KR20110048525A - Carbon Nanotube-Reinforced Nanocomposites - Google Patents

Carbon Nanotube-Reinforced Nanocomposites Download PDF

Info

Publication number
KR20110048525A
KR20110048525A KR1020117004061A KR20117004061A KR20110048525A KR 20110048525 A KR20110048525 A KR 20110048525A KR 1020117004061 A KR1020117004061 A KR 1020117004061A KR 20117004061 A KR20117004061 A KR 20117004061A KR 20110048525 A KR20110048525 A KR 20110048525A
Authority
KR
South Korea
Prior art keywords
cnts
epoxy
reinforced
carbon fibers
cnt
Prior art date
Application number
KR1020117004061A
Other languages
Korean (ko)
Inventor
동쉥 마오
지비 야니브
Original Assignee
어플라이드 나노테크 홀딩스, 인크.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 어플라이드 나노테크 홀딩스, 인크. filed Critical 어플라이드 나노테크 홀딩스, 인크.
Publication of KR20110048525A publication Critical patent/KR20110048525A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/005Reinforced macromolecular compounds with nanosized materials, e.g. nanoparticles, nanofibres, nanotubes, nanowires, nanorods or nanolayered materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/243Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/004Additives being defined by their length
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2918Rod, strand, filament or fiber including free carbon or carbide or therewith [not as steel]

Abstract

탄소 나노튜브 (CNT)는 너무 길어서 이러한 탄소 나노튜브가 프리프레그 제조 공정 동안에 탄소 섬유 사이로 관통될 수 없으며, 이는 탄소 섬유에 의해 새어나오지 않도록 하기 위해 단축된다. 이는 순수한 에폭시와 비교하여 기계적 성질 (굴곡 강도 및 굴곡 탄성율)을 상당히 개선시킨다.Carbon nanotubes (CNTs) are so long that such carbon nanotubes cannot penetrate between carbon fibers during the prepreg fabrication process, which is shortened to prevent leakage by the carbon fibers. This significantly improves the mechanical properties (flexural strength and flexural modulus) compared to pure epoxy.

Description

탄소 나노튜브-보강된 나노복합체 {CARBON NANOTUBE-REINFORCED NANOCOMPOSITES}Carbon Nanotube-Reinforced Nanocomposites {CARBON NANOTUBE-REINFORCED NANOCOMPOSITES}

본 출원은 미국가출원번호 제60/819,319호 및 제60/810,394호를 우선권으로 주장하는 미국특허출원번호 제11/757,272호의 일부계속출원으로서, 이러한 문헌 모두는 본원에 참고문헌으로 포함된다. 본 출원은 미국가출원번호 제60/788,234호 및 제60/810,394호를 우선권으로 주장하는 미국특허출원번호 제11/693,454호의 일부계속출원으로서, 이러한 문헌 모두는 본원에 참고문헌으로 포함된다. 본 출원은 미국가출원번호 제60/789,300호 및 제60/810,394호를 우선권으로 주장하는 미국특허출원번호 제11/695,877호의 일부계속출원으로서, 이러한 문헌 모두는 본원에 참고문헌으로 포함된다.This application is partly filed in US Patent Application No. 11 / 757,272, which claims priority to US Provisional Application Nos. 60 / 819,319 and 60 / 810,394, all of which are incorporated herein by reference. This application is partly filed in US patent application Ser. No. 11 / 693,454, which claims priority to US Provisional Application Nos. 60 / 788,234 and 60 / 810,394, all of which are incorporated herein by reference. This application is partly filed in US Patent Application No. 11 / 695,877, which claims priority to US Provisional Application Nos. 60 / 789,300 and 60 / 810,394, all of which are incorporated herein by reference.

1991년 첫 관찰 이후에, 탄소 나노튜브 (CNT)는 상당한 연구의 중심이 되어 왔다[S. Iijima, "Helical microtubules fo graphitic carbon", Nature 354, 56 (1991)]. 많은 연구가들이 이러한 새로운 형태의 탄소의 주목할만한 물리적 및 기계적 특성을 보고하였다. CNT는 전형적으로 단일벽 CNT (SWNT)에 있어서 0.5-1.5nm, 이중벽 CNT (DWNT)에 있어서는 1-3nm, 및 다중벽 CNT (MWNT)에 있어서는 5 내지 100nm의 직경을 갖는다. 독특한 전자 특성 및 다이아몬드보다 더 높은 열전도성, 내지 강성, 강도 및 탄성이 통용되는 재료보다 높은 기계적 특성으로부터, CNT는 기본적인 새로운 재료 시스템의 개발에 굉장한 기회를 제공한다. 특히, 저밀도 (1-2.0g/cm3)와 함께 CNT의 특별한 기계적 특성 (E > 1.0 TPa 및 50 GPa의 인장 강도)으로 인해 CNT-보강된 복합체 재료의 개발이 관심을 끌었다[Eric W. Wong, Paul E. Sheehan, Charles M.Lieber, "Nanobeam Mechnics: Elasticity, Strength, and Toughness of Nanorods and Nonotubes", Science 277, 1971 (1997)]. CNT는 지구상에서 알려진 가장 강한 재료이다. MWNT와 비교할 경우, SWNT 및 DWNT는 이들의 높은 표면적 및 높은 종횡비로 인해 복합체용 보강 재료로서 더욱 유망하다. 표 1은 SWNT, DWNT 및 MWNT의 표면적 및 종횡비를 나타낸 것이다.Since its first observation in 1991, carbon nanotubes (CNTs) have been the center of considerable research [S. Iijima, "Helical microtubules fo graphitic carbon", Nature 354, 56 (1991). Many researchers have reported the remarkable physical and mechanical properties of this new type of carbon. CNTs typically have diameters of 0.5-1.5 nm for single wall CNTs (SWNTs), 1-3 nm for double wall CNTs (DWNTs) and 5 to 100 nm for multiwall CNTs (MWNTs). From the unique electronic properties and higher mechanical properties of materials with higher thermal conductivity, to stiffness, strength and elasticity than diamond, CNT offers great opportunities for the development of basic new material systems. In particular, the development of CNT-reinforced composite materials attracted interest due to the low mechanical density (1-2.0 g / cm 3 ) and the special mechanical properties of CNTs (tensile strength of E> 1.0 TPa and 50 GPa) [Eric W. Wong Paul E. Sheehan, Charles M. Lieber, "Nanobeam Mechnics: Elasticity, Strength, and Toughness of Nanorods and Nonotubes", Science 277, 1971 (1997). CNT is the strongest material known on earth. Compared with MWNTs, SWNTs and DWNTs are more promising as reinforcing materials for composites because of their high surface area and high aspect ratio. Table 1 shows the surface area and aspect ratio of SWNTs, DWNTs and MWNTs.

표 1TABLE 1

Figure pct00001
Figure pct00001

문제는 CNT가 성장될 때 대개 상당히 길다(수 마이크론 내지 100 ㎛ 이상)는 것인데, 이는 가장 가까운 섬유들 사이의 거리가 너무 짧기 때문에 CNT가 섬유 보강된 플라스틱 (FRP)에서 매트릭스에 관통되기 어렵게 만든다. 예를 들어, 일방향 탄소 섬유 또는 섬유 보강된 에폭시 복합체의 경우에, 탄소 섬유의 함량은, 가장 가까운 탄소 섬유들 사이의 갭이 대략 1 마이크론 (탄소 섬유가 7-8 ㎛의 직경을 가지고 대략 1.75 - 1.80 g/㎤의 밀도를 가지며, 에폭시 매트릭스가 1.2 g/㎤의 밀도를 갖는다고 가정)이도록 대략 60 부피%이다. 이는 복합체를 제조하기 위해 사용되는 유리 섬유 및 다른 타입의 섬유에 대해서도 마찬가지다. CNT는 강도 및 모듈러스(modulus)와 같은 기계적 성질을 개선시키기 위해 폴리머 수지를 보강할 수 있지만, 이러한 것들은 FRP 제조 동안에 섬유에 의해 새어나오기(filtered out) 때문에 FRP를 보강할 수 없다.The problem is that when CNTs are grown, they are usually quite long (a few microns to 100 μm or more), which makes CNTs difficult to penetrate the matrix in fiber reinforced plastics (FRP) because the distance between the nearest fibers is too short. For example, in the case of unidirectional carbon fibers or fiber reinforced epoxy composites, the content of carbon fibers is such that the gap between the nearest carbon fibers is approximately 1 micron (carbon fibers have a diameter of 7-8 μm and approximately 1.75 − Approximately 80% by volume), with a density of 1.80 g / cm 3 and assuming that the epoxy matrix has a density of 1.2 g / cm 3. The same is true for the glass fibers and other types of fibers used to make the composites. CNTs can reinforce polymer resins to improve mechanical properties such as strength and modulus, but they cannot reinforce FRP because they are filtered out by fibers during FRP manufacture.

도 1은 본 발명의 일 구체예에 따른 나노복합체를 제조하는 방법을 도시한 것이다.
도 2는 MWNT의 SEM 디지털 이미지를 도시한 것이다.
도 3a 내지 도 3c는 MWNT-보강된 에폭시, DWNT-보강된 에폭시, 및 SWNT-보강된 에폭시 각각의 파괴면(fracture surface)의 SEM 디지털 이미지를 도시한 것이다.
도 4a는 DWNT-보강된 CFRP의 파괴면의 SEM 디지털 이미지를 도시한 것으로서, 탄소 섬유 사이에 DWNT가 관통되지 않은 것으로 나타나 있다.
도 4b는 DWNT-보강된 CFRP의 파괴면의 SEM 디지털 이미지를 도시한 것으로서, 프리프레그의 단부층(end layer) 밖으로 새어나옴을 나타내고 있다.
도 5a 내지 도 5c는 단축된(shortened) MWNT, DWNT, 및 SWNT 각각의 SEM 디지털 이미지를 도시한 것이다.
도 6a 내지 도 6c는 MWNT-보강된 CFRP, DWNT-보강된 CFRP, 및 SWNT-보강된 CFRP 각각의 파괴면의 SEM 디지털 이미지를 도시한 것이다.
1 illustrates a method of manufacturing a nanocomposite according to an embodiment of the present invention.
2 shows an SEM digital image of MWNTs.
3A-3C show SEM digital images of the fracture surfaces of each of the MWNT-reinforced epoxy, DWNT-reinforced epoxy, and SWNT-reinforced epoxy.
4A shows a SEM digital image of the fracture surface of DWNT-reinforced CFRP, showing no DWNT penetration between the carbon fibers.
4B shows a SEM digital image of the fracture surface of the DWNT-reinforced CFRP, showing leaking out of the end layer of the prepreg.
5A-5C show SEM digital images of shortened MWNTs, DWNTs, and SWNTs, respectively.
6A-6C show SEM digital images of fracture surfaces of MWNT-reinforced CFRP, DWNT-reinforced CFRP, and SWNT-reinforced CFRP, respectively.

2 ㎛ 정도로 짧거나 이보다 더욱 짧은 CNT는 섬유 사이로 관통될 수 있으며, 이에 따라 FRP의 기계적 성질을 현저히 개선시킨다.CNTs as short as or shorter than 2 μm can penetrate between fibers, thereby significantly improving the mechanical properties of the FRP.

본 발명의 일 구체예에서, 본 구체예의 상세한 예는 본 발명을 보다 잘 예시하기 위한 노력의 일환으로 제공된다.In one embodiment of the invention, detailed examples of this embodiment are provided in an effort to better illustrate the invention.

에폭시, Epoxy, SWNTSWNT , , DWNTDWNT , , MWNTMWNT , 및 경화제, And hardeners

에폭시 수지 (비스페놀-A)는 아리사와 인크(Arisawa Inc., Japan)로부터 입수되었다. 경화제 (디시안디아미드)는 동일한 회사로부터 입수되었으며, 이는 에폭시 나노 복합체를 경화시키는데 사용되었다. SWNT, DWNT 및 MWNT는 나노실 인크(Nanocyl, Inc., Belgium)로부터 입수되었다. CNT는 90% 초과의 탄소 함량으로 정제될 수 있다. 그러나, 본래의 CNT 또는 카르복실 및 아미노-작용기와 같은 작용기에 의해 작용화된 CNT가 또한 사용될 수 있다. CNT의 길이는 대략 5 내지 20 ㎛일 수 있다. 도 2는 MWNT의 SEM의 디지털 이미지를 도시한 것이다. 에폭시를 제외하고, 폴리이미드, 페놀계 수지, 시아네이트 에스테르, 및 비스말레이미드와 같은 다른 열경화성 물질 또는 나일론과 같은 열가소성 물질이 또한 사용될 수 있다.Epoxy resin (bisphenol-A) was obtained from Arisawa Inc., Japan. Curing agent (dicyandiamide) was obtained from the same company, which was used to cure epoxy nanocomposites. SWNTs, DWNTs and MWNTs were obtained from Nanocyl, Inc., Belgium. CNTs can be purified to a carbon content of greater than 90%. However, native CNTs or CNTs functionalized by functional groups such as carboxyl and amino-functional groups can also be used. The length of the CNTs may be approximately 5-20 μm. 2 shows a digital image of the SEM of the MWNT. Except for epoxy, other thermosetting materials such as polyimide, phenolic resins, cyanate esters, and bismaleimide or thermoplastics such as nylon can also be used.

도 1은 본 발명의 일 구체예에 따른 에폭시/CNT 나노 복합체를 제조하기 위한 공정 흐름의 개략적인 다이아그램을 도시한 것이다. 모든 성분들은 수분을 제거하기 위하여 70℃의 진공 오븐에서 16 시간 동안 건조될 수 있다. 수지 각각에 대해 CNT의 적재량은 1.0 중량%일 수 있다. CNT는 아세톤 중에 배치되고(101), 단계(102)에서 미세-유체 기기에 의해 분산된다 (Microfluidics Co.로부터 상업적으로 입수가능, 모델 번호. Y110). 미세-유체 기기는 정밀하게 규정된 마이크로-크기의 채널에서 초고속으로 충돌하는 고압 스트림을 이용한다. 이의 전단력과 충격력의 조합된 힘은 균일한 분산액을 생성시키기 위해 생성물 상에서 작용한다. 이후에 CNT/아세톤은 아세톤 용매 중에 CNT가 잘 분산된 겔로서 형성된다(103). 그러나, 초음파 공정 또는 고전단 혼합 공정과 같은 다른 방법들이 또한 사용될 수 있다. 계면활성제가 또한 용액 중에 CNT를 분산시키기 위하여 사용될 수 있다. 이후에 에폭시는 단계(104)에서 CNT/아세톤에 첨가되어 에폭시/CNT/아세톤 용액을 생성시키고(105), 이는 70℃의 배스에서 1 시간 동안 초음파 공정으로 처리되어 에폭시/CNT/아세톤 현탁액을 생성시킨다(107). CNT는 단계(108)에서 70℃에서 30분 동안 1,400 회/분의 속도로 교반기 혼합 공정을 이용하여 에폭시 중에 추가로 분산되어, 에폭시/CNT/아세톤 겔을 생성시킨다(109). 경화제는 이후에 단계(110)에서 에폭시/CNT/아세톤 겔(109)에 4.5 중량%의 비율로 첨가된 후에 70℃에서 1 시간 동안 교반한다. 얻어진 겔(111)은 이후에 단계(112)에서 70℃의 진공 오븐에서 48 시간 동안 탈기될 수 있다. 이러한 물질(113)은 이후에 160℃에서 2 시간 동안 경화될 수 있다. 물질(113)을 시험하기 위하여, 이는 이후에 시편의 기계적 성질(굴곡 강도 및 굴곡 탄성율)이 연마 공정(115) 후에 특징화되도록 테플론 주형에 부어질 수 있다.1 shows a schematic diagram of a process flow for producing an epoxy / CNT nanocomposite according to one embodiment of the invention. All components can be dried for 16 hours in a 70 ° C. vacuum oven to remove moisture. The loading of CNTs for each of the resins can be 1.0 weight percent. The CNTs are placed in acetone (101) and dispersed by micro-fluidic device in step 102 (commercially available from Microfluidics Co., Model No. Y110). Micro-fluidic devices utilize high pressure streams that collide at very high speeds in precisely defined micro-sized channels. Its combined force of shear and impact forces acts on the product to produce a uniform dispersion. CNT / acetone is then formed as a gel in which CNTs are well dispersed in acetone solvent (103). However, other methods may also be used, such as an ultrasonic process or a high shear mixing process. Surfactants can also be used to disperse the CNTs in solution. The epoxy is then added to the CNT / acetone in step 104 to produce an epoxy / CNT / acetone solution (105), which is subjected to an ultrasonic process for 1 hour in a bath at 70 ° C. to produce an epoxy / CNT / acetone suspension. (107). The CNTs are further dispersed in epoxy using a stirrer mixing process at a rate of 1,400 cycles / minute for 30 minutes at 70 ° C. in step 108 to produce an epoxy / CNT / acetone gel (109). The curing agent is subsequently added to the epoxy / CNT / acetone gel 109 in step 110 at a rate of 4.5% by weight and then stirred at 70 ° C. for 1 hour. The resulting gel 111 may then be degassed for 48 hours in a vacuum oven at 70 ° C. in step 112. This material 113 may then be cured at 160 ° C. for 2 hours. To test the material 113, it can then be poured into a Teflon mold such that the mechanical properties (flexural strength and flexural modulus) of the specimen are characterized after the polishing process 115.

70℃에서 48 시간 동안 탈기된 후 상기 수지 (에폭시/CNT/경화제)는 또한 핫-멜트 공정(hot-melt process)을 이용하여 FRP를 제조하기 위해 사용될 수 있다. 탄소 섬유 (Toray Industries, Inc.로부터 입수가능, 모델번호 T700-12k)는 프리프레그(prepreg) 제조를 위해 사용될 수 있다. "프리프레그" (또는 "pre-preg")는 "사전-함침된" 복합체 섬유에 대한 당해 분야에서 공지된 용어이다. 이러한 것들은 직물(weave) 형태를 가지거나 일방향(unidirectional)일 수 있다. 이러한 것들은 이러한 것들을 함께 결합시키고 제조 동안에 다른 성분들에 결합시키기 위해 사용되는 일정한 양의 매트릭스 물질을 함유한다. 프리프레그는 활성화가 가장 일반적으로 열에 의해 진행되기 때문에 냉각된 구역에 저장될 수 있다. 이에 따라, 프리프레그의 복합체 구조 성장(buildup)은 경화를 위한 오븐 또는 오토클래브를 대부분 요구할 것이다.After degassing at 70 ° C. for 48 hours, the resin (epoxy / CNT / curing agent) can also be used to prepare FRP using a hot-melt process. Carbon fibers (available from Toray Industries, Inc., model number T700-12k) can be used for prepreg production. "Prepreg" (or "pre-preg") is a term known in the art for "pre-impregnated" composite fibers. These may have a weave form or may be unidirectional. These contain a certain amount of matrix material used to bond these together and to other components during manufacture. The prepreg can be stored in a cooled zone because activation is most commonly carried out by heat. Accordingly, composite structure buildup of the prepreg will most likely require an oven or autoclave for curing.

CNT-보강된 에폭시 수지는 먼저 이형지 상에 코팅된다. 프리프레그는 이후에 일방향 탄소 섬유를 CNT-보강된 에폭시 수지 박막으로 함침시킴으로써 얻어진다. 탄소 섬유의 부피는 60%로 조절되었다. 프리프레그는 180 g/㎡의 단위 면적당 중량(area weight)을 갖는다.The CNT-reinforced epoxy resin is first coated on a release paper. The prepreg is then obtained by impregnating unidirectional carbon fibers with a thin film of CNT-reinforced epoxy resin. The volume of carbon fiber was adjusted to 60%. The prepreg has an area weight of 180 g / m 2.

나노 복합체의 기계적 성질Mechanical Properties of Nanocomposites

표 2는 일방향 탄소 섬유의 보강과 함께 CNT-보강된 에폭시의 기계적 성질(굴곡 강도 및 굴곡 탄성율)을 나타낸 것이다. 이러한 표에서는 수지 형태에서, 순수한 에폭시와 비교하여 기계적 성질의 상당한 개선을 나타내고 있다 (굴곡 강도는 30% 초과 개선, 및 굴곡 탄성율은 적어도 10% 개선). 그러나, 탄소 섬유 보강된 폴리머 (CFRP) 형태에서, 둘 모두의 성질들은 순수한 에폭시 CFRP와 비교하여 CNT-보강된 CFRP의 경우에 개선되지 않았다.Table 2 shows the mechanical properties (flexural strength and flexural modulus) of CNT-reinforced epoxy with reinforcement of unidirectional carbon fibers. This table shows, in the resin form, a significant improvement in mechanical properties compared to pure epoxy (flexural strength is more than 30% improvement, and flexural modulus is at least 10% improvement). However, in the form of carbon fiber reinforced polymer (CFRP), the properties of both did not improve in the case of CNT-reinforced CFRP compared to pure epoxy CFRP.

표 2TABLE 2

Figure pct00002
Figure pct00002

주사전자현미경 (SEM)은 수지 및 CFRP 샘플 모두에서 CNT의 분산을 체크하기 위하여 사용될 수 있다. 수지 형태에서, 모든 CNT-보강된 에폭시 샘플은 CNT의 매우 양호한 분산을 나타내었다 (도 3a 내지 도 3c 참조). 그러나, CNT는 일방향 탄소 섬유에 의해 프리프레그의 단부층으로 새어나왔다(DWNT-보강된 에폭시 CFRP에 대한 도 4a 및 도 4b 참조). 이는 가장 가까운 탄소 섬유에 대한 갭(gap)이 단지 대략 1 ㎛인 바 CNT가 너무 길어서 이러한 것들이 탄소 섬유 사이로 관통될 수 없기 때문이다. 이는 수지에서의 CNT의 보강이 CFRP로 이동하지 않는 이유이다.Scanning electron microscopy (SEM) can be used to check the dispersion of CNTs in both resin and CFRP samples. In the resin form, all CNT-reinforced epoxy samples showed very good dispersion of CNTs (see FIGS. 3A-3C). However, CNTs were leaked into the end layer of the prepreg by unidirectional carbon fibers (see FIGS. 4A and 4B for DWNT-reinforced epoxy CFRP). This is because the gap for the nearest carbon fiber is only approximately 1 μm, so the CNTs are too long such that they cannot penetrate between the carbon fibers. This is why the reinforcement of CNTs in the resin does not migrate to CFRP.

CNTCNT 의 단축, 및 에폭시 수지 및 Shortening, and epoxy resin and CFRPCFRP 의 보강Reinforcement

CNT가 너무 길어서 이러한 것들이 프리프레그 제조 공정 동안에 탄소 섬유 사이로 관통될 수 없기 때문에, CNT는 탄소 섬유에 의해 새어나오지 않도록 하기 위하여 단축되어야 한다. MWNT, DWNT, 및 SWNT는 진한 산 혼합물 (HNO3:H2SO4=3:1)과 혼합되고 120℃에서 4 시간 동안 교반될 수 있다. CNT는 여과지 (산을 여과하기 위한 2 마이크론 개구를 갖는 폴리카르보네이트 여과지)를 이용하여 여과된다. CNT는 이후에 이온수로 4 내지 5회 세척되고 진공 중 50℃ 이상에서 12 시간 동안 건조시켰다. 도 5a 내지 도 5c에서는 2 ㎛ 미만의 길이로 단축화된 MWNT, DWNT 및 SWNT 각각의 SEM 이미지를 나타낸 것이다.Since the CNTs are so long that these cannot be penetrated between the carbon fibers during the prepreg manufacturing process, the CNTs must be shortened to prevent leakage by the carbon fibers. MWNT, DWNT, and SWNT can be mixed with a concentrated acid mixture (HNO 3 : H 2 SO 4 = 3: 1) and stirred at 120 ° C. for 4 hours. CNTs are filtered using filter paper (polycarbonate filter paper with a 2 micron opening for filtering acid). The CNTs were then washed 4 to 5 times with ionized water and dried at 50 ° C. or higher in vacuo for 12 hours. 5A-5C show SEM images of MWNTs, DWNTs, and SWNTs each shortened to a length of less than 2 μm.

표 3은 일방향 탄소 섬유의 보강과 함께, 단축화된 CNT-보강된 에폭시의 기계적 성질(굴곡 강도 및 굴곡 탄성율)을 나타낸 것이다. 표 3에서는 수지 형태에서 순수한 에폭시와 비교하여 기계적 성질의 큰 개선을 나타내고 있으며(굴곡 강도는 30% 이상의 개선, 및 굴곡 탄성율은 적어도 10% 개선), 이는 상기 언급된 긴 CNT-보강된 에폭시 수지와 유사하다. CFRP 형태에서, 둘 모두의 성질은 순수한 에폭시 CFRP와 비교하여 개선되었다. 예를 들어, SWNT-보강된 CFRP의 굴곡 강도는 순수한 에폭시 CFRP와 비교하여 17% 개선되었다.Table 3 shows the mechanical properties (flexural strength and flexural modulus) of shortened CNT-reinforced epoxy with reinforcement of unidirectional carbon fibers. Table 3 shows a significant improvement in the mechanical properties compared to pure epoxy in the resin form (an improvement in flexural strength of at least 30% and an improvement in flexural modulus of at least 10%), which are in line with the above mentioned long CNT-reinforced epoxy resins. similar. In the CFRP form, the properties of both were improved compared to pure epoxy CFRP. For example, the flexural strength of SWNT-reinforced CFRP was improved by 17% compared to pure epoxy CFRP.

표 3TABLE 3

Figure pct00003
Figure pct00003

주사전자현미경 (SEM)은 CFRP 샘플에서 CNT의 분산을 체크하기 위해 사용될 수 있다. 도 6a 내지 도 6c에 도시된 바와 같이, 단축화된 MWNT, DWNT, 및 SWNT는 탄소 섬유 사이로 관통되고 잘 분산된다.Scanning electron microscopy (SEM) can be used to check the dispersion of CNTs in CFRP samples. As shown in FIGS. 6A-6C, shortened MWNTs, DWNTs, and SWNTs are penetrated between carbon fibers and well dispersed.

Claims (7)

탄소 나노튜브, 폴리머 및 탄소 섬유를 포함하며, 탄소 나노튜브의 평균 길이가 2 ㎛ 미만인 복합체 재료.A composite material comprising carbon nanotubes, polymers and carbon fibers, wherein the average length of carbon nanotubes is less than 2 μm. 제 1항에 있어서, 폴리머가 열경화성 물질 또는 열가소성 물질인 복합체 재료.The composite material of claim 1, wherein the polymer is a thermoset or thermoplastic. 제 2항에 있어서, 열경화성 물질이 폴리이미드, 페놀계 수지(phenolics), 시아네이트 에스테르, 및 비스말레이미드로 이루어진 군으로부터 선택되는 복합체 재료.The composite material of claim 2, wherein the thermosetting material is selected from the group consisting of polyimide, phenolics, cyanate esters, and bismaleimide. 제 1항에 있어서, 탄소 나노튜브가 작용화되지 않은 복합체 재료.The composite material of claim 1, wherein the carbon nanotubes are not functionalized. 제 1항에 있어서, 탄소 나노튜브가 카르복실 작용기 또는 아민 작용기로 작용화된 복합체 재료.The composite material of claim 1, wherein the carbon nanotubes are functionalized with carboxyl functional groups or amine functional groups. 제 1항에 있어서, 탄소 나노튜브가 아민 작용기로 작용화된 복합체 재료.The composite material of claim 1, wherein the carbon nanotubes are functionalized with amine functional groups. 제 1항에 있어서, 탄소 섬유가 일방향(unidirectional) 탄소 섬유인 복합체 재료.The composite material of claim 1, wherein the carbon fibers are unidirectional carbon fibers.
KR1020117004061A 2008-07-25 2008-09-30 Carbon Nanotube-Reinforced Nanocomposites KR20110048525A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/180,359 US8283403B2 (en) 2006-03-31 2008-07-25 Carbon nanotube-reinforced nanocomposites
US12/180,359 2008-07-25
PCT/US2008/078306 WO2010011234A1 (en) 2008-07-25 2008-09-30 Carbon nanotube-reinforced nanocomposites

Publications (1)

Publication Number Publication Date
KR20110048525A true KR20110048525A (en) 2011-05-11

Family

ID=41570534

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020117004061A KR20110048525A (en) 2008-07-25 2008-09-30 Carbon Nanotube-Reinforced Nanocomposites

Country Status (7)

Country Link
US (2) US8283403B2 (en)
EP (1) EP2315661A4 (en)
JP (1) JP5568553B2 (en)
KR (1) KR20110048525A (en)
CN (1) CN102137754A (en)
TW (1) TW201005012A (en)
WO (1) WO2010011234A1 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9056783B2 (en) * 1998-12-17 2015-06-16 Hach Company System for monitoring discharges into a waste water collection system
US20110125412A1 (en) * 1998-12-17 2011-05-26 Hach Company Remote monitoring of carbon nanotube sensor
US7454295B2 (en) 1998-12-17 2008-11-18 The Watereye Corporation Anti-terrorism water quality monitoring system
US8958917B2 (en) * 1998-12-17 2015-02-17 Hach Company Method and system for remote monitoring of fluid quality and treatment
US8920619B2 (en) 2003-03-19 2014-12-30 Hach Company Carbon nanotube sensor
US20110160346A1 (en) * 2006-03-31 2011-06-30 Applied Nanotech Holdings, Inc. Dispersion of carbon nanotubes by microfluidic process
US20110027603A1 (en) * 2008-12-03 2011-02-03 Applied Nanotech, Inc. Enhancing Thermal Properties of Carbon Aluminum Composites
US20110147647A1 (en) * 2009-06-05 2011-06-23 Applied Nanotech, Inc. Carbon-containing matrix with additive that is not a metal
US20100310447A1 (en) * 2009-06-05 2010-12-09 Applied Nanotech, Inc. Carbon-containing matrix with functionalized pores
DE102010040040A1 (en) * 2010-08-31 2012-03-01 Sgl Carbon Se Reinforced epoxy resin
CN102120882B (en) * 2011-01-12 2012-07-25 同济大学 Preparation method of carbon nano tube and functionalized carbon fiber reinforced bismaleimide resin matrix composite
EP2751173B1 (en) 2011-09-02 2020-02-05 BAE Systems PLC A method of preparing a curable resin particles and a fiber reinforced polymer composite produced thereby
WO2013133941A1 (en) * 2012-03-06 2013-09-12 Applied Nanotech Holdings, Inc. Carbon nanotube reinforced nanocomposites
JP5842916B2 (en) * 2012-03-29 2016-01-13 三菱レイヨン株式会社 Carbon fiber thermoplastic resin prepreg, carbon fiber composite material, and production method
DE102012212290A1 (en) * 2012-07-13 2014-01-16 Siemens Aktiengesellschaft Polymer fiber composites modified with single-walled carbon nanotubes
US9972420B2 (en) 2015-12-08 2018-05-15 The Boeing Company Carbon nanotube shielding for transmission cables
US10758936B2 (en) 2015-12-08 2020-09-01 The Boeing Company Carbon nanomaterial composite sheet and method for making the same
US10093041B2 (en) 2016-04-11 2018-10-09 The Boeing Company Conductive pre-impregnated composite sheet and method for making the same
CN105778424B (en) * 2016-04-22 2019-05-24 武汉理工大学 A kind of carbon nanotube, carbon fiber modified synergic epoxy resin composite material and preparation method thereof
US20180305866A1 (en) * 2017-04-20 2018-10-25 Otis Elevator Company Fire-resistant synthetic tension members
US11244775B2 (en) * 2018-12-11 2022-02-08 Universities Space Research Association Physically unclonable all-printed carbon nanotube network
US20220235191A1 (en) * 2019-06-25 2022-07-28 The Trustees Of Indiana University Fibers, prepreg materials, compositions, composite articles, and methods of producing composite articles
CN111320841B (en) * 2020-01-08 2022-08-26 浙江宝旌炭材料有限公司 Aramid fiber/carbon nanotube composite reinforced carbon fiber resin prepreg
CN112980026A (en) * 2021-03-09 2021-06-18 山东非金属材料研究所 Preparation method of carbon nanotube modified fiber reinforced thermosetting resin-based prepreg

Family Cites Families (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5846245B2 (en) 1980-06-25 1983-10-15 日本黒鉛工業株式会社 Method for manufacturing plastic molded products with excellent surface lubricity
US5096556A (en) 1990-06-25 1992-03-17 Ppg Industries, Inc. Cationic microgels and their use in electrodeposition
US5565505A (en) 1993-06-30 1996-10-15 Henkel Corporation Self-dispersing curable epoxy resins, dispersions made therewith, and coating compositions made therefrom
EP0739367A4 (en) 1993-12-27 1997-12-10 Henkel Corp Self-dispersing curable epoxy resins and coatings
US5604269A (en) 1993-12-27 1997-02-18 Henkel Corporation Self-dispersing curable epoxy resins, dispersions made therewith, and coating compositions made therefrom
US5565506A (en) 1994-03-01 1996-10-15 Henkel Corporation Self-dispersing curable epoxy resins, dispersions made therewith, and coating compositions made therefrom
US5854313A (en) 1994-09-28 1998-12-29 Takeda Chemical Industries, Ltd. Fine particles of high heat resistant polymer and epoxy esters
US5750595A (en) 1994-12-29 1998-05-12 Henkel Corporation Self-dispersing curable epoxy resin dispersions and coating compositions made therefrom
CN1192097C (en) 1995-03-10 2005-03-09 梅索磅秤技术有限公司 Multi-array, multi-specific electrochemiluminescence testing
US6140045A (en) 1995-03-10 2000-10-31 Meso Scale Technologies Multi-array, multi-specific electrochemiluminescence testing
US5719201A (en) * 1995-03-30 1998-02-17 Woodbridge Foam Corporation Superabsorbent hydrophilic isocyanate-based foam and process for production thereof
US5569715A (en) 1995-07-24 1996-10-29 Basf Corporation Process for obtaining hydrophobically modified emulsion polymers and polymers obtained thereby
US5969030A (en) 1995-07-24 1999-10-19 Basf Corporation Waterborne coating compositions containing hydrophobically modified emulsions
EP0755946A3 (en) 1995-07-24 1997-10-01 Basf Corp Method for preparing hydrophobically modified emulsion polymers, polymers obtained thereby, and waterborne coating compositions containing the polymers
US5760108A (en) 1996-10-22 1998-06-02 Henkel Corporation Self-dispersing curable epoxy resin esters, dispersions thereof and coating compositions made therefrom
US5719210A (en) 1996-11-26 1998-02-17 Henkel Corporation Self-dispersing curable epoxy resins, dispersions made therewith, and coating compositions made therefrom
US6683783B1 (en) 1997-03-07 2004-01-27 William Marsh Rice University Carbon fibers formed from single-wall carbon nanotubes
US6770583B2 (en) 1997-03-14 2004-08-03 The United States Of America As Represented By The Secretary Of The Navy Transistion metal containing ceramic with metal nanoparticles
US6333016B1 (en) 1999-06-02 2001-12-25 The Board Of Regents Of The University Of Oklahoma Method of producing carbon nanotubes
EP1803763B1 (en) * 1999-12-07 2016-08-10 William Marsh Rice University Oriented nanofibers embedded in polymer matrix
US7073201B2 (en) 2001-09-21 2006-07-11 Denki Kagaku Kogyo Kabushiki Kaisha Aqueous Adhesive
JP3948217B2 (en) * 2000-06-05 2007-07-25 昭和電工株式会社 Conductive curable resin composition, cured product thereof, and molded product thereof
US20020068161A1 (en) 2000-07-14 2002-06-06 Board Of Control Of Michigan Technological University Wood-based composite board and method of manufacture
US20030151030A1 (en) 2000-11-22 2003-08-14 Gurin Michael H. Enhanced conductivity nanocomposites and method of use thereof
WO2002062899A1 (en) * 2001-02-05 2002-08-15 Toray Industries, Inc. Carbon fiber reinforced resin composition, molding material and molded article therefrom
EP1385481A4 (en) 2001-03-26 2006-06-07 Eikos Inc Carbon nanotubes in structures and repair compositions
US6689835B2 (en) 2001-04-27 2004-02-10 General Electric Company Conductive plastic compositions and method of manufacture thereof
US6808939B2 (en) * 2001-06-29 2004-10-26 Igen International, Inc. ECL labels having improved non-specific binding properties, methods of using and kits containing the same
US6680016B2 (en) 2001-08-17 2004-01-20 University Of Dayton Method of forming conductive polymeric nanocomposite materials
US20050127329A1 (en) 2001-08-17 2005-06-16 Chyi-Shan Wang Method of forming nanocomposite materials
US6524777B1 (en) 2001-08-30 2003-02-25 Eastman Kodak Company Method of activating a protective layer on a photographic element employing an organic solvent in the wash solution
US20030099798A1 (en) 2001-11-29 2003-05-29 George Eric R. Nanocomposite reinforced polymer blend and method for blending thereof
US6846345B1 (en) 2001-12-10 2005-01-25 The United States Of America As Represented By The Secretary Of The Navy Synthesis of metal nanoparticle compositions from metallic and ethynyl compounds
JP2003201388A (en) * 2002-01-08 2003-07-18 Toray Ind Inc Epoxy resin composition, resin cured product, prepreg and fiber reinforced composite
US6864418B2 (en) 2002-12-18 2005-03-08 Nanoset, Llc Nanomagnetically shielded substrate
US7162302B2 (en) 2002-03-04 2007-01-09 Nanoset Llc Magnetically shielded assembly
JP4241070B2 (en) 2002-02-12 2009-03-18 東レ株式会社 Resin composition and method for producing the same
JP4196567B2 (en) 2002-02-14 2008-12-17 東レ株式会社 Carbon fiber reinforced resin composition, molding material and molded article thereof
US20040038251A1 (en) 2002-03-04 2004-02-26 Smalley Richard E. Single-wall carbon nanotubes of precisely defined type and use thereof
US7223811B2 (en) 2002-03-20 2007-05-29 Facultes Universitaires Notre-Dame De La Paix Nanocomposite: products, process for obtaining them and uses thereof
US7153903B1 (en) 2002-06-19 2006-12-26 The Board Of Regents Of The University Of Oklahoma Carbon nanotube-filled composites prepared by in-situ polymerization
DE60321805D1 (en) 2002-07-15 2008-08-07 Henkel Ag & Co Kgaa SELF-SEPARATING UNSATURATED MONOMER-MODIFIED EPOXY DISPERSION
US7094367B1 (en) 2002-08-13 2006-08-22 University Of Florida Transparent polymer carbon nanotube composites and process for preparation
JP4480368B2 (en) 2002-09-13 2010-06-16 大阪瓦斯株式会社 Resin composition containing nanoscale carbon, conductive or antistatic resin molding, conductive or antistatic resin coating composition, antistatic film, and production method thereof
JP3735651B2 (en) * 2002-10-08 2006-01-18 独立行政法人 宇宙航空研究開発機構 Carbon nanofiber dispersed resin fiber reinforced composite material
US6800946B2 (en) 2002-12-23 2004-10-05 Motorola, Inc Selective underfill for flip chips and flip-chip assemblies
JP4342929B2 (en) 2002-12-26 2009-10-14 昭和電工株式会社 Carbonaceous material for conductive composition and use thereof
DE10312494A1 (en) 2003-03-20 2004-10-07 Association pour la Recherche et le Développement des Méthodes et Processus Industriels (Armines) Carbon nanostructures and methods of making nanotubes, nanofibers, and carbon-based nanostructures
US7537803B2 (en) 2003-04-08 2009-05-26 New Jersey Institute Of Technology Polymer coating/encapsulation of nanoparticles using a supercritical antisolvent process
DE102004025048A1 (en) 2003-05-20 2004-12-23 Futaba Corp., Mobara Ultra-dispersed carbon primary nanoparticles, e.g. of fullerene, graphite or diamond, useful e.g. as abrasives or lubricants, obtained from agglomerates or agglutinates by wet-milling and/or wet dispersion
ATE519712T1 (en) 2003-06-16 2011-08-15 Univ Rice William M SIDEWALL FUNCTIONALIZATION OF CARBON NANOTUBE WITH HYDROXY-TERMINATED MOLECULE UNITS
EP1660405B1 (en) 2003-07-28 2012-11-28 William Marsh Rice University Sidewall functionalization of carbon nanotubes with organosilanes for polymer composites
WO2005036563A2 (en) 2003-08-21 2005-04-21 Rensselaer Polytechnic Institute Nanocomposites with controlled electrical properties
JP4403265B2 (en) 2003-09-05 2010-01-27 国立大学法人信州大学 Powder mixing method
US7262266B2 (en) * 2003-10-24 2007-08-28 William Marsh Rice University Copolymerization of polybenzazoles and other aromatic polymers with carbon nanotubes
US7005550B1 (en) 2004-01-22 2006-02-28 The United States Of America As Represented By The Secretary Of The Air Force Arylcarbonylated vapor-grown carbon nanofibers
JP4546749B2 (en) 2004-03-09 2010-09-15 帝人テクノプロダクツ株式会社 Conductive aromatic polyamide resin composition and conductive aromatic polyamide resin molded article using the same
US7862624B2 (en) 2004-04-06 2011-01-04 Bao Tran Nano-particles on fabric or textile
US7296576B2 (en) 2004-08-18 2007-11-20 Zyvex Performance Materials, Llc Polymers for enhanced solubility of nanomaterials, compositions and methods therefor
US7078683B2 (en) 2004-10-22 2006-07-18 Agilent Technologies, Inc. Nanowire target support and method
JP4931168B2 (en) 2005-01-06 2012-05-16 国立大学法人名古屋大学 Method for producing high purity 2 to 5 carbon nanotubes
US20060216508A1 (en) 2005-03-24 2006-09-28 3M Innovative Properties Company Polymer nanocomposite having surface modified nanoparticles and methods of preparing same
TWI267220B (en) * 2005-05-24 2006-11-21 Univ Tsinghua Manufacturing process of high gas permeability-resistance and heat-resistance conductive polymer composite bipolar plate for fuel cell
US20060270790A1 (en) 2005-05-26 2006-11-30 Brian Comeau Carbon-nanotube-reinforced composites for golf ball layers
EP1910220A1 (en) * 2005-07-22 2008-04-16 The Provost, Fellows And Scholars Of The College Of The Holy And Undivided Trinity Of Queen Elizabeth Near Dublin Nanocomposite polymers
US20070023839A1 (en) * 2005-07-27 2007-02-01 International Business Machines Corporation Finfet gate formed of carbon nanotubes
JP2007126637A (en) * 2005-10-03 2007-05-24 Toray Ind Inc Resin composition, cured product of resin, prepreg and fiber-reinforced composite material
US20070276077A1 (en) 2006-04-05 2007-11-29 Nano-Proprietary, Inc. Composites
US20080152913A1 (en) 2006-12-22 2008-06-26 3M Innovative Properties Company Method of making compositions including particles
CN100487046C (en) * 2007-02-07 2009-05-13 黄德欢 Preparation method of carbon nano-tube/polypropylene composite material
US20100158193A1 (en) 2008-12-22 2010-06-24 Bates Mark C Interventional Devices Formed Using Compositions Including Metal-Coated Nanotubes Dispersed In Polymers, And Methods Of Making And Using Same

Also Published As

Publication number Publication date
TW201005012A (en) 2010-02-01
EP2315661A4 (en) 2013-01-09
EP2315661A1 (en) 2011-05-04
US20090035570A1 (en) 2009-02-05
WO2010011234A1 (en) 2010-01-28
US20130059947A1 (en) 2013-03-07
JP2011529113A (en) 2011-12-01
CN102137754A (en) 2011-07-27
US8283403B2 (en) 2012-10-09
JP5568553B2 (en) 2014-08-06

Similar Documents

Publication Publication Date Title
KR20110048525A (en) Carbon Nanotube-Reinforced Nanocomposites
Hsiao et al. Use of epoxy/multiwalled carbon nanotubes as adhesives to join graphite fibre reinforced polymer composites
Green et al. Multiscale fiber reinforced composites based on a carbon nanofiber/epoxy nanophased polymer matrix: synthesis, mechanical, and thermomechanical behavior
Qiu et al. Carbon nanotube integrated multifunctional multiscale composites
Garg et al. Pristine and amino functionalized carbon nanotubes reinforced glass fiber epoxy composites
Cheng et al. Fabrication and properties of aligned multiwalled carbon nanotube-reinforced epoxy composites
Njuguna et al. Epoxy‐based fibre reinforced nanocomposites
US7641829B2 (en) Method for mechanically chopping carbon nanotube and nanoscale fibrous materials
Li et al. Interlaminar properties of GFRP laminates toughened by CNTs buckypaper interlayer
US9000085B2 (en) Carbon fiber composite resin material and method of producing the same
JP5117779B2 (en) Composite material
Chang An investigation on the dynamic behavior and thermal properties of MWCNTs/FRP laminate composites
Mathur et al. Influence of carbon nanotube dispersion on the mechanical properties of phenolic resin composites
Randjbaran et al. Reasons of Adding Carbon Nanotubes into Composite Systems-Review Paper.
Rana et al. Effect of carbon nanofiber functionalization on the in‐plane mechanical properties of carbon/epoxy multiscale composites
KR20090025194A (en) Carbon nanotube-reinforced nanocomposites
US9193837B1 (en) Reinforced nancomposites and method of producing the same
JP6814422B2 (en) Composite material containing carbon fiber and resin, intermediate base material and molded product containing the composite material
Farahani et al. Micro-infiltration of three-dimensional porous networks with carbon nanotube-based nanocomposite for material design
Salam et al. Improvement in mechanical and thermo-mechanical properties of carbon fibre/epoxy composites using carboxyl functionalized multi-walled carbon nanotubes
McCrary-Dennis et al. Development of the displaced foam dispersion technique for the manufacture of multiscale composites
US20120220695A1 (en) Carbon Nanotube Reinforced Nanocomposites
Rana et al. Mechanical properties of epoxy reinforced with homogeneously dispersed carbon nanofibre
Hossain et al. Optimized mechanical performance of carbon fiber-epoxy composite using amino-functionalized graphene nanoplatelets
Singh et al. Investigate the Interlaminar Shear Strength of E-Glass Fiber Reinforced CNT additions of Epoxy Composites

Legal Events

Date Code Title Description
A201 Request for examination
E601 Decision to refuse application