KR20110064058A - Redox flow battery electrolyte and production method thereof and redox flow battery produced thereby - Google Patents

Redox flow battery electrolyte and production method thereof and redox flow battery produced thereby Download PDF

Info

Publication number
KR20110064058A
KR20110064058A KR1020090120482A KR20090120482A KR20110064058A KR 20110064058 A KR20110064058 A KR 20110064058A KR 1020090120482 A KR1020090120482 A KR 1020090120482A KR 20090120482 A KR20090120482 A KR 20090120482A KR 20110064058 A KR20110064058 A KR 20110064058A
Authority
KR
South Korea
Prior art keywords
redox flow
added
flow battery
electrolyte
solution
Prior art date
Application number
KR1020090120482A
Other languages
Korean (ko)
Other versions
KR101180770B1 (en
Inventor
진창수
김훈욱
신경희
이범석
전명석
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Priority to KR1020090120482A priority Critical patent/KR101180770B1/en
Publication of KR20110064058A publication Critical patent/KR20110064058A/en
Application granted granted Critical
Publication of KR101180770B1 publication Critical patent/KR101180770B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0005Acid electrolytes
    • H01M2300/0008Phosphoric acid-based
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE: A method for preparing redox flow battery electrolyte is provided to lower manufacturing costs, to easily prepare electrolyte, and to accurately control the added amount of vanadium within a solution. CONSTITUTION: A method for preparing redox flow battery electrolyte, H2SO4 to which VOSO4 is added or H3PO4 to which VOHPO4 is added, used in redox flow comprises the steps of: adding a vanadium compound as a starting material to distilled water and stirring the mixture; adding a reducing agent to a vanadium compound aqueous solution in which the starting material is included; and adding H2SO4 or H3PO4 phosphoric acid to the reduced material.

Description

레독스 흐름전지 전해액 및 그 제조방법과 그것으로 제조된 레독스 흐름전지{REDOX FLOW BATTERY ELECTROLYTE AND PRODUCTION METHOD THEREOF AND REDOX FLOW BATTERY PRODUCED THEREBY}REDOX FLOW BATTERY ELECTROLYTE AND PRODUCTION METHOD THEREOF AND REDOX FLOW BATTERY PRODUCED THEREBY}

본 발명은 레독스 흐름전지에 사용되는 VOSO4가 용해된 H2SO4 전해액 또는 VOHPO4가 첨가된 H3PO4 전해액 제조방법에 관한 것으로, 더 상세하게는 바나듐 화합물 수용액에 환원제를 첨가하여 바나듐 화합물을 환원시키고, 이에 H2SO4 또는 H3PO4을 첨가하여 제조된 VOSO4가 첨가된 H2SO4 또는 VOHPO4가 첨가된 H3PO4 전해액 및 그 제조방법과 그것으로 제조된 레독스 흐름전지에 관한 것이다.The present invention relates to a method of preparing H 2 SO 4 electrolyte in which VOSO 4 is dissolved or H 3 PO 4 electrolyte in which VOHPO 4 is added, and more particularly, to a vanadium compound aqueous solution by adding a reducing agent to vanadium compound solution. by reduction of the compound, whereby H 2 SO 4 or H 3 PO of the VOSO 4 the addition of addition of the 4 prepared H 2 SO 4 or VOHPO 4 the addition of H 3 PO 4 made of a liquid electrolyte and a manufacturing method thereof and its les It relates to a dox flow battery.

최근 지구 온난화의 주요 원인인 온실가스 배출을 억제하기 위한 방법으로 태양광에너지나 풍력에너지 같은 재생에너지가 각광을 받고 있으며 이들의 실용화 보급을 위해 많은 연구가 진행되고 있다. Recently, renewable energy, such as solar energy and wind energy, has been spotlighted as a method for suppressing greenhouse gas emission, which is a major cause of global warming, and a lot of researches are being carried out for their practical use.

그러나 재생에너지는 입지환경이나 자연조건에 의해 크게 영향을 받는다. 더 욱이, 재생에너지는 출력 변동이 심하기 때문에 에너지를 연속적으로 고르게 공급할 수 없다는 단점이 있다. However, renewable energy is greatly affected by the site environment and natural conditions. Furthermore, there is a disadvantage in that the renewable energy cannot supply the energy continuously evenly because the output fluctuates severely.

따라서, 재생에너지를 가정용이나 상업용으로 사용하기 위해서는 출력이 높을 때 에너지를 저장하고 출력이 낮을 때 저장된 에너지를 사용할 수 있는 시스템을 도입하여 사용하고 있다.Therefore, in order to use renewable energy for home or commercial use, a system that stores energy when the output is high and uses the stored energy when the output is low is used.

이러한 에너지 저장 시스템으로는 대용량 이차전지가 사용되는데, 일례로, 대규모 태양광발전 및 풍력발전 단지에는 대용량 이차전지 저장시스템이 도입되어져 있다. A large capacity secondary battery is used as such an energy storage system. For example, a large capacity secondary battery storage system is introduced into a large-scale photovoltaic and wind farm.

상기 대용량의 전력저장을 위한 이차전지로는 납축전지, NaS 전지 그리고 레독스 흐름 전지 (RFB, redox flow battery) 등이 있다. The secondary battery for storing a large amount of power includes a lead acid battery, a NaS battery, and a redox flow battery (RFB).

상기 납축전지는 다른 전지에 비해 상업적으로 널리 사용되고 있으나 낮은 효율 및 주기적인 교체로 인한 유지 보수의 비용과 전지 교체시 발생하는 산업폐기물의 처리문제 등의 단점이 있다. NaS 전지의 경우 에너지 효율이 높은 것이 장점이나 300℃이상의 고온에서 작동하는 단점이 있다. 레독스 흐름 전지는 유지 보수 비용이 적고 상온에서 작동가능하며 용량과 출력을 각기 독립적으로 설계할 수 있는 특징이 있기 때문에 최근 대용량 2차전지로 많은 연구가 진행되고 있다.The lead acid battery is widely used commercially compared to other batteries, but has disadvantages such as low efficiency and cost of maintenance due to periodic replacement and disposal of industrial waste generated during battery replacement. In the case of NaS battery, the energy efficiency is high, but there is a disadvantage in operating at a high temperature of more than 300 ℃. The redox flow battery has been researched as a large capacity secondary battery recently because it has low maintenance cost, can operate at room temperature, and can independently design capacity and output.

상기 레독스 흐름 전지의 전해액은 산화환원쌍(redox couple)을 갖는 물질이 용액에 용해될 수 있고 그 반응이 가역적일때 적용이 가능하다. 초기 레독스 전지의 전해액은 양극과 음극에 서로 다른 물질의 산화환원쌍을 적용하여 사용하였으나, 충방전 동안 이온화된 물질들이 분리막을 통해 서로 교차하는 현상(cross contamination)이 발생하여 용량이 감소하는 단점이 대두되었다.The electrolyte of the redox flow battery is applicable when a substance having a redox couple can be dissolved in the solution and the reaction is reversible. The electrolyte of the early redox battery was used by applying redox pairs of different materials to the positive electrode and the negative electrode, but the capacity decreased due to cross contamination between the ionized materials through the separator during charge and discharge. This has risen.

따라서 이온 교차현상을 최소화 할 수 있는 방법으로 바나듐을 양극과 음극에 같이 사용하는 것이 제시되었으며 바나듐을 전해액에 적용시 높은 전지전압을 얻을 수 있을 뿐 아니라 좋은 싸이클 수명을 얻을 수 있다. Therefore, it is suggested to use vanadium together in the anode and cathode as a method to minimize the ion crossover phenomenon. When vanadium is applied to the electrolyte, high battery voltage can be obtained and good cycle life can be obtained.

기존의 바나듐계 전해액은 대개 VOSO4를 증류수와 혼합된 황산에 용해시켜 사용하는데, VOSO4은 V2O5에 비해 약 10배 이상 가격이 비싸고 물질 내 수분함유량이 일정하지 않기 때문에 용액내의 바나듐 첨가량을 정확히 조절할 수 없는 단점이 있다.Conventional vanadium-based electrolyte is usually used by dissolving VOSO 4 in sulfuric acid mixed with distilled water, and VOSO 4 is about 10 times more expensive than V 2 O 5 and the amount of vanadium in the solution is not constant because the water content in the material is not constant. There is a disadvantage that can not be precisely adjusted.

이러한 단점을 최소화하기 위해 Kazacos등은 V2O5 또는 바나듐 무기염 등을 VOSO4이 용해된 용액 또는 VOSO4이 용해되지 않은 용액에 첨가한 뒤 전해환원하여 전해액을 제조하는 방법을 발표하였다(PCT/AU88/00471). 또한 VOSO4이 용해된 용액에 환원제(옥살산)와 V2O5이 첨가된 산을 첨가하거나 NH4VO3가 첨가된 황산용액에 환원제(옥살산)를 첨가하여 전해액을 제조하는 방법 역시 같이 제시하였다. In order to minimize these disadvantages, Kazacos et al. Published a method for preparing an electrolyte by adding V 2 O 5 or vanadium inorganic salt to a solution in which VOSO 4 is dissolved or in a solution in which VOSO 4 is not dissolved and then electrolytically reduced (PCT / AU88 / 00471). In addition, a method of preparing an electrolyte by adding an acid containing a reducing agent (oxalic acid) and V 2 O 5 to a solution in which VOSO 4 is dissolved or a sulfuric acid solution containing NH 4 VO 3 is added. .

그러나 이들의 방법은 시간이 오래 걸리거나 전해액에 불순물이 잔류하는 단점이 있으므로, 이를 해소할 수 있는 새로운 제조방법에 대한 연구가 필요하다.However, since these methods take a long time or have disadvantages in that impurities remain in the electrolyte, a study on a new manufacturing method that can solve the problem is required.

이에 본 발명에 따른 레독스 흐름전지 전해액 및 그 제조방법과 그것으로 제조된 레독스 흐름전지는,Accordingly, the redox flow battery electrolyte according to the present invention and a method for manufacturing the same and a redox flow battery manufactured therefrom are

바나듐 화합물을 용해시키지 않은 상태에서 환원제를 첨가하여 바나듐 화합물을 환원시킨 뒤 산을 첨가하여 전해액을 제조함으로써, 제조비용을 낮추고, 쉽고 빠르게 제조할 수 있으며, 용액내 바나듐 첨가량을 정확하게 제어할 수 있는 제조방법 및 전해액과 그것으로 제조된 레독스 흐름전지의 제공을 목적으로 한다.By reducing the vanadium compound by adding a reducing agent in the state in which the vanadium compound is not dissolved, and then adding an acid to prepare an electrolyte solution, the manufacturing cost can be lowered, it can be easily and quickly prepared, and the production can accurately control the amount of vanadium in the solution. It is an object of the present invention to provide a method and electrolyte solution and a redox flow battery produced therefrom.

상기 과제를 해소하기 위한 본 발명의 레독스 흐름전지 전해액 제조방법은,Redox flow battery electrolyte production method of the present invention for solving the above problems,

레독스 흐름전지에 사용되는 VOSO4가 첨가된 H2SO4 또는 VOHPO4가 첨가된 H3PO4인 전해액의 제조방법에 있어서, 증류수에 바나듐화합물인 출발물질을 첨가하여 교반시키고, 상기 출발물질이 포함된 바나듐화합물 수용액에 환원제를 첨가하여 환원시킨 후 H2SO4 또는 H3PO4 인 산을 첨가하여 제조한다.The starting material LES in the manufacturing method of the electrolyte VOSO 4 is a H 2 SO 4 or VOHPO 4 added was added H 3 PO 4 used in the redox flow cell, and stirred by the addition of the starting material vanadium compound in distilled water, After reducing by adding a reducing agent to the aqueous solution of the vanadium compound contained therein is prepared by adding H 2 SO 4 or H 3 PO 4 phosphoric acid.

이 때 상기 출발물질은 V2O5, V2O3, V2O4, NH4VO3 중 일종 또는 이종이상 선택사용하며, 상기 환원제는 바나듐화합물이 첨가된 증류수에 NH4OH를 바나듐화합물 대비 0.01~10 mol의 몰비율로 첨가하여 화합물의 염기를 바꾼 다음에 환원제를 첨가하도록 할 수 있다. At this time, the starting material is one or more selected from V 2 O 5 , V 2 O 3 , V 2 O 4 , NH 4 VO 3 , the reducing agent is a vanadium compound NH 4 OH in distilled water to which the vanadium compound is added It can be added to the molar ratio of 0.01 to 10 mol relative to change the base of the compound and then to add a reducing agent.

또한, 상기 제조방법에 의해 제조된 VOSO4가 첨가된 H2SO4 레독스 흐름전지 전해액은, 바나듐 농도는 0.001M~10M 이고, H2SO4 농도는 0.001M~16M이며; VOHPO4가 첨가된 H3PO4 레독스 흐름전지 전해액은, 바나듐 농도는 0.001M~10M 이고, H3PO4 농도는 0.001M~12M이다.The VOSO 4 -added H 2 SO 4 redox flow battery electrolyte prepared by the above production method had a vanadium concentration of 0.001M to 10M, and a H 2 SO 4 concentration of 0.001M to 16M; In the H 3 PO 4 redox flow battery electrolyte to which VOHPO 4 was added, the vanadium concentration was 0.001M to 10M, and the H 3 PO 4 concentration was 0.001M to 12M.

본 발명의 전해액을 사용한 레독스 흐름전지는 VOSO4가 첨가된 H2SO4 또는 VOHPO4가 첨가된 H3PO4 전해액을 양극, 음극, 양극과 음극으로 사용할 수 있다. Redox flow cell using the electrolyte solution of the present invention can be used in the H 3 PO 4 electrolyte of the VOSO 4 the addition of H 2 SO 4 or VOHPO 4 added in an anode, a cathode, an anode and a cathode.

또한, 본 발명에 의해 제조된 전해액을 전해환원한 후 음극 또는 양극과 음극의 전해액으로 사용하는 레독스 흐름전지를 제공할 수 있다. In addition, it is possible to provide a redox flow battery that is used as an electrolyte solution of a cathode or an anode and a cathode after electrolytic reduction of the electrolyte solution prepared by the present invention.

이상에서 상세히 기술한 바와 같이 본 발명의 레독스 흐름전지 전해액 및 그 제조방법과 그것으로 제조된 레독스 흐름전지는,As described in detail above, the redox flow battery electrolyte of the present invention, a method for manufacturing the same, and a redox flow battery manufactured therefrom are

VOSO4가 첨가된 H2SO4와 VOHPO4가 첨가된 H3PO4의 바나듐계 레독스 전해액 제조 단가를 낮추고, 쉽고 빠르게 전해액 제조가 가능할 뿐 아니라 용액내 바나듐 첨가량을 정확하게 제어할 수 있어 불순물을 최소화하는 효과가 있다. VOSO 4 the addition of H 2 SO 4 and the VOHPO 4 is lower vanadium redox electrolyte manufacturing cost of the addition of H 3 PO 4, easy and fast to impurities can be accurately controlled to within a vanadium addition amount, as well as possible, the electrolyte solution prepared It has the effect of minimizing.

본 발명에 따른 VOSO4가 첨가된 H2SO4 또는 VOHPO4가 첨가된 H3PO4인 레독스 흐름전지 전해액 제조방법은,H 3 PO 4 in a redox flow battery electrolyte production method is the invention as H 2 SO 4 is added according to the VOSO 4 or VOHPO 4 is added,

증류수에 바나듐 화합물인 출발물질을 첨가하여 교반시키고, 이에 환원제를 첨가하여 출발물질을 환원시킨 후 산을 첨가하여 제조된다. 여기서 산은 H2SO4 또는 H3PO4 를 사용한다.A starting material, a vanadium compound, is added to the distilled water, followed by stirring, and then a reducing agent is added to reduce the starting material, followed by addition of an acid. The acid here uses H 2 SO 4 or H 3 PO 4 .

상기 증류수는 정제된 증류수를 포함한다.The distilled water includes purified distilled water.

상기 바나듐화합물인 출발물질은, V2O5, V2O3, V2O4, NH4VO3를 사용한다. As the starting material which is the vanadium compound, V 2 O 5 , V 2 O 3 , V 2 O 4 , NH 4 VO 3 are used.

또한, 상기 출발물질에 환원제를 첨가하기 이전에 바나듐화합물 수용액에 NH4OH를 첨가하여 화합물의 염기를 바꾼 다음 환원제가 첨가되도록 할 수 있다. 이때 상기 NH4OH의 첨가비율은 바나듐산화물 대비 0.01~10mol의 몰비율로 첨가할 수 있다. 즉, 바나듐산화물이 0.001M~10M 로 첨가될때 NH4OH는 0.01~10M의 비율로 첨가할 수 있다. In addition, NH 4 OH may be added to the vanadium compound aqueous solution before adding the reducing agent to the starting material to change the base of the compound, and then the reducing agent may be added. In this case, the addition ratio of NH 4 OH may be added in a molar ratio of 0.01 to 10 mol relative to vanadium oxide. That is, when vanadium oxide is added in 0.001M ~ 10M NH 4 OH may be added in a ratio of 0.01 ~ 10M.

그리고, 환원제로는 N2H4(hydrazine) 및 N2H4수화물, HO2CCO2H(oxalic acid) 및 HO2CCO2H수화물, NaBH4(sodium borohydride) 및 NaBH4수용액을 사용한다.As the reducing agent, N 2 H 4 (hydrazine) and N 2 H 4 hydrate, HO 2 CCO 2 H (oxalic acid) and HO 2 CCO 2 H hydrate, NaBH 4 (sodium borohydride) and NaBH 4 aqueous solution are used.

즉, 출발물질을 증류수에 첨가하여 용액내에 완전히 교반시키고, N2H4(hydrazine)및 N2H4수화물 , HO2CCO2H(oxalic acid)및 HO2CCO2H수화물, NaBH4(sodium borohydride) 및 NaBH4수용액 등의 환원제를 사용하여 출발물질을 환 원시킨다. 이후 H2SO4와 H3PO4를 첨가하여 VOSO4가 첨가된 H2SO4또는 VOHPO4가 첨가된 H3PO4을 제조한다. That is, the starting material was added to distilled water and stirred thoroughly in the solution, and N 2 H 4 (hydrazine) and N 2 H 4 hydrate, HO 2 CCO 2 H (oxalic acid) and HO 2 CCO 2 H hydrate, NaBH 4 (sodium Reducing agents such as borohydride) and NaBH 4 aqueous solution are used to reduce the starting materials. After the prepared H 2 SO 4 and H 3 PO 4 was added to the VOSO 4 is the addition of H 2 SO 4 or 4 VOHPO adding H 3 PO 4.

상기 제조방법으로 제조된 VOSO4가 첨가된 H2SO4전해액은 바나듐 몰농도가 0.001M~10M이고, H2SO4 몰농도가 0.001M~16M을 갖는다.The VOSO 4 added H 2 SO 4 electrolyte prepared by the preparation method has a vanadium molar concentration of 0.001M to 10M, and a H 2 SO 4 molar concentration of 0.001M to 16M.

또한, VOHPO4가 첨가된 H3PO4전해액은 바나듐 몰농도가 0.001M~10M이고, H3PO4 몰농도가 0.001M~12M을 갖는다.In addition, the H 3 PO 4 electrolyte solution to which VOHPO 4 was added has a vanadium molar concentration of 0.001M to 10M, and a H 3 PO 4 molar concentration of 0.001M to 12M.

이러한 전해액을 이용하여 레독스 전지를 제조할 수 있으며, 이때 상기 전해액은 양극전해액이나 음극전해액 중 어느 일측 또는 양극과 음극전해액 모두에 사용할 수 있다. 또한 상기 전해액은 전해환원 한 후 음극전해액으로 사용하거나 양극과 음극전해액 모두에 사용할 수 있다.The redox battery may be manufactured using the electrolyte, and the electrolyte may be used for any one of the positive electrolyte and the negative electrolyte or both the positive and negative electrolytes. In addition, the electrolyte may be used as a cathode electrolyte after electrolytic reduction, or may be used for both the cathode and the cathode electrolyte.

아울러 상기 VOSO4가 첨가된 H2SO4 전해액 또는 VOSO4가 첨가된 H2SO4 전해액을 전해환원하여 사용한 레독스 흐름전지는, 0~2V의 범위에서 0.01~100㎃h/㎖의 용량을 제공하고, VOHPO4가 첨가된 H3PO4 전해액 또는 VOHPO4가 첨가된 H3PO4 전해액을 전해환원하여 사용한 레독스 흐름전지는 0~2.5V의 범위에서 0.01~150㎃/㎖의 용량을 제공한다.In addition, the capacity of 0.01 to 100㎃h / ㎖ from the scope of the VOSO 4 the addition of H 2 SO 4 electrolyte or VOSO redox flow cell using the electrolyte 4 are reduced to a H 2 SO 4 is added to the electrolyte solution, 0 ~ 2V service, and a redox flow battery used to VOHPO 4 the addition of H 3 PO 4 electrolyte, or electrolytic reduction VOHPO 4 is a H 3 PO 4 electrolyte solution is added a 0.01 to capacity 150㎃ / ㎖ in the range of 0 ~ 2.5V to provide.

이하, 실시예를 통해 본 발명을 보다 상세하게 설명하며, 이는 본 발명의 이해를 돕기 위해 제시된 예일 뿐, 본 발명이 이에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to examples, which are only examples presented to aid the understanding of the present invention, and the present invention is not limited thereto.

실시예 1Example 1

1M의 VOSO4가 첨가된 3M의 H2SO4 100mL를 제조Prepare 100 mL of 3M H 2 SO 4 with 1M VOSO 4 added

먼저 증류수 69.45mL를 준비하였다. First, 69.45 mL of distilled water was prepared.

여기에 산화가가 +5가인 V2O5 (순도 : 99%) 0.5M (9.19g)을 첨가하여 증류수 내에서 완전히 혼합하였다. To this was added 0.5 M (9.19 g) of V 2 O 5 (purity: 99%) having an oxidation value of +5 and thoroughly mixed in distilled water.

바나듐의 산화가를 +5가에서 +4가로 환원시키기 위해 혼합된 바나듐을 용액에 N2H4ㅇH2O (hydrazine monohydrate, 순도 : 98%)을 0.25M (1.28mL) 첨가하였다. N2H4ㅇH2O를 첨가함에 따라 용액의 색깔은 옅은 청색에서 카키색으로 변화하여 최종적으로 암갈색의 용액으로 변했다. 0.25 M (1.28 mL) of N 2 H 4 OH H 2 O (hydrazine monohydrate, purity: 98%) was added to the mixed vanadium to reduce the oxidation value of vanadium from +5 to + tetravalent. With the addition of N 2 H 4 OH H 2 O the color of the solution changed from pale blue to khaki and finally to a dark brown solution.

이 용액에 H2SO4 (순도 : 99.999%)을 4M (21.32mL)을 첨가하였다. H2SO4을 4M 첨가하는 이유는 VOSO4 1M생성과 H2SO4가 용액내에 3M이 있어야 하기 때문이다. H2SO4을 첨가함에 따라 용액의 색깔은 암갈색에서 진한 청색으로, 진한 청색에서 진한파랑으로 변하며 최종적으로 파란색의 용액이 얻어졌다. 제작 과정의 용액 변화를 도 1에 도시하였다.To this solution was added H 2 SO 4 (purity: 99.999%) 4M (21.32 mL). The reason for the addition of 4M H 2 SO 4 is that in the VOSO 4 have the 3M 1M generated and H 2 SO 4 solution. As H 2 SO 4 was added, the color of the solution changed from dark brown to dark blue and from dark blue to dark blue, and finally a blue solution was obtained. The solution change of the manufacturing process is shown in FIG. 1.

실시예 2Example 2

2M의 VOSO4가 첨가된 6M의 H2SO4 100mL를 제조Prepare 100 mL of 6 M H 2 SO 4 with 2 M VOSO 4

실시예 1과 같은 방법으로 증류수 34.03mL, V2O5 1M (18.37g), N2H4ㅇH2O 0.5M (2.55mL), H2SO4 7M (42.64mL)을 첨가하였다.In the same manner as in Example 1, 34.03 mL of distilled water, V 2 O 5 1M (18.37 g), N 2 H 4 OH 2 O 0.5M (2.55 mL), and H 2 SO 4 7M (42.64 mL) were added.

제조된 용액의 색깔은 최종적으로 파란색이였으나 실시예1 보다 더 짙은 파란색의 용액을 얻었다. The color of the prepared solution was finally blue, but a darker blue solution than Example 1 was obtained.

실시예 3Example 3

1M의 VOHPO4가 첨가된 5M의 H3PO4 (순도 : 85%) 100mL를 제조Prepare 100 mL of 5 M H 3 PO 4 (purity: 85%) to which 1 M of VOHPO 4 was added.

실시예 1과 같은 방법으로 증류수 67.67mL, V2O5 0.5M (9.19g), N2H4ㅇH2O 0.25M (1.28mL), H3PO4 4M (27.45mL)을 첨가하였다. In the same manner as in Example 1, 67.67 mL of distilled water, 0.5 M (9.19 g) of V 2 O 5 , 0.25 M of N 2 H 4 OH 2 O (1.28 mL), and 4 M (27.45 mL) of H 3 PO 4 were added.

제조된 용액의 색깔은 최종적으로 파란색이였으나 실시예1 과 2 와는 달리 탁한 파란색의 용액을 얻었다. 제작 과정의 용액 변화 그림을 도 2에 도시하였다.The color of the prepared solution was finally blue, but unlike Examples 1 and 2, a turbid blue solution was obtained. The solution change figure of the manufacturing process is shown in FIG.

실시예 4Example 4

3M의 VOHPO4가 첨가된 5M의 H3PO4 100mL를 제조100 mL of 5 M H 3 PO 4 with 3 M of VOHPO 4 was prepared.

실시예 1.과 같은 방법으로 증류수 30.47mL, V2O5 1.5M (27.56g), N2H4ㅇH2O 0.75M (3.83mL), H3PO4 6M (54.9mL)을 첨가하였다. Distilled water 30.47 mL, V 2 O 5 1.5 M (27.56 g), N 2 H 4 OH H 2 O 0.75 M (3.83 mL), and H 3 PO 4 6M (54.9 mL) were added in the same manner as in Example 1. .

제조된 용액의 색깔은 최종적으로 파란색이였으나 실시예 3보다 더 짙은 파란색의 용액을 얻었다. 그러나 용질이 완전히 용해되지 않은 용액이 얻어졌다. The color of the prepared solution was finally blue but a darker blue solution than Example 3 was obtained. However, a solution was obtained in which the solute was not completely dissolved.

실시예 5Example 5

1M의 VOSO4가 첨가된 3M의 H2SO4 100mL를 제조Prepare 100 mL of 3M H 2 SO 4 with 1M VOSO 4 added

먼저 증류수 70.62mL를 준비하였다. First, 70.62 mL of distilled water was prepared.

여기에 산화가가 +5가인 V2O5 0.5M (9.19g)을 첨가하여 증류수 내에서 완전히 혼합하였다.0.5 M (9.19 g) of V 2 O 5 having an oxidation value of +5 was added thereto and mixed thoroughly in distilled water.

다음으로 NH4OH (순도 : 28%)용액을 1M (6.78mL) 첨가하여 혼합하였다. 혼합 시간이 지나감에 따라 용액 내 V2O5분말의 색은 엷어진다. Next, NH 4 OH (purity: 28%) solution was added with 1M (6.78 mL) and mixed. As the mixing time passes, the color of the V 2 O 5 powder in the solution fades.

그 후, 바나듐의 산화가를 +5가에서 +4가로 환원시키기 위해 혼합된 바나듐을 용액에 N2H4ㅇH2O을 0.25M (1.28mL) 첨가하였다. N2H4ㅇH2O를 첨가함에 따라 용액의 색깔은 옅은 청색에서 카키색으로 변화하여 최종적으로 암갈색의 용액으로 변했다.Thereafter, 0.25 M (1.28 mL) of N 2 H 4 OH H 2 O was added to the mixed vanadium to reduce the oxidation value of vanadium from +5 to + tetravalent. With the addition of N 2 H 4 OH H 2 O the color of the solution changed from pale blue to khaki and finally to a dark brown solution.

이 용액에 H2SO4을 4M (21.32mL)을 첨가하였다. H2SO4을 첨가함에 따라 용액의 색깔은 암갈색에서 진한 청색으로, 진한 청색에서 진한파랑으로 변하며 최종적으로 파란색의 용액이 얻어졌다.To this solution was added 4M (21.32 mL) of H 2 SO 4 . As H 2 SO 4 was added, the color of the solution changed from dark brown to dark blue and from dark blue to dark blue, and finally a blue solution was obtained.

실시예 6Example 6

1M의 VOHPO4가 첨가된 3M의 H3PO4 100mL를 제조100 mL of 3M H 3 PO 4 to which 1M of VOHPO 4 was added was prepared.

실시예 5와 같은 방법으로 증류수 67.67mL, V2O5 0.5M (9.19g), NH4OH 용액을 1M (6.78mL), N2H4ㅇH2O을 0.25M (1.28mL), H3PO4을 4M (27.45mL)을 첨가하였다. 67.67 mL of distilled water, 0.5 M (9.19 g) of V 2 O 5, 1 M of NH 4 OH solution (6.78 mL), 0.25 M of N 2 H 4 OH 2 O (1.28 mL), H 3 PO 4 was added 4M (27.45 mL).

제조된 용액의 색깔은 실시예 3과 가까운 파란색의 용액을 얻었다.The color of the prepared solution obtained a blue solution close to Example 3.

실시예 7Example 7

1M의 VOSO4가 첨가된 3M의 H2SO4 100mL를 제조Prepare 100 mL of 3M H 2 SO 4 with 1M VOSO 4 added

먼저 증류수 73.28mL를 준비하였다. First, 73.28 mL of distilled water was prepared.

여기에 HO2CCO2H (oxalic acid, 순도 : 99.5%)을 0.5M (6.34g) 첨가하여 약 2시간 정도 혼합하였다. 혼합된 용액은 HO2CCO2H가 용액내에 완전히 용해하지 않은 상태였다. HO 2 CCO 2 H (oxalic acid, purity: 99.5%) was added 0.5M (6.34g) and mixed for about 2 hours. The mixed solution was in a state where HO 2 CCO 2 H was not completely dissolved in the solution.

HO2CCO2H가 혼합된 용액에 V2O5 0.5M (9.19g)을 첨가하여 증류수 내에서 혼합하였다. 0.5 M (9.19 g) of V 2 O 5 was added to the solution mixed with HO 2 CCO 2 H and mixed in distilled water.

그 후, H2SO4을 4M (21.32mL)을 첨가하였다. Thereafter, 4M (21.32 mL) was added to H 2 SO 4 .

H2SO4첨가후 장시간에 걸쳐 용액의 색깔은 암갈색에서 파란색의 용액이 얻어졌다. 그러나 용액내 HO2CCO2H가 잔류한 상태였다. The color of the solution was dark brown to blue for a long time after the addition of H 2 SO 4 . However, HO 2 CCO 2 H remained in solution.

실시예 8Example 8

실시예 1로 제작된 물질의 충방전 특성을 알아보기 위해 레독스 전지를 제작하였다. In order to determine the charge and discharge characteristics of the material produced in Example 1, a redox battery was manufactured.

전극은 carbon felt를 사용하였으며, 전극의 활성화를 위해 500도에서 5시간동안 열처리 하여 사용하였다. Electrode was used as carbon felt and heat treated at 500 ° C for 5 hours to activate the electrode.

current collector는 carbon plate를 사용하였으며 분리막은 Nafion 117을 사용하였다. Carbon plates were used as the current collector and Nafion 117 was used as the separator.

실시예 1로 제작된 물질을 양극전해액으로 사용하였고, 음극전해액은 실시예 1로 제작된 물질을 전해환원하여 사용하였으며, 이때 전해액은 각각 3㎖를 사용하였다. The material prepared in Example 1 was used as the positive electrode electrolyte, and the negative electrode electrolyte was used by electrolytic reduction of the material produced in Example 1, wherein the electrolyte solution was used in each 3ml.

제작된 레독스 전지에 5, 10, 20, 40, 60, 80㎃/㎠로 전류를 인가하였을 때 용량변화를 표 1에 도시하였고, 이때 각각의 전류밀도에서 시간에 따른 전압 변화를 도 3a 내지 도 3f에 도시하였다.The capacity change when the current is applied at 5, 10, 20, 40, 60, 80 mA / cm 2 to the manufactured redox battery is shown in Table 1, wherein the voltage change with time at each current density is shown in FIGS. 3f.

전류밀도(mA/㎠)Current density (mA / ㎠) 방전용량(mAh)Discharge Capacity (mAh) 55 22.322.3 1010 24.824.8 2020 24.124.1 4040 22.622.6 6060 20.720.7 8080 16.416.4

실시예 9Example 9

실시예 1로 제작된 물질의 충방전 특성을 알아보기 위해 레독스 전지를 실시예 8과 같은 방법으로 제작하였다. In order to determine the charge and discharge characteristics of the material produced in Example 1, a redox battery was manufactured in the same manner as in Example 8.

실시예 1로 제작된 물질을 양극전해액과 음극전해액으로 사용하였다. The material produced in Example 1 was used as the positive electrolyte and the negative electrolyte.

제작된 레독스 전지에 10, 20, 40, 60, 80㎃/㎠로 전류를 인가하였을 때 용량변화를 표 2에 도시하였으며, 이때 10, 20, 40㎃/㎠의 전류밀도에서 시간에 따른 전압 변화를 도 4a 내지 도 4c에 도시하였다.The capacity change when a current of 10, 20, 40, 60, 80 mA / cm 2 was applied to the manufactured redox battery is shown in Table 2, wherein the voltage with time at a current density of 10, 20, 40 mA / cm 2 The change is shown in FIGS. 4A-4C.

전류밀도(mA/㎠)Current density (mA / ㎠) 방전용량(mAh)Discharge Capacity (mAh) 1010 63.163.1 2020 33.033.0 4040 1.51.5 6060 0.70.7 8080 0.20.2

실시예 10Example 10

실시예 3으로 제작된 물질의 충방전 특성을 알아보기 위해 레독스 전지를 실시예 8과 같은 방법으로 제작하였다. In order to determine the charge and discharge characteristics of the material produced in Example 3, a redox battery was manufactured in the same manner as in Example 8.

실시예 3으로 제작된 물질은 양극전해액으로 사용할 수 없었는데, 이는 VOHPO4는 충전동안 불용성인 노란색을 띄는 VOPO4로 변화하여 석출되기 때문이다. The material prepared in Example 3 could not be used as anolyte electrolyte because VOHPO 4 changed to precipitated VOPO 4 , which is insoluble yellow during charging.

석출된 물질의 X-선 회절 pattern은 도 5에 도시하였다. X-ray diffraction pattern of the deposited material is shown in FIG.

따라서, 실시예 3으로 제작된 물질을 전해환원하여 양극전해액과 음극전해액으로 사용하였다. Therefore, the material produced in Example 3 was electrolytically reduced and used as the positive electrolyte and the negative electrolyte.

제작된 레독스 전지에 5, 10, 20, 40, 60, 80㎃/㎠로 전류를 인가하였을 때 용량변화를 표 3에 도시하였으며, 이때 각각의 전류밀도에서 시간에 따른 전압 변화를 도 6a 내지 도 6f에 도시하였다.The capacity change when the current is applied at 5, 10, 20, 40, 60, 80 mA / cm 2 to the manufactured redox battery is shown in Table 3, wherein the voltage change with time at each current density is shown in FIGS. 6f.

전류밀도(mA/㎠)Current density (mA / ㎠) 방전용량(mAh)Discharge Capacity (mAh) 55 49.549.5 1010 49.449.4 2020 39.839.8 4040 27.327.3 6060 13.913.9 8080 4.64.6

도 1은 본 발명의 실시일예에 의해 H2SO4 첨가량 증가에 따른 용액 색깔변화를 나타낸 사진.1 is a photograph showing the color change of the solution according to the increase in the amount of H 2 SO 4 by the embodiment of the present invention.

도 2는 본 발명의 실시일예에 의해 H3PO4 첨가량 증가에 따른 용액 색깔변화를 나타낸 사진.Figure 2 is a photograph showing the color change of the solution with increasing amount of H 3 PO 4 by an embodiment of the present invention.

도 3a 내지 도 3f는 본 발명의 실시예에서 VOSO4가 첨가된 H2SO4 을 양극전해액으로 사용한 전지의 각 전류밀도에서 시간에 따른 전압 변화를 나타낸 그래프.3A to 3F are graphs showing voltage changes with time at each current density of a battery using H 2 SO 4 to which VOSO 4 is added as a positive electrolyte in an embodiment of the present invention.

도 4a 내지 도 4c는 본 발명의 실시예에서 VOSO4가 첨가된 H2SO4 양극전해액과 음극전해액으로 사용한 전지의 각 전류밀도에서 시간에 따른 전압 변화를 나타낸 그래프.4A to 4C illustrate H 2 SO 4 added with VOSO 4 in the embodiment of the present invention. A graph showing the change in voltage with time at each current density of a battery used as a positive electrolyte and a negative electrolyte.

도 5는 본 발명의 실시예에서 VOHPO4가 첨가된 H3PO4 를 양극전해액으로 사용했을 때 석출된 물질의 X-선 회절 pattern.FIG. 5 is an X-ray diffraction pattern of a precipitated material when H 3 PO 4 to which VOHPO 4 is added is used as an anode electrolyte in an embodiment of the present invention. FIG.

도 6a 내지 도 6f는 본 발명의 실시예에서 VOHPO4가 첨가된 H3PO4 을 전해환원하여 양극전해액과 음극전해액으로 사용한 전지의 각 전류밀도에서 시간에 따른 전압 변화를 나타낸 그래프.6a to 6f are graphs showing the voltage change with time at each current density of a battery used as an anode electrolyte and a cathode electrolyte by electrolytic reduction of H 3 PO 4 to which VOHPO 4 is added in an embodiment of the present invention.

Claims (10)

레독스 흐름전지에 사용되는 VOSO4가 첨가된 H2SO4 또는 VOHPO4가 첨가된 H3PO4인 전해액의 제조방법에 있어서,In the manufacturing method of the electrolyte VOSO 4 the addition of H 2 SO 4 or VOHPO 4 is added H 3 PO 4 used in the redox flow cell, 증류수에 바나듐화합물인 출발물질을 첨가하여 교반시키고, 상기 출발물질이 포함된 바나듐화합물 수용액에 환원제를 첨가하여 환원시킨 후 H2SO4 또는 H3PO4 인 산을 첨가하여 제조되는 것을 특징으로 하는 레독스 흐름전지 전해액 제조방법.It is prepared by adding a starting material which is a vanadium compound to distilled water, stirring and reducing the solution by adding a reducing agent to an aqueous solution of vanadium compound containing the starting material, and then adding H 2 SO 4 or H 3 PO 4 phosphoric acid. Redox flow battery electrolyte production method. 제1항에 있어서,The method of claim 1, 상기 출발물질은 V2O5, V2O3, V2O4, NH4VO3 중 일종 또는 이종 이상 선택사용하는 것을 특징으로 하는 레독스 흐름전지 전해액 제조방법.The starting material V 2 O 5 , V 2 O 3 , V 2 O 4 , NH 4 VO 3 One or more kinds of heterogeneous redox flow battery electrolyte production method characterized in that the use of the selection. 제1항에 있어서,The method of claim 1, 상기 바나듐화합물 수용액에는 NH4OH를 첨가하여 화합물의 염기를 바꾼 다음 환원제를 첨가하도록 한 것을 특징으로 하는 레독스 흐름전지 전해액 제조방법.The method of manufacturing a redox flow battery electrolyte, wherein the vanadium compound solution is added with NH 4 OH to change the base of the compound and then a reducing agent is added. 제3항에 있어서,The method of claim 3, wherein 상기 NH4OH의 첨가 비율은 바나듐화합물 대비 0.01~10 mol의 몰비율로 첨가 하는 것을 특징으로 하는 레독스 흐름전지 전해액 제조방법.The addition rate of the NH 4 OH is a redox flow battery electrolyte production method, characterized in that added in a molar ratio of 0.01 to 10 mol compared to the vanadium compound. 제1항 내지 제3항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 3, 상기 환원제는 N2H4(hydrazine) 및 N2H4수화물 , HO2CCO2H(oxalic acid) 및 HO2CCO2H수화물, NaBH4(sodium borohydride) 및 NaBH4수용액 중 일종 선택사용하는 것을 특징으로 하는 레독스 흐름전지 전해액 제조방법.The reducing agent may be selected from N 2 H 4 (hydrazine) and N 2 H 4 hydrate, HO 2 CCO 2 H (oxalic acid) and HO 2 CCO 2 H hydrate, NaBH 4 (sodium borohydride) and NaBH 4 aqueous solution Redox flow battery electrolyte production method characterized in that. 제1항 내지 제3항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 3, 상기 환원제의 첨가비율은 바나듐화합물 대비 0.01~10 mol의 몰비율로 첨가하는 것을 특징으로 하는 레독스 흐름전지 전해액 제조방법.Redox flow battery electrolyte production method characterized in that the addition ratio of the reducing agent is added in a molar ratio of 0.01 to 10 mol relative to the vanadium compound. 청구항 1 내지 6의 제조방법으로 제조된 VOSO4가 첨가된 H2SO4 레독스 흐름전지 전해액은,VOSO 4 added H 2 SO 4 redox flow battery electrolyte prepared by the method of claim 1, 바나듐 농도는 0.001M~10M 이고, H2SO4 농도는 0.001M~16M인 것을 특징으로 하는 레독스 흐름전지 전해액.Redox flow battery electrolyte, characterized in that the vanadium concentration is 0.001M ~ 10M, H 2 SO 4 concentration is 0.001M ~ 16M. 청구항 1 내지 6의 제조방법으로 제조된 VOHPO4가 첨가된 H3PO4 레독스 흐름전지 전해액은,The H 3 PO 4 redox flow battery electrolyte added with VOHPO 4 prepared by the method of claim 1, 바나듐 농도는 0.001M~10M 이고, H3PO4 농도는 0.001M~12M인 것을 특징으로 하는 레독스 흐름전지 전해액.Vanadium concentration is 0.001M ~ 10M, H 3 PO 4 concentration is a redox flow battery electrolyte, characterized in that 0.001M ~ 12M. 레독스 흐름전지에 있어서,In a redox flow battery, 청구항 1 내지 6의 제조방법에 의해 청구항 7의 조성을 갖는 VOSO4가 첨가된 H2SO4 또는 청구항 1 내지 6의 제조방법에 의해 청구항 8의 조성을 갖는 VOHPO4가 첨가된 H3PO4을,H 2 SO 4 to which VOSO 4 having the composition of claim 7 is added by the method of claim 1 to 6 or H 3 PO 4 to which VOHPO 4 having the composition of claim 8 is added to the method of claim 1 to 6, 양극, 음극, 양극과 음극의 전해액으로 사용한 것을 특징으로 하는 레독스 흐름전지.Redox flow battery, characterized in that used as the electrolyte of the positive electrode, the negative electrode, the positive electrode and the negative electrode. 레독스 흐름전지에 있어서,In a redox flow battery, 청구항 1 내지 6의 제조방법에 의해 청구항 7의 조성을 갖는 VOSO4가 첨가된 H2SO4 또는 청구항 1 내지 6의 제조방법에 의해 청구항 8의 조성을 갖는 VOHPO4가 첨가된 H3PO4을,H 2 SO 4 to which VOSO 4 having the composition of claim 7 is added by the method of claim 1 to 6 or H 3 PO 4 to which VOHPO 4 having the composition of claim 8 is added to the method of claim 1 to 6, 전해환원한 후 음극 또는 양극과 음극의 전해액으로 사용한 것을 특징으로 하는 레독스 흐름전지.Redox flow battery, characterized in that used as an electrolytic solution of the cathode or anode and cathode after electrolytic reduction.
KR1020090120482A 2009-12-07 2009-12-07 Redox flow battery electrolyte and production method thereof and redox flow battery produced thereby KR101180770B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090120482A KR101180770B1 (en) 2009-12-07 2009-12-07 Redox flow battery electrolyte and production method thereof and redox flow battery produced thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090120482A KR101180770B1 (en) 2009-12-07 2009-12-07 Redox flow battery electrolyte and production method thereof and redox flow battery produced thereby

Publications (2)

Publication Number Publication Date
KR20110064058A true KR20110064058A (en) 2011-06-15
KR101180770B1 KR101180770B1 (en) 2012-09-07

Family

ID=44397557

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090120482A KR101180770B1 (en) 2009-12-07 2009-12-07 Redox flow battery electrolyte and production method thereof and redox flow battery produced thereby

Country Status (1)

Country Link
KR (1) KR101180770B1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015182917A1 (en) * 2014-05-26 2015-12-03 롯데케미칼 주식회사 Method for manufacturing positive electrode electrolyte for redox flow battery and redox flow battery
WO2015190889A1 (en) * 2014-06-13 2015-12-17 주식회사 엘지화학 Vanadium solution, electrolyte comprising same, secondary battery comprising same, and method for preparing same
KR101602952B1 (en) 2015-08-21 2016-03-14 주식회사 주신테크 Manufacturing equipment of electrolyte for redox flow battery comprising punched electrode with lattice structure
CN106006735A (en) * 2016-05-16 2016-10-12 武汉理工大学 Method for preparing vanadium trioxide through bone coal vanadium extracting vanadium-rich liquid
KR102235379B1 (en) * 2020-08-28 2021-04-02 한국지질자원연구원 Method for manufacturing vanadium electrolyte, the vanadium electrolyte manufactured by the same and cell using the same
KR102286706B1 (en) * 2020-09-29 2021-08-06 솔브레인 주식회사 Method for producing vanadium electrolyte
KR102286709B1 (en) * 2020-11-03 2021-08-06 솔브레인 주식회사 Apparatus for producing vanadium electrolyte
KR102286707B1 (en) * 2020-10-30 2021-08-06 솔브레인 주식회사 Method and apparatus for producing vanadium electrolyte
WO2022114926A1 (en) * 2020-11-30 2022-06-02 롯데케미칼 주식회사 Method for producing electrolyte for vanadium redox flow battery
KR102474181B1 (en) * 2021-09-27 2022-12-02 스탠다드에너지(주) Method of synthesizing electroyte for vanadium redox battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4567254B2 (en) * 2000-09-29 2010-10-20 新興化学工業株式会社 Method for producing electrolyte for vanadium redox flow battery

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015182917A1 (en) * 2014-05-26 2015-12-03 롯데케미칼 주식회사 Method for manufacturing positive electrode electrolyte for redox flow battery and redox flow battery
US9972859B2 (en) 2014-05-26 2018-05-15 Lotte Chemical Corporation Method for preparing cathode electrolyte for redox flow batteries, and redox flow battery
WO2015190889A1 (en) * 2014-06-13 2015-12-17 주식회사 엘지화학 Vanadium solution, electrolyte comprising same, secondary battery comprising same, and method for preparing same
US10096842B2 (en) 2014-06-13 2018-10-09 Lg Chem, Ltd. Vanadium solution, electrolyte comprising same, secondary battery comprising same, and method for preparing same
KR101602952B1 (en) 2015-08-21 2016-03-14 주식회사 주신테크 Manufacturing equipment of electrolyte for redox flow battery comprising punched electrode with lattice structure
CN106006735A (en) * 2016-05-16 2016-10-12 武汉理工大学 Method for preparing vanadium trioxide through bone coal vanadium extracting vanadium-rich liquid
KR102235379B1 (en) * 2020-08-28 2021-04-02 한국지질자원연구원 Method for manufacturing vanadium electrolyte, the vanadium electrolyte manufactured by the same and cell using the same
KR102286706B1 (en) * 2020-09-29 2021-08-06 솔브레인 주식회사 Method for producing vanadium electrolyte
KR102286707B1 (en) * 2020-10-30 2021-08-06 솔브레인 주식회사 Method and apparatus for producing vanadium electrolyte
KR102286709B1 (en) * 2020-11-03 2021-08-06 솔브레인 주식회사 Apparatus for producing vanadium electrolyte
WO2022114926A1 (en) * 2020-11-30 2022-06-02 롯데케미칼 주식회사 Method for producing electrolyte for vanadium redox flow battery
KR102474181B1 (en) * 2021-09-27 2022-12-02 스탠다드에너지(주) Method of synthesizing electroyte for vanadium redox battery

Also Published As

Publication number Publication date
KR101180770B1 (en) 2012-09-07

Similar Documents

Publication Publication Date Title
KR101180770B1 (en) Redox flow battery electrolyte and production method thereof and redox flow battery produced thereby
CN101635363B (en) Vanadium ion redox flow battery electrolyte, preparation method thereof and battery thereof
CN101572319B (en) Electrolyte for all-vanadium redox flow battery and preparation method thereof, and all-vanadium redox flow battery including the electrolyte
JP6231202B2 (en) All vanadium redox flow battery and operation method thereof
JP6650444B2 (en) All vanadium sulfate acid redox flow battery system
CN112563521B (en) Alkaline water-system mixed liquid flow battery based on electroactive phenazine derivative negative electrode
CN103326055B (en) Zinc cathode electrolyte applied to redox battery
CN105006585A (en) Preparation method of electrolyte for all-vanadium redox-flow battery
CN111628185B (en) Pyrroline/alkyl nitrogen oxygen free radical compound water system organic flow battery
JP6349414B2 (en) Method for producing positive electrode electrolyte for redox flow battery and redox flow battery
CN102110837A (en) Preparation method of electrolyte for vanadium redox battery (VRB)
KR20140017191A (en) Electrolyte for redox flow battery and method for manufacturing thereof
JP2017528401A (en) Applications of tungsten-containing materials
KR20140017185A (en) Electrolyte for redox flow battery and method for manufacturing thereof
CN102881931A (en) Phosphorus-containing all-vanadium redox flow battery anode electrolyte
CN106876767B (en) A kind of positive electrolyte for all-vanadiumredox flow battery containing additive
CN100511798C (en) All-vanadium redox flow battery electrolytic solution preparation method
KR20190124865A (en) Preparation method of high concentration vanadium electrolyte for vanadium redox flow battery
CN115992357A (en) Preparation method of electrolyte of all-vanadium redox flow battery
CN104852074A (en) Method for preparing all-vanadium redox flow battery positive electrolyte via electrolytic synthesis method
CN108123174A (en) A kind of Alkaline Zinc iron liquid galvanic battery anode electrolyte and application
CN114447386A (en) Preparation method of all-vanadium redox flow battery electrolyte
CN109473669B (en) Na2Ti6O13Preparation method of negative electrode material of sodium-ion battery
CN109473714B (en) Preparation method and application of magnesium-sulfur battery electrolyte
CN106450400A (en) All-vanadium redox flow battery

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150902

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160905

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170921

Year of fee payment: 6