を含む油剤組成物を、紡糸工程用の油剤として炭素繊維前駆体アクリル繊維束に付与する工程について説明する。シリコーン系化合物を含有する油剤組成物は、紡糸工程用油剤として、炭素繊維前駆体アクリル繊維束の紡糸工程での収束性、柔軟性、平滑性および帯電防止性の付与、焼成工程での収束性の付与、および融着防止のために、炭素繊維前駆体アクリル繊維束に付与される。
(Granting of oil composition containing silicone compound)
Next, the process of providing the oil agent composition containing the silicone compound to the carbon fiber precursor acrylic fiber bundle as an oil agent for the spinning process will be described. Oil composition containing a silicone-based compound is used as a spinning process oil, providing convergence in the spinning process of the carbon fiber precursor acrylic fiber bundle, imparting flexibility, smoothness and antistatic properties, and converging in the firing process. Is imparted to the carbon fiber precursor acrylic fiber bundle in order to prevent fusion and to prevent fusion.

炭素繊維前駆体アクリル繊維束に均一に付与するために、シリコーン系化合物を含む油剤組成物は、浴中で延伸、洗浄後の水膨潤状態にある繊維束に対して付与することが好ましい。油剤組成物の付与方法は特に制限はないが、油剤組成物と水を含む処理液が入った油剤処理槽に炭素繊維前駆体アクリル繊維束を浸漬して付着させる方法が、工業的観点から好ましい。   In order to uniformly apply the carbon fiber precursor acrylic fiber bundle, it is preferable to apply the oil composition containing the silicone compound to the fiber bundle in a water-swollen state after being stretched and washed in a bath. The method for applying the oil agent composition is not particularly limited, but a method of immersing and attaching the carbon fiber precursor acrylic fiber bundle to the oil agent treatment tank containing the treatment liquid containing the oil agent composition and water is preferable from an industrial viewpoint. .

炭素繊維前駆体アクリル繊維束への油剤組成物の付着量は、乾燥繊維束に対して油剤組成物が0.1〜3.0質量%付着するように、前記処理液における油剤組成物の濃度を調整したり、ニップロールなどにより処理液を絞ることにより調整することが望ましい。   The amount of the oil agent composition attached to the carbon fiber precursor acrylic fiber bundle is such that the oil agent composition is attached to the dry fiber bundle in an amount of 0.1 to 3.0% by mass. It is desirable to adjust by adjusting the treatment liquid by squeezing the treatment liquid with a nip roll or the like.

本発明に用いるシリコーン系化合物としては、アミノ変性シリコーン、エポキシ変性シリコーン等のシリコーンオイルが挙げられるが、特に好ましくはアミノ変性シリコーンである。アミノ変性シリコーンとしては、側鎖1級アミノ変性シリコーン、側鎖1,2級アミノ変性シリコーン、あるいは両末端アミノ変性シリコーンが挙げられる。   Examples of the silicone compound used in the present invention include silicone oils such as amino-modified silicone and epoxy-modified silicone, and amino-modified silicone is particularly preferable. Examples of the amino-modified silicone include side-chain primary amino-modified silicone, side-chain 1, secondary amino-modified silicone, and both-end amino-modified silicone.

シリコーンオイルの粘度は、25℃で測定して50センチストークス(以下cSt)以上3,000cSt以下、さらには2,000cSt以下のものを用いることが好ましい。3,000cSt以下であれば水中への分散性や、あるいは溶解性の優れた溶媒が存在するので、繊維の表面に均一に付与することができる。またこの場合同時に油剤原体の耐熱性も良好となる。また、50cSt以上であれば耐炎化工程で容易に分解、揮発して単繊維間の融着防止効果が失われることがない。   The viscosity of the silicone oil is preferably 50 centistokes (hereinafter cSt) or more and 3,000 cSt or less, more preferably 2,000 cSt or less as measured at 25 ° C. If it is 3,000 cSt or less, a solvent having excellent dispersibility in water and / or solubility is present, so that it can be uniformly applied to the fiber surface. In this case, the heat resistance of the oil base is also improved. Moreover, if it is 50 cSt or more, it will not decompose | disassemble and volatilize easily at a flame-proofing process, and the fusion prevention effect between single fibers will not be lost.

シリコーンオイルの官能基当量(アミン当量やエポキシ当量など)は、1000g/mol以上10000g/mol以下が好ましく、さらに好ましくは2000g/mol以上8000g/mol以下である。1000g/mol以上であれば、200℃以上の高温下においてシリコーン骨格が容易に分解することがないので、耐熱性に優れる。また、10000g/mol以下であれば、炭素繊維の物性、特に耐炎化工程における融着に起因するストランド強度の低下をもたらすことがない。   The functional group equivalent (such as amine equivalent or epoxy equivalent) of the silicone oil is preferably 1000 g / mol or more and 10000 g / mol or less, and more preferably 2000 g / mol or more and 8000 g / mol or less. If it is 1000 g / mol or more, the silicone skeleton will not be easily decomposed at a high temperature of 200 ° C. or more, so that the heat resistance is excellent. Moreover, if it is 10,000 g / mol or less, it will not bring about the fall of the strand strength resulting from the physical property of carbon fiber, especially the fusion | melting in a flame-proofing process.

紡糸工程用の油剤組成物を水分散液として用いる場合は、水にシリコーン化合物を細かい粒子、例えば0.1〜数10μmの大きさに均一に分散させるため、界面活性剤を用いることができる。界面活性剤にはイオン型、非イオン型があり、イオン型はアニオン界面活性剤、カチオン界面活性剤、両性界面活性剤がある。本発明に用いる界面活性剤は、焼成工程で欠陥の形成点となる金属を含まない、非イオン型界面活性剤が好ましく用いられる。   When the oil composition for the spinning process is used as an aqueous dispersion, a surfactant can be used to uniformly disperse the silicone compound in water into fine particles, for example, a size of 0.1 to several tens of μm. Surfactants include ionic and nonionic types, and ionic types include anionic surfactants, cationic surfactants, and amphoteric surfactants. As the surfactant used in the present invention, a nonionic surfactant that does not contain a metal that becomes a defect formation point in the firing step is preferably used.

非イオン型界面活性剤としては、例えば高級アルコールエチレンオキサイド付加物、アルキルフェノールエチレンオキサイド付加物、脂肪酸エチレンオキサイド付加物、多価アルコール脂肪酸エステルエチレンオキサイド付加物、高級アルキルアミンエチレンオキサイド付加物、脂肪酸アミドエチレンオキサイド付加物、油脂のエチレンオキサイド付加物、ポリプロピレングリコールエチレンオキサイド付加物が挙げられ、高級アルコールエチレンオキサイド付加物、アルキルフェノールエチレンオキサイド付加物やポリプロピレングリコールエチレンオキサイド付加物が好ましく、中でもポリプロピレングリコールエチレンオキサイド付加物が更に好ましい。ポリプロピレングリコールエチレンオキサイド付加物の構造は、ブロック共重合型ポリエーテルが好ましい。   Nonionic surfactants include, for example, higher alcohol ethylene oxide adducts, alkylphenol ethylene oxide adducts, fatty acid ethylene oxide adducts, polyhydric alcohol fatty acid ester ethylene oxide adducts, higher alkylamine ethylene oxide adducts, and fatty acid amide ethylenes. Examples include oxide adducts, fat and oil ethylene oxide adducts, and polypropylene glycol ethylene oxide adducts. Higher alcohol ethylene oxide adducts, alkylphenol ethylene oxide adducts and polypropylene glycol ethylene oxide adducts are preferred, and polypropylene glycol ethylene oxide adducts are particularly preferred. Is more preferable. The structure of the polypropylene glycol ethylene oxide adduct is preferably a block copolymer type polyether.

油剤組成物中のシリコーン化合物の熱劣化を防止させることを目的として、油剤組成物に酸化防止剤を添加しても良い。ここで、酸化防止剤としては公知の酸化防止剤を用いることができる。具体的には、ペンタエリスリチル−テトラキス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、トリエチレングリコール−ビス[3−(3−t−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネート]、オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、1,3,5−トリス(4−t−ブチル−3−ヒドロキシ−2,6−ジメチルベンジル)イソシアヌル酸、2,2−チオ−ジエチレンビス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、4,4’−ブチリデンビス(3−メチル−6−t−ブチルフェニル−ジトリデシルホスファイト)などが好ましく用いられ、これらは単独で用いても組み合わせで用いても良い。   An antioxidant may be added to the oil composition for the purpose of preventing thermal deterioration of the silicone compound in the oil composition. Here, a known antioxidant can be used as the antioxidant. Specifically, pentaerythrityl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], triethylene glycol-bis [3- (3-t-butyl-5-methyl) -4-hydroxyphenyl) propionate], octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, 1,3,5-tris (4-tert-butyl-3-hydroxy-2) , 6-Dimethylbenzyl) isocyanuric acid, 2,2-thio-diethylenebis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], 4,4′-butylidenebis (3-methyl- 6-t-butylphenyl-ditridecyl phosphite) and the like are preferably used, and these may be used alone or in combination.

この酸化防止剤は、紡糸工程用の油剤組成物全体の質量に対し、1〜10質量%含有することが適当である。1質量%以上であれば、耐熱性向上効果が十分に得られ、また、10質量%以下であれば、該油剤組成物の乳化安定性が損なわれることもなく、炭素繊維前駆体アクリル繊維束の焼成工程において酸化防止剤の残渣が炭素繊維に残存することもない。また、10質量%程度であれば耐熱性の向上効果は十分得られる。   The antioxidant is suitably contained in an amount of 1 to 10% by mass based on the total mass of the oil composition for the spinning process. If it is 1% by mass or more, the effect of improving heat resistance is sufficiently obtained, and if it is 10% by mass or less, the emulsification stability of the oil composition is not impaired, and the carbon fiber precursor acrylic fiber bundle. In the firing step, the antioxidant residue does not remain on the carbon fiber. Moreover, if it is about 10 mass%, the heat resistant improvement effect is fully acquired.

その他、紡糸工程用の油剤組成物には、炭素繊維前駆体アクリル繊維束および炭素繊維の特性向上のために帯電防止剤、浸透剤、消泡剤、防腐剤などを適宜配合してもよい。   In addition, an antistatic agent, a penetrating agent, an antifoaming agent, a preservative, and the like may be appropriately blended in the oil composition for the spinning process in order to improve the properties of the carbon fiber precursor acrylic fiber bundle and the carbon fiber.

次に、紡糸工程用の油剤組成物を付与した繊維束を、加熱ローラーなどによって乾燥緻密化する。乾燥温度、時間は適宜選択することができるが、120℃〜190℃の加熱ローラーにより乾燥緻密化することが好ましい。加熱ローラーの温度が120℃未満の場合、加熱ローラーの本数を多くする必要があり、また、加熱ローラーの温度が190℃を超える場合は、単繊維間融着が生じ、炭素繊維の性能が低下する傾向がある。   Next, the fiber bundle provided with the oil agent composition for the spinning process is dried and densified with a heating roller or the like. Although drying temperature and time can be selected as appropriate, it is preferable to dry and densify with a heating roller of 120 to 190 ° C. When the temperature of the heating roller is less than 120 ° C, it is necessary to increase the number of heating rollers, and when the temperature of the heating roller exceeds 190 ° C, fusion between single fibers occurs, and the performance of the carbon fiber decreases. Tend to.

高倍率の延伸が可能であること、より最終紡速を高くすることができること、得られる繊維の緻密性や配向度向上にも寄与することから、上記乾燥緻密化により得られた繊維束を乾熱延伸またはスチーム延伸することが好ましい。乾熱延伸は2本の熱ロール間で行っても良いし、更にその熱ロール間に設置したホットプレートに繊維束を接触させて行っても良い。スチーム延伸は、加圧水蒸気雰囲気中で延伸を行う加圧水蒸気延伸法により行うことが好ましい。   The fiber bundle obtained by the above-mentioned dry densification is dried because it can be stretched at a high magnification, can further increase the final spinning speed, and contributes to improvement in the density and orientation of the obtained fiber. Heat stretching or steam stretching is preferred. Dry heat drawing may be performed between two hot rolls, or may be performed by bringing a fiber bundle into contact with a hot plate installed between the hot rolls. The steam stretching is preferably performed by a pressurized steam stretching method in which stretching is performed in a pressurized steam atmosphere.

(混合物Aからなる油剤組成物の付与)
次に、得られた炭素繊維前駆体アクリル繊維束を耐炎化処理する直前に、耐炎化工程用の油剤として、混合物Aからなる油剤組成物を繊維質量当たり0.1〜3.0質量%付与する。
(Granting of oil composition comprising mixture A)
Next, immediately before subjecting the obtained carbon fiber precursor acrylic fiber bundle to flame resistance treatment, 0.1 to 3.0% by mass of an oil agent composition comprising the mixture A is imparted as an oil agent for the flame resistance process. To do.

本発明の混合物Aからなる油剤組成物は、式(1)で示される芳香族エステルを60〜90質量%と、酸化防止剤を1〜10質量%と、250℃で2時間加熱後の残渣率が1.0質量%以下のノニオン系界面活性剤を9〜35質量%とを含有する。

Figure 2008190056
(式中、R及びRは、それぞれ独立して炭素数7〜21のアルキル基であり、A及びAは、それぞれ独立してエチレン基又はプロピレン基であり、m及びnは、それぞれ独立して1〜5の整数を表す) The oil agent composition comprising the mixture A of the present invention comprises 60 to 90% by mass of the aromatic ester represented by the formula (1), 1 to 10% by mass of the antioxidant, and a residue after heating at 250 ° C. for 2 hours. A nonionic surfactant having a ratio of 1.0% by mass or less is contained in an amount of 9 to 35% by mass.
Figure 2008190056
(Wherein R 1 and R 2 are each independently an alkyl group having 7 to 21 carbon atoms, A 1 and A 2 are each independently an ethylene group or a propylene group, and m and n are Each independently represents an integer from 1 to 5)

式(1)で示される芳香族エステルの耐炎化工程における高い耐熱性と、酸化防止剤による芳香族エステルの耐熱性向上効果により、静電気による繊維束の収束性低下を効果的に抑制することができる。
式(1)で示される芳香族エステルは、続く前炭素化工程でほとんど分解し、タール成分を発生させることがない。さらに、250℃で2時間加熱後の残渣率が1.0質量%以下のノニオン系界面活性剤は、式(1)で示される芳香族エステルや酸化防止剤を水に細かく分散させ、炭素繊維前駆体アクリル繊維束に均一に付着させることができるとともに、耐炎化工程においてほぼ完全に分解し、タール成分を発生させることがない。
The high heat resistance in the flameproofing process of the aromatic ester represented by the formula (1) and the effect of improving the heat resistance of the aromatic ester by the antioxidant can effectively suppress the decrease in convergence of the fiber bundle due to static electricity. it can.
The aromatic ester represented by the formula (1) is almost decomposed in the subsequent pre-carbonization step and does not generate a tar component. Furthermore, a nonionic surfactant having a residue rate of 1.0% by mass or less after heating at 250 ° C. for 2 hours is obtained by finely dispersing an aromatic ester or an antioxidant represented by the formula (1) in water to obtain a carbon fiber. While being able to adhere uniformly to a precursor acrylic fiber bundle, it decomposes | disassembles almost completely in a flame-proofing process, and does not generate | occur | produce a tar component.

また、シリコ−ン系化合物を含有する油剤組成物を紡糸工程用の油剤として付与した炭素繊維前駆体アクリル繊維束に、耐炎化処理する直前に、耐炎化工程用の油剤として混合物Aからなる油剤組成物を付与するため、繊維内部へ浸透し難い。従って過剰に付与しなくても耐炎化工程の繊維束の収束性を向上させることが可能であり、炭素繊維に転換する際に欠陥を発生させることがない。   Moreover, the oil agent which consists of mixture A as an oil agent for flameproofing processes immediately before performing a flameproofing to the carbon fiber precursor acrylic fiber bundle which provided the oily agent composition containing a silicone type compound as an oil agent for a spinning process Since the composition is applied, it is difficult to penetrate into the fiber. Therefore, it is possible to improve the convergence property of the fiber bundle in the flameproofing process even if it is not applied excessively, and no defects are generated when it is converted into carbon fibers.

また、シリコーン系化合物を含有する油剤組成物と、混合物Aからなる油剤組成物は、マイグレーションを起こすことなく、シリコ−ン系化合物が付着した炭素繊維前駆体アクリル繊維束の表面を、混合物Aからなる油剤組成物でコーティングするため、耐炎化工程でシリコーン系化合物が酸化性雰囲気中へ揮発することを抑制することができる。   In addition, the oil agent composition containing the silicone compound and the oil agent composition composed of the mixture A cause the surface of the carbon fiber precursor acrylic fiber bundle to which the silicon compound adheres to the mixture A without causing migration. Since it coats with the oil agent composition which becomes, it can suppress that a silicone type compound volatilizes in an oxidizing atmosphere at a flame-proofing process.

式(1)のR1部またはR2部を形成する炭素数7〜21のアルキル基としては、具体的にはラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸等の高級脂肪酸から選ばれることが好ましい。また、m、nが上述の範囲以内であれば、耐熱性、静電気による繊維束の収束性を満足することができる。A1及びA2は、複数存在する場合エチレン基とプロピレン基が混在していても良い。なお、式(1)で示される芳香族エステルは、複数の化合物の混合物である場合もあり、したがって、m及びnは整数でない場合もあり得る。 Specifically, the alkyl group having 7 to 21 carbon atoms forming R 1 part or R 2 part of the formula (1) may be selected from higher fatty acids such as lauric acid, myristic acid, palmitic acid and stearic acid. preferable. Moreover, if m and n are within the above-mentioned ranges, the heat resistance and the convergence property of the fiber bundle due to static electricity can be satisfied. When a plurality of A 1 and A 2 are present, an ethylene group and a propylene group may be mixed. In addition, the aromatic ester shown by Formula (1) may be a mixture of a some compound, Therefore, m and n may not be an integer.

混合物Aにおける式(1)で示される芳香族エステルの含有率は60〜90質量%の範囲内である。60質量%以上であれば、耐炎化工程の収束性向上と、炭素繊維に転換する際の欠陥を抑制と、耐炎化工程でシリコーンの酸化性雰囲気中への揮発を抑制する効果を得ることができる。また、90質量%以下であると、前記芳香族エステルを水に細かく分散させることが可能で、炭素繊維前駆体アクリル繊維束へ均一に付着させることできる。含有率の範囲は、好ましくは65〜80質量%である。   The content rate of the aromatic ester shown by Formula (1) in the mixture A exists in the range of 60-90 mass%. If it is 60% by mass or more, it is possible to obtain the effect of improving the convergence of the flameproofing process, suppressing defects when converted to carbon fiber, and suppressing the volatilization of silicone into the oxidizing atmosphere in the flameproofing process. it can. Moreover, the said aromatic ester can be finely disperse | distributed to water as it is 90 mass% or less, and can be made to adhere uniformly to a carbon fiber precursor acrylic fiber bundle. The range of the content rate is preferably 65 to 80% by mass.

混合物Aにおける酸化防止剤としては、前述の紡糸工程用の油剤組成物の場合と同様に公知の酸化防止剤を用いることができる。
本発明の混合物Aにおける酸化防止剤の含有率は1〜10質量%の範囲内である。1質量%以上であれば、前記芳香族エステルの耐熱性向上効果を得ることができる。また10質量%以下であれば、酸化防止剤が加熱残渣として耐炎化糸や炭素化糸に残存することやエマルションの安定性が低下することを防ぐことができる。
As the antioxidant in the mixture A, a known antioxidant can be used as in the case of the oil composition for the spinning process described above.
The content rate of the antioxidant in the mixture A of this invention exists in the range of 1-10 mass%. If it is 1 mass% or more, the heat resistance improvement effect of the said aromatic ester can be acquired. Moreover, if it is 10 mass% or less, it can prevent that antioxidant remains as a heating residue in a flame-resistant thread | yarn or a carbonized thread | yarn, and stability of an emulsion falls.

混合物Aにおけるノニオン系界面活性剤は、250℃で2時間加熱後の残渣率が1.0質量%以下である。好適な例としては、ポリオキシアルキレングリコール脂肪酸エステル、脂肪族アルコールのアルキレンオキシド付加物などが挙げられ、疎水部のアルキル鎖は直鎖状でも分岐していてもよい。また、これらは単独でも組み合わせでも良い。このノニオン系界面活性剤のHLBは6〜16であることが望ましい。この様なノニオン系界面活性剤の、例えば、親水部オキシアルキレン単位の繰り返し数、オキシアルキレン単位の種類やオキシアルキレン単位の繰り返しの形態は、混合物Aの水分散物が安定なエマルションとなるように適宜選択することができる。   The nonionic surfactant in the mixture A has a residue rate of 1.0% by mass or less after heating at 250 ° C. for 2 hours. Preferable examples include polyoxyalkylene glycol fatty acid esters and alkylene oxide adducts of aliphatic alcohols, and the alkyl chain in the hydrophobic part may be linear or branched. These may be used alone or in combination. The nonionic surfactant preferably has an HLB of 6 to 16. Such nonionic surfactants, for example, the number of repeating hydrophilic oxyalkylene units, the type of oxyalkylene units and the form of repeating oxyalkylene units are such that the aqueous dispersion of mixture A becomes a stable emulsion. It can be selected appropriately.

本発明の混合物Aにおけるノニオン系界面活性剤の含有率は、9〜35質量%の範囲である。9質量%以上であればエマルションの安定性が低下して炭素繊維前駆体アクリル繊維束への付着斑が生じることがない。また、35質量%以下であれば、耐炎化工程の収束性向上と、炭素繊維に転換する際の欠陥の抑制と、シリコーン化合物の酸化性雰囲気中への揮発を抑制する効果とを得ることができる。ノニオン系界面活性剤の含有率は、好ましくは15〜30質量%である。   The content of the nonionic surfactant in the mixture A of the present invention is in the range of 9 to 35% by mass. If it is 9 mass% or more, stability of an emulsion will fall and the adhesion spot to a carbon fiber precursor acrylic fiber bundle will not arise. Moreover, if it is 35 mass% or less, the convergence improvement of a flameproofing process, the suppression of the defect at the time of converting to carbon fiber, and the effect which suppresses volatilization to the oxidizing atmosphere of a silicone compound can be acquired. it can. The content of the nonionic surfactant is preferably 15 to 30% by mass.

その他、本発明の上記混合物Aからなる油剤組成物には、炭素繊維前駆体アクリル繊維束および炭素繊維の特性向上のために帯電防止剤、浸透剤、消泡剤、防腐剤などを適宜配合してもよい。     In addition, an antistatic agent, a penetrating agent, an antifoaming agent, a preservative, and the like are appropriately blended in the oil agent composition comprising the mixture A of the present invention to improve the properties of the carbon fiber precursor acrylic fiber bundle and the carbon fiber. May be.

炭素繊維前駆体アクリル繊維束への混合物Aからなる油剤組成物の付与は、炭素繊維前駆体アクリル繊維束を耐炎化処理する直前、つまり耐炎化処理炉に供給する直前で実施する。油剤組成物の付与方法は、一般に用いられているように、油剤組成物と水を含む処理液が入った油剤処理槽に炭素繊維前駆体アクリル繊維束を浸漬し、該油剤組成物を付着させる方式が、工業的観点から好ましい。このとき、油剤組成物は処理液中で、例えば0.1〜0.3μmの大きさに均一に分散させることが、均一に付着させるうえで好ましい。   Application of the oil composition composed of the mixture A to the carbon fiber precursor acrylic fiber bundle is performed immediately before the carbon fiber precursor acrylic fiber bundle is flameproofed, that is, immediately before being supplied to the flameproofing furnace. As generally used, the method of applying the oil composition is to immerse the carbon fiber precursor acrylic fiber bundle in an oil treatment tank containing a treatment liquid containing the oil composition and water, and attach the oil composition to the oil solution treatment tank. The method is preferable from an industrial viewpoint. At this time, it is preferable to uniformly disperse the oil agent composition in a size of, for example, 0.1 to 0.3 μm in the treatment liquid.

炭素繊維前駆体アクリル繊維束への、混合物Aからなる油剤組成物の付着量は、乾燥繊維束に対して、油剤組成物が0.1〜3.0質量%含まれるように、前記処理液における油剤組成物の濃度を調整したり、ニップロールなどにより処理液を絞ることにより調整することが望ましい。また、混合物Aからなる油剤組成物を付与した後、炭素繊維前駆体アクリル繊維束に含まれる水を、乾燥ロール等を用いて乾燥させて、その後耐炎化処理してもよい。   The amount of the oil agent composition consisting of the mixture A to the carbon fiber precursor acrylic fiber bundle is such that the oil agent composition is contained in an amount of 0.1 to 3.0% by mass with respect to the dry fiber bundle. It is desirable to adjust by adjusting the concentration of the oil composition in squeezing or by squeezing the treatment liquid with a nip roll or the like. Moreover, after giving the oil agent composition which consists of the mixture A, the water contained in a carbon fiber precursor acrylic fiber bundle may be dried using a drying roll etc., and you may flame-proof after that.

(耐炎化)
混合物Aからなる油剤組成物を付与した後、炭素繊維前駆体アクリル繊維束を耐炎化処理して耐炎化繊維束を得るための条件としては、200〜300℃の酸化性雰囲気中、緊張あるいは延伸条件下で、好ましくは耐炎化処理後の耐炎化繊維の密度が1.30g/cm以上になるまで加熱するのがよい。酸化性雰囲気は、酸素を含む気体であれば特に制限はないが、工業生産の面で、空気が経済面、安全面で特に優れている。また、酸化能力を調整する目的で、酸化性雰囲気中の酸素濃度を変更することもできる。
(Flame resistance)
After applying the oil agent composition comprising the mixture A, the conditions for obtaining a flame-resistant fiber bundle by flame-treating the carbon fiber precursor acrylic fiber bundle are as follows: tension or stretching in an oxidizing atmosphere at 200 to 300 ° C. Under the conditions, it is preferable to heat until the density of the flameproof fiber after the flameproofing treatment is 1.30 g / cm 3 or more. The oxidizing atmosphere is not particularly limited as long as it contains oxygen, but air is particularly excellent in terms of industrial production and economy and safety. Further, the oxygen concentration in the oxidizing atmosphere can be changed for the purpose of adjusting the oxidation ability.

耐炎化繊維の密度は1.30g/cm以上であれば耐炎化の進行度が十分であり、後に行う不活性ガス雰囲気下での前炭素化および炭素化処理などの高温加熱処理の際に単糸間融着などを起こすことがない。 If the density of the flame-resistant fiber is 1.30 g / cm 3 or more, the progress of flame resistance is sufficient, and the high-temperature heat treatment such as pre-carbonization and carbonization treatment in an inert gas atmosphere to be performed later is performed. No fusing between single yarns.

耐炎化処理を行った後、不活性ガス雰囲気下で前炭素化、あるいは炭素化処理して炭素繊維束とする場合には、耐炎化繊維の密度が1.40g/cm以下であれば、耐炎化繊維内部へ過度の酸素が導入されることがないので、最終的な炭素繊維の内部構造も緻密になり、性能の優れた炭素繊維を得ることができる。
一方、耐炎化繊維束を加工し、さらに高温で焼成して耐熱用途の製品を作る場合には、耐炎化繊維束の密度は1.40g/cmを越えても良い。耐炎化繊維の密度が1.50g/cm以下であれば、耐炎化処理に要する時間が長くなることもない。
After performing the flame resistance treatment, when the carbon fiber bundle is obtained by pre-carbonization or carbonization treatment in an inert gas atmosphere, if the density of the flame resistant fiber is 1.40 g / cm 3 or less, Since excessive oxygen is not introduced into the flameproof fiber, the final internal structure of the carbon fiber becomes dense, and a carbon fiber with excellent performance can be obtained.
On the other hand, when the flame-resistant fiber bundle is processed and further baked at a high temperature to produce a product for heat resistance, the density of the flame-resistant fiber bundle may exceed 1.40 g / cm 3 . If the density of the flameproofing fiber is 1.50 g / cm 3 or less, the time required for the flameproofing treatment will not be prolonged.

耐炎化処理における加熱方法、炉の構造としては、熱風循環方式、多孔板表面を有する固定熱板方式などによることができるが、これ以外でも適用可能である。
熱風循環方式の耐炎化処理炉は、耐炎化工程の工業生産において一般に用いられているが、これは熱風循環方式で加熱した酸化性気体を吹き付けることにより、数千本のフィラメント内に酸素と熱を均一に供給し、さらに酸化反応で生じた熱を効率良く取り除くことが可能であり、安定した耐炎化反応を進行させることができる。
As a heating method and a furnace structure in the flameproofing treatment, a hot air circulation method, a fixed hot plate method having a perforated plate surface, or the like can be used, but other methods are also applicable.
The hot air circulation type flameproofing furnace is generally used in the industrial production of the flameproofing process, and this is achieved by spraying an oxidizing gas heated in the hot air circulation system to heat oxygen and heat into thousands of filaments. Can be uniformly supplied, heat generated by the oxidation reaction can be efficiently removed, and a stable flameproofing reaction can proceed.

(炭素化)
耐炎化処理により得られた耐炎化繊維束は、不活性雰囲気下で加熱することによって炭素化する。炭素化は、最高温度が550〜800℃の不活性雰囲気中、緊張下で前炭素化処理を行い、次いで1200〜3000℃の不活性雰囲気中で炭素化することができる。
ここで、前炭素化のうち300〜500℃の温度領域において、及び炭素化のうち1000〜1200℃の温度領域において、500℃/分以下、好ましくは300℃/分以下の昇温速度とすることが好ましい。
(Carbonization)
The flameproof fiber bundle obtained by the flameproofing treatment is carbonized by heating in an inert atmosphere. Carbonization can be pre-carbonized under tension in an inert atmosphere having a maximum temperature of 550 to 800 ° C., and then carbonized in an inert atmosphere at 1200 to 3000 ° C.
Here, in the temperature range of 300 to 500 ° C. of the pre-carbonization and in the temperature range of 1000 to 1200 ° C. of the carbonization, the heating rate is 500 ° C./min or less, preferably 300 ° C./min or less. It is preferable.

不活性雰囲気については、窒素、アルゴン、ヘリウム、などを採用できるが、経済性の面から窒素が望ましい。   Nitrogen, argon, helium, etc. can be adopted for the inert atmosphere, but nitrogen is desirable from the viewpoint of economy.

かくして得られた炭素繊維束または黒鉛化繊維束は、従来公知の電解液中で電解酸化処理を施したり、気相又は液相での酸化処理を施したりすることによって、複合材料における炭素繊維とマトリックス樹脂との親和性や接着性を向上させることが好ましい。さらに、必要に応じて従来公知の方法によりサイジング剤を付与することができる。   The carbon fiber bundle or graphitized fiber bundle thus obtained is subjected to an electrolytic oxidation treatment in a conventionally known electrolytic solution, or an oxidation treatment in a gas phase or a liquid phase, so that the carbon fiber in the composite material It is preferable to improve the affinity and adhesiveness with the matrix resin. Furthermore, a sizing agent can be applied by a conventionally known method as necessary.

以下に本発明を実施例によりさらに具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples.

<ノニオン系界面活性剤加熱残渣>
アルミシャーレ(直径60mm、深さ10mm)にノニオン系界面活性剤2.0gを精秤し、空気中250℃で2時間加熱した後の残分を精秤し、残渣率を算出する。
<Nonionic surfactant heated residue>
A nonionic surfactant 2.0 g is precisely weighed in an aluminum petri dish (diameter 60 mm, depth 10 mm), and the residue after heating at 250 ° C. in air for 2 hours is precisely weighed to calculate the residue rate.

<炭素繊維前駆体アクリル繊維束及び耐炎化繊維束の含有シリコーン化合物量(含有Si量)>
測定サンプルは、縦2cm、横4cm、幅0.5cmのアクリル樹脂製板に繊維束を隙間のない様に横方向に均一に巻く。このとき、繊維束の巻き長は同一とする。その後、蛍光X線分析方法により蛍光X線強度を測定する。繊維束への油剤の付着斑、あるいは測定誤差などを考慮し、1つの測定サンプルについて、測定数はn=100とし、その平均値を求める。
炭素繊維前駆体アクリル繊維束の含有シリコーン量(蛍光X線強度:単位cps)をA、耐炎化繊維束の含有Si量をAとし、下記式(2)で計算して得られた値を「Si残存率」とする。
「Si残存率(%)」=A/A×100 ・・・式(2)
なお蛍光X線強度の測定には、理学電機/型式ZSXを用いた。
<Amount of silicone compound contained in carbon fiber precursor acrylic fiber bundle and flameproof fiber bundle (amount of Si contained)>
The measurement sample is uniformly wound in the horizontal direction on an acrylic resin plate having a length of 2 cm, a width of 4 cm, and a width of 0.5 cm so that there is no gap. At this time, the winding length of the fiber bundle is the same. Thereafter, the fluorescent X-ray intensity is measured by a fluorescent X-ray analysis method. Considering the adhesion spot of the oil agent on the fiber bundle or measurement error, the number of measurements is set to n = 100 for one measurement sample, and the average value is obtained.
Value obtained by calculating by the following formula (2), assuming that the amount of silicone contained in the carbon fiber precursor acrylic fiber bundle (fluorescent X-ray intensity: unit cps) is A 1 and the amount of Si contained in the flame-resistant fiber bundle is A 2. Is defined as “Si residual ratio”.
“Si residual ratio (%)” = A 2 / A 1 × 100 (2)
In addition, Rigaku Denki / Model ZSX was used for the measurement of fluorescent X-ray intensity.

<炭素繊維前駆体アクリル繊維束の含水率測定>
繊維束を、105℃で1.5時間乾燥処理し、その乾燥前後の質量を測定(乾燥前質量W、乾燥後質量W)し、下記式(3)に従って「含水率」を計算する。
「含水率(%)」=(W−W)/W×100 ・・・式(3)
<Measurement of moisture content of carbon fiber precursor acrylic fiber bundle>
The fiber bundle is dried at 105 ° C. for 1.5 hours, the mass before and after drying is measured (mass W 1 before drying, mass W 2 after drying), and the “water content” is calculated according to the following formula (3). .
“Moisture content (%)” = (W 1 −W 2 ) / W 2 × 100 (3)

<炭素繊維前駆体アクリル繊維束の油剤組成物の付着量>
メチルエチルケトンを用いたソックスレー抽出法により、油剤組成物付与後の炭素繊維前駆体アクリル繊維束の油剤組成物付着量を測定した。抽出時間は1時間とした。
<Adhesion amount of oil agent composition of carbon fiber precursor acrylic fiber bundle>
The amount of oil composition adhering to the carbon fiber precursor acrylic fiber bundle after application of the oil composition was measured by a Soxhlet extraction method using methyl ethyl ketone. The extraction time was 1 hour.

<樹脂含浸ストランド特性>
炭素繊維のストランド特性(強度,弾性率)は、JIS−R−7601に準じて測定したエポキシ樹脂含浸ストランドの物性であり、測定回数n=10の平均から求める。
<Resin impregnated strand characteristics>
The strand characteristics (strength, elastic modulus) of the carbon fiber are physical properties of the epoxy resin-impregnated strand measured according to JIS-R-7601, and are obtained from the average of the number of measurements n = 10.

<油剤組成物の処理液の作成>
紡糸工程用の油剤組成物は、主剤(ベースオイル)と酸化防止剤、ノニオン系界面活性剤(ポリオキシエチレンステアリルエーテル[EO(エチレンオキサイド):12モル、HLB:13.9])を混合したものにイオン交換水を加え、ホモミキサーで乳化し、さらに乳化粒径が0.3μm程度になるよう高圧ホモジナイザーで圧力を調整し二次乳化を行うことによって、油剤組成物を水に分散させた処理液を得る。
耐炎化工程用の油剤組成物は、主剤(ベースオイル)と酸化防止剤、ノニオン系界面活性剤(ポリオキシエチレンラウリルエーテル[EO(エチレンオキサイド)ユニット数:10,HLB:14.0、加熱残渣(250℃/2時間加熱後の質量):0.4質量%]を混合したものにイオン交換水を加え、ホモミキサーで乳化し、さらに乳化粒径が0.2μm程度になるよう高圧ホモジナイザーで圧力を調整し二次乳化を行うことによって、油剤組成物を水に分散させた処理液を得る。
<Preparation of treatment liquid for oil composition>
The oil composition for the spinning process is a mixture of a base agent (base oil), an antioxidant, and a nonionic surfactant (polyoxyethylene stearyl ether [EO (ethylene oxide): 12 mol, HLB: 13.9]). A process in which the oil agent composition is dispersed in water by adding ion-exchanged water, emulsifying with a homomixer, and adjusting the pressure with a high-pressure homogenizer so that the emulsified particle size is about 0.3 μm and performing secondary emulsification. Obtain a liquid.
The oil agent composition for the flameproofing process consists of a base agent (base oil), an antioxidant, a nonionic surfactant (polyoxyethylene lauryl ether [EO (ethylene oxide) unit number: 10, HLB: 14.0, heated residue ( Ion-exchanged water is added to a mixture obtained by mixing at 250 ° C. for 2 hours): 0.4 mass%, emulsified with a homomixer, and further pressurized with a high-pressure homogenizer so that the emulsion particle size is about 0.2 μm. And a secondary emulsification is performed to obtain a treatment liquid in which the oil composition is dispersed in water.

<炭素繊維前駆体アクリル繊維束の製造>
アクリロニトリル共重合体を、共重合体濃度21質量%となるようにジメチルアセトアミドに溶解して紡糸原液とする。この紡糸原液を、12000ホールのノズルを用いて濃度70質量%、温度35℃のジメチルアセトアミド水溶液中に吐出して湿式紡糸する。次に、凝固繊維を空中にて1.5倍の延伸を施し、沸水中で3倍延伸しながら洗浄、脱溶剤する。
その後、表1(実施例1)に示した紡糸工程用の油剤組成物の水分散液が入った油剤処理槽に凝固糸を浸漬し、紡糸工程油剤を付着させた後、140℃の加熱ローラーにて乾燥緻密化し、加圧水蒸気中にて3倍延伸し、単繊維繊度1.2dtexの炭素繊維前駆体アクリル繊維束を得た。紡糸工程油剤を付与した炭素繊維前駆体アクリル繊維束の含有Si量(蛍光X線強度:単位cps)は、5762cpsであった。
<Manufacture of carbon fiber precursor acrylic fiber bundle>
An acrylonitrile copolymer is dissolved in dimethylacetamide so as to have a copolymer concentration of 21% by mass to obtain a spinning dope. This spinning dope is discharged into a dimethylacetamide aqueous solution having a concentration of 70% by mass and a temperature of 35 ° C. using a 12,000-hole nozzle to perform wet spinning. Next, the coagulated fiber is stretched 1.5 times in the air, washed and desolvated while being stretched 3 times in boiling water.
Then, after immersing the coagulated yarn in an oil agent treatment tank containing an aqueous dispersion of the oil agent composition for the spinning process shown in Table 1 (Example 1), and attaching the spinning process oil, a heating roller at 140 ° C. Was dried and densified with, and stretched 3 times in pressurized steam to obtain a carbon fiber precursor acrylic fiber bundle having a single fiber fineness of 1.2 dtex. The amount of Si (fluorescent X-ray intensity: unit cps) contained in the carbon fiber precursor acrylic fiber bundle provided with the spinning process oil was 5762 cps.

<耐炎化繊維束の製造>
その後、表1(実施例1)に示した耐炎化工程油剤の水分散液が入った油剤処理槽に炭素繊維前駆体アクリル繊維束を浸漬し、耐炎化工程油剤を付与した後、ニップロールによる処理液絞り工程(以後、ニップ処理)を通過させ、直ちに空気中230〜260℃で緊張下に加熱し密度1.35g/cmの耐炎化繊維束を得た。この耐炎化繊維束の含有Si量(蛍光X線強度:単位cps)は、5097cpsであった。また式(2)によって計算されるSi残存率は88.5%であった。
<Manufacture of flame-resistant fiber bundle>
Then, after immersing the carbon fiber precursor acrylic fiber bundle in the oil agent treatment tank containing the aqueous dispersion of the flameproofing process oil agent shown in Table 1 (Example 1), and applying the flameproofing process oil agent, treatment with a nip roll A liquid squeezing step (hereinafter referred to as nip treatment) was passed through and immediately heated in air at 230 to 260 ° C. under tension to obtain a flame-resistant fiber bundle having a density of 1.35 g / cm 3 . The amount of Si contained in the flame-resistant fiber bundle (fluorescent X-ray intensity: unit cps) was 5097 cps. Moreover, Si residual rate calculated by Formula (2) was 88.5%.

<炭素繊維束の製造>
得られた耐炎化繊維束を、窒素雰囲気中、700℃で緊張下に加熱し前炭素化した。この前炭素化処理での300〜500℃での昇温速度は200℃/分であった。
次いで、窒素雰囲気中1300℃で緊張下に加熱し炭素化繊維束とした。この炭素化処理での1000〜1200℃での昇温速度は400℃/分であった。
<Manufacture of carbon fiber bundles>
The obtained flame-resistant fiber bundle was pre-carbonized by heating under tension at 700 ° C. in a nitrogen atmosphere. The heating rate at 300 to 500 ° C. in the pre-carbonization treatment was 200 ° C./min.
Subsequently, it heated under tension at 1300 degreeC in nitrogen atmosphere, and was set as the carbonized fiber bundle. The rate of temperature increase at 1000 to 1200 ° C. in this carbonization treatment was 400 ° C./min.

得られた炭素化繊維束を表面処理後、サイジング剤を付与し、炭素繊維束を得た。焼成工程中、単繊維切れ、毛羽の発生はほとんど認められなかった。得られた炭素繊維束のストランド特性を、他の測定値(繊維束の含水率、含有Si量など)とともに、表1に示す。   The obtained carbonized fiber bundle was subjected to surface treatment, and then a sizing agent was applied to obtain a carbon fiber bundle. During the firing step, almost no single fiber breakage or fluffing was observed. The strand characteristics of the obtained carbon fiber bundle are shown in Table 1 together with other measured values (the moisture content of the fiber bundle, the amount of Si contained, etc.).

<実施例2〜6>
表1に示した組成で、紡糸工程用の油剤組成物、および耐炎化用の油剤組成物付与を行った。それ以外は、実施例1と同様の方法で炭素繊維束を製造し、評価した。
いずれも焼成工程中、単繊維切れ・毛羽の発生はほとんど認められなかった。得られた炭素繊維束のストランド特性を、他の測定値(繊維束の含水率、含有Si量など)とともに、表1に示す。
<Examples 2 to 6>
With the composition shown in Table 1, the oil agent composition for the spinning process and the oil agent composition for flame resistance were applied. Other than that, a carbon fiber bundle was produced and evaluated in the same manner as in Example 1.
In either case, almost no single fiber breakage or fluff was observed during the firing process. The strand characteristics of the obtained carbon fiber bundle are shown in Table 1 together with other measured values (the moisture content of the fiber bundle, the amount of Si contained, etc.).

<実施例7〜8>
表1に示した条件で、紡糸工程用の油剤組成物、および耐炎化用の油剤組成物付与を行い、かつニップ処理後に熱ロールによる乾燥処理を行う以外は、実施例1と同様の方法で炭素繊維束を製造し、評価した。いずれも焼成工程中、単繊維切れ・毛羽の発生はほとんど認められなかった。
得られた炭素繊維束のストランド特性を、他の測定値(繊維束の含水率、含有Si量など)とともに、表1に示す。
<Examples 7 to 8>
In the same manner as in Example 1, except that the oil composition for the spinning process and the oil composition for flame resistance were applied under the conditions shown in Table 1, and the drying treatment with a hot roll was performed after the nip treatment. Carbon fiber bundles were manufactured and evaluated. In either case, almost no single fiber breakage or fluff was observed during the firing process.
The strand characteristics of the obtained carbon fiber bundle are shown in Table 1 together with other measured values (the moisture content of the fiber bundle, the amount of Si contained, etc.).

<比較例1〜4>
紡糸工程油剤の付与条件を表1に記載の組成とし、かつ、耐炎化工程油剤を付与しなかった以外は、実施例1と同様の方法で炭素繊維束を製造し、評価した。
比較例1〜3は、焼成工程中での繊維束の収束性が実施例に比べて低下しており、また毛羽や束切れが見受けられ、得られた炭素繊維束の品質も実施例より劣った。比較例4は焼成工程中での繊維束の収束性が実施例と同等であったが、得られた炭素繊維束の品質が実施例より劣った。
<Comparative Examples 1-4>
A carbon fiber bundle was produced and evaluated in the same manner as in Example 1 except that the spinning process oil application conditions were as shown in Table 1 and the flameproofing process oil was not applied.
In Comparative Examples 1 to 3, the convergence property of the fiber bundle in the firing process is lower than that of the example, and fluff and bundle breakage are observed, and the quality of the obtained carbon fiber bundle is also inferior to that of the example. It was. In Comparative Example 4, the convergence property of the fiber bundle during the firing process was equivalent to that of the example, but the quality of the obtained carbon fiber bundle was inferior to that of the example.

<比較例5〜10>
表1に示した条件で、紡糸工程油剤付与、および耐炎化工程油剤付与を行った。それ以外は、実施例1と同様の方法で炭素繊維束を製造し、評価した。
比較例5〜8は焼成工程中での繊維束の収束性は、実施例に比べて低下しており、また毛羽や束切れが見受けられ、得られた炭素繊維の品質も実施例より劣った。比較例9〜10は焼成工程中での繊維束の収束性は、実施例と同等であったが、得られた炭素繊維の品質は実施例より劣った。
<Comparative Examples 5-10>
Under the conditions shown in Table 1, spinning process oil application and flameproofing process oil application were performed. Other than that, a carbon fiber bundle was produced and evaluated in the same manner as in Example 1.
In Comparative Examples 5 to 8, the convergence property of the fiber bundle in the firing process is lower than that of the Example, and fluff and bundle breakage are observed, and the quality of the obtained carbon fiber is also inferior to that of the Example. . In Comparative Examples 9 to 10, the convergence property of the fiber bundle during the firing process was equivalent to that of the example, but the quality of the obtained carbon fiber was inferior to that of the example.

なお表1の紡糸工程油剤および耐炎化工程油剤の各成分(主剤、添加剤、界面活性剤)について、
成分A(ベースオイル)
両末端アミノ変性シリコーン(25℃での粘度450cSt、アミノ当量5700)、
成分B(ベースオイル)
側鎖1,2級アミノ変性シリコーン(25℃での粘度250cSt、アミノ当量5200)、
成分C(ベースオイル)
側鎖1級アミノ変性シリコーン(25℃での粘度110cSt、アミノ当量5000)、
成分D(ベースオイル)
ビスフェノールAのエチレンオキシド2モル付加物のジラウリルエステル。m=1、n=1、
成分E(ベースオイル)
ビスフェノールAのエチレンオキシド4モル付加物のジラウリルエステル。m=2、n=2、
成分F(ベースオイル)
ビスフェノールAのエチレンオキシド12モル付加物のジラウリルエステル。m=6、n=6、
成分G(ベースオイル)
ポリブテン、平均分子量約1350、
成分H(酸化防止剤)
ペンタエリスリチル‐テトラキス〔3‐(3,5‐ジ‐t‐ブチル‐4‐ヒドロキシフェニル)プロピオネート〕、
成分I(界面活性剤)
ポリオキシエチレンステアリルエーテル[EO(エチレンオキサイド):12モル、HLB:13.9、加熱残渣(250℃/2時間加熱後の質量):8.0質量%]、
成分J(界面活性剤)
ポリオキシエチレンラウリルエーテル[EO(エチレンオキサイド)ユニット数:10,HLB:14.0、加熱残渣(250℃/2時間加熱後の質量):0.4質量%]、
成分K(界面活性剤)
ポリオキシエチレン硬化ヒマシ油[EOユニット数:10,HLB:12.5、加熱残渣(250℃/2時間加熱後の質量):15質量%]、
である。
In addition, about each component (main agent, additive, surfactant) of spinning process oil agent and flameproofing process oil agent of Table 1,
Component A (base oil)
Both end amino-modified silicone (viscosity at 25 ° C. 450 cSt, amino equivalent 5700),
Component B (base oil)
Side chain 1, secondary amino-modified silicone (viscosity at 25 ° C. 250 cSt, amino equivalent 5200),
Component C (base oil)
Side chain primary amino-modified silicone (viscosity at 25 ° C. 110 cSt, amino equivalent 5000),
Component D (base oil)
Dilauryl ester of bisphenol A ethylene oxide 2 mol adduct. m = 1, n = 1,
Component E (base oil)
Dilauryl ester of ethylene oxide 4 mol adduct of bisphenol A. m = 2, n = 2,
Component F (base oil)
Dilauryl ester of bisphenol A ethylene oxide 12 mole adduct. m = 6, n = 6,
Component G (base oil)
Polybutene, average molecular weight of about 1350,
Component H (antioxidant)
Pentaerythrityl-tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate],
Component I (surfactant)
Polyoxyethylene stearyl ether [EO (ethylene oxide): 12 mol, HLB: 13.9, heating residue (mass after heating at 250 ° C./2 hours): 8.0 mass%],
Component J (surfactant)
Polyoxyethylene lauryl ether [EO (ethylene oxide) unit number: 10, HLB: 14.0, heating residue (mass after heating at 250 ° C./2 hours): 0.4 mass%],
Component K (surfactant)
Polyoxyethylene hydrogenated castor oil [number of EO units: 10, HLB: 12.5, heating residue (mass after heating at 250 ° C./2 hours): 15% by mass],
It is.

Figure 2008190056
Figure 2008190056

Claims (1)

シリコーン系化合物を含有する油剤組成物を炭素繊維前駆体アクリル繊維束の繊維質量当たり0.1〜3.0質量%付与し、その後耐炎化処理する直前に、該炭素繊維前駆体アクリル繊維束に、更に混合物Aからなる油剤組成物を繊維質量当たり0.1〜3.0質量%付与し、200〜300℃の酸化性雰囲気中で加熱する耐炎化繊維束の製造方法。
混合物A:
下記(1)で示される芳香族エステルを60〜90質量%と、酸化防止剤を1〜10質量%と、250℃で2時間加熱後の残渣率が1.0質量%以下のノニオン系界面活性剤を9〜35質量%とを含有する。
Figure 2008190056
(式中、R及びRは、それぞれ独立して炭素数7〜21のアルキル基であり、A及びAは、それぞれ独立してエチレン基又はプロピレン基であり、m及びnは、それぞれ独立して1〜5の整数を表す)
An oil agent composition containing a silicone compound is applied to the carbon fiber precursor acrylic fiber bundle in an amount of 0.1 to 3.0% by mass per fiber mass of the carbon fiber precursor acrylic fiber bundle, and then immediately before the flameproofing treatment. Furthermore, the manufacturing method of the flame-resistant fiber bundle which provides the oil agent composition which consists of mixture A 0.1-3.0 mass% per fiber mass, and heats in 200-300 degreeC oxidizing atmosphere.
Mixture A:
Nonionic interface having an aromatic ester represented by the following (1) of 60 to 90% by mass, an antioxidant of 1 to 10% by mass, and a residue ratio after heating at 250 ° C. for 2 hours of 1.0% by mass or less. Contains 9-35% by weight of activator.
Figure 2008190056
(Wherein R 1 and R 2 are each independently an alkyl group having 7 to 21 carbon atoms, A 1 and A 2 are each independently an ethylene group or a propylene group, and m and n are Each independently represents an integer from 1 to 5)
JP2007022881A 2007-02-01 2007-02-01 Method for producing flame-resistant fiber bundle Expired - Fee Related JP4942502B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007022881A JP4942502B2 (en) 2007-02-01 2007-02-01 Method for producing flame-resistant fiber bundle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007022881A JP4942502B2 (en) 2007-02-01 2007-02-01 Method for producing flame-resistant fiber bundle

Publications (2)

Publication Number Publication Date
JP2008190056A true JP2008190056A (en) 2008-08-21
JP4942502B2 JP4942502B2 (en) 2012-05-30

Family

ID=39750407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007022881A Expired - Fee Related JP4942502B2 (en) 2007-02-01 2007-02-01 Method for producing flame-resistant fiber bundle

Country Status (1)

Country Link
JP (1) JP4942502B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101154059B1 (en) * 2009-12-31 2012-06-11 주식회사 효성 Carbon fiber reinforced plastic containing carbon fiber prepared by using silicon oil solution
JP2013524028A (en) * 2010-03-31 2013-06-17 コーロン インダストリーズ インク Carbon fiber manufacturing method and carbon fiber precursor fiber
JP2016199824A (en) * 2015-04-10 2016-12-01 帝人株式会社 Flame resistant fiber bundle, carbon fiber precursor fiber bundle and manufacturing method of carbon fiber consisting of the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002266239A (en) * 2001-03-12 2002-09-18 Mitsubishi Rayon Co Ltd Carbon fiber precursor acrylic fiber and method for producing the same and oil agent composition
JP2004300606A (en) * 2003-03-31 2004-10-28 Toho Tenax Co Ltd Flameproof fiber and method for producing the same
JP2004360133A (en) * 2003-06-06 2004-12-24 Mitsubishi Rayon Co Ltd Oil composition, acrylic fiber for carbon fiber precursor and method for producing the same
JP2005089884A (en) * 2003-09-12 2005-04-07 Mitsubishi Rayon Co Ltd Method for producing carbon fiber precursor acrylic fiber bundle
JP2005089883A (en) * 2003-09-12 2005-04-07 Mitsubishi Rayon Co Ltd Method for producing carbon fiber precursor acrylic fiber bundle
JP2007211359A (en) * 2006-02-08 2007-08-23 Mitsubishi Rayon Co Ltd Method for producing carbon fiber bundle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002266239A (en) * 2001-03-12 2002-09-18 Mitsubishi Rayon Co Ltd Carbon fiber precursor acrylic fiber and method for producing the same and oil agent composition
JP2004300606A (en) * 2003-03-31 2004-10-28 Toho Tenax Co Ltd Flameproof fiber and method for producing the same
JP2004360133A (en) * 2003-06-06 2004-12-24 Mitsubishi Rayon Co Ltd Oil composition, acrylic fiber for carbon fiber precursor and method for producing the same
JP2005089884A (en) * 2003-09-12 2005-04-07 Mitsubishi Rayon Co Ltd Method for producing carbon fiber precursor acrylic fiber bundle
JP2005089883A (en) * 2003-09-12 2005-04-07 Mitsubishi Rayon Co Ltd Method for producing carbon fiber precursor acrylic fiber bundle
JP2007211359A (en) * 2006-02-08 2007-08-23 Mitsubishi Rayon Co Ltd Method for producing carbon fiber bundle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101154059B1 (en) * 2009-12-31 2012-06-11 주식회사 효성 Carbon fiber reinforced plastic containing carbon fiber prepared by using silicon oil solution
JP2013524028A (en) * 2010-03-31 2013-06-17 コーロン インダストリーズ インク Carbon fiber manufacturing method and carbon fiber precursor fiber
JP2016199824A (en) * 2015-04-10 2016-12-01 帝人株式会社 Flame resistant fiber bundle, carbon fiber precursor fiber bundle and manufacturing method of carbon fiber consisting of the same

Also Published As

Publication number Publication date
JP4942502B2 (en) 2012-05-30

Similar Documents

Publication Publication Date Title
JP4801546B2 (en) Oil agent for carbon fiber precursor acrylic fiber
TWI397626B (en) Oil composition for carbon fiber precursor acrylic fiber, carbon fiber precursor acrylic fiber bundle and method for producing the same
JP6577307B2 (en) Oil agent for carbon fiber precursor acrylic fiber, oil agent composition for carbon fiber precursor acrylic fiber, and oil agent treatment liquid for carbon fiber precursor acrylic fiber
WO2016039478A1 (en) Oil for carbon fiber precursor acrylic fiber, oil composition for carbon fiber precursor acrylic fiber, oil treatment liquid for carbon fiber precursor acrylic fiber, and carbon fiber precursor acrylic fiber bundle
JP5731908B2 (en) Oil agent for carbon fiber precursor acrylic fiber, oil agent composition for carbon fiber precursor acrylic fiber, and oil agent treatment liquid for carbon fiber precursor acrylic fiber
JP5112973B2 (en) Oil composition for carbon fiber precursor acrylic fiber, carbon fiber precursor acrylic fiber bundle, and method for producing the same
JP4942502B2 (en) Method for producing flame-resistant fiber bundle
JP4838595B2 (en) Carbon fiber bundle manufacturing method
JP2005089884A (en) Method for producing carbon fiber precursor acrylic fiber bundle
JP2009041135A (en) Lubricant composition for acrylic fiber of carbon fiber precursor
JP2007113141A (en) Method for producing carbon fiber precursor fiber bundle
JP2016160560A (en) Method for manufacturing carbon fiber bundle
JP2018159138A (en) Oil solution composition for carbon fiber precursor acrylic fiber, carbon fiber precursor acrylic fiber bundle, carbon fiber, and method for producing carbon fiber precursor acrylic fiber bundle and carbon fiber
JP4698861B2 (en) Carbon fiber precursor acrylic fiber, method for producing the same, and oil composition
JP5017211B2 (en) Oil composition for carbon fiber precursor acrylic fiber, carbon fiber precursor acrylic fiber bundle using the same, and method for producing the same
JP6575251B2 (en) Carbon fiber precursor acrylic fiber bundle
JP2013060680A (en) Method for producing carbon fiber
JP2018145562A (en) Carbon fiber precursor acrylic fiber bundle and manufacturing method of carbon fiber bundle using the same
JP2004169198A (en) Precursor fiber strand for carbon fiber and method for producing the same
JP2004149937A (en) Precursor fiber strand for carbon fiber and method for producing the same
JP2005089883A (en) Method for producing carbon fiber precursor acrylic fiber bundle
JP4995754B2 (en) Carbon fiber precursor acrylic fiber bundle and method for producing the same
JP5777940B2 (en) Oil agent for carbon fiber precursor acrylic fiber, oil agent composition for carbon fiber precursor acrylic fiber, and oil agent treatment liquid for carbon fiber precursor acrylic fiber
JP4990195B2 (en) Carbon fiber precursor acrylic fiber bundle and method for producing the same
JP5872246B2 (en) Oil agent for carbon fiber precursor acrylic fiber, oil agent composition for carbon fiber precursor acrylic fiber, and oil agent treatment liquid for carbon fiber precursor acrylic fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120223

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120228

R151 Written notification of patent or utility model registration

Ref document number: 4942502

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees