KR20110062440A - Support system for lateral driving and control method thereof - Google Patents

Support system for lateral driving and control method thereof Download PDF

Info

Publication number
KR20110062440A
KR20110062440A KR1020090119162A KR20090119162A KR20110062440A KR 20110062440 A KR20110062440 A KR 20110062440A KR 1020090119162 A KR1020090119162 A KR 1020090119162A KR 20090119162 A KR20090119162 A KR 20090119162A KR 20110062440 A KR20110062440 A KR 20110062440A
Authority
KR
South Korea
Prior art keywords
steering
vehicle
lateral
departure
angle
Prior art date
Application number
KR1020090119162A
Other languages
Korean (ko)
Inventor
이재관
Original Assignee
현대자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR1020090119162A priority Critical patent/KR20110062440A/en
Publication of KR20110062440A publication Critical patent/KR20110062440A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/10Path keeping
    • B60W30/12Lane keeping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/20Conjoint control of vehicle sub-units of different type or different function including control of steering systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/12Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to parameters of the vehicle itself, e.g. tyre models
    • B60W40/13Load or weight
    • B60W2040/1323Moment of inertia of the vehicle body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • B60W2050/143Alarm means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/20Steering systems
    • B60W2510/202Steering torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/12Lateral speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/12Lateral speed
    • B60W2520/125Lateral acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/14Yaw
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/18Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/30Road curve radius
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/803Relative lateral speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/20Steering systems
    • B60W2710/202Steering torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/10Path keeping
    • B60Y2300/12Lane keeping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/30Sensors
    • B60Y2400/303Speed sensors

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Human Computer Interaction (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

PURPOSE: A lateral driving support system and control method thereof are provided to make electronic platform of the lateral driving support system by controlling lateral safety steering using modulated software. CONSTITUTION: A control method of a lateral driving support system includes the following steps: extracting information which includes a departure angle and a departure distance of a vehicle from an image gained through an image sensor; estimating information related to steering; calculating steering torque with integrated status space equation; measuring departure estimated distance of the vehicle from road information; and controlling a steering actuator with the calculated steering torque.

Description

횡방향주행 지원시스템 및 그 제어방법{Support system for lateral driving and control method thereof}Support system for lateral driving and control method

본 발명은 자동차의 횡방향주행 지원시스템 및 그 제어방법에 관한 것이다. 보다 상세하게는 자동차의 차선이탈경보, 차선유지지원 및 횡풍에 의한 횡외란에 대한 횡안전 조향제어를 통합적으로 행할 수 있는 자동차의 횡방향주행 지원시스템 및 그 제어방법에 관한 것이다.The present invention relates to a lateral driving support system for a vehicle and a control method thereof. More specifically, the present invention relates to a lateral driving assistance system for a vehicle capable of performing lateral safety steering control against lane departure warning, lane keeping support, and lateral disturbance caused by lateral wind.

종래 자동차에서, 횡방향 주행안전과 관련하여서는 차선이탈경보장치, 차선유지지원장치 및 횡안전 조향제어장치가 개별적으로 구성되어 있다. 차선이탈경보장치는 영상센서로부터 주행차선의 기하학적인 정보를 인식하여 차량이 차선이탈되는 것이 예상될 경우 음원장치나 전동안전벨트 등을 사용하여 운전자에게 경보해 주는 기능을 하는 장치이다. 또한 차선유지지원장치는 차량이 주행차선을 추종하여 주행할 수 있도록 조향토크를 조향엑추에이터에 제공하여 실시간으로 운전자의 핸들 및 조향조작에 필요한 조향력을 지원하는 기능을 하는 장치이다. 마지막으로 횡안전 조향제어장치는 횡풍과 같은 횡외란의 영향으로 운전자의 조향능력이 감소하거나 횡안정 능력이 저하되는 등 주행 안정성에 문제가 발생되는 것을 방지하기 위 해서, 횡풍에 의한 차량 영향을 실시간으로 관측하여 그 영향을 최소화하거나 억제하도록 운전자에게 경보하거나 능동조향제어하는 기능을 하는 장치이다. 따라서 종래의 자동차는 차선이탈시 운전자에게 경보하거나, 차선을 추종하도록 지원하거나, 횡풍에 의해서 외란이 발생할 경우의 제어 등을 개별적으로 행하였다. In the related art, the lane departure warning device, the lane keeping support device, and the lateral safety steering control device are individually configured with respect to the transverse driving safety. The lane departure warning device recognizes the geometric information of the driving lane from the image sensor and is a device that alerts the driver by using a sound source device or an electric safety belt when the vehicle is expected to leave the lane. In addition, the lane maintenance support device is a device that provides steering torque to the steering actuator in real time to support the steering force required for the driver's steering and steering operation so that the vehicle can drive following the driving lane. Lastly, the lateral safety steering control device prevents the driver's steering ability or lateral stability from being affected by lateral disturbances such as breezes. It is a device that functions to alert the driver or to actively control the steering so as to minimize the effect of the observation and observe it. Therefore, in the conventional automobile, the driver is warned when the lane is departed, the vehicle is supported to follow the lane, or when the disturbance occurs due to the cross wind, the control is performed separately.

한편, 최근 자동차의 성능 및 가격은 하드웨어에서 소프트웨어로 그 비중이 옮겨가 있으며, 이에 따라서 파워트레인, 새시, 엔진 등 하드웨어 플랫폼과 더불어 ECU의 배치 및 처리성능, 네크워크 구성 및 소프트웨어 배치등의 전자플랫폼에 대한 연구가 활발하게 진행되고 있다. On the other hand, the performance and price of automobiles are shifting from hardware to software in recent years. Accordingly, hardware platforms such as power trains, chassis, engines, etc., along with electronic platforms such as ECU deployment and processing performance, network configuration and software deployment, etc. The research is being actively conducted.

이러한 개발과정에서 종래 개별적으로 이루지고 있었던 차선이탈경보장치, 차선유지지원장치 및 횡안전 조향제어장치의 기능을 통합적으로 제어할 수 있는 횡방향주행 지원시스템 및 그 제어방법이 필요하게 되었다. In this development process, there is a need for a lateral driving support system and a control method capable of integrally controlling the functions of the lane departure warning device, the lane keeping support device, and the lateral safety steering control device.

본 발명은 이러한 요구에 의해서 제안된 것으로, 차선이탈경보, 차선유지지원 및 횡안전 조향 제어를 통합적으로 제어할 수 있는 횡방향주행 지원시스템 및 그 제어방법을 제공하는 것을 목적으로 한다.The present invention has been proposed by such a request, and an object of the present invention is to provide a transverse driving assistance system and a control method thereof capable of integrally controlling lane departure warning, lane keeping support, and lateral safety steering control.

상기 목적을 달성하기 위해서 본 발명에 따르는 횡방향주행 지원시스템은, 차량에 설치된 영상센서를 통해서 얻어진 영상으로부터 차량의 이탈각 및 이탈거리를 포함하는 도로정보를 추출하는 도로정보추출기; 차량에 설치된 센서들로부터 차량자세 및 조향에 관련된 정보를 받아들이고 이를 이용하여 조향각속도, 횡속도 및 외풍에 의한 횡외란 성분을 포함하는 조향관련정보를 추정하는 관측기; 상기 도로정보추출기 및 관측기로부터의 도로정보 및 조향관련정보를, 조향각속도, 조향각, 횡속도, 요레이트, 이탈각 및 이탈거리를 상태변수로 하는 통합상태공간방정식에 사용하여 조향토크를 산출하는 제어부; 그리고 상기 제어부로부터 전달되는 상기 조향토크의 출력신호에 의해서 제어되는 조향엑추에이터를 포함하는 것을 특징으로 한다. In order to achieve the above object, the lateral driving support system according to the present invention comprises: a road information extractor for extracting road information including a departure angle and a departure distance of the vehicle from an image obtained through an image sensor installed in the vehicle; An observer that receives information related to vehicle attitude and steering from sensors installed in the vehicle and estimates steering related information including steering angle velocity, transverse velocity and lateral disturbance caused by draft by using the same; Control unit for calculating steering torque by using the road information and steering related information from the road information extractor and the observer in an integrated state space equation with steering angle speed, steering angle, lateral speed, yaw rate, departure angle and departure distance as state variables ; And a steering actuator controlled by an output signal of the steering torque transmitted from the control unit.

또한 본 발명에 따르는 횡방향주행 지원시스템에서 상기 제어부는, 상기 조향토크의 출력신호를 출력하기 전에, 상기 도로정보로부터 차량의 이탈추정거리를 계산하고 차량의 속도와 대비하여, 차량이 차선을 이탈하는 정도에 따라서 복수개의 위험도로 구분하고 복수개의 위험도에 따라서 다른 종류의 경보장치를 제어하는 제어신호를 발생시키는 것을 특징으로 한다. In addition, in the lateral driving support system according to the present invention, the control unit calculates the departure distance of the vehicle from the road information before outputting the output signal of the steering torque, and in contrast with the speed of the vehicle, the vehicle leaves the lane It is characterized by generating a control signal for classifying a plurality of risks according to the degree of control and controlling different kinds of alarm devices according to the plurality of risks.

또한 본 발명에 따르는 횡방향주행 지원시스템에서, 상기 경보장치는 횡방향주행 지원시스템의 작동상태를 실시간으로 알려주는 HMI장치, 청각적으로 경고하는 스피커 및 촉각적으로 운전자에게 진동을 부여하는 진동장치인 것을 특징으로 한다. In addition, in the transverse driving support system according to the present invention, the alarm device is an HMI device for real-time notification of the operating state of the transverse driving support system, an acoustic warning speaker and a vibrating device for tactilely giving a vibration to the driver It is characterized by that.

또한 본 발명에 따르는 횡방향주행 지원시스템에서, 상기 차량에 설치된 센서들은, 횡가속도를 측정하는 횡가속도 센서, 조향휠의 조향각을 측정하는 조향각센서, 요각을 측정하는 관성센서 및 차량의 속도를 측정하는 차속센서를 포함하는 것을 특징으로 한다. In addition, in the lateral driving support system according to the present invention, the sensors installed in the vehicle, the lateral acceleration sensor for measuring the lateral acceleration, the steering angle sensor for measuring the steering angle of the steering wheel, the inertial sensor for measuring the yaw angle and the speed of the vehicle It characterized in that it comprises a vehicle speed sensor.

또한 본 발명에 따르는 횡방향주행 지원시스템 제어방법은, 차량에 설치된 영상센서를 통해서 얻어진 영상으로부터 차량의 이탈각 및 이탈거리를 포함하는 도로정보를 추출하는 단계; 차량에 설치된 센서들로부터 차량자세 및 조향에 관련된 값을 이용하여 조향각속도, 횡속도 및 외풍에 의한 횡외란 성분을 포함하는 조향관련정보를 추정하는 단계; 상기 도로정보 및 조향관련정보를, 조향각속도, 조향각, 횡속도, 요레이트, 이탈각 및 이탈거리를 상태변수로 하는 통합상태공간방정식에 사용하여 조향토크를 산출하는 단계; 상기 도로정보로부터 차량의 이탈추정거리를 계산하고 차량의 속도와 대비하여, 차량이 차선을 이탈하는 정도에 따라서 운전자에게 경보를 하는 단계; 그리고 상기 산출된 조향토크로 조향엑추에이터를 제어하는 단계를 포함하는 것을 특징으로 한다. In addition, the lateral driving assistance system control method according to the present invention comprises the steps of: extracting the road information including the departure angle and departure distance of the vehicle from the image obtained through the image sensor installed in the vehicle; Estimating steering related information including steering angular velocity, lateral velocity and lateral disturbance caused by draught by using values related to vehicle attitude and steering from sensors installed in the vehicle; Calculating steering torque by using the road information and steering related information in an integrated state space equation using steering angle speed, steering angle, lateral speed, yaw rate, deviation angle, and deviation distance as state variables; Calculating a distance estimating distance of the vehicle from the road information and alerting the driver according to the degree to which the vehicle leaves the lane in comparison with the speed of the vehicle; And controlling the steering actuator with the calculated steering torque.

본 발명은 조향각속도, 조향각, 요레이트, 이탈각 및 이탈거리의 상태변수로 가지는 통합상태공간방정식을 이용하여 자동차의 차선이탈경보, 차선유지지원 및 횡풍에 의한 횡외란에 대한 횡안전 조향제어를 통합적으로 행할 수 있다.The present invention utilizes an integrated state space equation with the state variables of steering angle speed, steering angle, yaw rate, departure angle and departure distance to control lateral safety steering for lateral disturbance caused by lane departure warning, lane maintenance support and cross wind. This can be done integrally.

또한 본 발명은 자동차의 차선이탈경보, 차선유지지원 및 횡풍에 의한 횡외란에 대한 횡안전 조향제어를 하나의 모듈화된 소프트웨이로 구현함으로써, 횡방향주행 지원시스템을 전자플랫폼화할 수 있다.In addition, the present invention implements the lateral safety steering control for lane departure warning, lane maintenance support and lateral disturbance caused by lateral wind as a modular software, it is possible to electronically transform the lateral driving support system.

이하, 첨부된 도면을 참조하여 본 발명에 따르는 횡방향주행 지원시스템에 관하여 보다 상세하게 설명한다. 도 1은 본 발명에 따르는 횡방향주행 지원시스템의 도로모델을 나타내는 도면이며, 도 2의 (a) 및 (b)는 본 발명에 따르는 횡방향주행 지원시스템의 차량모델 및 조향모델을 나타내는 도면이다.Hereinafter, with reference to the accompanying drawings will be described in more detail with respect to the transverse driving support system according to the present invention. 1 is a view showing a road model of the lateral driving support system according to the present invention, Figure 2 (a) and (b) is a view showing a vehicle model and a steering model of the lateral driving support system according to the present invention. .

먼저 본 발명에 따르는 차선이탈경보, 차선유지지원 및 횡안전 조향 제어를 통합적으로 제어할 수 있는 횡방향주행 지원시스템에 사용되는 통합상태공간방정식에 대해서 설명한다. 이러한 통합상태공간방정식은 단순화된 도로모델, 차량모델 및 조향모델을 사용하여 얻어지면, 다음과 같은 가정하에서 모델링 된다. First, an integrated state spatial equation used in a transverse driving support system capable of integrally controlling lane departure warning, lane keeping support, and lateral safety steering control according to the present invention will be described. This integrated state space equation is obtained using simplified road models, vehicle models, and steering models, and is modeled under the following assumptions.

① 차량이 주행하는 도로를 고속도로 또는 고속화도로로 제한함으로써 타이어와 현가장치의 비선형성을 고려하지 않는다. ① Do not consider the nonlinearity of tires and suspension systems by limiting the road on which the vehicle runs to highways or highways.

② 횡풍이 차량의 중심에만 작용한다고 가정함으로써 차량에 미치는 요모멘트(yaw moment) 외란을 고려하지 않는다. (2) Do not consider the yaw moment disturbance on the vehicle by assuming that cross winds act only on the center of the vehicle.

한편, 도 1 및 도 2에 도시된 상태변수 및 파라미터는 다음과 같이 정의된 다. αh는 조향각(steering wheel angle), Th는 드라이버 토크(driver torque), Tm는 조향토크(assist torque), δf는 전륜각(front wheel angle), ξ는 열 길이(trail length), kg는 조향 기어비(steering gear ratio), V는 차량 속속, β는 슬립각(slip angle), r은 요레이트(yaw rate), v는 횡속도(lateral velocity), yf는 이탈거리(departure distance from target line), θf는 이탈각(depature angle from target line), ρf는 차선의 곡률, Wr은 차선폭, Pc는 차량의 중력중심(vehicle's center gravity), Pi는 카메라의 관측 위치(view position of camera), Kf(Kr)는 코너링 파워(cornering power), If(Ir)는 차량의 중력중심으로부터 전륜(후륜)과의 거리(distance from vehicle's center gravity to front(rear) wheels), I는 차량 요운동에 의한 관성모멘트(vehicle yawing moment of inertia), Ih는 스티어링시스템의 등가관성모멘트(equivalent moment of inertia of steering system)이다.Meanwhile, the state variables and parameters shown in FIGS. 1 and 2 are defined as follows. α h is the steering wheel angle, T h is the driver torque, T m is the assist torque, δ f is the front wheel angle, ξ is the trail length, k g is steering gear ratio, V is vehicle speed, β is slip angle, r is yaw rate, v is lateral velocity and y f is departure distance from target line, θ f is deviation angle from target line, ρ f is lane curvature, Wr is lane width, P c is vehicle's center gravity, P i is camera observation View position of camera, K f (K r ) is the cornering power, I f (I r ) is the distance from vehicle's center gravity to front ( rear wheels), I is the vehicle yawing moment of inertia, and I h is the equivalent moment of inertia of steering system. em).

먼저, 도 1에 도시된 것과 같이 차량(10)에 설치된 카메라 등의 영상센서로 Pi 지점의 이미지를 취득하고, 이를 처리하여 얻어지는 주행차선과 차량과의 상대적인 관계를 나타내는 도로정보들을 변수 또는 입력값으로 하는 도로모델을 (식 1)로 나타낼 수 있다.First, as shown in FIG. 1, road information indicating a relative relationship between a driving lane and a vehicle obtained by acquiring an image of a Pi point by an image sensor such as a camera installed in the vehicle 10, and processing the variable or input value The road model can be expressed by Equation 1.

Figure 112009074781190-PAT00001
(식 1)
Figure 112009074781190-PAT00001
(Equation 1)

또한 도 2의 (a)에 도시한 차량모델은, 앞서 설명한 것과 같이 타이어와 현가장치의 비선형성을 고려하지 않는 2륜 차량모델을 사용한다. 그 결과 차량모델을 나타내는 미분방정식을 (식 2)와 같이 얻을 수 있다.In addition, the vehicle model shown in (a) of FIG. 2 uses a two-wheeled vehicle model that does not consider the nonlinearity of the tire and the suspension as described above. As a result, a differential equation representing the vehicle model can be obtained as shown in Equation 2.

Figure 112009074781190-PAT00002
(식 2)
Figure 112009074781190-PAT00002
(Equation 2)

여기서, φ는 횡외란으로, 횡외란(φ)는 횡풍외란(φcw)과 횡경사외란성분(φrb)의 합으로 표현된다.Here, φ is the transverse disturbance, and the transverse disturbance φ is expressed by the sum of the transverse disturbance (φ cw ) and the transverse slope disturbance component (φ rb ).

그리고, 도 2의 (b)에 도시한 조향모델은, 조향엑추에이터(13)가 조향휠(15)과 바퀴(11) 사이에 연결된 조향샤프트(16)에 장착되고, HPS(14)는 유압식동력 조향장치로 구성된다. 또한 조향모델은 강성이 충분히 크다고 가정(즉, 전륜각(δf)=αh/kg)하면, 킹핀주위에 대해서 환산한 조향모델에 관련된 수학식은 (식 3)으로 표현된다.And, the steering model shown in (b) of Figure 2, the steering actuator 13 is mounted to the steering shaft 16 connected between the steering wheel 15 and the wheel 11, HPS 14 is a hydraulic power It consists of steering system. In addition, assuming that the steering model has a sufficiently large rigidity (that is, the front wheel angle δf = α h / k g ), an equation related to the steering model converted for the kingpin periphery is expressed by (Equation 3).

Figure 112009074781190-PAT00003
Figure 112009074781190-PAT00003

(식 3)(Equation 3)

여기서, Ts->Tc 간의 비선형관계는 유압파워스티어리의 근사함수이다.Here, the nonlinear relationship between Ts-> Tc is an approximation function of the hydraulic power steer.

앞서 설명한 바와 같이 타이어와 현가장치의 비선형성을 고려하지 않게 되면

Figure 112009074781190-PAT00004
이 되고, 이를 고려하여 위 (식 1), (식 2) 및 (식 3)을 종합하면 조향각속도, 조향각, 요레이트, 이탈각 및 이탈거리의 상태변수
Figure 112009074781190-PAT00005
를 가지는 통합상태공간방정식을 (식 4)와 같은 형태로 얻을 수 있다.As mentioned earlier, if you do not take into account the nonlinearity of the tires and suspension,
Figure 112009074781190-PAT00004
In consideration of this, the equations (1), (2) and (3) above are combined to determine the state variables of steering angle speed, steering angle, yaw rate, departure angle, and departure distance.
Figure 112009074781190-PAT00005
An integrated state-space equation with can be obtained in the form

Figure 112009074781190-PAT00006
Figure 112009074781190-PAT00006

Figure 112009074781190-PAT00007
(식 4)
Figure 112009074781190-PAT00007
(Equation 4)

여기서,

Figure 112009074781190-PAT00008
는 횡가속도 센서(15, 도 3 참조)로부터 측정된 값을 의미한다. 그리고 (식 4)의 행렬에 포함되어 있는 파라미터들은 다음과 같이 정의될 수 있다.here,
Figure 112009074781190-PAT00008
Denotes a value measured from the lateral acceleration sensor 15 (see FIG. 3). The parameters included in the matrix of Equation 4 may be defined as follows.

Figure 112009074781190-PAT00009
Figure 112009074781190-PAT00009

Figure 112009074781190-PAT00010
Figure 112009074781190-PAT00010

본 발명에 따르는 (식 4)의 통합상태공간방정식을 이용하여 조향엑츄에이터를 제어하는 토크를 연산하고 이를 출력으로써 제어하는 것이다. 이를 위해서는 상태변수인 조향각속도, 조향각, 요레이트, 이탈각 및 이탈거리의 값은 센서 등을 통해서 얻은 정보를 사용하거나 이들 정보로부터 추정하여야 한다. 이를 위해서 본 발명은 도 3에 도시된 것과 같은 구성을 가진다. 도 3은 본 발명에 따르는 횡방향주행 지원시스템을 개략적으로 나타내는 도면이다. By using the integrated state-space equation of Equation 4 according to the present invention, the torque for controlling the steering actuator is calculated and controlled by the output. For this purpose, the values of the state variables steering angle speed, steering angle, yaw rate, departure angle, and departure distance should be estimated using these information or obtained from sensors. To this end, the present invention has a configuration as shown in FIG. 3 is a view schematically showing a transverse driving support system according to the present invention.

도 3을 참조하면, 본 발명에 따르는 횡방향주행 지원시스템은 도로정보추출기(20), 관측기(30) 및 제어부(40)를 포함한다. 도로정보추출기(20)는 차량(10)에 장착되어 있는 카메라 등의 영상센서(21)에 의해서 촬영된 이미지를 영상처리하여 도로정보를 추출한다. 특히 위 통합상태공간방정식에서 요구되는 이탈각(θf) 및 이탈거리(yf)에 대한 정보를 추출한다. Referring to FIG. 3, the transverse driving support system according to the present invention includes a road information extractor 20, an observer 30, and a controller 40. The road information extractor 20 extracts road information by image processing an image photographed by an image sensor 21 such as a camera mounted on the vehicle 10. In particular, it extracts information about the departure angle (θ f ) and the departure distance (y f ) required in the integrated state-space equation.

도로정보추출기(20)에서 사용되는 도로정보모델을 나타내는 도면인 도 4에서와 같이 높이(H)에 설치된 영상센서(21)는 경사각(α)을 가지고 주행차선에 대한 이미지를 취득하게 된다. 도로정보추출기(20)는 취득한 이미지로부터 다양한 영상처리프로세서를 통해서 주행차선을 인지해서 도 1에 도시된 것과 같이 주행차선에 대해서 좌우 6개의 후보점을 생성하고, 그 후보점들을 가지고 도로 정보들(이탈각(θf), 이탈거리(yf), 곡률(ρf))을 추출한다. 이를 위해서 도로정보추출기(20)는 (식 5)와 같이 정의된 함수를 사용한다. As shown in FIG. 4, which is a diagram illustrating a road information model used in the road information extractor 20, the image sensor 21 installed at the height H acquires an image of a driving lane with an inclination angle α. The road information extractor 20 recognizes the driving lane from the acquired image through various image processing processors to generate six left and right candidate points for the driving lane as shown in FIG. A departure angle θ f , a departure distance y f , and a curvature ρ f are extracted. For this purpose, the road information extractor 20 uses a function defined as in Equation (5).

Figure 112009074781190-PAT00011
(식 5)
Figure 112009074781190-PAT00011
(Equation 5)

여기서 f는 영상센서의 초점거리를 나타내며,Where f is the focal length of the image sensor,

Figure 112009074781190-PAT00012
이다.
Figure 112009074781190-PAT00012
to be.

(식 5)를 이용하여 도로 정보들(이탈각(θf), 이탈거리(yf) 곡률(ρf), 차선 폭(Wr), 경사각(α))을 추출하는 알고리즘은 (식 6)의 확장칼만필터(extended kalman filter)로써 설계된다.An algorithm for extracting road information (departure angle (θ f ), departure distance (y f ) curvature (ρ f ), lane width (W r ), and inclination angle (α)) using Equation 5 is given by Equation 6 It is designed as an extended kalman filter.

Figure 112009074781190-PAT00013
(식 6)
Figure 112009074781190-PAT00013
(Equation 6)

여기서, here,

Figure 112009074781190-PAT00014
,
Figure 112009074781190-PAT00015
,
Figure 112009074781190-PAT00014
,
Figure 112009074781190-PAT00015
,

Figure 112009074781190-PAT00016
이다.
Figure 112009074781190-PAT00016
to be.

P는 Xs의 오차 공분산(error covariance), R는 측정 잡음 분산(measurement noise variance), Q는 시스템 잡음의 공분산 행렬(covariance matrix of system noise)을 의미한다.P is the error covariance of X s , R is the measurement noise variance, and Q is the covariance matrix of system noise.

다음으로, 관측기(30)는 도 3에 도시한 것과 같이, 차량에 장착된 조향각센서(22), 관성센서(23), 차속센서(24) 및 횡가속도센선(25) 등을 포함하는 센서들로부터 주행 중인 차량의 자세 및 조향에 관련된 정보를 받아들이고, 이들 정보를 활용하여 상태변수인 횡속도(v) 및 횡외란 성분(φ)을 추정한다. 구체적으로는 요레이트(r)를 사용한다.Next, as shown in FIG. 3, the observer 30 includes sensors including a steering angle sensor 22, an inertial sensor 23, a vehicle speed sensor 24, a lateral acceleration line 25, and the like mounted on a vehicle. Information on the attitude and steering of the vehicle being driven is received from the vehicle, and the lateral speed v and the lateral disturbance component φ which are state variables are estimated using these information. Specifically, urate (r) is used.

이를 위해서 (식 7)과 같은 미분방정식이 사용된다.Differential equations such as (7) are used for this purpose.

Figure 112009074781190-PAT00017
Figure 112009074781190-PAT00017

Figure 112009074781190-PAT00018
(식 7)
Figure 112009074781190-PAT00018
(Equation 7)

(식 7)은 가관측성(observability)을 만족하기 때문에 횡속도(v) 및 횡외란 성분(φ)인 횡풍외란(φcw)과 횡경사외란성분(φrb)은 (식 8)에 의해서 구해진다. Since Eq. (7) satisfies the observability, the transverse velocity (v) and the transverse disturbance component (φ) and the transverse disturbance (φ cw ) and the transverse gradient disturbance component (φ rb ) are obtained according to (Equation 8). Become.

Figure 112009074781190-PAT00019
(식 8)
Figure 112009074781190-PAT00019
(Expression 8)

여기서,

Figure 112009074781190-PAT00020
은 추정이득행렬이다.here,
Figure 112009074781190-PAT00020
Is the estimated gain matrix.

한편, 관측기(30)는 차량의 자세 및 조향에 관련된 정보로부터 조향각속도(

Figure 112009074781190-PAT00021
)를 추정한다.On the other hand, the observer 30 is a steering angular velocity (from the information related to the attitude and steering of the vehicle)
Figure 112009074781190-PAT00021
Estimate).

마지막으로 제어부(40)는 도로정보추출기(20)로부터 추출되는 이탈각(θf) 및 이탈거리(yf) 및 관측기(30)로부터 추정되는 조향각속도(

Figure 112009074781190-PAT00022
), 횡속도(v) 및 횡외란 성분(φ)인 횡풍외란(φcw)과 횡경사외란성분(φrb), 그리고 요레이트(r)를 사용하여 조향엑추에이터를 제어하는 조향토크(Tm)를 구한다. 조향토크(Tm)은 피이드백토크(
Figure 112009074781190-PAT00023
)와 횡풍 및 곡률에 대한 견인성 및 추종성을 결정하는 피이드포워드토크(
Figure 112009074781190-PAT00024
)로 구성되며 (식 9)에 의해서 구해진다. Finally, the control unit 40 is a departure angle (θ f ) and departure distance (y f ) extracted from the road information extractor 20 and the steering angle velocity estimated from the observer 30 (
Figure 112009074781190-PAT00022
Steering torque (T m ), which controls the steering actuator using lateral wind (v) and transverse disturbance (φ cw ), transverse disturbance (φ rb ), and yaw rate (r). ) Steering torque (T m ) is feedback torque (
Figure 112009074781190-PAT00023
) And feedforward torque to determine the traction and followability to transverse wind and curvature (
Figure 112009074781190-PAT00024
) And is obtained by (9).

Figure 112009074781190-PAT00025
Figure 112009074781190-PAT00025

Figure 112009074781190-PAT00026
Figure 112009074781190-PAT00026

Figure 112009074781190-PAT00027
(식 9)
Figure 112009074781190-PAT00027
(Eq. 9)

Figure 112009074781190-PAT00028
(식 10)
Figure 112009074781190-PAT00028
(Eq. 10)

여기서, [k 1 k 2 k 3 k 4 k 5 k 6 ]는 LQ 제어이론(평가 함수)인 (식 10)에 의해서 유도되는 피드백루프의 제어이득을 의미하며, k f1 , k f2 는 횡풍에 의한 영향을 줄이고 도로 곡률을 추종하기 위한 피이드포워드루프의 제어이득을 의미한다. (식 10)에서

Figure 112009074781190-PAT00029
는 상태 변수의 가중치를 나타낸다. Here, [ k 1 k 2 k 3 k 4 k 5 k 6 ] denotes the control gain of the feedback loop induced by LQ control theory (evaluation function) (Eq. 10), and k f1 and k f2 correspond to the cross wind. It means the control gain of the feedforward loop to reduce the influence and follow the curvature of the road. In (Eq. 10)
Figure 112009074781190-PAT00029
Denotes the weight of the state variable.

통합상태공간방정식의 상태변수인 조향각속도, 조향각, 요레이트, 이탈각 및 이탈거리의

Figure 112009074781190-PAT00030
는 위 (식 10)에 대입되어 피이드백토크(
Figure 112009074781190-PAT00031
)를 구하는데 사용된다. Steering angle velocity, steering angle, yaw rate, departure angle and departure distance of the state variables of the integrated state-space equation
Figure 112009074781190-PAT00030
Is substituted into Eq. (10) and feedback torque (
Figure 112009074781190-PAT00031
Is used to find

이렇게 구해진 조향토크(Tm)는 도 3에 도시된 출력수단(50) 중의 조향엑추에이터(13)의 입력값으로 사용된다. 이로 인해서 차량에 의해서 감지되는 도로정보, 차량의 자세정보 및 조향정보를 통합적으로 처리하여 차량의 횡방향주행을 지원할 수 있게 된다.The steering torque T m thus obtained is used as the input value of the steering actuator 13 in the output means 50 shown in FIG. As a result, the road information detected by the vehicle, the attitude information and the steering information of the vehicle may be integrated to support the lateral driving of the vehicle.

한편, 제어부(40)는 조향엑추에이터(13)를 제어하여 횡안정 조향제어를 실현할 수 있음과 동시에 차선의 이탈을 판단하게 되면 이를 운전자에게 알리는 경보제 어를 행할 수 있다. 구체적으로 제어부(40)는 차선의 이탈의 위험이 있는 경우 운전자에게 이를 경보하여 운전자가 인식하도록 하여 운전자가 적극적으로 차량을 제어할 수 있도록 하며, 이와 동시에 또는 운전자가 차선의 이탈 위험을 인식하지 못하는 경우에는 조향엑추에이터(13)를 제어하여 횡안정 조향제어를 행할 수 있다. On the other hand, the control unit 40 may control the steering actuator 13 to realize the lateral stability steering control, and at the same time may determine the departure of the lane to perform an alarm control to inform the driver. Specifically, the control unit 40 alerts the driver when there is a risk of departure of the lane so that the driver can recognize the driver and actively controls the vehicle, and at the same time, or the driver does not recognize the danger of leaving the lane. In this case, the lateral stability steering control can be performed by controlling the steering actuator 13.

차선의 이탈은 도 5에 도시된 것과 같이 차량(10)의 진행방향을 차량 중심점(P)에서 이탈 기준점(P d )로 좌표 변환하고, 아울러 차량(10)의 진행방향도 이탈 기준점(P d )중심으로 평행이동시킨다. 그리고 이탈 기준점(P d )을 기준으로 하여 차량(10)의 진행방향과, 영상센서(21)에 의해서 감지된 주행차선과 평행하게 주어진 차선이탈 임계선과 만나는 점(P c )까지 거리를 이탈추정거리(d d )로 결정한다.The departure of the lane coordinate transforms the traveling direction of the vehicle 10 from the vehicle center point P to the departure reference point P d as shown in FIG. 5, and the traveling direction of the vehicle 10 is also the departure reference point P d. Parallel move to the center. The distance estimating distance between the traveling direction of the vehicle 10 and the point P c meeting a given lane departure threshold line parallel to the traveling lane detected by the image sensor 21 based on the departure reference point P d is estimated. Determined by the distance d d .

이후, 이탈추정거리(d d )와 차속센서(24)에 의해서 제공되는 차속(V)과의 관계로부터 이탈 추정 시간(t d )을 계산한다. 이후 차량이 차량이탈임계선에 도달하여 이탈할 위험이 있는 경우 제어부(40)는 경보장치(51, HMI, 스피커 및 진동장치)를 사용하여 경보한다. 여기서 진동장치는 운전자의 안전벨트에 진동을 부여하는 햅틱장치를 사용한다.Then, the departure estimation time t d is calculated from the relationship between the departure estimation distance d d and the vehicle speed V provided by the vehicle speed sensor 24. Then, when the vehicle reaches the vehicle departure threshold and there is a risk of departure, the controller 40 alerts using the alarm device 51, HMI, speaker, and vibration device. Here, the vibration device uses a haptic device to give a vibration to the seat belt of the driver.

한편, 제어부(40)는 차량이탈임계선을 거리에 따라서 복수개로 나누고, 복수개의 차량이탈임계선에 충돌할 위험도를 복수개로 구분하고 위험도에 따라서 다른 경보장치(51)를 사용할 수 있다. 예를 들면, 위험도가 낮은 경우에는 HNI장치만으로 시각적으로 운전자에게 경보하며, 위험도가 높아질수록 청각적인 경보장치인 스 피커, 촉각적인 경보장치인 진동장치를 사용하여 경보한다. Meanwhile, the controller 40 may divide the vehicle departure threshold into a plurality of distances according to the distance, divide the risk of colliding with the plurality of vehicle departure thresholds into a plurality, and use another alarm device 51 according to the risk. For example, when the risk is low, the driver is visually alerted only by the HNI device, and as the risk increases, the speaker is audible and the vibration device is a tactile alarm.

상술한 바와 같이, 본 발명은 조향각속도, 조향각, 요레이트, 이탈각 및 이탈거리의 상태변수로 가지는 통합상태공간방정식을 이용하여 자동차의 차선이탈경보, 차선유지지원 및 횡풍에 의한 횡외란에 대한 횡안전 조향제어를 통합적으로 행할 수 있다.As described above, the present invention utilizes an integrated state-space equation with state variables of steering angle speed, steering angle, yaw rate, departure angle, and departure distance, for lane departure warning, lane maintenance support, and transverse disturbance caused by cross wind. Lateral safety steering control can be integrated.

또한 본 발명은 자동차의 차선이탈경보, 차선유지지원 및 횡풍에 의한 횡외란에 대한 횡안전 조향제어를 하나의 모듈화된 소프트웨이로 구현함으로써, 횡방향주행 지원시스템을 전자플랫폼화할 수 있다.In addition, the present invention implements the lateral safety steering control for lane departure warning, lane maintenance support and lateral disturbance caused by lateral wind as a modular software, it is possible to electronically transform the lateral driving support system.

도 1은 본 발명에 따르는 횡방향주행 지원시스템의 도로모델을 나타내는 도면이다.1 is a view showing a road model of the transverse driving support system according to the present invention.

도 2의 (a) 및 (b)는 본 발명에 따르는 횡방향주행 지원시스템의 차량모델 및 조향모델을 나타내는 도면이다.2 (a) and 2 (b) are diagrams illustrating a vehicle model and a steering model of the lateral driving support system according to the present invention.

도 3은 본 발명에 따르는 횡방향주행 지원시스템을 개략적으로 나타내는 도면이다. 3 is a view schematically showing a transverse driving support system according to the present invention.

도 4는 본 발명에 따르는 도로정보추출기에서 사용되는 도로정보 취득방법을 설명하기 위한 도면이다.4 is a view for explaining a road information acquisition method used in the road information extractor according to the present invention.

도 5는 본 발명에 따르는 차선이탈거리 판단방법을 나타내기 위한 도면이다.5 is a diagram illustrating a lane departure determining method according to the present invention.

< 도면의 주요 부분에 대한 부호의 설명 > <Description of Symbols for Main Parts of Drawings>

10 : 차량 13 : 조향엑추에이이터10: vehicle 13: steering actuator

20 : 도로정보추출기 21 : 조향각센서20: road information extractor 21: steering angle sensor

23 : 관성센서 24 : 차속센서23: inertial sensor 24: vehicle speed sensor

25 : 횡가속도센서 30 : 관측기25: lateral acceleration sensor 30: observer

40 : 제어부 50 : 츨력수단40: control unit 50: output means

Claims (5)

차량에 설치된 영상센서를 통해서 얻어진 영상으로부터 차량의 이탈각 및 이탈거리를 포함하는 도로정보를 추출하는 도로정보추출기, A road information extractor for extracting road information including a departure angle and a departure distance of the vehicle from an image obtained through an image sensor installed in the vehicle, 차량에 설치된 센서들로부터 차량자세 및 조향에 관련된 정보를 받아들이고 이를 이용하여 조향각속도, 횡속도 및 외풍에 의한 횡외란 성분을 포함하는 조향관련정보를 추정하는 관측기, Observer which receives information related to vehicle attitude and steering from sensors installed in the vehicle and estimates steering related information including steering angle speed, transverse velocity and lateral disturbance caused by draft 상기 도로정보추출기 및 관측기로부터의 도로정보 및 조향관련정보를, 조향각속도, 조향각, 횡속도, 요레이트, 이탈각 및 이탈거리를 상태변수로 하는 통합상태공간방정식에 사용하여 조향토크를 산출하는 제어부, 그리고Control unit for calculating steering torque by using the road information and steering related information from the road information extractor and the observer in an integrated state space equation with steering angle speed, steering angle, lateral speed, yaw rate, departure angle and departure distance as state variables , And 상기 제어부로부터 전달되는 상기 조향토크의 출력신호에 의해서 제어되는 조향엑추에이터를 포함하는 것을 특징으로 하는 횡방향주행 지원시스템. And a steering actuator controlled by an output signal of the steering torque transmitted from the control unit. 제1항에 있어서,The method of claim 1, 상기 제어부는,The control unit, 상기 조향토크의 출력신호를 출력하기 전에, 상기 도로정보로부터 차량의 이탈추정거리를 계산하고 차량의 속도와 대비하여, 차량이 차선을 이탈하는 정도에 따라서 복수개의 위험도로 구분하고 복수개의 위험도에 따라서 다른 종류의 경보장치를 제어하는 제어신호를 발생시키는 것을 특징으로 하는 횡방향주행 지원시스템.Before the output signal of the steering torque is output, a distance estimating distance of the vehicle is calculated from the road information and compared to the speed of the vehicle, the vehicle is separated into a plurality of risks according to the degree of departure from the lane and according to the plurality of risks. Transverse driving assistance system, characterized in that for generating a control signal for controlling the alarm of different types. 제2항에 있어서,The method of claim 2, 상기 경보장치는 횡방향주행 지원시스템의 작동상태를 실시간으로 알려주는 HMI장치, 청각적으로 경고하는 스피커 및 촉각적으로 운전자에게 진동을 부여하는 진동장치인 것을 특징으로 하는 횡방향주행 지원시스템.The alarm device is a lateral driving support system, characterized in that the HMI device for real-time notification of the operating state of the lateral driving support system, a speaker that acoustically warns and a vibrating device that gives vibration to the driver tactilely. 제1항 내지 제3항 중 어느 하나의 항에 있어서,The method according to any one of claims 1 to 3, 상기 차량에 설치된 센서들은, 횡가속도를 측정하는 횡가속도 센서, 조향휠의 조향각을 측정하는 조향각센서, 요각을 측정하는 관성센서 및 차량의 속도를 측정하는 차속센서를 포함하는 것을 특징으로 하는 횡방향주행 지원시스템.The sensors installed in the vehicle include a lateral acceleration sensor for measuring the lateral acceleration, a steering angle sensor for measuring the steering angle of the steering wheel, an inertial sensor for measuring the yaw angle, and a vehicle speed sensor for measuring the speed of the vehicle. Driving assistance system. 차량에 설치된 영상센서를 통해서 얻어진 영상으로부터 차량의 이탈각 및 이탈거리를 포함하는 도로정보를 추출하는 단계, Extracting road information including a departure angle and a departure distance of the vehicle from an image obtained through an image sensor installed in the vehicle, 차량에 설치된 센서들로부터 차량자세 및 조향에 관련된 값을 이용하여 조향각속도, 횡속도 및 외풍에 의한 횡외란 성분을 포함하는 조향관련정보를 추정하는 단계,Estimating steering related information including steering angular velocity, lateral velocity, and transverse disturbance caused by draft by using values related to vehicle attitude and steering from sensors installed in the vehicle, 상기 도로정보 및 조향관련정보를, 조향각속도, 조향각, 횡속도, 요레이트, 이탈각 및 이탈거리를 상태변수로 하는 통합상태공간방정식에 사용하여 조향토크를 산출하는 단계, Calculating steering torque by using the road information and steering related information in an integrated state spatial equation using steering angle speed, steering angle, lateral speed, yaw rate, deviation angle, and deviation distance as state variables; 상기 도로정보로부터 차량의 이탈추정거리를 계산하고 차량의 속도와 대비하여, 차량이 차선을 이탈하는 정도에 따라서 운전자에게 경보를 하는 단계, 그리고Calculating a distance estimating distance of the vehicle from the road information and alerting the driver according to the degree of the vehicle leaving the lane, in contrast to the speed of the vehicle, and 상기 산출된 조향토크로 조향엑추에이터를 제어하는 단계를 포함하는 것을 특징으로 하는 횡방향주행 지원시스템 제어방법. And controlling a steering actuator with the calculated steering torque.
KR1020090119162A 2009-12-03 2009-12-03 Support system for lateral driving and control method thereof KR20110062440A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090119162A KR20110062440A (en) 2009-12-03 2009-12-03 Support system for lateral driving and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090119162A KR20110062440A (en) 2009-12-03 2009-12-03 Support system for lateral driving and control method thereof

Publications (1)

Publication Number Publication Date
KR20110062440A true KR20110062440A (en) 2011-06-10

Family

ID=44396621

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090119162A KR20110062440A (en) 2009-12-03 2009-12-03 Support system for lateral driving and control method thereof

Country Status (1)

Country Link
KR (1) KR20110062440A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130017410A (en) * 2011-08-10 2013-02-20 주식회사 피엘케이 테크놀로지 Lane departure warning system
KR101384522B1 (en) * 2011-12-15 2014-04-14 현대자동차주식회사 Auto Steering Control Method Relating to the Driver's Driving Pattern
US9352778B2 (en) 2012-05-23 2016-05-31 Hyundai Mobis Co., Ltd. Lane keeping assist system and method
US9550526B2 (en) 2012-09-03 2017-01-24 Hyundai Mobis Co., Ltd. Lane keeping control system and method
US9771072B2 (en) 2014-04-16 2017-09-26 Hyundai Motor Company Vehicle control system and method for self-control driving thereof
KR20180039841A (en) * 2016-10-11 2018-04-19 주식회사 만도 Steering Control Device for Compensating Cross Wind and Control Method thereof
KR20180097269A (en) * 2017-02-23 2018-08-31 현대자동차주식회사 Image information acquisition device, vehicle and method for controlling thereof
KR20180136229A (en) * 2017-06-14 2018-12-24 현대자동차주식회사 Vehicle, and control method for the same
CN110550017A (en) * 2018-06-04 2019-12-10 现代自动车株式会社 driving torque command generating apparatus and method for environmentally friendly vehicle
CN111086510A (en) * 2019-12-30 2020-05-01 浙江大学 Front wheel steering vehicle lane keeping control method based on prediction function control
US11458964B2 (en) * 2018-01-10 2022-10-04 Hitachi Astemo, Ltd. Driver assistance device, driver assistance method, and driver assistance system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130017410A (en) * 2011-08-10 2013-02-20 주식회사 피엘케이 테크놀로지 Lane departure warning system
KR101384522B1 (en) * 2011-12-15 2014-04-14 현대자동차주식회사 Auto Steering Control Method Relating to the Driver's Driving Pattern
US9352778B2 (en) 2012-05-23 2016-05-31 Hyundai Mobis Co., Ltd. Lane keeping assist system and method
US9550526B2 (en) 2012-09-03 2017-01-24 Hyundai Mobis Co., Ltd. Lane keeping control system and method
US9771072B2 (en) 2014-04-16 2017-09-26 Hyundai Motor Company Vehicle control system and method for self-control driving thereof
KR20180039841A (en) * 2016-10-11 2018-04-19 주식회사 만도 Steering Control Device for Compensating Cross Wind and Control Method thereof
KR20180097269A (en) * 2017-02-23 2018-08-31 현대자동차주식회사 Image information acquisition device, vehicle and method for controlling thereof
KR20180136229A (en) * 2017-06-14 2018-12-24 현대자동차주식회사 Vehicle, and control method for the same
US11458964B2 (en) * 2018-01-10 2022-10-04 Hitachi Astemo, Ltd. Driver assistance device, driver assistance method, and driver assistance system
CN110550017A (en) * 2018-06-04 2019-12-10 现代自动车株式会社 driving torque command generating apparatus and method for environmentally friendly vehicle
CN111086510A (en) * 2019-12-30 2020-05-01 浙江大学 Front wheel steering vehicle lane keeping control method based on prediction function control
CN111086510B (en) * 2019-12-30 2021-04-27 浙江大学 Front wheel steering vehicle lane keeping control method based on prediction function control

Similar Documents

Publication Publication Date Title
KR20110062440A (en) Support system for lateral driving and control method thereof
US9845109B2 (en) Continuous estimation of surface friction coefficient based on EPS and vehicle models
CN104129377B (en) Automobile active anticollision adaptive fuzzy control method
CN107031331B (en) Cross-road anomaly detection system and method
JP5411284B2 (en) Method, system, and computer for determining lateral deviation of vehicle traveling on actual track based on estimated virtual road and determining driver&#39;s lateral control ability based on lateral deviation Program products
KR100851120B1 (en) Lane keeping assist/support system combined electronic stability program in vehicle and controlling method thereof
US9116784B2 (en) System and method for preventing vehicle from rolling over in curved lane
US8918227B2 (en) Device and method for determining a vigilance state
KR101516439B1 (en) Vehicle Driving Assistance
Glaser et al. Integrated driver–vehicle–infrastructure road departure warning unit
JP5023869B2 (en) VEHICLE DRIVE OPERATION SUPPORT DEVICE AND VEHICLE DRIVE OPERATION SUPPORT METHOD
KR101478068B1 (en) Apparatus for preventing collision in vehicle and method thereof
JP2006347236A (en) Obstacle avoidance controller and obstacle avoidance control program
JP4600339B2 (en) Obstacle avoidance control device and obstacle avoidance control program
CN103496366A (en) Active-lane-changing collision-avoidance control method and device based on vehicle-vehicle coordination
CN112601685A (en) Adaptive braking and directional control system (ABADCS)
CN105073526A (en) Method for determining a vehicle reference speed and vehicle controller having such a method
EP2712780A1 (en) Method and apparatus for performing driving assistance
CN106004515A (en) Automobile speed control method and system used for automatic parking of electric automobile
WO2016194168A1 (en) Travel control device and method
JP2011085999A (en) Remote control system
CN104590257A (en) Vehicle control apparatus
CN112770959A (en) Steering control device, steering control method, and steering control system
JP5207864B2 (en) Vehicle travel safety device
JP2011063106A (en) Vehicle controller and vehicle control method

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid