KR100441055B1 - Manufacturing method of styrene-butadiene latex for modified concrete - Google Patents
Manufacturing method of styrene-butadiene latex for modified concrete Download PDFInfo
- Publication number
- KR100441055B1 KR100441055B1 KR10-2001-0029958A KR20010029958A KR100441055B1 KR 100441055 B1 KR100441055 B1 KR 100441055B1 KR 20010029958 A KR20010029958 A KR 20010029958A KR 100441055 B1 KR100441055 B1 KR 100441055B1
- Authority
- KR
- South Korea
- Prior art keywords
- weight
- parts
- styrene
- concrete
- monomer
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/12—Polymerisation in non-solvents
- C08F2/16—Aqueous medium
- C08F2/22—Emulsion polymerisation
- C08F2/24—Emulsion polymerisation with the aid of emulsifying agents
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F236/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
- C08F236/02—Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
- C08F236/04—Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
- C08F236/10—Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated with vinyl-aromatic monomers
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Polymerisation Methods In General (AREA)
Abstract
본 발명은 보통 콘크리트의 강도성능, 방수성능 및 내구성능을 향상시키기 위해 사용되는 스티렌-부타디엔 공중합체 라텍스의 제조방법에 관한 것으로서, 초기 중합단계에서는 씨앗입자경을 만들 수 있는 중합체의 미셀(micelle)을 형성시킨후 일정한 전환율에 도달하면 증식중합단계에서 단량체를 투입하여 각각의 미셀내에서 중합이 진행되어 입자경을 비대화하는 방법으로 이루어지는 것으로, 이와같은 방법으로 얻어진 스티렌-부타디엔 공중합체 라텍스를 포함하는 콘크리트는 보통 콘크리트에 비해 향상된 작업성 및 강도, 내수성, 내구성 등의 물성을 얻을 수 있다.The present invention relates to a method for preparing styrene-butadiene copolymer latex which is usually used to improve the strength performance, waterproof performance and durability of concrete. In an initial polymerization step, a micelle of a polymer capable of producing seed particle diameters is prepared. After the formation, if a certain conversion rate is reached, a monomer is introduced in the proliferation polymerization step to polymerize the respective micelles to enlarge the particle size. The concrete containing the styrene-butadiene copolymer latex obtained in this manner is Compared with ordinary concrete, improved workability and strength, water resistance, and durability can be obtained.
Description
본 발명은 개질 콘크리트 제조용 스티렌-부타디엔 공중합체 라텍스의 제조방법에 관한 것으로서, 더욱 상세하게는 보통 콘크리트 도로포장에 사용되는 콘크리트의 강도 성능, 방수 성능 및 내구성을 향상시키는데 사용되는 스티렌 - 부타디엔 공중합체 라텍스를 제조하는 방법에 관한 것이다.The present invention relates to a method for producing styrene-butadiene copolymer latex for producing modified concrete, and more particularly, styrene-butadiene copolymer latex used to improve the strength performance, waterproof performance, and durability of concrete commonly used for concrete road paving. It relates to a method of manufacturing.
종래 각종 구조물의 제조에는 보통 콘크리트를 사용하여 왔다. 보통 콘크리트는 일반적으로 보통 포틀랜트 시멘트를 사용하여 제조한 콘크리트를 일컫는다. 보통 콘크리트의 경우 시공성이 우수하고, 강도가 높으며 대량 생산으로 인한 경제적인 이점 등을 가진 반면에 투수성이 높아 염화물이나 수분 등의 침투로 인하여 콘크리트가 부식되고 특히 철근 콘크리트에 있어서는 철근 부식이 촉진되어 내구성을 현저히 감소시키고 있다. 이와같은 문제로 인하여 도로 또는 교량 포장에 있어 이용자의 불편을 초래하고 경제적인 손실을 유발시키고 있다.Conventionally, concrete has been used to manufacture various structures. Normal concrete generally refers to concrete produced using ordinary portland cement. In general, concrete has excellent workability, high strength, and economic advantages due to mass production, while high permeability, concrete is corroded by penetration of chloride or water, and steel corrosion is particularly promoted in reinforced concrete. Durability is significantly reduced. These problems cause inconvenience to users and economic losses in pavement of roads or bridges.
한편, 일반적으로 도로포장은 크게 아스팔트 포장과 콘크리트 포장, 두 가지로 나누어 볼 수 있다. 아스팔트 포장은 이용자들에게 쾌적한 도로 환경을 제공한다는 측면과 보수가 용이하다는 이점이 있는 반면에 연성 포장으로서 도로의 수명이 짧다는 단점을 지니고 있다. 반면 강성포장으로 분류되는 콘크리트 포장은 포장면의 탈락과 균열 발생시 염화물 또는 수분의 침투로 인하여 철근을 부식시키고 콘크리트를 열화시키며 유지보수가 곤란하다는 단점이 있다.On the other hand, road pavement can be divided into two types: asphalt pavement and concrete pavement. Asphalt pavement has the advantage of providing a pleasant road environment for the users and the ease of repair, while the soft pavement has the disadvantage of short road life. On the other hand, concrete pavement classified as rigid pavement has the disadvantage of corroding reinforcing steel, deteriorating concrete, and difficult maintenance due to chloride or moisture penetration in case of pavement drop and crack.
보통 콘크리트 포장은 배합 설계(시멘트, 자갈, 모래, 물)에 준하여 비빔 과정을 거쳐서 타설하는 것으로, 재료가 가지는 강도를 발현하고 접착력 등을 나타내지만 열악한 도로환경을 극복하기 위한 보통 콘크리트 배합에 대비하여 개선된 강도, 방수 성능, 내구성을 나타내지를 못하고 있는 실정이다.In general, concrete pavement is poured through a bi-beam process according to the mix design (cement, gravel, sand, water). It expresses the strength of the material and shows the adhesive strength, but it prepares for the normal concrete mix to overcome the poor road environment. The situation does not exhibit improved strength, waterproof performance, durability.
이와같은 보통콘크리트의 내구성 저하에 직접적인 영향을 주는 염해물이나 수분의 침투를 효과적으로 방지하기 위한 방법의 하나로 제시되온 것이 보통 콘크리트 배합시에 라텍스를 첨가하여 라텍스 개질 콘크리트(Latex Modified Concrete: LMC)를 사용하는 방법이다.Latex modified concrete (LMC) is used by adding latex when mixing concrete, which has been suggested as an effective method for effectively preventing the penetration of salts or water, which directly affects the durability of ordinary concrete. That's how.
이때 개질 콘크리트를 제조하기 위해 첨가되는 라텍스는 흔히 스티렌-부타디엔 공중합체 라텍스인 바, 그 제조방법으로는 반응에 소요되는 단량체들과 유화제 등을 일괄투입하여 중합시키는 방법과 초기중합단계와 증식중합단계 등으로 연속적으로 단량체를 투입하여 중합시키는 방법 등이 사용되고 있다.At this time, the latex added to prepare the modified concrete is often a styrene-butadiene copolymer latex. As a method of preparing the polymerized monomer by adding the monomers and the emulsifier required for the reaction, the initial polymerization step and the growth polymerization step A method of continuously adding a monomer to the polymerization and the like is used.
이에 본 발명자들은 초기중합단계를 거쳐 연속으로 단량체를 투입하여 증식중합하여 스티렌-부타디엔 공중합체 라텍스를 제조하는 방법을 보다 개선하기 위해 연구노력하던 중, 각 단계에서 첨가되는 단량체의 함량 및 첨가물의 함량 등을 최적화하고 일정한 전환율이 되면 승온하는 일련의 단계를 순차적으로 수행한 결과, 스티렌-부타디엔 공중합체 라텍스 자체의 물성은 통상의 것과 동등이상이면서 이를 라텍스 개질 콘크리트 제조에 적용한 결과 콘크리트의 강도와 내수성능을 월등히 향상시킴을 알게되어 본 발명을 완성하게 되었다.Accordingly, the present inventors are trying to improve the method of producing styrene-butadiene copolymer latex by proliferating polymerization by continuously introducing monomer through the initial polymerization step, and the content of the monomer and the amount of the additive added at each step As a result of sequentially performing a series of steps of optimizing the temperature and increasing the conversion rate, the styrene-butadiene copolymer latex itself has the same physical properties as those of conventional ones, and applied to the production of latex modified concrete, resulting in concrete strength and water resistance. It has been found to improve significantly to complete the present invention.
따라서, 본 발명의 목적은 콘크리트 배합시 첨가되어 강도와 내수성능을 향상시킬 수 있는 개질 콘크리트 제조용 스티렌-부타디엔 라텍스를 제조하는 방법을 제공하는 데 있다.Accordingly, it is an object of the present invention to provide a method for producing styrene-butadiene latex for producing modified concrete which can be added during concrete mixing to improve strength and water resistance.
이와같은 목적을 달성하기 위한 본 발명의 개질 콘크리트 제조용 스티렌-부타디엔 라텍스의 제조방법은 중합체 미셀을 형성시키는 초기중합단계와 단량체, 유화제, 분자량 조절제를 투입하여 중합시키는 증식중합단계를 거쳐 제조하는 방법으로서, 초기 중합단계에서 부타디엔 단량체 5∼9중량부, 스티렌 단량체 10∼14중량부, 유화제로 로진염 0.4∼0.8중량부, 포타슘하이드록사이드 0.5∼0.7중량부, 터셔리도데실머캅탄 0.7∼1.0중량부, 포타슘퍼설페이트 0.7∼1.0중량부 및 소디움바이설페이트 0.3∼1.0중량부를 투입하여 반응온도 55℃에서 중합을 개시하고, 증식중합단계에서 부타디엔 단량체 26∼30중량부, 스티렌 단량체 50∼54 중량부, 유화제로 로진염 0.5∼1.0중량부, 폴리옥시에틸렌알킬에테르계인 비이온계 유화제 4.0∼10.0중량부 및 터셔리도데실머캅탄 0.8∼1.2중량부를 투입하여 전환율40∼50%에서 60℃로 승온하고, 전환율 60∼70%에서 65℃로 승온하고, 전환율 80∼90%에서 70℃로 승온시켜 반응을 완료시키는 것을 그 특징으로 한다.In order to achieve the above object, a method for preparing styrene-butadiene latex for producing modified concrete according to the present invention is a method of producing a polymer micelle through the initial polymerization step of forming a polymer and a proliferation polymerization step of polymerizing by adding a monomer, an emulsifier, and a molecular weight regulator. In the initial polymerization stage, 5 to 9 parts by weight of butadiene monomer, 10 to 14 parts by weight of styrene monomer, 0.4 to 0.8 parts by weight of rosin salt as emulsifier, 0.5 to 0.7 parts by weight of potassium hydroxide, 0.7 to 1.0 parts by weight of terdodosilylcaptan. In addition, 0.7-1.0 parts by weight of potassium persulfate and 0.3-1.0 parts by weight of sodium bisulfate were added to initiate polymerization at a reaction temperature of 55 ° C., 26 to 30 parts by weight of butadiene monomers and 50 to 54 parts by weight of styrene monomers in the propagation polymerization step. , 0.5 to 1.0 parts by weight of rosin salt as emulsifier, 4.0 to 10.0 parts by weight of nonionic emulsifier, which is polyoxyethylene alkyl ether, and tertiary dodecyl mercaptan 0.8 to 1.2 parts by weight was added to increase the conversion rate from 40 to 50% to 60 ° C, the conversion rate from 60 to 70% to 65 ° C, and the conversion rate from 80 to 90% to 70 ° C to complete the reaction. do.
이와같은 본 발명을 더욱 상세하게 설명하면 다음과 같다.The present invention will be described in more detail as follows.
본 발명의 라텍스의 제조공정은 초기중합단계와 증식중합단계로 이루어지는데, 먼저 초기중합단계에서는 중합체의 미셀을 형성하여 씨앗입자경으로 제조하기 위하여 부타디엔 단량체, 스티렌 단량체, 유화제인 로진염, 포타슘하이드록사이드, 연쇄이동제인 터셔리도데실머캅탄, 개시제인 포타슘퍼설페이트, 환원제인 소디움바이설페이트를 투입하여 초기중합시킨다.The production process of the latex of the present invention consists of an initial polymerization step and a proliferation polymerization step. In the initial polymerization step, a butadiene monomer, a styrene monomer, an emulsifier rosin salt, and potassium hydroxide are formed in order to form a micelle of a polymer to produce a seed particle diameter. Side polymerization is carried out by adding tertiary decyl mercaptan as a chain transfer agent, potassium persulfate as an initiator and sodium bisulfate as a reducing agent.
보다 구체적으로 초기중합단계에서는 부타디엔 단량체 5∼9중량부, 스티렌 단량체 10∼14중량부, 유화제로 로진염 0.4∼0.8중량부, 포타슘하이드록사이드 0.5∼0.7중량부, 터셔리도데실머캅탄 0.7∼1.0중량부, 포타슘퍼설페이트 0.7∼1.0중량부, 소디움바이설페이트 0.2∼1.0중량부를 투입하여 씨앗 입자경 500∼700Å 정도로 중합시킨다. 이때, 포타슘퍼설페이트와 소디움바이설페이트를 제외하고는 일괄 투입하여 40℃에서 1시간 정도 교반시켜 잘 섞이게 한 후 포타슘퍼설페이트와 소디움바이설페이트를 투입하여 55℃로 승온시켜 반응을 개시한다.More specifically, in the initial polymerization step, 5 to 9 parts by weight of butadiene monomer, 10 to 14 parts by weight of styrene monomer, 0.4 to 0.8 parts by weight of rosin salt as emulsifier, 0.5 to 0.7 parts by weight of potassium hydroxide, 0.7 to tertiary dodecyl mercaptan 1.0 weight part, potassium persulfate 0.7-1.0 weight part, sodium bisulfate 0.2-1.0 weight part, and superpose | polymerize about 500-700 micrometers of seed particle diameters. At this time, except for potassium persulfate and sodium bisulfate, the batch was added and stirred at 40 ° C. for about 1 hour to mix well, and then potassium persulfate and sodium bisulfate were added to raise the temperature to 55 ° C. to initiate a reaction.
이와같은 초기중합을 통해 중합체 미셀을 형성시킨 다음, 여기에 연속적으로 단량체, 유화제, 분자량조절제 등을 투입하여 증식중합하는 바, 구체적으로는 초기중합단계에서 생성된 반응물에 부타디엔 단량체 26∼30중량부, 스티렌 단량체50∼54중량부, 유화제로 로진염 0.5∼1.0중량부, 폴리옥시에틸렌알킬에테르계의 비이온계 유화제 4.0∼10.0중량부, 터셔리도데실머캅탄 0.8∼1.2중량부를 투입하여 입경을 1,500∼2,500Å까지 비대화시켜 반응을 완료한다. 이때의 유화제는 반응시간 6시간 후에 로진염 0.5∼1.0중량부를 투입하고 반응시간 12시간 후에 비이온계 유화제 4.0∼10.0중량부를 투입하는 것이 바람직한 바, 로진염은 입자경을 비대화시키는 라텍스의 안정성 향상을 위해 첨가되며, 비이온계 유화제는 최종??무의 안정성을 위해 투입된다.After forming the polymer micelle through the initial polymerization, and proliferation polymerization by continuously adding a monomer, an emulsifier, a molecular weight regulator, etc., specifically, 26 to 30 parts by weight of butadiene monomer in the reaction product produced in the initial polymerization step And 50 to 54 parts by weight of styrene monomer, 0.5 to 1.0 parts by weight of rosin salt as emulsifier, 4.0 to 10.0 parts by weight of nonionic emulsifier of polyoxyethylene alkyl ether system, and 0.8 to 1.2 parts by weight of teridodecylmercaptan. The reaction is completed by enlarging up to 1,500 to 2,500 Hz. In this case, it is preferable to add 0.5 to 1.0 parts by weight of rosin salt after 6 hours of reaction time and 4.0 to 10.0 parts by weight of nonionic emulsifier after 12 hours of reaction time. The rosin salt improves the stability of latex, which increases the particle size. The nonionic emulsifier is added for stability of the final radish.
한편, 본 발명의 라텍스는 초기중합단계에서 일정한 전환율이 진행되면 또 다시 연속으로 단량체를 투입하는 방법으로 제조하고, 반응온도는 초기 55℃에서 개시하여 반응 전환율이 40∼50%에서 60℃로, 반응전환율이 60∼70%에서 65℃로, 반응전환율이 80∼90%에서 70℃로 승온한 다음 전환율 100%에 도달하면 반응을 종료시킨다.On the other hand, the latex of the present invention is prepared by a method of continuously inputting the monomer again and again when a constant conversion rate in the initial polymerization step, the reaction temperature is started at 55 ℃ initial reaction conversion rate from 40 to 50% to 60 ℃, The reaction conversion rate was raised from 60 to 70% to 65 ° C, the reaction conversion rate was increased from 80 to 90% to 70 ° C, and the reaction was terminated when the conversion rate reached 100%.
라텍스 개질 콘크리트용 라텍스는 시멘트와의 혼화성 및 개질 콘크리트로서의 물성 향상을 위해서는 라텍스의 유화제 종류, 겔함량, 입자경 및 부타디엔/스티렌 중량비가 중요한 영향을 미친다.Latex for latex modified concrete latex emulsifiers, gel content, particle size and butadiene / styrene weight ratio has an important effect to improve the compatibility with cement and physical properties as modified concrete.
상기한 바와 같이 본 발명에서 유화제로는 지방산계통인 로진염을 사용하고, 저장안정성과 시멘트와의 혼화성을 개선하기 위하여 비이온계 유화제를 사용한다. 비이온계 유화제로는 폴리에틸렌글리콜, 알킬에스테르형, 아릴에테르형, 알킬페놀에테르형 등을 사용할 수 있다.As described above, as the emulsifier in the present invention, rosin salts, which are fatty acids, are used, and nonionic emulsifiers are used to improve storage stability and miscibility with cement. As the nonionic emulsifier, polyethylene glycol, alkyl ester type, aryl ether type, alkyl phenol ether type or the like can be used.
본 발명에서 제조된 라텍스의 겔함량은 80% 이하로 하는 것이 바람직하며,겔 함량 조절을 위하여 분자량 조절제인 터셔리도데실머캅탄을 사용하고 반응온도를 조절함으로써 적절한 겔함량을 조절할 수 있다.It is preferable that the gel content of the latex prepared in the present invention is 80% or less, and the appropriate gel content can be adjusted by using tertiary decylmercaptan, which is a molecular weight regulator for controlling the gel content, and adjusting the reaction temperature.
겔함량은 라텍스의 필름 형성시에 큰 영향을 주는데, 겔 함량이 높으면 접착력은 강하나 자체적인 응집에 의해서 분산성이 떨어지고, 겔 함량이 낮으면 시멘트에서 유동성 및 분산성이 양호하여 작업성은 개선되나 상대적으로 접착력이 약화된다.The gel content has a great influence on the film formation of latex. High gel content gives strong adhesion but low self dispersibility, and low gel content improves workability due to good fluidity and dispersibility in cement. This weakens the adhesion.
회분식 중합에서 비대한 입자경의 크기를 조절하기 어려우므로 본 발명에서는 초기 중합단계에서는 500∼700Å정도의 씨앗입자경을 먼저 만들고, 이를 증식 중합단계에서 연속적으로 입자간의 융착에 의해서 입경을 1500∼2500Å까지 비대화 시킨다.Since it is difficult to control the size of the enlarged particle diameter in the batch polymerization, in the present invention, the seed particle diameter of about 500 to 700 mm 3 is first made in the initial polymerization stage, and the particle size is increased to 1500 to 2500 mm by continuous fusion between particles in the growth polymerization stage. Let's do it.
한편, 스티렌-부타디엔 공중합체 라텍스의 부타디엔/스티렌의 중량비는 30∼40/60∼70으로 조절하는 것이 바람직하며, 더욱 바람직하게는 35/65로 조절하여 적절한 강도 및 접착력을 부여하는 것이다.On the other hand, the weight ratio of butadiene / styrene of styrene-butadiene copolymer latex is preferably adjusted to 30 to 40/60 to 70, and more preferably to 35/65 to impart proper strength and adhesion.
본 발명을 실시예 및 비교예를 들어 더욱 상세히 설명하나, 본 발명이 이 실시예에 의하여 한정되는 것은 아니다.The present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.
실시예 1Example 1
1)초기중합단계1) Initial polymerization stage
2ℓ용량의 고압반응기에 하기의 중합시약을 사용하여, 초기 입자경을 조절하기 위해 단량체를 투입하여 초기입자경으로 형성시키고 연속적으로 투입되는 모노머 및 안정성을 위한 후첨 유화제인 로진염과 비이온계 유화제를 제외한 나머지 중합시약은 일괄투입하여 40℃에서 1시간 정도 교반시켜 약액들이 잘 섞이게 한 후 개시제인 포타슘퍼설페이트와 소디움바이퍼설페이트를 투입하여 55℃로 승온시켜 반응을 개시하였다.Using a polymerization reagent as described below in a 2L high-pressure reactor, monomers were added to control the initial particle size to form an initial particle size, except for rosin salts and nonionic emulsifiers, which are continuously added monomers and post-emulsifiers for stability. The remaining polymerization reagent was added in a batch and stirred at 40 ° C. for about 1 hour to mix the chemicals well. Then, potassium persulfate and sodium bisulfate as an initiator were added thereto, and the temperature was raised to 55 ° C. to initiate the reaction.
초기중합단계Initial polymerization stage
부타디엔 단량체 7.0 중량부Butadiene monomer 7.0 parts by weight
스티렌 단량체 12.0 중량부Styrene monomer 12.0 parts by weight
로진염 0.6 중량부0.6 parts by weight of rosin salt
포타슘하이드록사이드 0.7 중량부Potassium hydroxide 0.7 parts by weight
터셔리도데실머캅탄 0.9 중량부0.9 weight part of tertiary decyl mercaptan
포타슘퍼설페이트 0.9 중량부Potassium Persulfate 0.9 parts by weight
소디움바이퍼설페이트 0.2 중량부Sodium Viper Sulfate 0.2 part by weight
이온수 99.1 중량부99.1 parts by weight of deionized water
초기 투입 단량체들의 전환율이 거의 90% 이상 진행되고 초기 입자경이 650 Å이상으로 확대되었을 때, 입경 비대화 및 연속적인 반응을 위하여 후반 단량체를 추가하며 유화제인 로진염 0.7중량부를 투입하고 반응 12시간 후에 비이온계 유화제를 4.5중량부 투입하였다. 증식중합단계에 첨가되는 구체적인 배합물은 하기와 같다.When the conversion rate of the initial input monomers was about 90% or more and the initial particle size was expanded to 650 kPa or more, the latter monomer was added for enlarging the particle size and continuous reaction, and 0.7 parts by weight of rosin salt, an emulsifier, was added and the reaction was performed after 12 hours. 4.5 parts by weight of an ionic emulsifier was added. Specific formulations added to the growth polymerization step are as follows.
중합반응 온도는 55℃에서 개시하여 초기 반응이 완료되는 2시간 후에 55℃에서 60℃로 승온하고 반응시간 6시간 후에 60℃에서 65℃로, 반응 12시간 후에 65℃에서 70℃로 활성화하여 반응을 종료하였고, 각 처방에 의한 라텍스의 기본 물성은 다음 표 1과 같다.The polymerization temperature was started at 55 ° C., and after 2 hours of completion of the initial reaction, the temperature was raised from 55 ° C. to 60 ° C., and after 6 hours, the reaction time was activated from 60 ° C. to 65 ° C. and after 12 hours, the reaction was activated at 65 ° C. to 70 ° C. And finished, the basic physical properties of the latex by each prescription is shown in Table 1 below.
증식중합단계Proliferation polymerization stage
부타디엔 단량체 28 중량부Butadiene monomer 28 parts by weight
스티렌단량체 53 중량부Styrene monomer 53 parts by weight
터셔리도데실머캅탄 0.9 중량부0.9 weight part of tertiary decyl mercaptan
로진염 0.7 중량부Rosin salt 0.7 parts by weight
비이온 염 4.5 중량부4.5 parts by weight of nonionic salt
여기에서 비이온염은 폴리옥시에틸렌알킬에테르계를 사용하였다.The nonionic salt used here was a polyoxyethylene alkyl ether system.
비교예 1Comparative Example 1
2ℓ 고압반응기에 중합개시제인 포타슘퍼설페이트를 제외한 하기의 중합시약을 일괄투입하고 40℃에서 1시간 정도 프리믹싱한 다음 55℃로 승온함과 동시에 포타슘퍼설페이트를 투입하여 반응을 시작하였다.Into the 2L high pressure reactor, the following polymerization reagents except for the polymerization initiator potassium persulfate were added all at once, premixed at 40 ° C. for about 1 hour, and then heated to 55 ° C. and potassium persulfate was added thereto to start the reaction.
부타디엔 단량체 35.0 중량부Butadiene monomer 35.0 parts by weight
스티렌 단량체 65.0 중량부Styrene monomer 65.0 parts by weight
로진염 1.3 중량부Rosin salt 1.3 parts by weight
포타슘하이드록사이드 0.7 중량부Potassium hydroxide 0.7 parts by weight
터셔리도데실머캅 1.8 중량부Tercy dodecyl mercap 1.8 weight part
포타슘퍼설페이트 0.9 중량부Potassium Persulfate 0.9 parts by weight
소디움바이퍼설페이트 0.2 중량부Sodium Viper Sulfate 0.2 part by weight
비이온염 4.5 중량부4.5 parts by weight of nonionic salt
이온수 99.1 중량부99.1 parts by weight of deionized water
중합반응 온도는 55℃에서 개시하여 회분식 반응의 입자경 형성시기는 전환율 40%인 2시간 후에 60℃로 승온하고 반응시간 6시간 후인 전환율 70%이상에서 65℃로 승온하여 반응을 진행시키고, 반응시간 12시간 후에 70℃로 활성화하여 전환율 99%에서 반응을 종료시켰다.The polymerization temperature starts at 55 ° C, and the particle diameter formation time of the batch reaction is raised to 60 ° C after 2 hours with a conversion rate of 40%, and the reaction proceeds by raising the temperature to 65 ° C at a conversion rate of 70% or more after 6 hours. After 12 hours, the reaction was completed at 70 ° C. to terminate the reaction at 99% conversion.
비교예 2Comparative Example 2
단량체인 부타디엔 45.0중량부, 스티렌 55.0중량부, 로진염 0.3중량부를 사용하고 유화제 투입방법 및 반응온도 조절은 55℃에서 개시하여 회분식반응의 입자경 형성시기는 2시간 후인 전환율 40%에서 60℃로 승온하고, 안정성 향상을 위하여 로진염 0.2중량부를 반응시간 6시간 후인 전환율 70%이상에서 65℃로 승온하여 투입하여 반응을 진행시키고, 12시간 후인 전환율 99%에서 70℃로 활성화하여 반응을 종료시켰다.45.0 parts by weight of butadiene monomer, 55.0 parts by weight of styrene, and 0.3 parts by weight of rosin salt are used, and the method of adding the emulsifier and controlling the reaction temperature is started at 55 ° C., and the particle size of the batch reaction is raised from 60% to 40 ° C. in a conversion rate of 2 hours later. In order to improve the stability, 0.2 parts by weight of rosin salt was added after heating up to 65 ° C. at a conversion rate of 70% or more, which was 6 hours after the reaction time, and the reaction was carried out, and the reaction was terminated by activating at 70 ° C. at 99% of the conversion rate after 12 hours.
최종물성에 영향을 줄 수 있는 라텍스의 기본물성은 다음 표 1과 같다.Basic properties of latex that can affect the final physical properties are shown in Table 1 below.
상기 표 1의 결과에 있어서, 겔 함량은 라텍스를 이소프로필알코올에 응고시켜 메틸알콜로 세척하여 건조시킨 후 톨루엔에 24시간 녹여서 불용분의 함량을 백분율로 나타낸 값이다.In the results of Table 1, the gel content is a value indicating the content of insoluble content in percent by dissolving latex in isopropyl alcohol, washing with methyl alcohol, drying, and then dissolved in toluene for 24 hours.
상기 표 1로부터 본 발명의 제조방법에 따라 얻어진 라텍스는 일반적인 스티렌-부타디엔 공중합체 라텍스와 대등한 물성을 가짐을 알 수 있다.It can be seen from Table 1 that the latex obtained according to the production method of the present invention has physical properties comparable to those of general styrene-butadiene copolymer latex.
상기 표 1과 같은 물성을 가진 실시예 1 및 비교예 1∼2에 따라 얻어진 라텍스를 다음과 같은 배합비로 라텍스 개질 콘크리트를 제조하였으며, 사용된 재료로서 시멘트는 1종 포틀랜트 시멘트, 굵은 골재는 13mm, 잔골재는 쇄사를 사용하였다.The latex modified concrete was prepared in the following compounding ratios of the latex obtained according to Example 1 and Comparative Examples 1 to 2 having the physical properties as shown in Table 1, and the cement used was one portland cement and 13 mm of coarse aggregate. , Fine aggregate used chain saw.
얻어진 라텍스 개질 콘크리트의 물리적 성질 및 체가름 곡선은 KS F 2505(골재의 체가름 시험방법), KS F 2503(굵은 골재의 비중 및 흡수율 시험 방법), KS F 2504(잔골재의 비중 및 흡수율 시험방법), KS F(골재의 단위 용적 중량)에 따라 시험하여 기준에 준하는 골재를 사용하였다.Physical properties and sieving curves of the latex modified concrete obtained were KS F 2505 (sieving test method of aggregate), KS F 2503 (testing method for specific gravity and water absorption of coarse aggregate), KS F 2504 (testing method for specific gravity and water absorption of fine aggregate) In accordance with the KS F (unit volume weight of aggregate), the test aggregate was used.
라텍스(실시예 1, 비교예 1, 2) 15 중량부15 parts by weight of latex (Example 1, Comparative Examples 1, 2)
시멘트 100 중량부100 parts by weight of cement
굵은 골재(13mm) 144 중량부Coarse aggregate (13 mm) 144 parts by weight
잔 골재 256 중량부Fine aggregate 256 parts by weight
이온수 156 중량부156 parts by weight of deionized water
한편, 휨 강도 시험을 위한 공시체의 제작은 KS F 2403(콘크리트 강도 시험용 공시체 제작방법)에 의거하여 공시체의 단면은 10cm의 정사각형이고 공시체의 길이는 40cm로 제작하였으며, 휨 강도 시험은 KS F 2407(콘크리트 휨 강도 시험방법)에 의거하여 시험하였다. 휨 강도는 다음의 식에 따라 계산하였다.On the other hand, the specimens for the flexural strength test were manufactured according to KS F 2403 (Method of Fabricating the Concrete Strength Test Specimens), and the specimens had a cross section of 10 cm and the length of the specimens were 40 cm, and the flexural strength test was performed using KS F 2407 ( Concrete flexural strength test method). Flexural strength was calculated according to the following equation.
R = 3PL / 2BD2 R = 3PL / 2BD 2
상기 식에서, R은 휨강도(kg/㎠)이고, P는 시험용 계기에 나타난 최대 하중 (kg)이며, L은 지간의 길이(cm)이고, B는 평균 나비(cm)이며, D는 평균 두께(cm)이다.Where R is the flexural strength (kg / cm 2), P is the maximum load (kg) shown on the test instrument, L is the length of the span (cm), B is the average butterfly (cm), and D is the average thickness ( cm).
물 흡수계수의 측정을 위하여 공시체의 제작은 Ø 15 × 30cm의 원형 몰드에 콘크리트 시료를 부어넣어 다짐봉으로 다진 후 위면을 평탄하게 마무리하여 제작하고, 양생은 28일간 양생시키며 양생이 끝난 공시체를 길이가 4cm가 되도록 커팅하여 물 흡수계수를 측정하였다.For the measurement of water absorption coefficient, the specimens were prepared by pouring concrete samples into a circular mold of Ø 15 × 30 cm, chopped with a compaction rod, and then finishing the top surface. Curing was cured for 28 days. The water absorption coefficient was measured by cutting to 4 cm.
구체적인 측정방법은 공시체를 건조기에 항량시킨 다음, 옆면에 파라핀 처리후 약 20℃의 물에 2∼10mm정도의 깊이로 담근다. 물에 담그기 전과 물에 담근 후 표면에 묻은 물은 젖은 헝겊 등을 이용하여 제거한 후 일정 시간 간격으로 공시체의 무게를 측정하였다. 물 흡수 계수는 KS F 2609의 6에 따라 계산하였다.The specific measuring method is to weigh the specimen in a dryer, and then immerse it at a depth of about 2 to 10 mm in water at about 20 ° C. after paraffin treatment on the side. Before immersion in water and after immersion in water, the water on the surface was removed using a wet cloth, etc., and then the weight of the specimens was measured at regular intervals. The water absorption coefficient was calculated according to 6 of KS F 2609.
상기의 배합 설계에 준하여 라텍스 개질 콘크리트의 휨 강도 및 물 흡수 계수를 측정한 결과는 다음 표 2와 같다.Based on the blending design described above, the results of measuring the flexural strength and water absorption coefficient of the latex modified concrete are shown in Table 2 below.
상기 표 2의 결과로부터, 본 발명의 제조방법에 따라 얻어진 스티렌-부타디엔 공중합체 라텍스를 포함하는 개질 콘크리트를 사용할 경우 강도가 향상되고 내수성이 향상됨을 알 수 있다.From the results of Table 2, it can be seen that when the modified concrete containing the styrene-butadiene copolymer latex obtained according to the production method of the present invention is improved in strength and water resistance.
이상에서 상세히 설명한 바와 같이, 본 발명에 따라 중합체 미셀을 형성시키는 초기중합단계를 거쳐 일정 전환율에 도달하면 연속으로 단량체를 투입하며 일정 전환율에서 일정온도로 승온하는 방법을 통해 얻어진 스티렌-부타디엔 공중합체 라텍스를 라텍스 개질 콘크리트 제조에 사용할 경우, 보통 콘크리트에 비하여 강도 특성 및 방수 성능이 향상된 라텍스 개질 콘크리트를 제조할 수 있다.As described in detail above, the styrene-butadiene copolymer latex obtained through the method of continuously increasing the monomer at a constant conversion rate when the constant conversion rate is reached through the initial polymerization step of forming a polymer micelle according to the present invention When used in the production of latex modified concrete, it is possible to produce a latex modified concrete with improved strength characteristics and waterproof performance than ordinary concrete.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2001-0029958A KR100441055B1 (en) | 2001-05-30 | 2001-05-30 | Manufacturing method of styrene-butadiene latex for modified concrete |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2001-0029958A KR100441055B1 (en) | 2001-05-30 | 2001-05-30 | Manufacturing method of styrene-butadiene latex for modified concrete |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20020091372A KR20020091372A (en) | 2002-12-06 |
KR100441055B1 true KR100441055B1 (en) | 2004-07-19 |
Family
ID=27707048
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR10-2001-0029958A KR100441055B1 (en) | 2001-05-30 | 2001-05-30 | Manufacturing method of styrene-butadiene latex for modified concrete |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100441055B1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160139478A (en) | 2015-05-27 | 2016-12-07 | 이봉규 | Manufacturing method of synthetic rubber latex synthetic rubber latex manufactured by the method and ecofriendly concrete composition using the same |
KR20190010406A (en) | 2018-03-09 | 2019-01-30 | 정의우 | Reforming concrete composition for semi-rigid pavement |
KR20190010407A (en) | 2018-03-09 | 2019-01-30 | 정의우 | Reforming concrete composition of superior waterproofing |
KR102094432B1 (en) | 2019-10-25 | 2020-03-27 | 주식회사 중앙폴리텍 | Latex modified ultra rapid hardening concrete composition using the hybrid synthetic rubber latex |
KR102094430B1 (en) | 2019-10-22 | 2020-03-30 | 주식회사 중앙폴리텍 | Latex modified ultra rapid hardening concrete composition having excellent curable property in low temperature using the flyash and rnace slag |
KR20200105567A (en) | 2019-02-28 | 2020-09-08 | 주식회사 중앙폴리텍 | Latex modified ultra rapid hardening concrete composition having excellent curable property in low temperature |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101222920B1 (en) * | 2009-12-18 | 2013-01-17 | 금호석유화학 주식회사 | Manufacturing method of styrene-butadiene latex for very early strength modified concrete |
KR102341532B1 (en) * | 2020-02-13 | 2021-12-22 | 금호석유화학 주식회사 | A modified aspalt binder composition comprising a latex and modified aspalt mixture comprising the same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05117308A (en) * | 1991-10-31 | 1993-05-14 | Takeda Chem Ind Ltd | Production of copolymer latex, copolymer latex and paper coating composition using the same |
KR950011483A (en) * | 1993-10-26 | 1995-05-15 | 김홍기 | Manufacturing method of high styrene-butadiene copolymer latex |
KR970061920A (en) * | 1996-02-24 | 1997-09-12 | 김흥기 | Method for producing butadiene-styrene copolymer latex for MBS resin production |
KR19980065751A (en) * | 1997-01-14 | 1998-10-15 | 김흥기 | Manufacturing method of latex for high strength rubber asphalt coating waterproofing agent |
-
2001
- 2001-05-30 KR KR10-2001-0029958A patent/KR100441055B1/en active IP Right Grant
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05117308A (en) * | 1991-10-31 | 1993-05-14 | Takeda Chem Ind Ltd | Production of copolymer latex, copolymer latex and paper coating composition using the same |
KR950011483A (en) * | 1993-10-26 | 1995-05-15 | 김홍기 | Manufacturing method of high styrene-butadiene copolymer latex |
KR970061920A (en) * | 1996-02-24 | 1997-09-12 | 김흥기 | Method for producing butadiene-styrene copolymer latex for MBS resin production |
KR19980065751A (en) * | 1997-01-14 | 1998-10-15 | 김흥기 | Manufacturing method of latex for high strength rubber asphalt coating waterproofing agent |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160139478A (en) | 2015-05-27 | 2016-12-07 | 이봉규 | Manufacturing method of synthetic rubber latex synthetic rubber latex manufactured by the method and ecofriendly concrete composition using the same |
KR20190010406A (en) | 2018-03-09 | 2019-01-30 | 정의우 | Reforming concrete composition for semi-rigid pavement |
KR20190010407A (en) | 2018-03-09 | 2019-01-30 | 정의우 | Reforming concrete composition of superior waterproofing |
KR20200105567A (en) | 2019-02-28 | 2020-09-08 | 주식회사 중앙폴리텍 | Latex modified ultra rapid hardening concrete composition having excellent curable property in low temperature |
KR102094430B1 (en) | 2019-10-22 | 2020-03-30 | 주식회사 중앙폴리텍 | Latex modified ultra rapid hardening concrete composition having excellent curable property in low temperature using the flyash and rnace slag |
KR102094432B1 (en) | 2019-10-25 | 2020-03-27 | 주식회사 중앙폴리텍 | Latex modified ultra rapid hardening concrete composition using the hybrid synthetic rubber latex |
Also Published As
Publication number | Publication date |
---|---|
KR20020091372A (en) | 2002-12-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0284303A (en) | Manufacture of concrete building product | |
CN114560656B (en) | Double-scale toughened cement-based composite material and application thereof | |
CN106995299B (en) | Economic and environment-friendly recycled steel fiber ultrahigh-performance concrete and preparation method thereof | |
KR101685141B1 (en) | Manufacturing method of synthetic rubber latex | |
KR100441055B1 (en) | Manufacturing method of styrene-butadiene latex for modified concrete | |
KR20130011560A (en) | Rapid setting concrete compound containing hydrophobic emulsion and repairing method of concrete structure using the compound | |
CN111196702A (en) | Polypropylene fiber modified cement stabilized macadam and preparation method thereof | |
CN112851221A (en) | Anti-disturbance concrete and preparation method thereof | |
KR102029956B1 (en) | Concrete composition containing polymer for concrete | |
KR101222920B1 (en) | Manufacturing method of styrene-butadiene latex for very early strength modified concrete | |
CN110509425B (en) | Concrete prefabricated wallboard and production process thereof | |
KR102181797B1 (en) | Latex composition for concrete manufacturing, process for producing the same, and concrete composition comprising the same | |
CN113816674B (en) | Recycled cement concrete with recycled waste asphalt and preparation method and application thereof | |
KR20010046084A (en) | Asphalt modifier of styrene-butadiene-styrene block copolymer and styrene-butadiene latex | |
KR102117503B1 (en) | Composition for manufacturing multiple synthetic polymers for mortar and concrete and method for manufacturing the same | |
KR101676293B1 (en) | Synthetic latex based acrylate for concrete confusion and producing method thereof | |
KR100386969B1 (en) | The method for manufacturing and Unsaturated Polyester Mortar | |
KR101665486B1 (en) | Overlay pavement and reinforcing method for bridge deck by synthetic latex modified concrete based acrylate for concrete confusion | |
CN114605663A (en) | Toughened water-based epoxy emulsified asphalt cold-patch material and preparation method thereof | |
KR20000025818A (en) | Preparation method of latex for asphalt modification preventing plastic deformation | |
CN111517728B (en) | Composition, prefabricated part and preparation method thereof | |
CN107902999A (en) | A kind of super high-early concrete and preparation method thereof | |
CN116217128B (en) | Polymer pavement material and preparation method thereof | |
CN118420839B (en) | Early-strength polycarboxylate superplasticizer and preparation method thereof | |
CN109280140A (en) | Cracking resistance reinforcing type polycarboxylic acid water-reducing agent and its preparation process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20130705 Year of fee payment: 10 |
|
FPAY | Annual fee payment |
Payment date: 20140703 Year of fee payment: 11 |
|
FPAY | Annual fee payment |
Payment date: 20150709 Year of fee payment: 12 |
|
FPAY | Annual fee payment |
Payment date: 20160708 Year of fee payment: 13 |
|
FPAY | Annual fee payment |
Payment date: 20170614 Year of fee payment: 14 |
|
FPAY | Annual fee payment |
Payment date: 20190627 Year of fee payment: 16 |