KR20110070079A - Manufacturing method of styrene-butadiene latex for very early strength modified concrete - Google Patents

Manufacturing method of styrene-butadiene latex for very early strength modified concrete Download PDF

Info

Publication number
KR20110070079A
KR20110070079A KR1020090126757A KR20090126757A KR20110070079A KR 20110070079 A KR20110070079 A KR 20110070079A KR 1020090126757 A KR1020090126757 A KR 1020090126757A KR 20090126757 A KR20090126757 A KR 20090126757A KR 20110070079 A KR20110070079 A KR 20110070079A
Authority
KR
South Korea
Prior art keywords
weight
parts
acid
styrene
latex
Prior art date
Application number
KR1020090126757A
Other languages
Korean (ko)
Other versions
KR101222920B1 (en
Inventor
김성남
양건호
나상진
김영상
Original Assignee
금호석유화학 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 금호석유화학 주식회사 filed Critical 금호석유화학 주식회사
Priority to KR1020090126757A priority Critical patent/KR101222920B1/en
Publication of KR20110070079A publication Critical patent/KR20110070079A/en
Application granted granted Critical
Publication of KR101222920B1 publication Critical patent/KR101222920B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/10Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated with vinyl-aromatic monomers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • C08F2/24Emulsion polymerisation with the aid of emulsifying agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F279/00Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
    • C08F279/02Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00 on to polymers of conjugated dienes
    • C08F279/06Vinyl aromatic monomers and methacrylates as the only monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • C08L9/08Latex

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE: A method for manufacturing styrene-butadiene latex for very early strength modified concrete is provided to prepare latex-modified concrete with improved strength, slump, and air volume. CONSTITUTION: A method for manufacturing styrene-butadiene latex for very early strength modified concrete comprises the steps of: injecting, based on 100 parts by weight of water, 5 ~ 10 parts by weight of butadiene monomer, 10 ~ 15 parts by weight of styrene monomer, 0.3 ~ 0.8 parts by weight of rosin salts as an emulsifier, 0.5 ~ 1.0 parts by weight of potassium persulfate, 0.7 ~ 1.2 parts by weight of t-dodecylmercaptan, and 0.1 ~ 1.0 parts by weight of sodium bisulfate, and initiating the polymerization at 40 ~ 60°C; and injecting, based on 100 parts by weight of water, 25 ~ 30 parts by weight of a butadiene monomer, 0 ~ 55 parts by weight of styrene monomer, 0.5 ~ 1.0 parts by weight of rosin salts as an emulsifier, 3.0 ~ 10.0 parts by weight of polyoxyethylenealkylether-based non-ionic emulsifier, 0.7 ~ 1.2 parts by weight of tertiarydodecylmercaptan, 0.5 ~ 4.5 parts by weight of acide monoer mixture of acrylic acid, methacrylic acid, ethacrylic acid, butacrylic acid, itaconic acid, and fumaric acid, and 0.2 ~ 1.0 parts by weight of antifoaming agent, and polymerizing the mixture at 40 ~ 80°C.

Description

초속경 개질 콘크리트 제조용 스티렌-부타디엔 공중합체 라텍스의 제조방법{Manufacturing method of styrene-butadiene latex for very early strength modified concrete}Manufacturing method of styrene-butadiene copolymer latex for the production of superhard modified concrete

본 발명은 초속경 개질 콘크리트 제조용 스티렌-부타디엔 공중합체 라텍스의 제조방법에 관한 것으로서, 더욱 상세하게는 초기중합단계와 증식중합단계로 연속적으로 단량체를 투입하되, 산 모노머와 소포제를 도입하여 콘크리트의 작업성, 강도 및 내구성을 향상시킬 수 있는 콘크리트 제조용 스티렌-부타디엔 공중합체 라텍스의 제조방법에 관한 것이다. The present invention relates to a method for producing styrene-butadiene copolymer latex for producing superhard carbide modified concrete, and more specifically, monomers are continuously added to the initial polymerization stage and the growth polymerization stage, and the acid monomer and the antifoaming agent are introduced to work the concrete. The present invention relates to a method for preparing styrene-butadiene copolymer latex for producing concrete, which can improve its properties, strength and durability.

종래 각종 구조물의 제조에는 콘크리트를 사용하여 왔으며, 보통 콘크리트는 일반적으로 보통 포틀랜트 시멘트를 사용하여 제조한 콘크리트를 일컫는다. 보통 콘크리트의 경우 시공성이 우수하고, 강도가 높으며 대량 생산으로 인한 경제적인 이점 등을 가진 반면에 투수성이 높아 염화물이나 수분 등의 침투로 인하여 콘크리트가 부식되고 특히 철근 콘크리트에 있어서는 철근 부식이 촉진되어 내구성을 현저히 감소시키고 있다. 이와같은 문제로 인하여 도로 또는 교량 포장에 있어 이용자의 불편을 초래하고 경제적인 손실을 유발시키고 있다.Conventionally, concrete has been used for the manufacture of various structures, and usually concrete refers to concrete manufactured using ordinary portland cement. In general, concrete has excellent workability, high strength, and economic advantages due to mass production, while high permeability, concrete is corroded by penetration of chloride or water, and steel corrosion is particularly promoted in reinforced concrete. Durability is significantly reduced. These problems cause inconvenience to users and economic losses in pavement of roads or bridges.

상기와 같은 콘크리트의 내구성 저하에 직접적인 영향을 주는 염해물이나 수분의 침투를 효과적으로 방지하기 위한 방법의 하나로 제시되온 것이 보통 콘크리트 배합시에 라텍스를 첨가하여 라텍스 개질 콘크리트(Latex Modified Concrete: LMC)를 사용하는 방법이다. Latex modified concrete (LMC) is used by adding latex when mixing concrete, which has been suggested as one of the methods for effectively preventing the penetration of salts or water which directly affect the durability of the concrete. That's how.

이때 개질 콘크리트를 제조하기 위해 첨가되는 라텍스는 흔히 스티렌-부타디엔 공중합체 라텍스인 바, 그 제조방법으로는 반응에 소요되는 단량체들과 유화제 등을 일괄투입하여 중합시키는 방법과 초기중합단계와 증식중합단계 등으로 연속적으로 단량체를 투입하여 중합시키는 방법 등이 사용되고 있다.At this time, the latex added to prepare the modified concrete is often a styrene-butadiene copolymer latex. As a method of preparing the polymerized monomer by adding the monomers and the emulsifier required for the reaction, the initial polymerization step and the growth polymerization step A method of continuously adding a monomer to the polymerization and the like is used.

이와 관련하여 본 발명자들은 한국등록특허 제441,055호에서 스티렌-부타디엔 공중합체 라텍스를 제조하는 방법에 있어서, 단량체, 첨가물의 함량을 최적화한 기술을 개시하고 있으나, 이는 경화시간이 길어 작업성에 영향을 미치지 않는 1종 포틀랜트시멘트에 사용되는 스티렌-부타디엔 라텍스에 관한 것으로, 3시간 이하로 경화가 완료되어 압축강도가 210 kgf/cm2 이상을 가지는 초속경 시멘트 개질 라텍스로서는 작업성이 떨어져 적용될 수 없는 문제가 있다. In this regard, the present inventors disclose a technique for optimizing the content of monomers and additives in the method of preparing styrene-butadiene copolymer latex in Korean Patent No. 441,055, but this does not affect workability due to a long curing time. Styrene-butadiene latex used in one kind of Portland cement, which is hardened in less than 3 hours and cannot be applied due to poor workability as a cemented latex with a cemented latex having a compressive strength of 210 kgf / cm 2 or more. There is.

이에 본 발명자들은 초기중합단계를 거쳐 연속으로 단량체를 투입하여 증식중합하여 스티렌-부타디엔 공중합체 라텍스를 제조하는 방법을 개선하기 위하여 연구, 노력한 결과 증식중합단계에서 특정 산 모노머와 소포제를 포함시켜 스티렌-부타디엔 공중합체 라텍스를 제조하면 초속경 개질 콘크리트 제조에 적용시 콘크리트의 작업성이 현저하게 개선될 수 있음을 발견함으로써 본 발명을 완성하게 되었다. Accordingly, the present inventors have studied and tried to improve the method of producing styrene-butadiene copolymer latex by proliferating polymerization by continuously adding monomers through an initial polymerization step, and as a result, include a specific acid monomer and an antifoaming agent in the growth polymerization step. The present invention has been completed by discovering that butadiene copolymer latex can significantly improve the workability of concrete when applied to the production of cemented carbide modified concrete.

따라서 본 발명은 콘크리트의 강도, 슬럼프치, 공기량 등의 물성이 현저하게 향상시킬 수 있는 콘크리트 제조용 스티렌-부타디엔 공중합체 라텍스 및 이의 제조방법을 제공하는 것을 그 목적으로 한다. Accordingly, an object of the present invention is to provide a styrene-butadiene copolymer latex for producing concrete and a method for producing the same, which can significantly improve the properties of concrete, such as strength, slump, and air volume.

본 발명은 The present invention

중합체 미셀을 형성시키는 초기중합단계와 단량체, 유화제, 분자량 조절제를 투입하여 중합시키는 증식중합단계를 거쳐 공중합체 라텍스를 제조하는 방법에 있어서,In the method for producing a copolymer latex through an initial polymerization step of forming a polymer micelle and a proliferation polymerization step of polymerization by adding a monomer, an emulsifier, and a molecular weight regulator,

(1) 물 100 중량부에 대하여 부타디엔 단량체 5 ∼ 10 중량부, 스티렌 단량체 10 ∼ 15 중량부, 유화제로 로진염 0.3 ∼ 0.8 중량부, 포타슘하이드록사이드 0.5 ∼ 1.0 중량부, 터셔리도데실머캅탄 0.7 ∼ 1.2 중량부 및 소디움바이설페이트 0.1 ∼ 1.0 중량부를 투입하여 40 ~ 60℃에서 중합을 개시하는 초기 중합 단계; (1) 5-10 weight part of butadiene monomers, 10-15 weight part of styrene monomers, 0.3-0.8 weight part of rosin salts, 0.5-1.0 weight part of potassium hydroxide, tertiary dodecyl mercaptan with respect to 100 weight part of water An initial polymerization step of starting polymerization at 40 to 60 ° C. by adding 0.7 to 1.2 parts by weight and 0.1 to 1.0 parts by weight of sodium bisulfate;

(2) 상기 물 100 중량부에 대하여 부타디엔 단량체 25 ∼ 30중량부, 스티렌 단량체 50 ∼ 55 중량부, 유화제로 로진염 0.5 ∼ 1.0중량부, 폴리옥시에틸렌알킬 에테르계인 비이온계 유화제 3.0 ∼ 10.0 중량부, 터셔리도데실머캅탄 0.7 ∼ 1.2 중량부, 아크릴산, 메타아크릴산, 에타아크릴산, 부타아크릴산, 이타콘산 및 푸마르산 중에서 선택된 2종 이상의 산 모노머 혼합물 0.5 ~ 4.5 중량부 및 소포제 0.2 ~ 1.0 중량부를 투입하여 40 ~ 80℃에서 중합시키는 증식 중합 단계(2) 25-30 weight part of butadiene monomers, 50-55 weight part of styrene monomers, 0.5-1.0 weight part of rosin salts with an emulsifier, and 3.0-10.0 weight of nonionic emulsifiers which are polyoxyethylene alkyl ethers with respect to 100 weight part of said waters 0.7-1.2 parts by weight of tertiary decylmercaptan, 0.5-4.5 parts by weight of a mixture of two or more acid monomers selected from acrylic acid, methacrylic acid, etaacrylic acid, butacrylic acid, itaconic acid and fumaric acid, and 0.2-1.0 parts by weight of an antifoaming agent. Proliferation polymerization step to polymerize at 40 ~ 80 ℃

를 포함하는 초속경 개질 콘크리트 제조용 스티렌-부타디엔 공중합체 라텍스의 제조방법을 그 특징으로 한다. Characterized in that the manufacturing method of styrene-butadiene copolymer latex for producing superhard mirror modified concrete comprising a.

또한 본 발명은 상기 제조방법에 의하여 제조된 스티렌-부타디엔 공중합체 라텍스를 포함하며, 압축강도가 210 ~ 300 kgf/㎠, 휨 강도가 45 ~ 70 kgf/㎠ 인 라텍스 개질 초속경 콘크리트 조성물을 그 특징으로 한다. In another aspect, the present invention comprises a styrene-butadiene copolymer latex prepared by the above method, characterized in that the latex modified superhard concrete composition having a compressive strength of 210 ~ 300 kgf / ㎠, bending strength 45 ~ 70 kgf / ㎠ It is done.

본 발명에 따라 중합체 미셀을 형성시키는 초기중합단계를 거쳐 일정 전환율에 도달하면 연속으로 단량체를 투입하며 일정 전환율에서 일정온도로 승온하는 방법을 통해 얻어진 스티렌-부타디엔 공중합체 라텍스를 초속경 라텍스 개질 콘크리트 제조에 사용할 경우, 강도 특성과 슬럼프, 공기량 등의 물성이 현저하게 향상된 라텍스 개질 콘크리트를 제조할 수 있다. According to the present invention, when styrene-butadiene copolymer latex obtained through a method of increasing the temperature at a constant temperature by inputting a monomer continuously and reaching a constant conversion rate through an initial polymerization step of forming a polymer micelle, ultra-sonic latex modified concrete When used in the present invention, latex modified concrete can be produced with remarkable improvements in strength properties, physical properties such as slump and air volume.

이하, 본 발명을 더욱 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in more detail.

본 발명의 라텍스의 제조공정은 초기중합단계와 증식중합단계로 이루어지는 데, 먼저 초기중합단계에서는 중합체의 미셀을 형성하여 씨앗입자경으로 제조하기 위하여 부타디엔 단량체, 스티렌 단량체, 유화제인 로진염, 포타슘퍼설페이트, 연쇄이동제인 터셔리도데실머캅탄, 환원제인 소디움바이설페이트를 투입하여 초기중합시킨다.The production process of the latex of the present invention comprises an initial polymerization step and a proliferation polymerization step. First, in the initial polymerization step to form a micelle of a polymer to prepare a seed particle size, butadiene monomer, styrene monomer, emulsifier rosin salt, potassium persulfate , Tertiary dodecyl mercaptan (chain transfer agent), sodium bisulfate (reducing agent) is added to the initial polymerization.

보다 구체적으로 초기중합단계에서는 물 100 중량부에 대하여 부타디엔 단량체 5 ∼ 10 중량부, 스티렌 단량체 10 ∼ 15 중량부, 유화제로 로진염 0.3 ∼ 0.8 중량부, 포타슘퍼설페이트 0.5 ∼ 1.0 중량부, 터셔리도데실머캅탄 0.7 ∼ 1.2 중량부 및 소디움바이설페이트 0.1 ∼ 1.0 중량부를 투입하여 40 ~ 60℃에서 중합시킨다. More specifically, in the initial polymerization step, 5 to 10 parts by weight of butadiene monomer, 10 to 15 parts by weight of styrene monomer, 0.3 to 0.8 parts by weight of rosin salt as emulsifier, 0.5 to 1.0 parts by weight of potassium persulfate, tertiary 0.7-1.2 weight part of dodecyl mercaptan and 0.1-1.0 weight part of sodium bisulfate are thrown in, and it polymerizes at 40-60 degreeC.

이와같은 초기중합을 통해 중합체 미셀을 형성시킨 다음, 여기에 연속적으로 단량체, 유화제, 분자량조절제 등을 투입하여 증식중합하는 바, 구체적으로는 초기중합단계에서 생성된 반응물에, 물 100 중량부에 대하여 부타디엔 단량체 25 ∼ 30중량부, 스티렌 단량체 50 ∼ 55 중량부, 유화제로 로진염 0.5 ∼ 1.0중량부, 폴리옥시에틸렌알킬에테르계인 비이온계 유화제 3.0 ∼ 10.0 중량부, 터셔리도데실머캅탄 0.7 ∼ 1.2 중량부, 아크릴산, 메타아크릴산, 에타아크릴산, 부타아크릴산, 이타콘산 및 푸마르산 중에서 선택된 2종 이상의 산 모노머 혼합물 0.5 ~ 4.5 중량부 및 소포제 0.2 ~ 1.0 중량부를 투입하여 40 ~ 80℃에서 중합한다. The polymer micelles are formed through such initial polymerization, followed by proliferation polymerization by continuously adding monomers, emulsifiers, molecular weight regulators, and the like, specifically, to the reactants produced in the initial polymerization stage, based on 100 parts by weight of water. Butadiene monomer 25-30 weight part, styrene monomer 50-55 weight part, 0.5-1.0 weight part of rosin salts as an emulsifier, 3.0-10.0 weight part of nonionic emulsifiers which are polyoxyethylene alkyl ether system, tertiary dodecyl mercaptan 0.7-1.2 0.5 to 4.5 parts by weight of a mixture of two or more kinds of acid monomers selected from parts by weight, acrylic acid, methacrylic acid, ethaacrylic acid, butacrylic acid, itaconic acid and fumaric acid and 0.2 to 1.0 part by weight of an antifoaming agent are polymerized at 40 to 80 ° C.

보다 바람직하게는 초기 중합단계에서, 부타디엔 단량체, 스티렌 단량체, 로진염, 포타슘퍼설페이트, 터셔리도데실머캅탄, 소디움바이설페이트를 투입하여 씨앗 입자경 500∼700Å 정도로 중합시킨다. 이때, 소디움바이설페이트를 제외하 고는 일괄 투입하여 1시간 정도 교반시켜 잘 섞이게 한 후 소디움바이설페이트를 투입하여 40 ~ 60℃로 승온시켜 반응을 개시한다.More preferably, in the initial polymerization step, butadiene monomer, styrene monomer, rosin salt, potassium persulfate, tertiary dodecyl mercaptan and sodium bisulfate are added to polymerize the seed particle size to about 500 to 700 mm 3. At this time, except for sodium bisulfate, the mixture is added in a batch, stirred for about 1 hour, mixed well, and then, sodium bisulfate is added to raise the temperature to 40 to 60 ° C. to initiate the reaction.

초기중합단계에서 생성된 반응물에 부타디엔 단량체, 스티렌 단량체, 로진염, 폴리옥시에틸렌알킬에테르계의 비이온계 유화제, 터셔리도데실머캅탄, 산 모노머 및 소포제를 투입하여 입경을 1500 ∼ 2500 Å까지 비대화시켜 반응을 완료한다. Butadiene monomer, styrene monomer, rosin salt, polyoxyethylene alkyl ether-based nonionic emulsifier, tertiary dodecyl mercaptan, acid monomer and antifoaming agent were added to the reaction product produced in the initial polymerization stage to enlarge the particle size to 1500 to 2500Å. To complete the reaction.

한편, 본 발명의 라텍스는 초기중합단계에서 일정한 전환율이 진행되면 또 다시 연속으로 단량체를 투입하는 방법으로 제조하고, 반응온도는 초기 40 ~ 60℃에서 개시하여 점차 승온하여 반응시키는 것이 바람직하며, 보다 바람직하게는 전환율 40 ~ 50%에서 60 ~ 65 ℃, 전환율 60 ~ 70%에서 65 ~ 70℃, 전환율 80 ~ 90%에서 70 ~ 80℃로 승온하는 것이 좋다. On the other hand, the latex of the present invention is prepared by a method of continuously inputting the monomer again and again when a constant conversion rate in the initial polymerization step, the reaction temperature is preferably initiated at an initial 40 ~ 60 ℃ to gradually increase the temperature of the reaction, more Preferably, the temperature is raised from 60 to 65 ° C. at a conversion rate of 40 to 50%, from 65 to 70 ° C. at a conversion rate of 60 to 70%, and from 70 to 80 ° C. at a conversion rate of 80 to 90%.

이때 유화제의 역할을 하는 로진염과 폴리옥시에틸렌알킬에테르계의 비이온계 유화제는 전환율이 40 ~ 70%로 된 때 첨가하는 것이 바람직하며, 더욱 바람직하게는 로진염은 전환율 40 ~ 50%인 때, 폴리옥시에틸렌알킬에테르계의 비이온계 유화제는 전환율 60 ~ 70%인 때 첨가하는 것이 좋다. At this time, rosin salts and polyoxyethylene alkyl ether nonionic emulsifiers, which act as emulsifiers, are preferably added when the conversion rate is 40 to 70%, and more preferably when the rosin salt is 40 to 50% conversion rate. , Polyoxyethylene alkyl ether nonionic emulsifier is preferably added when the conversion rate is 60 to 70%.

상기 로진염은 입자경을 비대화시키는 라텍스의 안정성 향상을 위해 첨가되며, 비이온계 유화제는 최종물의 저장안정성과 시멘트와의 혼화성을 개선하기 위하여 투입된다.The rosin salt is added to improve the stability of the latex, which enlarges the particle size, and a nonionic emulsifier is added to improve the storage stability of the final product and its miscibility with cement.

또한 상기 산 모노머는 카르복실기가 라텍스 입자 표면에 분포되어 초속경 시멘트 수화물상의 Ca2+이온과 상호작용하므로 시멘트상에 흡착되어 시멘트 입자간의 인력을 방해하여 응결시간을 지연시키는 역할을 한다. In addition, the acid monomer has a carboxyl group distributed on the surface of the latex particles and interacts with Ca 2+ ions on the cemented carbide hydrate, so it is adsorbed on the cement and interferes with the attraction between the cement particles to delay the setting time.

상기 산 모노머는 아크릴산, 메타아크릴산, 에타아크릴산, 부타아크릴산, 이타콘산 및 푸마르산 중에서 선택된 2종 이상의 산 모노머 혼합물을 사용하며, 바람직하게는 아크릴산, 메타아크릴산, 이타콘산 및 푸마르산 중에서 선택된 2종 이상의 혼합물을 사용한다. 또한 더욱 바람직하게는 아크릴산 및 메타아크릴산이 중량비로 6 : 4 ~ 9 : 1의 비율로 혼합된 혼합물을 사용한다. The acid monomer may be a mixture of two or more kinds of acid monomers selected from acrylic acid, methacrylic acid, etaacrylic acid, butacrylic acid, itaconic acid and fumaric acid, and preferably two or more mixtures selected from acrylic acid, methacrylic acid, itaconic acid and fumaric acid. use. Further preferably, a mixture of acrylic acid and methacrylic acid in a weight ratio of 6: 4 to 9: 1 is used.

상기 산 모노머는 전환율 70% 이상인 때 투입하는 것이 바람직하며, 더욱 바람직하게는 80 ~ 90% 인 때 투입하는 것이 좋다. The acid monomer is preferably added when the conversion rate is 70% or more, more preferably 80 to 90%.

또한 상기 소포제는 라텍스와 초속경시멘트, 골재들의 분산시 라텍스에 존재하는 유화제 및 초속경시멘트, 골재 입자들 사이에 존재하는 공극으로 인해 발생되는 과량의 공기량을 조절을 위하여 사용된다. 상기 소포제로는 고급지방산아마이드, 고분자량의 폴리에틸렌글리콜(polyethylene glycol), 지방산저급알콜에테르, 폴리프로필렌글리콜(polypropylene glycol), 고급지방산의 에스테르아미드(ester amide), 유기인산에스테르, 고급지방산의 금속석검, 톨유, 실리콘계, 디메틸실록산(dimethyl siloxane)계 및 광물유계 중에서 선택된 1종 또는 2종 이상의 혼합물이 사용될 수 있으며, 바람직하게는 실리콘계, 폴리에틸렌글리콜, 광물유계, 디메틸실록산계가 사용되며, 더욱 바람직하게는 디메틸실록산계를 사용한다. In addition, the antifoaming agent is used to control the amount of excess air generated by the emulsifier and supersonic cements in the latex when dispersing the aggregates, superhard cements, aggregates, voids between the aggregate particles. The antifoaming agent is higher fatty acid amide, higher molecular weight polyethylene glycol, fatty acid lower alcohol ether, polypropylene glycol, ester fatty acid ester amide, organophosphate ester, metal fatty gum of higher fatty acid. , One or two or more kinds selected from tall oil, silicone, dimethyl siloxane, and mineral oil may be used. Preferably, silicone, polyethylene glycol, mineral oil, and dimethylsiloxane are used. Dimethylsiloxane type is used.

라텍스 개질 콘크리트용 라텍스는 시멘트와의 혼화성 및 개질 콘크리트로서 의 물성 향상을 위해서는 라텍스의 유화제 종류, 겔함량, 입자경 및 부타디엔/스티렌 중량비가 중요한 영향을 미친다.Latex for latex modified concrete, latex emulsifier type, gel content, particle size and butadiene / styrene weight ratio is important to improve the compatibility with cement and physical properties as modified concrete.

상기 기재한 바와 같이 본 발명에서 유화제로는 지방산계통인 로진염과 폴리옥시에틸렌알킬에테르계의 비이온계 유화제를 사용하며, 상기 폴리옥시에틸렌알킬에테르계 비이온계 유화제로는 노닐페놀폴리에톡실레이트 등이 사용될 수 있다. As described above, as the emulsifier in the present invention, a fatty acid-based rosin salt and a polyoxyethylene alkyl ether nonionic emulsifier are used, and the polyoxyethylene alkyl ether nonionic emulsifier is nonylphenol polyethoxyl. Rate and the like can be used.

본 발명에서 제조된 라텍스의 겔함량은 80% 이하로 하는 것이 바람직하며, 겔 함량 조절을 위하여 분자량 조절제인 터셔리도데실머캅탄을 사용하고 반응온도를 조절함으로써 적절한 겔함량을 조절할 수 있다.It is preferable that the gel content of the latex prepared in the present invention is 80% or less, and the appropriate gel content can be adjusted by using tertiarydecylmercaptan, which is a molecular weight regulator for controlling the gel content, and adjusting the reaction temperature.

겔함량은 라텍스의 필름 형성시에 큰 영향을 주는데, 겔 함량이 높으면 접착력은 강하나 자체적인 응집에 의해서 분산성이 떨어지고, 겔 함량이 낮으면 시멘트에서 유동성 및 분산성이 양호하여 작업성은 개선되나 상대적으로 접착력이 약화된다.The gel content has a great influence on the film formation of latex. High gel content gives strong adhesion but low self dispersibility, and low gel content improves workability due to good fluidity and dispersibility in cement. This weakens the adhesion.

회분식 중합에서 비대한 입자경의 크기를 조절하기 어려우므로 본 발명에서는 초기 중합단계에서는 500∼700Å정도의 씨앗입자경을 먼저 만들고, 이를 증식 중합단계에서 연속적으로 입자간의 융착에 의해서 입경을 1500∼2500Å까지 비대화 시킨다.Since it is difficult to control the size of the enlarged particle diameter in the batch polymerization, in the present invention, the seed particle diameter of about 500 to 700 mm 3 is first made in the initial polymerization stage, and the particle size is increased to 1500 to 2500 mm by continuous fusion between particles in the growth polymerization stage. Let's do it.

한편, 스티렌-부타디엔 공중합체 라텍스의 부타디엔/스티렌의 중량비는 30∼40/60∼70으로 조절하는 것이 바람직하며, 더욱 바람직하게는 35/65로 조절하여 적절한 강도 및 접착력을 부여하는 것이다.On the other hand, the weight ratio of butadiene / styrene of styrene-butadiene copolymer latex is preferably adjusted to 30 to 40/60 to 70, and more preferably to 35/65 to impart proper strength and adhesion.

또한 본 발명은 상기 제조방법에 의하여 제조된 스티렌-부타디엔 공중합체 라텍스를 포함하며 압축강도가 210 ~ 300 kgf/㎠, 휨 강도가 45 ~ 70 kgf/㎠ 인 라텍스 개질 초속경 콘크리트 조성물을 그 특징으로 한다. In addition, the present invention comprises a styrene-butadiene copolymer latex prepared by the above method, characterized in that the latex modified superhard concrete composition having a compressive strength of 210 ~ 300 kgf / ㎠, bending strength 45 ~ 70 kgf / ㎠ do.

상기 라텍스 개질 초속경 콘크리트 조성물에 의한 콘크리트는 강도가 우수하면서도 흐름성이 좋으며, 공기량이 적어 가공성이 우수한 특성을 갖게 된다.The concrete by the latex modified cemented carbide concrete composition is excellent in strength but good in flow, and has a small amount of air to have excellent workability.

또한 상기 라텍스 개질 콘크리트 조성물은 그루콘산 나트륨, 주석산, 구연산, 인산염, 리그린슬폰산염 및 옥시카르본산염 중에서 선택된 1종 또는 2종 이상의 혼합물을 경화지연제로서 더 포함할 수 있으며, 상기 경화지연제는 상기 제조방법에 의하여 제조된 스티렌-부타디엔 공중합체 라텍스에 첨가하는 방식으로 콘크리트 조성물에 포함될 수 있다. 상기 경화지연제는 스티렌-부타디엔 공중합체 라텍스 100 중량부에 대하여 0.01 ~ 2.0 중량부 포함되는 것이 바람직하다. In addition, the latex modified concrete composition may further include one or two or more selected from sodium gluconate, tartaric acid, citric acid, phosphate, lignin sulfonate and oxycarboxylic acid as a curing retardant, the curing retardant May be included in the concrete composition by adding to the styrene-butadiene copolymer latex prepared by the above production method. The curing retardant is preferably included 0.01 to 2.0 parts by weight based on 100 parts by weight of styrene-butadiene copolymer latex.

본 발명을 실시예 및 비교예를 들어 더욱 상세히 설명하나, 본 발명이 이 실시예에 의하여 한정되는 것은 아니다.The present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.

실시예1Example 1

2L 용량의 고압반응기에 하기의 중합시약을 사용하고, 초기 입자경을 조절하기 위해 단량체를 투입하여 초기 입자경으로 형성시키고 연속적으로 투입되는 모노머 및 안정성을 위한 후첨 유화제인 로진염과 비이온계 유화제를 제외한 나머지 중합시약은 일괄투입하여 40℃에서 1시간 정도 교반하여 약액들이 잘 섞이게 한 후, 개시제인 포타슘퍼설페이트와 소디움바이퍼설페이트를 투입하여 55℃로 승온시켜 반응을 개시하였다.The following polymerization reagent is used in a 2L high-pressure reactor, and monomers are added to control the initial particle size to form an initial particle size, except for rosin salt and nonionic emulsifiers, which are continuously added monomers and post-emulsifiers for stability. The remaining polymerization reagent was added in a batch and stirred at 40 ° C. for 1 hour to mix the chemicals well. Then, potassium persulfate and sodium bisulfate as an initiator were added thereto, and the temperature was raised to 55 ° C. to initiate the reaction.

초기중합단계Initial polymerization stage

부타디엔 단량체 7.0 중량부Butadiene monomer 7.0 parts by weight

스티렌 단량체 12.0 중량부Styrene monomer 12.0 parts by weight

로진염 0.6 중량부0.6 parts by weight of rosin salt

포타슘하이드록사이드 0.7 중량부Potassium hydroxide 0.7 parts by weight

터셔리도데실머캅탄 0.9 중량부0.9 weight part of tertiary decyl mercaptan

포타슘퍼설페이트 0.9 중량부Potassium Persulfate 0.9 parts by weight

소디움바이퍼설페이트 0.2 중량부Sodium Viper Sulfate 0.2 part by weight

이온수 100 중량부100 parts by weight of deionized water

초기 투입단량체들의 전환율이 90%이상 진행되고 초기 입자경이 650Å이상으로 확대되었을때, 입경비대화 및 연속적인 반응을 위하여 후반 단량체들을 추가하며 유화제인 로진염 0.7 중량부를 투입하고 반응 12시간 후에 비이온계 계면활성제 4.5 중량부를 투입하였고, 12.5시간후에 메타아크릴산 1.05 중량부와 아크릴산 2.45 중량부을 투입하였고, 14.5시간후에 디메틸실록산 소포제 1.04 중량부를 투입하였다. 증식중합단계에 첨가되는 구체적인 배합물은 하기와 같다.When the conversion rate of the initial input monomers is more than 90% and the initial particle size is expanded to more than 650Å, the latter monomers are added for particle size enlargement and continuous reaction, 0.7 parts by weight of rosin salt as an emulsifier is added, and 12 hours after the reaction. 4.5 parts by weight of the surfactant was added. After 12.5 hours, 1.05 parts by weight of methacrylic acid and 2.45 parts by weight of acrylic acid were added. After 14.5 hours, 1.04 parts by weight of the dimethylsiloxane antifoaming agent was added. Specific formulations added to the growth polymerization step are as follows.

중합반응의 온도는 55℃에서 개시하여 초기반응이 완료되는 2시간 후에는 55℃에서 60℃로 승온하고, 반응시간 6시간 후에 60℃에서 65℃로, 반응시간 12시간 후에 65℃에서 70℃로 활성화하여 15시간 후 반응을 종료하였고, 제조된 라텍스의 기본 물성은 하기 표 1에 나타난 바와 같다.2 hours after the initial reaction was completed, the temperature of the polymerization reaction was started at 55 ° C., and the temperature was increased from 55 ° C. to 60 ° C., after 6 hours of reaction time, from 60 ° C. to 65 ° C., and after 12 hours of reaction time, 65 ° C. to 70 ° C. After the reaction was terminated after 15 hours, the basic physical properties of the prepared latex were as shown in Table 1 below.

증식중합단계Proliferation polymerization stage

부타디엔단량체 28 중량부Butadiene monomer 28 parts by weight

스티렌단량체 53 중량부Styrene monomer 53 parts by weight

테셔리도데실머캅탄 0.9 중량부0.9 parts by weight of tesheridodecyl mercaptan

로진염 0.7 중량부Rosin salt 0.7 parts by weight

비이온염 4.5 중량부4.5 parts by weight of nonionic salt

메타아크릴산 1.05 중량부1.05 parts by weight of methacrylic acid

아크릴산 2.45 중량부2.45 parts by weight of acrylic acid

소포제 1.04 중량부Defoamer 1.04 parts by weight

여기에서 비이온염은 폴리옥시에틸렌알킬에스테르계인 노닐페놀폴리에톡실레이트, 소포제는 디메틸실록산이다.The nonionic salt is nonylphenol polyethoxylate which is a polyoxyethylene alkyl ester system, and an antifoamer is dimethylsiloxane.

비교예 1Comparative Example 1

상기 실시예 1의 초기 중합단계와 동일하게 진행한 후, 초기 투입단량체들의 전환율이 90%이상 진행되고 초기 입자경이 650Å이상으로 확대되었을 때, 입경비대화 및 연속적인 반응을 위하여 후반 단량체들을 추가하며 유화제인 로진염 0.7중량부를 투입하고 반응 12시간 후에 비이온계 계면활성제 4.5 중량부를 투입하였다. 증식중합단계에 첨가되는 구체적인 배합물은 하기와 같다.After proceeding in the same manner as the initial polymerization step of Example 1, when the conversion rate of the initial input monomer is more than 90% and the initial particle size is expanded to more than 650Å, the latter monomers are added for the particle size enlargement and continuous reaction, and the emulsifier 0.7 parts by weight of phosphorus rosin salt was added and 4.5 parts by weight of nonionic surfactant was added after 12 hours of reaction. Specific formulations added to the growth polymerization step are as follows.

중합반응의 온도는 55℃에서 개시하여 초기반응이 완료되는 2시간 후에는 55℃에서 60℃로 승온하고 반응시간 6시간 후에 60℃에서 65℃로, 반응시간 12시간 후에 65℃에서 70℃로 활성화하여 15시간 후 반응을 종료하였고, 제조된 라텍스의 기본 물성은 하기 표 1에 나타난 바와 같다.2 hours after the initial reaction was completed, the temperature of the polymerization reaction was started at 55 ° C., and the temperature was increased from 55 ° C. to 60 ° C., and after 6 hours, the reaction time was 60 ° C. to 65 ° C., and after 12 hours, 65 ° C. to 70 ° C. The reaction was terminated after 15 hours by activation, and the basic physical properties of the prepared latex are shown in Table 1 below.

증식중합단계Proliferation polymerization stage

부타디엔단량체 28 중량부Butadiene monomer 28 parts by weight

스티렌단량체 53 중량부Styrene monomer 53 parts by weight

테셔리도데실머캅탄 0.9 중량부0.9 parts by weight of tesheridodecyl mercaptan

로진염 0.7 중량부Rosin salt 0.7 parts by weight

비이온염 4.5 중량부4.5 parts by weight of nonionic salt

여기에서 비이온염은 폴리옥시에틸렌알킬에스테르계를 사용하였다.Here, the nonionic salt used the polyoxyethylene alkyl ester system.

비교예 2Comparative Example 2

상기 실시예 1의 초기 중합단계와 동일하게 진행한 후, 초기 투입단량체들의 전환율이 90%이상 진행되고 초기 입자경이 650Å이상으로 확대되었을 때, 입경비대화 및 연속적인 반응을 위하여 후반 단량체들을 추가하며 유화제인 로진염 0.7중량부를 투입하고 반응 12시간 후에 비이온계 계면활성제 4.5중량부를 투입하였고, 12.5시간후에 메타아크릴산 3.5중량부을 투입하였고, 14.5시간후에 디메틸실록산계 소포제 1.04중량부를 투입하였다. 증식중합단계에 첨가되는 구체적인 배합물은 하기와 같다.After proceeding in the same manner as the initial polymerization step of Example 1, when the conversion rate of the initial input monomer is more than 90% and the initial particle size is expanded to more than 650Å, the latter monomers are added for the particle size enlargement and continuous reaction, and the emulsifier 0.7 parts by weight of phosphorus rosin salt was added, and after 12 hours of reaction, 4.5 parts by weight of nonionic surfactant was added. After 12.5 hours, 3.5 parts by weight of methacrylic acid was added, and 1.04 parts by weight of dimethylsiloxane antifoaming agent was added after 14.5 hours. Specific formulations added to the growth polymerization step are as follows.

중합반응의 온도는 55℃에서 개시하여 초기반응이 완료되는 2시간 후에는 55℃에서 60℃로 승온하고 반응시간 6시간 후에 60℃에서 65℃로, 반응시간 12시간 후에 65℃에서 70℃로 활성화하여 15시간 후 반응을 종료하였고, 제조된 라텍스의 기본 물성은 하기 표 1에 나타난 바와 같다.2 hours after the initial reaction was completed, the temperature of the polymerization reaction was started at 55 ° C., and the temperature was increased from 55 ° C. to 60 ° C., and after 6 hours, the reaction time was 60 ° C. to 65 ° C., and after 12 hours, 65 ° C. to 70 ° C. The reaction was terminated after 15 hours by activation, and the basic physical properties of the prepared latex are shown in Table 1 below.

증식중합단계Proliferation polymerization stage

부타디엔단량체 28 중량부Butadiene monomer 28 parts by weight

스티렌단량체 53 중량부Styrene monomer 53 parts by weight

테셔리도데실머캅탄 0.9 중량부0.9 parts by weight of tesheridodecyl mercaptan

로진염 0.7 중량부Rosin salt 0.7 parts by weight

비이온염 4.5 중량부4.5 parts by weight of nonionic salt

메타아크릴산 3.5 중량부Methacrylic acid 3.5 parts by weight

소포제 1.04 중량부Defoamer 1.04 parts by weight

여기에서 비이온염은 폴리옥시에틸렌알킬에스테르계를 사용하였고, 소포제는 디메틸실록산계이다.Here, the nonionic salt used polyoxyethylene alkyl ester system, and the antifoamer is dimethylsiloxane system.

비교예 3Comparative Example 3

상기 실시예 1의 초기 중합단계와 동일하게 진행한 후, 초기 투입단량체들의 전환율이 90%이상 진행되고 초기 입자경이 650Å이상으로 확대되었을 때, 입경비대화 및 연속적인 반응을 위하여 후반 단량체들을 추가하며 유화제인 로진염 0.7중량 부를 투입하고 반응 12시간 후에 비이온계 계면활성제 4.5 중량부를 투입하였고, 12.5시간후에 아크릴산 3.5 중량부을 투입하였고, 14.5시간후에 디메틸실록산계 소포제 1.04 중량부를 투입하였다. 증식중합단계에 첨가되는 구체적인 배합물은 하기와 같다.After proceeding in the same manner as the initial polymerization step of Example 1, when the conversion rate of the initial input monomer is more than 90% and the initial particle size is expanded to more than 650Å, the latter monomers are added for the particle size enlargement and continuous reaction, and the emulsifier 0.7 parts by weight of phosphorus rosin salt was added and 4.5 parts by weight of nonionic surfactant was added after 12 hours of reaction, 3.5 parts by weight of acrylic acid was added after 12.5 hours, and 1.04 parts by weight of dimethylsiloxane antifoaming agent was added after 14.5 hours. Specific formulations added to the growth polymerization step are as follows.

중합반응의 온도는 55℃에서 개시하여 초기반응이 완료되는 2시간 후에는 55℃에서 60℃로 승온하고 반응시간 6시간후에 60℃에서 65℃로, 반응시간 12시간 후에 65℃에서 70℃로 활성화하여 15시간후 반응을 종료하였고, 제조된 라텍스의 기본 물성은 하기 표 1에 나타난 바와 같다. 2 hours after the initial reaction was completed, the temperature of the polymerization reaction was started at 55 ° C. and the temperature was increased from 55 ° C. to 60 ° C., and after 6 hours, the reaction time was increased from 60 ° C. to 65 ° C., and after 12 hours the reaction time was 65 ° C. to 70 ° C. The reaction was terminated after 15 hours by activation, and the basic physical properties of the prepared latex are shown in Table 1 below.

증식중합단계Proliferation polymerization stage

부타디엔단량체 28중량부Butadiene monomer 28 parts by weight

스티렌단량체 53중량부53 parts by weight of styrene monomer

테셔리도데실머캅탄 0.9중량부0.9 weight part of tesheridodecyl mercaptan

로진염 0.7중량부Rosin salt 0.7 parts by weight

비이온염 4.5중량부4.5 parts by weight of nonionic salt

아크릴산 3.5중량부3.5 parts by weight of acrylic acid

소포제 1.04중량부Defoamer 1.04 parts by weight

여기에서 비이온염은 폴리옥시에틸렌알킬에스테르계를 사용하였고, 소포제는 디메틸실록산계이다.Here, the nonionic salt used polyoxyethylene alkyl ester system, and the antifoamer is dimethylsiloxane system.

구분division 고형분(%)Solid content (%) pHpH 점도(cps)Viscosity (cps) 겔함량(%)Gel content (%) Tg(℃)Tg (占 폚) 입자경(Å)Particle diameter 실시예Example 48.248.2 9.99.9 9090 8080 4.94.9 18501850 비교예1Comparative Example 1 40.040.0 8.08.0 8080 6161 4.54.5 13801380 비교예2Comparative Example 2 42.542.5 9.09.0 110110 6868 4.34.3 15901590 비교예3Comparative Example 3 45.845.8 9.19.1 100100 7878 4.74.7 16801680

상기 표 1의 결과에 있어서, 겔 함량은 라텍스를 이소프로필알코올에 응고시켜 메틸알콜로 세척하여 건조시킨 후 톨루엔에 24시간 녹여서 불용분의 함량을 백분율로 나타낸 값이다.In the results of Table 1, the gel content is a value indicating the content of insoluble content in percent by dissolving latex in isopropyl alcohol, washing with methyl alcohol, drying, and then dissolved in toluene for 24 hours.

상기 표 1과 같은 물성을 가진 실시예 1 및 비교예 1∼3에 따라 얻어진 라텍스를 하기 표 2에 나타난 배합비로 라텍스 개질콘크리트를 제조하였으며, 사용된 재료로서 시멘트는 초속경 시멘트(쌍용양회 사), 골재는 최대치수가 13mm인 레미콘용 쇄석, 잔골재는 천연강모래를 사용하였다. The latex modified concrete was prepared in the compounding ratios shown in Table 2 below in Example 1 and Comparative Examples 1 to 3 having the properties as shown in Table 1, the cement used as cement material is cemented carbide (Ssangyong Company). , Aggregate was used as the crushed stone for ready-mixed concrete with a maximum dimension of 13mm, and fine aggregate was used as natural steel sand.

재료material 시멘트cement 라텍스Latex 골재aggregate 잔골재Fine aggregate water 함량(kg/m3)Content (kg / m 3 ) 390390 123123 10081008 770770 92.692.6

슬럼프 시험은 KS F 2402(포틀랜드 시멘트 콘크리트의 슬럼프 시험 방법)의 규정에 따른 시험기를 사용하였고, 시험방법은 젖은 걸레로 닦은 슬럼프 콘에 콘크리트 시료를 1/3씩 3회에 나누어 채워 넣고 각 층을 25회씩 단면 전체에 골고루 다진 뒤, 콘크리트로부터 조심성 있게 수직방향으로 슬럼프 콘을 벗기고, 슬럼프 콘의 높이와 공시체 밑면의 원중심 부터의 공시체 높이와의 차를 측정하여 이것을 슬럼프 값으로 하였다.The slump test was carried out using the tester according to KS F 2402 (Test method for slump in Portland cement concrete) .The test method was to fill the slump cone with wet rag and add three times of concrete samples in three times. After evenly crushing the entire cross section 25 times, the slump cone was carefully peeled from the concrete in the vertical direction, and the difference between the height of the slump cone and the specimen height from the center of the specimen base was measured to determine the slump value.

또한 공기량 시험은 KS F 2449(굳지 않은 콘크리트의 용적에 의한 공기량 시험 방법)에 규정된 장비와 시험방법에 따라 시험하였다. The air volume test was also conducted in accordance with the equipment and test methods specified in KS F 2449 (Method for testing air volume by volume of unconsolidated concrete).

한편, 휨 강도 시험을 위한 공시체의 제작은 KS F 2403(콘크리트 강도 시험용 공시체 제작방법)에 의거하여 공시체의 단면은 10cm의 정사각형이고 공시체의 길이는 40cm로 제작하였으며, 휨 강도 시험은 KS F 2407(콘크리트 휨 강도 시험방법)에 의거하여 시험하였다. 휨 강도는 다음의 식에 따라 계산하였다.On the other hand, the specimens for the flexural strength test were manufactured according to KS F 2403 (Method of Fabricating the Concrete Strength Test Specimens), and the specimens had a cross section of 10 cm and the length of the specimens were 40 cm, and the flexural strength test was performed using KS F 2407 ( Concrete flexural strength test method). Flexural strength was calculated according to the following equation.

R = 3PL / 2BD2 R = 3PL / 2BD 2

상기 식에서, R은 휨강도(kg/㎠)이고, P는 시험용 계기에 나타난 최대 하중 (kg)이며, L은 지간의 길이(cm)이고, B는 평균 나비(cm)이며, D는 평균 두께(cm)이다.Where R is the flexural strength (kg / cm 2), P is the maximum load (kg) shown on the test instrument, L is the length of the span (cm), B is the average butterfly (cm), and D is the average thickness ( cm).

그리고 압축강도 시험은 경화한 LMC의 압축강도를 측정하기 위하여 KS F 2403(콘크리트의 강도시험용 공시체 제작방법)에 의거하여, Φ10 × 20㎝의 압축강도 시험용 공시체를 각 재령별로 3개씩 제작하여 3시간 기건 양생(온도 : 20 ± 1℃, 습도 65 ± 20%)한 후, KS F 2405(콘크리트의 압축강도 시험방법)에 따라 압축강도 시험을 실시하였다. 공시체의 압축강도는 공시체가 받은 최대하중을 공시체의 평균 단면적으로 나누어 구하였으며, 이와 같이 3회 측정한 값의 평균값을 압축강도로 하였다.In order to measure the compressive strength of the cured LMC, the compressive strength test was carried out in accordance with KS F 2403 (Method of Fabricating Test Materials for Strength of Concrete), and three specimens of Φ10 × 20㎝ compressive strength test were made for each age group for 3 hours. After air curing (temperature: 20 ± 1 ℃, humidity 65 ± 20%), a compressive strength test was carried out according to KS F 2405 (Test method for compressive strength of concrete). The compressive strength of the specimen was obtained by dividing the maximum load received by the specimen by the average cross-sectional area of the specimen, and the average value of the three measurements as described above was taken as the compressive strength.

상기 시험에 따라 라텍스 개질 콘크리트의 슬럼프, 공기량, 압축강도 및 휨 강도를 측정한 결과를 하기 표 3에 나타내었다. The slump, air volume, compressive strength, and flexural strength of the latex modified concrete according to the test are shown in Table 3 below.

구분division 슬럼프(cm)Slump (cm) 공기량(%)Air volume (%) 압축강도(kgf/㎠)Compressive strength (kgf / ㎠) 휨 강도(kgf/㎠)Flexural strength (kgf / ㎠) 실시예Example 1919 4.54.5 250250 6060 비교예1Comparative Example 1 1010 1717 130130 2727 비교예2Comparative Example 2 1313 10.310.3 170170 3838 비교예3Comparative Example 3 1212 8.08.0 210210 4040

※상기 압축강도 및 휨 강도는 시료 제작 후 3시간 경과 뒤 측정함※ The compressive strength and the flexural strength are measured after 3 hours after the preparation of the sample.

본 발명의 라텍스를 배합한 개질 콘크리트의 경우 슬럼프가 커 흐름성이 좋아 작업성이 우수하며, 공기량은 적어 우수한 강도 특성을 발현하는 효과를 얻을 수 있다. 또한 압축강도 및 휨강도가 비교예에 비하여 현저하게 우수함을 확인할 수 있었다. In the modified concrete blended with the latex of the present invention, the slump is large, the flowability is good, the workability is excellent, and the amount of air is small, so that an effect of expressing excellent strength characteristics can be obtained. In addition, it was confirmed that the compressive strength and the flexural strength were remarkably superior to the comparative example.

Claims (7)

중합체 미셀을 형성시키는 초기중합단계와 단량체, 유화제, 분자량 조절제를 투입하여 중합시키는 증식중합단계를 거쳐 공중합체 라텍스를 제조하는 방법에 있어서,In the method for producing a copolymer latex through an initial polymerization step of forming a polymer micelle and a proliferation polymerization step of polymerization by adding a monomer, an emulsifier, and a molecular weight regulator, (1) 물 100 중량부에 대하여 부타디엔 단량체 5 ∼ 10 중량부, 스티렌 단량체 10 ∼ 15 중량부, 유화제로 로진염 0.3 ∼ 0.8 중량부, 포타슘퍼설페이트 0.5 ∼ 1.0 중량부, 터셔리도데실머캅탄 0.7 ∼ 1.2 중량부 및 소디움바이설페이트 0.1 ∼ 1.0 중량부를 투입하여 40 ~ 60℃에서 중합을 개시하는 초기 중합 단계; (1) 5 to 10 parts by weight of butadiene monomer, 10 to 15 parts by weight of styrene monomer, 0.3 to 0.8 parts by weight of rosin salt with emulsifier, 0.5 to 1.0 parts by weight of potassium persulfate, tertidodecyl mercaptan 0.7 An initial polymerization step of starting the polymerization at 40 to 60 ° C. by adding 1.2 parts by weight and 0.1 to 1.0 parts by weight of sodium bisulfate; (2) 상기 물 100 중량부에 대하여 부타디엔 단량체 25 ∼ 30중량부, 스티렌 단량체 50 ∼ 55 중량부, 유화제로 로진염 0.5 ∼ 1.0중량부, 폴리옥시에틸렌알킬에테르계인 비이온계 유화제 3.0 ∼ 10.0 중량부, 터셔리도데실머캅탄 0.7 ∼ 1.2 중량부, 아크릴산, 메타아크릴산, 에타아크릴산, 부타아크릴산, 이타콘산 및 푸마르산 중에서 선택된 2종 이상의 산 모노머 혼합물 0.5 ~ 4.5 중량부 및 소포제 0.2 ~ 1.0 중량부를 투입하여 40 ~ 80℃에서 중합시키는 증식 중합 단계(2) 25-30 weight part of butadiene monomers, 50-55 weight part of styrene monomers, 0.5-1.0 weight part of rosin salts with an emulsifier, and 3.0-10.0 weight of nonionic emulsifiers which are polyoxyethylene alkyl ethers with respect to 100 weight part of said waters 0.7-1.2 parts by weight of tertiary decylmercaptan, 0.5-4.5 parts by weight of a mixture of two or more acid monomers selected from acrylic acid, methacrylic acid, etaacrylic acid, butacrylic acid, itaconic acid and fumaric acid, and 0.2-1.0 parts by weight of an antifoaming agent. Proliferation polymerization step to polymerize at 40 ~ 80 ℃ 를 포함하는 것을 특징으로 하는 콘크리트 제조용 스티렌-부타디엔 공중합체 라텍스의 제조방법.Method for producing a styrene-butadiene copolymer latex for concrete, characterized in that it comprises a. 제 1 항에 있어서, 상기 (2)의 중합시 전환율 40 ~ 50%에서 60 ~ 65 ℃, 전 환율 60 ~ 70%에서 65 ~ 70℃, 전환율 80 ~ 90%에서 70 ~ 80℃로 승온하는 것을 특징으로 하는 스티렌-부타디엔 공중합체 라텍스의 제조방법.The method of claim 1, wherein the polymerization at the conversion rate of 40 to 50% at 60 to 65 ℃, the total exchange rate of 60 to 70% at 65 to 70 ℃, the conversion rate of 80 to 90% at 70 to 80 ℃ Method for producing a styrene-butadiene copolymer latex characterized in that. 제 1 항에 있어서, 상기 소포제는 고급지방산아마이드, 고분자량의 폴리에틸렌글리콜(polyethylene glycol), 지방산저급알콜에테르, 폴리프로필렌글리콜(polypropylene glycol), 고급지방산의 에스테르아미드(ester amide), 유기인산에스테르, 고급지방산의 금속석검, 톨유, 실리콘계, 디메틸폴리실록산(dimethyl polysiloxane)계 및 광물유계 중에서 선택된 1종 또는 2종 이상의 혼합물인 것을 특징으로 하는 스티렌-부타디엔 공중합체 라텍스의 제조방법.According to claim 1, wherein the antifoaming agent is higher fatty acid amide, high molecular weight polyethylene glycol, fatty acid lower alcohol ether, polypropylene glycol, ester amide of higher fatty acid, organophosphate ester, Method of producing a styrene-butadiene copolymer latex, characterized in that the mixture of one or two or more selected from metal chalcopy gum, tall oil, silicone-based, dimethyl polysiloxane-based and mineral oil-based fatty acid. 제 1 항에 있어서, 상기 산 모노머 혼합물은 아크릴산과 메타아크릴산의 혼합물인 것을 특징으로 하는 스티렌-부타디엔 공중합체 라텍스의 제조방법.The method of claim 1, wherein the acid monomer mixture is a mixture of acrylic acid and methacrylic acid. 제 4 항에 있어서, 아크릴산과 메타아크릴산이 중량비로 6 : 4 ~ 9 : 1의 비율로 혼합된 것을 특징으로 하는 스티렌-부타디엔 공중합체 라텍스의 제조방법.The method for producing styrene-butadiene copolymer latex according to claim 4, wherein acrylic acid and methacrylic acid are mixed in a weight ratio of 6: 4 to 9: 1. 제 1 항 내지 제 5 항 중 선택된 어느 한 항의 스티렌-부타디엔 공중합체 라텍스를 포함하며, 압축강도가 210 ~ 300 kgf/㎠, 휨 강도가 45 ~ 70 kgf/㎠ 인 것을 특징으로 하는 초속경 라텍스 개질 콘크리트 조성물.Ultrasonic mirror latex modification comprising the styrene-butadiene copolymer latex of any one of claims 1 to 5, characterized in that the compressive strength is 210 ~ 300 kgf / ㎠, bending strength is 45 ~ 70 kgf / ㎠ Concrete composition. 제 6 항에 있어서, 그루콘산 나트륨, 주석산, 구연산, 인산염, 리그린슬폰산염 및 옥시카르본산염 중에서 선택된 1종 또는 2종 이상의 혼합물을 더 포함하는 것을 특징으로 하는 라텍스 개질 콘크리트 조성물.7. The latex modified concrete composition according to claim 6, further comprising one or two or more mixtures selected from sodium gluconate, tartaric acid, citric acid, phosphate, lignin sulfonate and oxycarboxylic acid.
KR1020090126757A 2009-12-18 2009-12-18 Manufacturing method of styrene-butadiene latex for very early strength modified concrete KR101222920B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090126757A KR101222920B1 (en) 2009-12-18 2009-12-18 Manufacturing method of styrene-butadiene latex for very early strength modified concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090126757A KR101222920B1 (en) 2009-12-18 2009-12-18 Manufacturing method of styrene-butadiene latex for very early strength modified concrete

Publications (2)

Publication Number Publication Date
KR20110070079A true KR20110070079A (en) 2011-06-24
KR101222920B1 KR101222920B1 (en) 2013-01-17

Family

ID=44401652

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090126757A KR101222920B1 (en) 2009-12-18 2009-12-18 Manufacturing method of styrene-butadiene latex for very early strength modified concrete

Country Status (1)

Country Link
KR (1) KR101222920B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101235091B1 (en) * 2012-07-06 2013-02-20 주식회사 네이쳐앤솔루션 Method of producing synthetic latex based styrene-propenoate terpolymer in the use of high performance concrete, and overlay pavement and reinforcing method for bridge deck using the high performance concrete with the synthetic latex
KR20230019607A (en) * 2021-08-02 2023-02-09 금호석유화학 주식회사 Latex composition for cement concrete with improved freeze-thaw stability and manufacturing method thereof
KR20230019606A (en) * 2021-08-02 2023-02-09 금호석유화학 주식회사 Latex composition for cement concrete with excellent hydrophilicity and manufacturing method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105778002B (en) * 2014-12-19 2018-04-03 中国石油天然气股份有限公司 A kind of method that emulsion polymerization prepares carboxylic styrene-butadiene rubber

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100441055B1 (en) * 2001-05-30 2004-07-19 금호석유화학 주식회사 Manufacturing method of styrene-butadiene latex for modified concrete
JP4509587B2 (en) 2003-06-20 2010-07-21 旭化成ケミカルズ株式会社 Aqueous resin dispersion for cement mortar and composition thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101235091B1 (en) * 2012-07-06 2013-02-20 주식회사 네이쳐앤솔루션 Method of producing synthetic latex based styrene-propenoate terpolymer in the use of high performance concrete, and overlay pavement and reinforcing method for bridge deck using the high performance concrete with the synthetic latex
KR20230019607A (en) * 2021-08-02 2023-02-09 금호석유화학 주식회사 Latex composition for cement concrete with improved freeze-thaw stability and manufacturing method thereof
KR20230019606A (en) * 2021-08-02 2023-02-09 금호석유화학 주식회사 Latex composition for cement concrete with excellent hydrophilicity and manufacturing method thereof

Also Published As

Publication number Publication date
KR101222920B1 (en) 2013-01-17

Similar Documents

Publication Publication Date Title
CN106632886B (en) Polymer and preparation method and application thereof
TWI452026B (en) Copolymer admixture system for workability retention of cementitious compositions
JP6566954B2 (en) Additives for improving rheology of inorganic binders
CN110128077B (en) Low-viscosity easy-pumping ultra-high-performance concrete and preparation method thereof
US8058377B1 (en) Phosphate-containing polycarboxylate polymer dispersants
EP1725509A1 (en) Drying shrinkage-reducing agent
US9446986B2 (en) Dispersant for hydraulically setting systems
JP6436978B2 (en) Cationic copolymer
KR101222920B1 (en) Manufacturing method of styrene-butadiene latex for very early strength modified concrete
CN112048035A (en) Concrete segregation repairing agent and preparation method thereof
CN109574591B (en) Leveling mortar with waterproof function
KR101235091B1 (en) Method of producing synthetic latex based styrene-propenoate terpolymer in the use of high performance concrete, and overlay pavement and reinforcing method for bridge deck using the high performance concrete with the synthetic latex
JP2015218074A (en) Composition of tunnel lining concrete and production method thereof
KR100441055B1 (en) Manufacturing method of styrene-butadiene latex for modified concrete
EP3415482A1 (en) Dry premixture for flexible concrete and method for its preparation and use thereof
KR102027818B1 (en) high performance admixture improved in material separation resistance
KR102117503B1 (en) Composition for manufacturing multiple synthetic polymers for mortar and concrete and method for manufacturing the same
JP2008050255A (en) One-component additive composition for cement having shrink reducing function in combination with water reducing function, and cement composition
CN115448683B (en) Construction process of silica sol Gao Jiangzi leveling material
CN111517728B (en) Composition, prefabricated part and preparation method thereof
JP6263403B2 (en) Method for preparing high-strength concrete
JP4108165B2 (en) Resin mortar composition
JP7239525B2 (en) Precast molding method
KR100864007B1 (en) Acryl-based redispersible resin, method for preparing the same, and cement composition comprising the same
JP2022119650A (en) Concrete composition and production method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160105

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20161130

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20181219

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20191126

Year of fee payment: 8