KR20110038981A - Method for electroless nikel coating of magnesiumalloy plate - Google Patents

Method for electroless nikel coating of magnesiumalloy plate Download PDF

Info

Publication number
KR20110038981A
KR20110038981A KR1020090096214A KR20090096214A KR20110038981A KR 20110038981 A KR20110038981 A KR 20110038981A KR 1020090096214 A KR1020090096214 A KR 1020090096214A KR 20090096214 A KR20090096214 A KR 20090096214A KR 20110038981 A KR20110038981 A KR 20110038981A
Authority
KR
South Korea
Prior art keywords
magnesium alloy
electroless nickel
nickel plating
alloy sheet
weight
Prior art date
Application number
KR1020090096214A
Other languages
Korean (ko)
Other versions
KR101094338B1 (en
Inventor
이지정
이승우
박지선
최철영
Original Assignee
이지정
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이지정 filed Critical 이지정
Priority to KR1020090096214A priority Critical patent/KR101094338B1/en
Publication of KR20110038981A publication Critical patent/KR20110038981A/en
Application granted granted Critical
Publication of KR101094338B1 publication Critical patent/KR101094338B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1637Composition of the substrate metallic substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1689After-treatment
    • C23C18/1692Heat-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1803Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces
    • C23C18/1824Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment
    • C23C18/1837Multistep pretreatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1803Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces
    • C23C18/1824Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment
    • C23C18/1837Multistep pretreatment
    • C23C18/1841Multistep pretreatment with use of metal first
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/22Roughening, e.g. by etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/16Acidic compositions
    • C23F1/22Acidic compositions for etching magnesium or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/46Electroplating: Baths therefor from solutions of silver
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/48Electroplating: Baths therefor from solutions of gold

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Chemically Coating (AREA)

Abstract

PURPOSE: An electroless nickel plating method of a magnesium-alloy plate is provided to enhance the decoration, corrosion resistance, abrasion resistance and high hardness of a magnesium plate. CONSTITUTION: An electroless nickel plating method of a magnesium-alloy plate is as follows. An ultrasonic degrease process, an etching process and a post etching process are performed on the magnesium-alloy plate(a). After first activation through the soak to activation solution, electroless nickel plating is done using reactive-gas inducing catalyst metal(b). After second activation through baking and then the soak to HCL solution or sulfuric acid solution, striking plating and electrical plating are successively done(c).

Description

마그네슘합금 판재의 무전해 니켈도금방법{Method for electroless nikel coating of magnesiumalloy plate}Electroless nickel plating method of magnesium alloy plate {Method for electroless nikel coating of magnesiumalloy plate}

본 발명은 마그네슘합금 판재에 균일한 무전해 니켈 금속 도금층을 형성시키고, 밀착성을 높이기 위해 탈지, 에칭, 포스트 에칭 등과 같은 전처리를 한 다음 무전해 니켈도금방법을 이용하여 표면처리함으로써, 마그네슘합금 판재가 장식성, 내식성, 내마모성 및 고강도성을 갖도록 한 것을 특징으로 하는 마그네슘합금 판재의 무전해 니켈도금방법에 관한 것이다. The present invention forms a uniform electroless nickel metal plated layer on the magnesium alloy sheet, and pretreatment such as degreasing, etching, post etching, etc. in order to increase the adhesion, and then surface treated using an electroless nickel plating method, the magnesium alloy sheet The present invention relates to an electroless nickel plating method of magnesium alloy sheet material characterized by having decorativeness, corrosion resistance, abrasion resistance and high strength.

일반적으로 마그네슘합금은 금속 소재 중 가장 가볍다는 장점에 의해 여러 산업분야에 이용되어 지고 있다. 마그네슘합금은 상기와 같은 장점을 갖고 있음에도 불구하고 산과 알칼리에 취약한 단점에 의해 주로 강산과 강알칼리 계열의 약품을 사용하는 습식도금의 방법에 의해 표면처리를 하는데 많은 제약이 따르므로 생산성 저하 등의 문제점을 야기하고 있다.In general, magnesium alloy is used in many industries because of the lightest of the metal materials. Although magnesium alloy has the above advantages, due to the weakness of acid and alkali, surface treatment is mainly performed by wet plating using strong acid and strong alkali chemicals. It is causing.

따라서, 상기와 같은 문제점을 해결하기 위한 방안으로 마그네슘합금 판재를 표면처리하기 위한 다양한 방법들이 개발되고 있으며, 이와 같이 개발된 기술들이 특허출원된 내용을 살펴보면, 국내 공개특허공보 특2003-0073929호에 마그네슘합금의 성형품인 피도금물을 알칼리 탈지 및 불화물 산성에칭과 알칼리 에칭공정을 순서에 따라 2-3회 재시행한 다음 약산성의 무전해 니켈도금을 시행하여 2중 무전해 니켈도금방법이 알려져 있고, 그리고 국내 등록특허공보 제10-0881061호에 마그네슘합금판재 표면을 세척한 다음 이물질을 제거하고, 산성액 속에 침지하여 산화시킨 다음 엣칭액 속에 침지시켜 부착생성물질을 제거한 다음 아연치환액 속에 침지시켜 아연치환시킨 후 청화동 전해액 속에 침지시켜 전해도금시킨 다음 유산동 전해도금액 속에 침지하여 전해도금한 후 니켈 전해도금액 속에 침지하여 전해도금시킨 다음 3가크롬전해도금액 속에 침지시켜 전해도금시키는 것을 특징으로 하는 마그네슘합금판재의 도금방법이 알려져 있으며, 또한 국내 등록특허공보 제10-0528638호에 마그네슘 합금 표면을 탈지 처리한 후 수세 처리하고, 마그네슘 합금 표면의 산화 피막을 제거한 후 수세 처리한 후 마그네슘 합금의 표면에 아연을 도금한 후 수세 처리한 다음 소지 금속 밀착을 위한 청화 구리 도금과 무전해 니켈도금 중 선택된 어느 한 도금을 처리한 후 수세 처리하여 경도 및 내마모성 향상을 위하여 전해 니켈도금 처리를 하는 단계를 포함하는 것을 특징으로 하는 마그네슘 합금에 대한 니켈도금방법이 알려져 있다.Therefore, various methods for surface treatment of magnesium alloy sheet material have been developed as a solution for solving the above problems. Looking at the contents of the patent application of the technologies developed in this way, Korean Patent Application Publication No. 2003-0073929 The double-electroless nickel plating method is known by performing the alkali degreasing, fluoride acid etching and alkali etching processes 2-3 times in the order of the magnesium alloy molded product, and then performing weakly acidic electroless nickel plating. And, in Korea Patent Publication No. 10-0881061, after washing the surface of the magnesium alloy sheet to remove the foreign matter, immersed in acidic acid and oxidized, and then immersed in the etching liquid to remove the adhesion product and then immersed in zinc replacement solution After zinc replacement, it is immersed in electrolytic solution. The plating method of magnesium alloy plate material is known, which is immersed in nickel electrolytic plating solution after electrolytic plating and then electroplated, followed by immersion in trivalent chromium electrolytic solution, and is also known in Korea. The surface of the magnesium alloy is degreased and washed with water, the oxide film on the surface of the magnesium alloy is removed and washed with water, followed by zinc plating on the surface of the magnesium alloy, followed by washing with water. The nickel plating method for a magnesium alloy is known, comprising the step of electrolytic nickel plating treatment to improve the hardness and wear resistance by treating the plating of any one selected from electroless nickel plating.

상기와 같은 방법들의 경우에는 아직도 소재와 금속 피막층 사이의 밀착불량 과 이에 기인한 금속피막층의 기포(blister)가 문제시 되고 있으며, 다만 마그네슘 다이캐스팅 합금(AZ91) 표면에서의 니켈 핵형성 및 성장이 쉽게 되며, 제품전체에서의 반응이 이루어진다. 그러나 마그네슘 판재 합금(AZ31)의 경우 활성화된 표면에서의 핵형성이 거의 이루어지지 않아 무전해 니켈 도금방법으로는 도금이 이루어지지 않고 있다. In the case of the above methods, the poor adhesion between the material and the metal coating layer and the resulting blister of the metal coating layer are still a problem, but nickel nucleation and growth on the magnesium die casting alloy (AZ91) surface are easy. The reaction takes place throughout the product. However, in the case of magnesium plate alloy (AZ31), since nucleation is hardly performed on the activated surface, plating is not performed by the electroless nickel plating method.

따라서, 본 발명은 마그네슘합금 판재의 소재층과 무전해 니켈 금속 층의 균일한 형성과 밀착력을 높이기 위한 전처리 공정으로 탈지, 에칭, 포스트(Post)에칭, 활성화, 무전해 니켈도금 등의 공정을 거침으로서, 장식성, 내식성, 내마모성 및 고경도의 물성을 향상시킬 수 있는 것을 특징으로 하는 마그네슘합금 판재의 무전해 니켈도금방법을 제공함을 과제로 한다.Therefore, the present invention is a pretreatment process for uniform formation and adhesion of the material layer of the magnesium alloy sheet and the electroless nickel metal layer through degreasing, etching, post etching, activation, electroless nickel plating and the like. An object of the present invention is to provide an electroless nickel plating method of a magnesium alloy sheet material which can improve decorative, corrosion resistance, wear resistance and high hardness properties.

그리고 본 발명은 무전해 도금 시 활성화된 마그네슘합금 판재 상에 무전해 니켈핵의 형성 및 성장을 유도하기 위해 무전해 니켈도금 시 반응유도 촉매 금속을 사용하여 여기서 생성되는 가스를 마그네슘 표면에 접촉시킴으로서 핵 형성 및 성장을 유도하여 마그네슘합금 판재에 무전해 니켈도금을 시행하는 것을 특징으로 하는 마그네슘합금 판재의 무전해 니켈도금방법을 제공함을 다른 과제로 한다.In addition, the present invention uses the reaction-induced catalytic metal during electroless nickel plating to induce the formation and growth of electroless nickel nuclei on the activated magnesium alloy sheet during electroless plating, thereby bringing the nucleus into contact with the magnesium surface. Another object of the present invention is to provide an electroless nickel plating method of a magnesium alloy sheet, which is characterized by performing electroless nickel plating on the magnesium alloy sheet by inducing formation and growth.

또한 본 발명은 공정중 소재와 금속피막층 사이의 밀착력 증대와 더불어 밀착불량에 기인한 소재와 피막 사이의 기포(blister) 확인을 할 수 있는 단계인 베이킹(baking)처리를 소재와 도금층 사이의 밀착력 향상과 표면처리의 불량률을 줄일 수 있도록 한 것을 특징으로 하는 마그네슘합금 판재의 무전해 니켈도금방법을 제공함을 또 다른 과제로 한다.In addition, the present invention improves the adhesion between the material and the plating layer during the baking process, which is a step of confirming the blister between the material and the coating due to the poor adhesion and the adhesion between the material and the metal coating layer during the process. Another object of the present invention is to provide an electroless nickel plating method of a magnesium alloy sheet material, which can reduce the defect rate of the surface treatment.

상기의 과제를 달성하기 위한 본 발명은 마그네슘합금 판재의 무전해 니켈도금방법에 있어서,In the present invention for achieving the above object in the electroless nickel plating method of the magnesium alloy sheet,

상기 마그네슘합금 판재는 초음파 탈지처리와 에칭 및 포스트(Post) 에칭의 전처리 공정을 거친 다음,The magnesium alloy sheet is subjected to an ultrasonic degreasing treatment and a pretreatment process of etching and post etching,

활성화 처리액에 침지시켜 1차 활성화처리한 후 반응가스 유도 촉매금속을 사용한 무전해 니켈도금 공정을 거친 후,After immersion in the activating solution and the first activation treatment, after the electroless nickel plating process using the reaction gas-derived catalytic metal,

베이킹(Baking) 처리한 다음 염산 수용액 또는 황산 수용액에 침지시켜 2차 활성화 처리한 후 스트라이크(Strike) 도금 및 전기도금을 순차적으로 실시하는 것을 특징으로 하는 마그네슘합금 판재의 무전해 니켈도금방법을 과제 해결 수단으로 한다.Solving the electroless nickel plating method of the magnesium alloy sheet, characterized in that the baking treatment and then immersed in an aqueous hydrochloric acid solution or sulfuric acid solution, and then subjected to a second activation treatment, followed by strike plating and electroplating. By means.

단, 본 발명은 상기 에칭은 아세트산 16∼20 중량%와 질산나트륨 3∼5 중량% 및 물 75∼81 중량%의 혼합용액을 사용하여 pH 2∼3으로 조정한 에칭용액을 사용하 여 마그네슘합금 판재를 상온에서 20∼50초간 침지시키며, However, the present invention is a magnesium alloy using an etching solution adjusted to pH 2-3 using a mixed solution of 16 to 20% by weight of acetic acid, 3 to 5% by weight of sodium nitrate and 75 to 81% by weight of water. The board is immersed at room temperature for 20-50 seconds,

상기 포스트(Post) 에칭은 옥살산 0.4∼0.6 중량%와 습윤제 0.1∼1.0 중량% 및 물 98.4∼99.5 중량%를 혼합시킨 옥살산 수용액의 포스트 에칭용액에 마그네슘합금 판재를 상온에서 20∼60초간 침지시키고,In the post etching, the magnesium alloy sheet material is immersed at room temperature for 20 to 60 seconds in a post etching solution of an oxalic acid aqueous solution in which 0.4 to 0.6% by weight of oxalic acid, 0.1 to 1.0% by weight of a wetting agent, and 98.4 to 99.5% by weight of water are mixed.

상기 1차 활성화처리는 불화암모늄 8∼12 중량%와 인산 30∼38 중량% 및 물 50∼62 중량%의 혼합시킨 활성화 처리액에 마그네슘합금 판재를 상온에서 3∼8분간 침지시켜 활성화 처리하며, In the first activation treatment, magnesium alloy plate is immersed for 3 to 8 minutes at room temperature in an activation treatment solution containing 8 to 12 wt% of ammonium fluoride, 30 to 38 wt% of phosphoric acid, and 50 to 62 wt% of water, and the activation treatment is performed.

상기 무전해 니켈도금 공정은 탄산니켈 0.8∼1.2 중량%, 차아인산나트륨 1.6∼2.4 중량%, 구연산 0.4∼0.6 중량%, 불화암모늄 0.8∼1.2 중량%, 불산 0.8∼1.2 중량%, 암모니아 0.2∼0.3 중량% 및 물 93.1∼95.4 중량%로 이루어진 수용액 100 중량부에 대하여 첨가제 0.05∼0.20 중량부를 혼합시킨 무전해 니켈도금액을 pH 6∼7로 설정한 다음 반응유도 촉매금속과 활성화된 마그네슘합금 판재를 75∼85℃에서 약 2∼5 분간 반응 후 반응유도 촉매금속만 배출시키고 마그네슘 합금 판재만 15∼25분간 침지시켜 무전해 니켈도금하고,The electroless nickel plating process includes nickel carbonate 0.8-1.2 wt%, sodium hypophosphite 1.6-2.4 wt%, citric acid 0.4-0.6 wt%, ammonium fluoride 0.8-1.2 wt%, hydrofluoric acid 0.8-1.2 wt%, ammonia 0.2-0.3 An electroless nickel plating solution in which 0.05 to 0.20 parts by weight of an additive was mixed with 100 parts by weight of an aqueous solution composed of 93% to 95.4% by weight of water was set to pH 6-7, and then the reaction-induced catalyst metal and activated magnesium alloy sheet were After reaction at 75 ~ 85 ℃ for about 2 ~ 5 minutes, only reaction-induced catalyst metal is discharged, and only magnesium alloy plate is immersed in 15 ~ 25 minutes for electroless nickel plating.

상기 반응유도 촉매금속은 철, 니켈, 니켈 도금된 금속과 같이 무전해 니켈도금액과 반응하는 금속 중에서 1종을 선택하여 사용하고,The reaction induction catalyst metal is selected from one of metals reacting with the electroless nickel plating solution, such as iron, nickel, nickel plated metal,

상기 베이킹(Baking) 처리는 무전해 니켈도금 처리한 마그네슘합금 판재를 100∼300℃에서 30∼120분간 가열시키며, The baking treatment heats the electroless nickel plated magnesium alloy sheet at 100 to 300 ° C. for 30 to 120 minutes,

그리고 상기 전기도금은 일반 내식 또는 장식용 도금처리하는 것이 바람직하다. And the electroplating is preferably coated with a general corrosion or decorative plating.

상기의 과제 해결 수단에 의한 본 발명은 마그네슘 판재 상에 표면처리를 행함에 있어서 기존에 문제시 되어진 핀홀과 소재 가공에 의한 미도금과 밀착 불량을 2번에 걸친 에칭 공정을 통하여 현저히 개선함은 물론이고 내식성 향상과 고경도 및 내마모성을 강화시키는 효과가 가능하고, 또한 니켈, 크롬 또는 귀금속 등과 같은 소재를 사용하여 전기도금처리를 실시하여 마그네슘 판재의 장식성, 내식성, 내마모성 및 고경도의 물성을 향상시킴으로써, 정보통신제품, 레저용품, 광학기기, 디지털 카메라. 자동차, 항공기 부품, 건자재 등과 같은 다양한 용도로의 적용이 가능하여 그 수요가 대폭 증대할 것으로 기대된다.The present invention by the above-mentioned problem solving means significantly improves the unplated and poor adhesion by the pinhole and material processing, which has been a problem in the surface treatment on magnesium plate material through two etching processes, as well as It is possible to improve the corrosion resistance, strengthen the hardness and wear resistance, and also electroplating treatment using materials such as nickel, chromium or precious metal to improve the decorative, corrosion resistance, wear resistance and high hardness of magnesium plate , Information and communication products, leisure products, optical instruments, digital cameras. It can be applied to various purposes such as automobile, aircraft parts, construction materials, etc., and the demand is expected to increase significantly.

이하, 본 발명의 바람직한 실시예를 첨부한 도면인 도 1 내지 도 5b에 의거하여 상세히 설명하며, 도 1 내지 도 5b에 있어서 동일한 기능을 수행하는 구성 요소에 대해서는 동일한 참조 번호를 병기한다. 한편, 각 도면 및 상세한 설명에서 일반적인 무전해 니켈도금 분야의 종사자들이 용이하게 알 수 있는 구성 및 작용에 대한 도시 및 언급은 간략히 하거나 생략하였다. 특히, 도면의 도시 및 상세한 설명에 있어서 본 발명의 기술적 특징과 직접적으로 연관되지 않는 요소의 구체적인 기술적 구성 및 작용에 대한 상세한 설명 및 도시는 생략한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to FIGS. 1 to 5b, and the same reference numerals are used for components that perform the same function in FIGS. 1 to 5b. On the other hand, in the drawings and detailed description showing and referring to the configuration and operation that can be easily understood by those skilled in the art of electroless nickel plating in general, briefly or omitted. In particular, in the drawings and detailed description of the drawings, detailed descriptions and illustrations of specific technical configurations and operations of elements not directly related to the technical features of the present invention are omitted.

본 발명에 따른 기술적 사상을 첨부된 도면인 도 1을 중심으로 상세히 설명하면 아래의 내용과 같다.The technical idea according to the present invention will be described in detail below with reference to FIG. 1.

본 발명에 첨부된 도면인 도 1은 본 발명에 따라 마그네슘합금 판재에 무전해 도금 시 활성화된 마그네슘합금 판재 상에 무전해 니켈핵의 형성 및 성장을 유도하는 과정을 나타낸 도면에 관한 것이다. 1 is a view attached to the present invention relates to a view showing a process for inducing the formation and growth of electroless nickel nuclei on the magnesium alloy plate activated during electroless plating on the magnesium alloy plate according to the present invention.

본 발명은 도 1의 (a)에 도시된 바와 같이 반응유도 촉매금속(10)을 사용하여 마그네슘합금 판재(20)를 무전해니켈도금 시 반응유도 촉매금속(10)으로부터 생성된 반응가스(30)를 마그네슘 합금판재(20)에 접촉시킴으로서 도 1의 (b)에 도시된 바와 같이 활성화된 마그네슘 합금판재(20)에 반응유도 촉매금속(10)의 가스유도반응에 의해 무전해 니켈핵(30`)이 형성되며, 무전해 니켈 도금실시 후 1∼2분 경과 후에는 도 1의 (c)에 도시된 바와 같이 마그네슘합금 판재(20)에 전체에 무전해 니켈핵(30')이 형성, 성장됨으로써, 마그네슘합금 판재(20)의 소재층에 무전해 니켈 금속층이 균일하게 형성되는 것이 특징이다.As shown in FIG. 1A, the reaction gas 30 generated from the reaction induction catalyst metal 10 during electroless nickel plating of the magnesium alloy sheet 20 using the reaction induction catalyst metal 10 is shown in FIG. ) By contacting the magnesium alloy plate 20 to the activated magnesium alloy plate 20 as shown in (b) of the electroless nickel core (30) by the gas induction reaction of the reaction induction catalyst metal (10) `) Is formed, and after 1 to 2 minutes after the electroless nickel plating is carried out, the electroless nickel nucleus 30 'is formed on the magnesium alloy sheet 20 as shown in FIG. By growing, the electroless nickel metal layer is formed uniformly in the material layer of the magnesium alloy plate material 20.

이하, 본 발명의 기술적 구성을 첨부된 도면인 도 2 및 도 3을 중심으로 상세히 설명하면 아래의 내용과 같다.Hereinafter, the technical configuration of the present invention will be described in detail with reference to FIGS. 2 and 3, which are attached drawings.

본 발명에서 첨부된 도면인 도 2는 본 발명에 따른 실시예로서, 마그네슘합 금 판재를 니켈도금하는 공정의 과정을 나타낸 도면이고, 도 3은 도 2의 방법에 따라 니켈도금한 마그네슘합금 판재의 단면을 나타낸 도면에 관한 것이다. 2 is a view showing the process of nickel plating a magnesium alloy sheet as an embodiment according to the present invention, Figure 3 is a nickel plated magnesium alloy sheet according to the method of FIG. It is related with the figure which showed the cross section.

본 발명은 첨부된 도면인 도 2에 도시된 바와 같이 마그네슘합금 판재의 무전해 니켈도금방법에 있어서,In the present invention, in the electroless nickel plating method of the magnesium alloy sheet as shown in Figure 2,

상기 마그네슘합금 판재는 초음파 탈지처리와 에칭 및 포스트(Post) 에칭의 전처리 공정을 거친 다음,The magnesium alloy sheet is subjected to an ultrasonic degreasing treatment and a pretreatment process of etching and post etching,

활성화 처리액에 침지시켜 1차 활성화처리한 후 반응가스 유도 촉매금속을 사용한 무전해 니켈도금 공정을 거친 후,After immersion in the activating solution and the first activation treatment, after the electroless nickel plating process using the reaction gas-derived catalytic metal,

베이킹(Baking) 처리한 다음 염산 수용액 또는 황산 수용액에 침지시켜 2차 활성화 처리한 후 스트라이크(Strike) 도금 및 전기도금을 순차적으로 실시하는 것을 특징으로 한다. After baking (baking) and then immersed in an aqueous hydrochloric acid solution or sulfuric acid aqueous solution to the secondary activation treatment is characterized in that the strike (Strike) plating and electroplating is performed sequentially.

이와 같이 본 발명은 마그네슘합금 판재 상에 무전해 니켈도금방법을 이용하여 마그네슘 판재의 표면에 니켈금속 등을 형성시킴으로써, 장식성, 내식성, 내마모성 및 고 경도를 보증하기 위한 습식 도금처리에 관한 것이다.As described above, the present invention relates to a wet plating treatment for ensuring decorativeness, corrosion resistance, abrasion resistance and high hardness by forming nickel metal or the like on the surface of a magnesium plate by using an electroless nickel plating method on a magnesium alloy plate.

특히 본 발명은 마그네슘합금 판재 상에 니켈금속 등을 형성하기 위한 방법에 있어서, 소재층과 무전해 니켈 금속층의 균일한 형성과 밀착력을 높이기 위한 방법으로, 탈지, 에칭, 포스트(Post) 에칭 등과 같은 전처리 공정을 거치는 것을 특징으로 한다.In particular, the present invention is a method for forming a nickel metal or the like on a magnesium alloy sheet, a method for improving the uniform formation and adhesion of the material layer and the electroless nickel metal layer, such as degreasing, etching, post etching, etc. Characterized by passing through a pretreatment process.

본 발명에서 탈지처리는 마그네슘합금 판재의 표면에 묻어 있는 오염물질들을 제거하기 위하여 탈지액에 마그네슘합금 판재를 55~65 ℃ 액온에서 침지시킨 다음 4∼6분간 초음파를 이용하여 탈지시키는 것이 바람직하다. 초음파 탈지시간이 4분 미만이 될 경우에는 마그네슘합금 판재의 표면에 묻어 있는 오염물질들이 제대로 제거되지 않을 우려가 있고, 6분을 초과할 경우에는 초음파 탈지시간의 초과에 따른 그 효과가 미미하다.In the present invention, in the degreasing treatment, in order to remove contaminants on the surface of the magnesium alloy sheet, the magnesium alloy sheet is immersed in the degreasing solution at 55 to 65 ° C., and then degreased using ultrasonic waves for 4 to 6 minutes. If the ultrasonic degreasing time is less than 4 minutes, contaminants on the surface of the magnesium alloy plate may not be removed properly, and if the ultrasonic degreasing time exceeds 6 minutes, the effect of exceeding the ultrasonic degreasing time is insignificant.

본 공정에서 마그네슘합금 판재는 고알칼리성의 탈지액에는 내식성이 크지만 암모늄이나 아민염 등을 함유하는 알칼리 수용액의 탈지액에는 용해되므로 사용하는 탈지액의 조성에 주의할 필요가 있다.In this step, the magnesium alloy sheet material has a high corrosion resistance to the high alkaline degreasing solution, but dissolves in the degreasing solution of the aqueous alkali solution containing ammonium, amine salts, etc., so it is necessary to pay attention to the composition of the degreasing solution to be used.

본 발명에서 사용 가능한 탈지액은 탄산나트륨 3∼5 중량%, 수산화나트륨 0.4∼0.6 중량%, 제3인산 나트륨 2∼3 중량% 및 비이온 계면활성제 0.1∼0.3 중량%와, 물 91.1∼94.5 중량%의 혼합액인 것이 바람직하다.Degreasing solution usable in the present invention is 3 to 5% by weight of sodium carbonate, 0.4 to 0.6% by weight of sodium hydroxide, 2 to 3% by weight of tribasic sodium phosphate, 0.1 to 0.3% by weight of nonionic surfactant, and 91.1 to 94.5% by weight of water. It is preferable that it is a mixed liquid of.

그리고 본 발명에서 에칭 처리는 마그네슘합금 판재를 에칭용액에 침지함으로써 산화피막 및 유기오염물의 제거 및 일시적으로 균일한 활성적인 표면을 얻을 수 있고 연마 작용도 겸하는 처리공정이다.In the present invention, the etching process is a treatment process in which the magnesium alloy sheet material is immersed in the etching solution to remove the oxide film and organic contaminants, to obtain a temporarily uniform active surface, and also to perform a polishing function.

본 발명에서 사용하는 에칭용액은 아세트산 16∼20 중량%와 질산나트륨 3∼5 중량% 및 물 75∼81 중량%의 혼합용액을 사용하는 것이 바람직하다.As the etching solution used in the present invention, it is preferable to use a mixed solution of 16 to 20% by weight of acetic acid, 3 to 5% by weight of sodium nitrate and 75 to 81% by weight of water.

또한 에칭 조건은 상기 에칭용액을 pH 2∼3으로 조정한 다음 마그네슘합금 판재를 상온에서 20∼50초간 침지시켜 에칭 시키는 것이 바람직하다. In addition, the etching conditions are preferably adjusted by etching the etching solution to pH 2 to 3 and then immersed magnesium alloy plate material for 20 to 50 seconds at room temperature.

상기 에칭용액은 에칭용액의 조성비 및 pH 조절의 주의를 요한다. 즉, 질산나트륨의 함량이 증가되면 무전해 니켈도금 시 마그네슘합금 판재와 니켈 금속의 밀착불량이 발생하는 스머트 현상이 발생할 우려가 있고, 아세트산의 함량이 증가하게 되면 과잉 에칭에 의해 무전해 니켈도금 후에 외관 및 밀착불량이 발생하게 되므로 pH 3 이하에서 에칭 처리를 하여야 한다. The etching solution requires attention to the composition ratio and pH control of the etching solution. In other words, if the content of sodium nitrate is increased, there is a possibility that the smut phenomenon occurs that the adhesion between magnesium alloy plate and nickel metal is poor during electroless nickel plating. If the content of acetic acid is increased, electroless nickel plating is caused by excessive etching. Since the appearance and poor adhesion will occur later, the etching treatment should be performed at pH 3 or less.

그리고 본 발명에서 포스트(Post) 에칭은 상기 에칭 공정에서 완전히 제거되지 않은 산화피막을 제거하기 위한 처리 공정이다.In the present invention, post etching is a treatment process for removing an oxide film not completely removed in the etching process.

본 공정에서 사용하는 포스트(Post) 에칭용액은 옥살산 0.4∼0.6 중량%와 습윤제 0.1∼1.0 중량% 및 물 98.4∼99.5 중량%를 혼합시킨 옥살산 수용액인 것이 바람직하다.The post etching solution used in this step is preferably an oxalic acid aqueous solution in which 0.4 to 0.6% by weight of oxalic acid, 0.1 to 1.0% by weight of wetting agent, and 98.4 to 99.5% by weight of water are mixed.

또한 포스트(Post) 에칭 조건은 포스트(Post) 에칭용액에 마그네슘합금 판재를 상온에서 20∼60초간 침지시켜 포스트(Post) 에칭처리하는 것이 바람직하다. In the post etching condition, it is preferable to immerse the magnesium alloy sheet material in the post etching solution at room temperature for 20 to 60 seconds for post etching treatment.

상기 포스트(Post) 에칭용액에서 첨가제로서는 습윤제를 사용하며 이는 마그네슘 표면에 존재하는 기포 등의 결함을 제거할 수 있고, 과에칭을 방지하여 균일하고 활성적인 표면을 얻을 수 있으며, 회백색의 외관을 가질 때 활성화가 가장 좋은 표면을 나타낸다.In the post etching solution, a wetting agent is used as an additive, which can remove defects such as bubbles existing on the magnesium surface, prevent overetching, and obtain a uniform and active surface, and have an off-white appearance. When activation shows the best surface.

상기에서 에칭시간이 20초 미만이 될 경우에는 마그네슘합금 판재의 표면에 부착되어 있는 산화피막이 제대로 제거되지 않을 우려가 있고, 60초를 초과할 경우에는 과에칭에 의해 마그네슘합금 판재의 표면에 홈들이 패여 표면이 불균일해질 우려가 있다. If the etching time is less than 20 seconds, the oxide film adhering to the surface of the magnesium alloy sheet may not be removed properly. If the etching time exceeds 60 seconds, grooves may be formed on the surface of the magnesium alloy sheet by overetching. There is a fear that the concave surface becomes uneven.

그리고 본 발명에서 1차 활성화처리는 마그네슘합금 판재의 소재에 활성적인 표면을 제공할 수 있도록 벗겨진 산화 피막을 제거해 주면서 소재에 불화막을 생성시키는 공정이다. 활성화 처리 후 마그네슘 소재 표면은 회백색의 깨끗한 외관을 가질 때 니켈도금에서 양호한 결과를 가질 수 있다.In the present invention, the primary activation treatment is a process of forming a fluoride film on the material while removing the peeled oxide film so as to provide an active surface on the material of the magnesium alloy sheet. The magnesium material surface after the activation treatment can have good results in nickel plating when it has an off-white clean appearance.

본 공정에서 사용하는 1차 활성화 처리액은 불화암모늄 8∼12 중량%와 인산 30∼38 중량% 및 물 50∼62 중량%의 혼합액을 사용하는 것이 바람직하다.It is preferable to use the mixed solution of 8-12 weight% of ammonium fluoride, 30-38 weight% of phosphoric acid, and 50-62 weight% of water for the primary activation process liquid used at this process.

또한 1차 활성화 조건은 상기 활성화 처리액에 마그네슘합금 판재를 상온에서 3∼8분간 침지시키는 것이 바람직하다. 1차 활성화 시간이 3분 미만이 될 경우에는 마그네슘합금 판재의 소재에 활성적인 표면을 제공하는 불화막이 제대로 생성되지 않을 우려가 있고, 8분을 초과할 경우에는 소재가 침식될 우려가 있다. In the primary activation condition, the magnesium alloy sheet material is preferably immersed in the activation treatment liquid at room temperature for 3 to 8 minutes. If the primary activation time is less than 3 minutes, there is a fear that a fluoride film that provides an active surface to the material of the magnesium alloy sheet may not be properly formed, and if it exceeds 8 minutes, the material may be eroded.

그리고 본 발명에서 무전해 니켈도금은 마그네슘합금 판재의 표면에 니켈도금처리를 하기 위한 공정이다.In the present invention, the electroless nickel plating is a process for nickel plating the surface of the magnesium alloy sheet.

본 공정은 탄산니켈 0.8∼1.2 중량%, 차아인산나트륨 1.6∼2.4 중량%, 구연산 0.4∼0.6 중량%, 불화암모늄 0.8∼1.2 중량%, 불산 0.8∼1.2 중량%, 암모니아 0.2∼0.3 중량% 및 물 93.1∼95.4 중량%로 이루어진 수용액 100 중량부에 대하여 첨가제 0.05∼0.20 중량부를 혼합시킨 무전해 니켈도금액을 pH 6∼7이 유지되도록 유지시킨 다음 반응유도 촉매금속과 활성화된 마그네슘합금 판재를 75∼85℃에서 약 2∼5 분간 반응 후 반응유도 촉매금속만 배출시키고 마그네슘 합금 판재만 15∼25분간 침지시켜 무전해 니켈도금 하는 것이 바람직하다.The process consists of 0.8-1.2 wt% nickel carbonate, 1.6-2.4 wt% sodium hypophosphite, 0.4-0.6 wt% citric acid, 0.8-1.2 wt% ammonium fluoride, 0.8-1.2 wt% hydrofluoric acid, 0.2-0.3 wt% ammonia and water The electroless nickel plating solution, in which 0.05 to 0.20 parts by weight of the additive is mixed with respect to 100 parts by weight of an aqueous solution of 93.1 to 95.4% by weight, is maintained such that pH 6 to 7 is maintained, and then the reaction induction catalyst metal and the activated magnesium alloy sheet are 75 to After the reaction at 85 ° C. for about 2 to 5 minutes, it is preferable to discharge the reaction-induced catalyst metal only and to immerse only magnesium alloy sheet for 15 to 25 minutes for electroless nickel plating.

본 발명에서 무전해 니켈도금 조건이 상기에서 한정한 범위 미만이 될 경우에는 마그네슘합금 판재의 표면에 니켈금속이 균일하게 도금되지 않을 우려가 있고, 무전해 니켈도금 조건이 상기에서 한정한 범위를 초과할 경우에는 표면처리의 경제성이 떨어진다. In the present invention, when the electroless nickel plating condition is less than the range defined above, there is a concern that the nickel metal may not be uniformly plated on the surface of the magnesium alloy sheet material, and the electroless nickel plating condition exceeds the range defined above. In this case, the surface treatment is economical.

그리고 무전해 니켈도금 후 다음 공정에서의 산, 알칼리로부터 소재층이 침식 당할수 있으므로 소재침식을 막을 수 있는 최소한의 무전해 니켈 도금층 두께가 필요하다. 바람직하기로는 무전해 니켈도금층의 두께는 5∼7 ㎛인 것이 좋다.And since the material layer may be eroded from acid and alkali in the next process after electroless nickel plating, a minimum thickness of the electroless nickel plating layer is required to prevent the material erosion. Preferably, the thickness of the electroless nickel plating layer is 5 to 7 μm.

그리고 상기 무전해 니켈도금시 첨가제는 상기 수용액 100 중량부에 대하여 0.05∼0.20 중량부를 혼합시키는 것이 바람직하며, 첨가제로는 안정제인 티오유레아(H2NCSNH2) 수용액 0.03∼0.10 중량부와 개량제로 습윤제(wetting agent-폴리에틸렌글리콜(PEG)) 0.02∼0.10 중량부를 사용할 수 있다. In addition, the electroless nickel plating additive is preferably 0.05 to 0.20 parts by weight based on 100 parts by weight of the aqueous solution, and as an additive, 0.03 to 0.10 parts by weight of an aqueous solution of thiourea (H 2 NCSNH 2 ), which is a stabilizer, and a wetting agent as an improving agent. (wetting agent-polyethylene glycol (PEG)) 0.02 to 0.10 parts by weight can be used.

그리고 상기에서 반응유도 촉매금속은 철, 니켈 또는 니켈 도금된 구리금속 등과 같이 무전해 니켈도금액과 반응하는 금속 중에서 1종을 선택하여 사용할 수 있다.In addition, the reaction induction catalyst metal may be selected from one of metals reacting with the electroless nickel plating solution, such as iron, nickel or nickel plated copper metal.

그리고 본 발명에서 베이킹(Baking) 처리는 무전해 니켈처리 후 금속확산 현상을 이용, 마그네슘합금 판재의 소재와 도금층 간의 밀착력 증대를 위하여 실시하는 공정이다. 또한 소재의 부식에 의한 밀착불량의 경우 이 단계에서 무전해 니켈 피막이 주로 기포(blister) 현상으로 발생되므로 불량 선별의 목적으로도 이용된 다. 즉, 본 발명은 공정 중 소재와 금속피막층 사이의 밀착력 증대와 더불어 밀착불량에 기인한 소재와 피막사이의 기포(blister)확인을 할 수 있는 단계인 베이킹(baking) 처리를 실시함으로써 마그네슘합금 판재의 소재와 니켈도금층 사이의 밀착력 향상과 표면처리의 불량을 한꺼번에 해결할 수 있도록 한 것이 특징이다. In the present invention, the baking process is a process performed to increase adhesion between the material of the magnesium alloy plate and the plating layer by using a metal diffusion phenomenon after the electroless nickel treatment. In addition, in case of poor adhesion due to corrosion of the material, the electroless nickel film is mainly generated by blister phenomenon at this stage, and thus it is also used for the purpose of defect screening. That is, the present invention provides a magnesium alloy sheet material by performing a baking process, which is a step of confirming blister between the material and the film due to poor adhesion and increasing adhesion between the material and the metal film layer during the process. It is characterized by improving adhesion between material and nickel plated layer and solving poor surface treatment at once.

상기 베이킹(Baking) 처리는 무전해 니켈도금 처리한 마그네슘합금 판재를 100∼300℃에서 30∼120분간 열처리시키는 것이 바람직하다. 베이킹(Baking) 처리조건이 상기에서 한정한 조건의 범위 미만이 될 경우에는 소재와 무전해 니켈도금 사이의 밀착력 저하의 우려가 있고, 상기에서 한정한 조건의 범위를 초과할 경우에는 베이킹 처리시 형성되는 산화층에 기인한 무전해 니켈도금층과 후공정의 도금층과의 밀착력이 저하 될 우려가 있다.In the baking treatment, it is preferable to heat-treat the electroless nickel plated magnesium alloy sheet at 100 to 300 ° C for 30 to 120 minutes. If the baking treatment condition falls below the range defined above, there is a risk of deterioration of adhesion between the material and the electroless nickel plating, and if the baking range exceeds the range defined above, it is formed during baking. There exists a possibility that the adhesive force of the electroless nickel plating layer and the plating layer of a post process may fall by the oxide layer which becomes.

그리고 본 발명에서 2차 활성화처리는 베이킹(Baking) 처리시 마그네슘합금 판재의 표면에 형성된 산화피막을 제거하기 위한 공정으로 5∼15 v/v%의 염산 수용액 또는 황산 수용액에 마그네슘합금 판재를 상온에서 1∼3분간 침지하여 활성화시키는 것이 바람직하다.In the present invention, the secondary activation treatment is a process for removing the oxide film formed on the surface of the magnesium alloy sheet during baking, and the magnesium alloy sheet in an aqueous solution of 5-15 v / v% hydrochloric acid or sulfuric acid at room temperature. It is preferable to activate by immersing for 1-3 minutes.

상기에서 2차 활성화 조건이 상기에서 한정한 범위 미만이 될 경우에는 마그네슘합금 판재의 표면에 형성된 산화피막이 충분히 제거되지 않을 우려가 있고, 상기에서 한정한 범위를 초과할 경우에는 산에 의한 도금층 및 소재층의 침식당할 우 려가 있다.When the secondary activation condition is less than the above-defined range, there is a fear that the oxide film formed on the surface of the magnesium alloy sheet material may not be sufficiently removed, and when exceeding the above-mentioned range, the plating layer and the material by acid There is a risk of layer erosion.

그리고 본 발명에서 스크라이크(Strike) 도금은 후 공정인 전기도금층과 무전해니켈층 사이의 밀착력 증대시키기 위한 공정으로 니켈 또는 구리 스트라이크(strike) 도금을 실시하는 것이 바람직하다. In the present invention, the strike (strike) plating is a process for increasing the adhesion between the electroplating layer and the electroless nickel layer, which is a post-process, it is preferable to perform nickel or copper strike plating (strike).

본 공정에서 니켈 또는 구리 스트라이크(strike)도금은 통상적인 도금방법이다. Nickel or copper strike plating in this process is a common plating method.

그리고 본 발명에서 마지막 공정으로 전기도금을 실시한다. 전기도금은 마그네슘합금 판재의 표면에 무전해 니켈도금 처리한 다음 도금처리된 표면의 내식성을 향상시키고, 장식성을 나타낼 수 있도록 하기 위한 공정으로, 니켈, 크롬 또는 귀금속 등과 같은 소재를 사용하여 전기도금처리하는 공정이다. 이와 같은 공정을 거친 마그네슘합금 판재는 장식성, 내식성, 내마모성 및 고경도 등의 물성이 향상되어진다. And electroplating is carried out in the last step in the present invention. Electroplating is a process for electroless nickel plating on the surface of magnesium alloy plate to improve the corrosion resistance of the plated surface and to show decorativeness. Electroplating using materials such as nickel, chromium or precious metals It is a process to do it. Magnesium alloy sheet material having such a process is improved in physical properties such as decoration, corrosion resistance, wear resistance and high hardness.

그리고 본 발명에서 마그네슘 판재에 도금되는 전체 도금층의 두께는 특별히 한정하지 않으며, 사용 용도와 사용자의 필요에 따라 그 두께를 적절히 조절할 수 있을 것이다.And the thickness of the entire plating layer to be plated on the magnesium plate in the present invention is not particularly limited, it may be appropriately adjusted according to the use purpose and the user's needs.

상기와 같은 공정을 거친 본 발명에 따른 무전해 니켈도금을 실시한 마그네슘합금 판재의 단면 구조는 도 3에 도시된 바와 같이 마그네슘합금 판재(20)의 외부에 반응가스의 성장에 의한 무전해 니켈층(40)의 형성과 그 외부에 니켈 또는 구리 스트라이크(Strike) 활성화층(50)의 형성 및 니켈, 크롬 또는 귀금속 등과 같은 소재를 사용한 전기도금층(60)을 형성시킴으로써, 소비자나 또는 제조자가 원하는 물성의 마그네슘합금 판재의 표면처리를 할 수 있도록 한 것이 특징이다. As shown in FIG. 3, the cross-sectional structure of the magnesium alloy sheet subjected to the electroless nickel plating according to the present invention through the above process is an electroless nickel layer formed by the growth of the reaction gas on the outside of the magnesium alloy sheet 20. 40, the formation of the nickel or copper strike activation layer 50 on the outside thereof and the electroplating layer 60 using a material such as nickel, chromium or precious metal, thereby forming It is characterized by the surface treatment of magnesium alloy sheet.

그리고 본 발명의 바람직한 실시 예에 따른 마그네슘합금 판재의 무전해 니켈도금을 실시한 상태를 첨부된 도면인 도 4a 내지 도 5b를 중심으로 상세히 설명하면 아래의 내용과 같으며, 본 발명의 기술적 구성이 하기의 실시 예에 의해서만 반드시 한정되는 것은 아니다. And the center of the electroless nickel plating of the magnesium alloy sheet according to a preferred embodiment of the present invention will be described in detail with reference to Figures 4a to 5b of the accompanying drawings, the technical configuration of the present invention It is not necessarily limited to the embodiment of the.

1. 무전해 니켈 도금한 마그네슘합금 판재의 시편 제작1. Fabrication of specimens of electroless nickel plated magnesium alloy sheet

(실시예 1)(Example 1)

1 단계로서, 가로 60mm×세로 80mm×두께 1.0mm 사이즈로 제작된 마그네슘합금 판재 시편을 탈지액에 침지시킨 다음 5분간 초음파처리를 한 다음, pH 2~3으로 조정한 에칭용액에 다시 상온에서 40초간 침지시킨 후 포스트 에칭용액에 다시 상온에서 40초간 침지시켜 포스트(Post) 에칭한 다음 활성화 처리액을 상온에서 5분간 침지하여 1차 활성화시켰다. 그리고 pH 6~7로 설정한 무전해 니켈도금액에 침지 시켜 반응유도 촉매금속인 니켈 도금된 구리금속을 시편 하부에 일정 간격을 두고 위치되도록 하고 반응가스가 시편에 접촉이 용이하게 하여 80℃에서 반응 2분 후 촉매금속을 제거하고, 무전해 니켈도금을 25분 동안 처리하였다.As a step 1, a magnesium alloy sheet specimen prepared at a width of 60 mm x 80 mm x 1.0 mm in size was immersed in the degreasing solution, sonicated for 5 minutes, and then immersed in an etching solution adjusted to pH 2-3 to 40 at room temperature. After immersion for a second, the post etching solution was again immersed in a post etching solution at room temperature for 40 seconds, followed by post etching, and then the activation treatment solution was first activated by immersing at room temperature for 5 minutes. It is immersed in the electroless nickel plating solution set at pH 6 ~ 7 so that the nickel-plated copper metal, which is a reaction-induced catalytic metal, is placed at a certain distance below the specimen, and the reaction gas is easily contacted with the specimen at 80 ° C. After 2 minutes of reaction, the catalyst metal was removed and the electroless nickel plated was treated for 25 minutes.

그리고 2단계로서, 무전해 니켈도금처리한 마그네슘합금 판재 시편을 200℃에서 60분간 가열시켜 베이킹(Baking) 처리한 다음 10v/v% 염산 수용액에 마그네슘합금 판재를 상온에서 2분간 침지하여 2차 활성화시킨 후 니켈 스트라이크(Strike) 도금의 두께가 0.5㎛가 되도록 실시하고, 다시 니켈도금의 두께가 30㎛가 되도록 전기도금을 순차적으로 실시하여 무전해 니켈도금 마그네슘합금 판재의 시편을 제작하였다. In the second step, the electroless nickel plated magnesium alloy plate specimen was baked at 200 ° C. for 60 minutes for baking, and then the magnesium alloy plate was immersed in a 10v / v% hydrochloric acid solution at room temperature for 2 minutes to activate the secondary. After the nickel strike plating was performed to have a thickness of 0.5 μm, and electroplating was performed sequentially so that the thickness of the nickel plated was 30 μm, a specimen of an electroless nickel plated magnesium alloy plate was prepared.

단, 상기에서 탈지액은 탄산나트륨 3 중량%, 수산화나트륨 0.4 중량%, 제3인산 나트륨 2 중량% 및 비이온 계면활성제 0.1 중량%와, 물 94.5 중량%로 이루어진 것을 사용하고, However, the degreasing liquid in the above is composed of 3% by weight of sodium carbonate, 0.4% by weight of sodium hydroxide, 2% by weight of sodium triphosphate and 0.1% by weight of nonionic surfactant, and 94.5% by weight of water,

에칭용액은 아세트산 16 중량%와 질산나트륨 3 중량% 및 물 81 중량%의 혼합용액을 사용하고,Etching solution is a mixture of 16% by weight of acetic acid, 3% by weight of sodium nitrate and 81% by weight of water,

포스트 에칭용액은 옥살산 0.4 중량%와 습윤제 0.1 중량% 및 물 99.5 중량%를 혼합시킨 것을 사용하고, As the post etching solution, a mixture of 0.4 wt% of oxalic acid, 0.1 wt% of a humectant, and 99.5 wt% of water was used.

활성화 처리액은 불화암모늄 8 중량%와 인산 30 중량% 및 물 62 중량%의 혼합액을 사용하며,Activation treatment liquid is a mixture of 8% by weight of ammonium fluoride, 30% by weight phosphoric acid and 62% by weight of water,

무전해 니켈도금액은 탄산니켈 0.8 중량%, 차아인산나트륨 1.6 중량%, 구연산 0.4 중량%, 불화암모늄 0.8 중량%, 불산 0.8 중량%, 암모니아 0.2 중량% 및 물 95.4 중량%로 이루어진 수용액 100 중량부에 대하여 첨가제로서 티오유레아(H2NCSNH2) 수용액 0.03 중량부, 폴리에틸렌글리콜(PEG) 0.02 중량부를 혼합시킨 무전해 니켈도금액을 pH 6∼7로 설정 무전해 니켈도금액을 사용하였다.The electroless nickel plating solution is 100 parts by weight of an aqueous solution consisting of 0.8 wt% nickel carbonate, 1.6 wt% sodium hypophosphite, 0.4 wt% citric acid, 0.8 wt% ammonium fluoride, 0.8 wt% hydrofluoric acid, 0.2 wt% ammonia and 95.4 wt% water. As an additive, an electroless nickel plating solution having a pH of 6 to 7 was used as an electroless nickel plating solution in which 0.03 parts by weight of a thiourea (H 2 NCSNH 2 ) aqueous solution and 0.02 parts by weight of polyethylene glycol (PEG) were mixed.

(실시예 2)(Example 2)

상기 실시예 1의 1단계와 동일한 방법으로 무전해 니켈도금 마그네슘합금 판재의 시편을 제작하고, 2단계로서, 무전해 니켈도금처리한 마그네슘합금 판재는 200℃에서 60분간 가열시켜 베이킹(Baking) 처리한 다음 10v/v% 황산 수용액에 마그네슘합금 판재를 상온에서 2분간 침지하여 2차 활성화시킨 후 니켈 스트라이크(Strike) 도금의 두께가 0.5㎛가 되도록 실시하고, 다시 니켈도금의 두께가 30㎛되도록 전기도금을 순차적으로 실시하여 무전해 니켈도금 마그네슘합금 판재의 시편을 제작하였다.In the same manner as in the first step of Example 1, a specimen of an electroless nickel plated magnesium alloy plate was prepared, and as a second step, the electroless nickel plated magnesium alloy plate was heated at 200 ° C. for 60 minutes to be baked. Then, the magnesium alloy sheet was immersed in a 10v / v% sulfuric acid solution at room temperature for 2 minutes to activate the secondary, and the nickel strike plating was made to have a thickness of 0.5 μm, and the nickel plating was made to have a thickness of 30 μm. Plating was performed sequentially to prepare specimens of electroless nickel plated magnesium alloy sheet.

단, 상기에서 탈지액은 탄산나트륨 5 중량%, 수산화나트륨 0.6 중량%, 제3인산 나트륨 3 중량% 및 비이온 계면활성제 0.3 중량%와, 물 91.1 중량%로 이루어진 것을 사용하고,However, the degreasing liquid in the above is composed of 5% by weight of sodium carbonate, 0.6% by weight of sodium hydroxide, 3% by weight of tribasic sodium phosphate and 0.3% by weight of nonionic surfactant, and 91.1% by weight of water,

에칭용액은 아세트산 20 중량%와 질산나트륨 5 중량% 및 물 75 중량%의 혼합 용액을 사용하고,Etching solution using a mixed solution of 20% by weight of acetic acid, 5% by weight of sodium nitrate and 75% by weight of water,

포스트 에칭용액은 옥살산 0.6 중량%와 습윤제 1 중량% 및 물 98.4 중량%를 혼합시킨 것을 사용하고, As the post etching solution, a mixture of 0.6% by weight of oxalic acid, 1% by weight of a wetting agent, and 98.4% by weight of water was used.

활성화 처리액은 불화암모늄 12 중량%와 인산 38 중량% 및 물 50 중량%의 혼합액을 사용하며,Activation treatment liquid is a mixture of 12% by weight of ammonium fluoride, 38% by weight phosphoric acid and 50% by weight of water,

무전해 니켈도금액은 탄산니켈 1.2 중량%, 차아인산나트륨 2.4 중량%, 구연산 0.6 중량%, 불화암모늄 1.2 중량%, 불산 1.2 중량%, 암모니아 0.3 중량% 및 물 93.1 중량%로 이루어진 수용액 100 중량부에 대하여 첨가제로서 티오유레아(H2NCSNH2) 수용액 0.1 중량부, 폴리에틸렌글리콜(PEG) 0.1 중량부를 혼합시킨 무전해 니켈도금액을 pH 6∼7로 설정 무전해 니켈도금액을 사용하였다. The electroless nickel plating solution is 100 parts by weight of an aqueous solution consisting of 1.2% by weight of nickel carbonate, 2.4% by weight of sodium hypophosphite, 0.6% by weight of citric acid, 1.2% by weight of ammonium fluoride, 1.2% by weight of hydrofluoric acid, 0.3% by weight of ammonia and 93.1% by weight of water. As an additive, an electroless nickel plating solution was used, in which an electroless nickel plating solution containing 0.1 parts by weight of a thiourea (H 2 NCSNH 2 ) aqueous solution and 0.1 parts by weight of polyethylene glycol (PEG) was set at a pH of 6 to 7.

(비교예 1)(Comparative Example 1)

상기 실시예 1과 같이 전처리 공정을 실시한 후 무전해 니켈도금 공정에서 반응 유도 촉매금속을 사용하지 않았다. After performing the pretreatment process as in Example 1, no reaction induction catalyst metal was used in the electroless nickel plating process.

(비교예 2) (Comparative Example 2)

상기 실시예 1과 동일한 방법에 의해 무전해 니켈도금 공정 후 2 단계에서 베이킹 처리 공정을 실시하지 않았다. In the same manner as in Example 1, the baking treatment was not performed in two steps after the electroless nickel plating process.

2. 무전해 니켈도금한 마그네슘합금 판재의 시편의 평가2. Evaluation of Specimens of Electroless Nickel Plated Magnesium Alloy Plates

상기 실시예 1, 2 및 비교예 1, 2의 시편에 대한 니켈 피막의 도포정도와 밀착성 및 내식성 평가에 대한 결과는 아래 [표 1]의 내용과 같다. The results of the coating degree, adhesion and corrosion resistance evaluation of the nickel film on the specimens of Examples 1 and 2 and Comparative Examples 1 and 2 are as shown in Table 1 below.

시험방법으로 내식성 시험은 KSD 9502(염수분무시험방법)에 따라 5% 염수를 35℃에서 포화분무하여 48시간 경과 후 레이팅 넘버를 기준으로 확인하였고, 밀착시험은 KSD 0254(도금의 밀착성 시험방법)의 밀착테이프 시험방법을 따르되 바둑판식 절개법으로써 밀착력의 면적을 %화 한 것이다.As a test method, the corrosion resistance test was confirmed based on the rating number after 48 hours by saturating 5% saline at 35 ° C according to KSD 9502 (Brine spray test method), and the adhesion test was based on KSD 0254 (plating test method for adhesion). According to the test method of adhesive tape, the area of adhesive force is% by tile cutting method.

평가항목Evaluation item 실시예Example 비교예Comparative example 1One 22 1One 22 내식성 시험(레이팅 넘버)Corrosion Resistance Test (Rating Number) 1010 1010 -- -- 밀착시험(밀착면적%)Adhesion test (adhesive area%) 100100 100100 -- 1010

상기 [표 1]의 내용에 의하면, 실시예 1, 2의 경우에는 내식성 시험 및 밀착시험에서 모두 양호한 시험결과가 나온데 반해 비교예 1은 무전해 니켈 핵의 형성이 시편 표면에 형성되지 않아 다음 단계의 공정이 이루어지기가 불가능하여 내식성 시험에서 결과를 측정하지 못하였고, 비교예 2의 경우에는 내식성 시험에서 소재의 침식이 많이 발생되었고, 실시예 1, 2에 비해 내식성의 물성이 낮을 뿐만 아니라 밀착시험에 있어서도 니켈도금의 도막이 각각 80∼90% 정도가 테이프에 부착되어 떨어지는 현상이 발생하였다. According to the contents of Table 1, in Examples 1 and 2, good test results were obtained in both the corrosion resistance test and the adhesion test, whereas in Comparative Example 1, the formation of electroless nickel nuclei was not formed on the specimen surface. Since the process of the step was not possible, the results were not measured in the corrosion resistance test. In Comparative Example 2, the material was eroded in the corrosion resistance test, and the physical properties of the corrosion resistance were lower than those of Examples 1 and 2. In the adhesion test, a phenomenon in which the nickel-plated coating film was stuck to the tape by about 80 to 90%, respectively, occurred.

이와 같은 결과는 본 발명에 따른 실시예 1, 2의 경우에는 1 단계 공정의 무전해 니켈도금을 실시한 마그네슘합금 판재를 다시 2단계 공정의 베이킹(Baking) 처리와 2차 활성화 처리와 스트라이크(Strike) 도금 및 전기도금을 순차적으로 실시함으로써, 무전해 니켈처리 후 금속확산 현상을 이용, 마그네슘합금 판재의 소재와 도금층 간의 밀착력 증대된 결과에 기인하는 것으로 판단된다. This result is in the case of Examples 1 and 2 according to the present invention, the magnesium alloy plate subjected to the electroless nickel plating of the first step is again baked, the second activation process and the strike of the second step. By performing the plating and electroplating sequentially, the metal diffusion phenomenon after the electroless nickel treatment may be used to increase the adhesion between the material of the magnesium alloy sheet and the plating layer.

또한, 본 실시예에 의해 제작한 실시예 1은 도 4a에서 보는 바와 같이 마그네슘합금 판재의 소재층에 무전해 니켈 금속층(니켈 피막)이 균일하게 형성된 것을 확인할 수 있으나, 비교예 1의 도 4b에서 보는 바와 같이 무전해 니켈도금 마그네슘합금 판재의 시편의 소재층에 무전해 니켈 금속층(니켈 피막)이 균일하게 형성되지 못하고, 불균일하게 일부 형성된 것을 확인할 수 있었다.In addition, in Example 1 produced according to the present embodiment, it can be seen that an electroless nickel metal layer (nickel film) is uniformly formed on the material layer of the magnesium alloy sheet as shown in FIG. 4A, but in FIG. 4B of Comparative Example 1 As can be seen, it was confirmed that the electroless nickel metal layer (nickel coating) was not uniformly formed on the material layer of the specimen of the electroless nickel plated magnesium alloy sheet material and was formed nonuniformly.

그리고 본 실시예에 의해 제작한 실시예 2 및 비교예 2의 시편에 대한 밀착시험의 결과를 사진 촬영한 결과로, 실시예 2의 경우에는 도 5a에 도시된 바와 같이 무전해 니켈도금한 마그네슘합금 판재의 시편에 밀착시킨 테이프에 니켈도금도막이 일체 벗겨지지 않은 상태를 확인할 수 있었으며, 비교예 2의 경우에는 도 5b에 도시된 바와 같이 테이프에 니켈도금도막이 80∼90% 정도 벗겨진 상태를 확인할 수 있었다. As a result of photographing the results of the adhesion test on the specimens of Example 2 and Comparative Example 2 produced by the present embodiment, in the case of Example 2, as shown in Figure 5a, the electroless nickel-plated magnesium alloy It was confirmed that the nickel plated coating film was not peeled off at all on the tape in close contact with the specimen of the plate, and in Comparative Example 2, the nickel plated coating film was peeled off about 80 to 90% on the tape as shown in FIG. 5B. .

참고로 본 발명에 첨부된 도면인 도 4a는 본 발명에 따라 반응유도 촉매금속을 사용하여 마그네슘합금 판재 시편에 무전해 니켈도금을 실시한 실시예 1의 상태를 나타낸 도면이고, 도 4b는 본 발명에 따라 반응유도 촉매금속을 사용하지 않고 마그네슘합금 판재 시편에 무전해 니켈도금을 실시한 비교예 1의 상태를 나타낸 도면이고, 도 5a는 본 발명에 따라 마그네슘합금 판재 시편에 베이킹처리를 실시한 실시예 2의 상태를 나타낸 도면이며, 도 5b는 본 발명에 따라 마그네슘합금 판재 시편에 베이킹처리를 실시하지 않은 비교예 2의 상태를 나타낸 도면에 관한 것이다. For reference, Figure 4a attached to the present invention is a view showing a state of Example 1 subjected to electroless nickel plating on a magnesium alloy plate specimen using a reaction-induced catalytic metal according to the present invention, Figure 4b is FIG. 5A is a view showing the state of Comparative Example 1 in which electroless nickel plating was performed on a magnesium alloy plate specimen without using a reaction-induced catalytic metal, and FIG. 5A illustrates a baking treatment of a magnesium alloy plate specimen according to the present invention. 5B is a view showing a state, and FIG. 5B relates to a view showing a state of Comparative Example 2 in which a magnesium alloy plate specimen is not baked in accordance with the present invention.

따라서 이와 같은 본 발명에 따른 마그네슘합금 판재의 무전해 니켈도금방법에 따라 실시한 마그네슘합금 판재는 표면처리한 니켈도금의 내식성 및 밀착성이 대단히 우수하고, 또한 니켈, 크롬 또는 귀금속 등과 같은 소재를 사용하여 전기도금처리을 실시하여 마그네슘 판재의 장식성, 내식성, 내마모성 및 고경도의 물성을 향상시킴으로써, 정보통신제품, 레저용품, 광학기기, 디지털 카메라. 자동차, 항공기 부품, 건자재 등과 같은 다양한 용도로의 적용이 가능하여 그 수요가 대폭 증대할 것으로 기대된다.Therefore, the magnesium alloy sheet according to the electroless nickel plating method of the magnesium alloy sheet according to the present invention is very excellent in the corrosion resistance and adhesion of the surface-treated nickel plating, and also by using a material such as nickel, chromium or precious metals Information and communication products, leisure goods, optical equipment, digital cameras by plating to improve the decoration, corrosion resistance, abrasion resistance and high hardness of magnesium plate. It can be applied to various purposes such as automobile, aircraft parts, construction materials, etc., and the demand is expected to increase significantly.

상술한 바와 같은, 본 발명의 바람직한 실시예에 따른 마그네슘합금 판재의 무전해 니켈도금방법을 상기한 설명 및 도면에 따라 도시하였지만, 이는 예를 들어 설명한 것에 불과하며 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 변화 및 변경이 가능하다는 것을 이 분야의 통상적인 기술자들은 잘 이해할 수 있을 것이다.As described above, the electroless nickel plating method of the magnesium alloy sheet according to the preferred embodiment of the present invention is shown in accordance with the above description and drawings, but this is only an example, and the scope does not depart from the spirit of the present invention. It will be apparent to those skilled in the art that various changes and modifications can be made therein.

도 1은 본 발명에 따라 마그네슘합금 판재에 무전해 도금 시 활성화된 마그네슘합금 판재 상 무전해 니켈핵의 형성 및 성장을 유도하는 과정을 나타낸 도면;1 is a view showing a process of inducing the formation and growth of electroless nickel nuclei on an activated magnesium alloy sheet during electroless plating on a magnesium alloy sheet according to the present invention;

도 2는 본 발명에 따른 실시예로서, 마그네슘합금 판재를 니켈도금하는 공정의 과정을 나타낸 도면;2 is a view showing a process of nickel plating a magnesium alloy sheet as an embodiment according to the present invention;

도 3은 도 2의 방법에 따라 니켈도금한 마그네슘합금 판재의 단면을 나타낸 도면;3 is a cross-sectional view of the nickel-plated magnesium alloy sheet according to the method of FIG.

도 4a는 본 발명에 따라 반응유도 촉매금속을 사용하여 마그네슘합금 판재 시편에 무전해 니켈도금을 실시한 실시예 1의 상태를 나타낸 도면;Figure 4a is a view showing a state of Example 1 subjected to electroless nickel plating on a magnesium alloy sheet specimen using a reaction-induced catalytic metal according to the present invention;

도 4b는 본 발명에 따라 반응유도 촉매금속을 사용하지 않고 마그네슘합금 판재 시편에 무전해 니켈도금을 실시한 비교예 1의 상태를 나타낸 도면;4b is a view showing a state of Comparative Example 1 in which electroless nickel plating was performed on a magnesium alloy sheet specimen without using a reaction induction catalyst metal according to the present invention;

도 5a는 본 발명에 따라 마그네슘합금 판재 시편에 베이킹처리를 실시한 실시예 2의 상태를 나타낸 도면;Figure 5a is a view showing a state of Example 2 subjected to the baking treatment on the magnesium alloy sheet specimens according to the present invention;

도 5b는 본 발명에 따라 마그네슘합금 판재 시편에 베이킹처리를 실시하지 않은 비교예 2의 상태를 나타낸 도면에 관한 것이다. Figure 5b relates to a view showing a state of Comparative Example 2 is not subjected to baking treatment on the magnesium alloy sheet specimens according to the present invention.

* 도면의 주요부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings

10 : 반응유도 촉매 금속 20 : 마그네슘합금 판재10: reaction induction catalyst metal 20: magnesium alloy plate

30 : 반응가스 30' : 무전해 니켈핵30: reaction gas 30 ': electroless nickel core

40 : 무전해 니켈층 50 : 스트라이크(Strike) 활성화층40: electroless nickel layer 50: strike active layer

60 : 전기도금층60: electroplating layer

Claims (8)

마그네슘합금 판재의 무전해 니켈도금방법에 있어서,In the electroless nickel plating method of magnesium alloy sheet material, 상기 마그네슘합금 판재는 초음파 탈지처리와 에칭 및 포스트(Post) 에칭의 전처리 공정을 거친 다음,The magnesium alloy sheet is subjected to an ultrasonic degreasing treatment and a pretreatment process of etching and post etching, 활성화 처리액에 침지시켜 1차 활성화처리한 후 반응가스 유도 촉매금속을 사용한 무전해 니켈도금 공정을 거친 후,After immersion in the activating solution and the first activation treatment, after the electroless nickel plating process using the reaction gas-derived catalytic metal, 베이킹(Baking) 처리한 다음 염산 수용액 또는 황산 수용액에 침지시켜 2차 활성화 처리한 후 스트라이크(Strike) 도금 및 전기도금을 순차적으로 실시하는 것을 특징으로 하는 마그네슘합금 판재의 무전해 니켈도금방법.A method of electroless nickel plating of a magnesium alloy sheet, characterized in that the baking treatment and the electroplating are performed sequentially after the baking treatment and then immersion in an aqueous hydrochloric acid solution or a sulfuric acid solution. 제 1항에 있어서,The method of claim 1, 상기 에칭은 아세트산 16∼20 중량%와 질산나트륨 3∼5 중량% 및 물 75∼81 중량%의 혼합용액을 사용하여 pH 2∼3으로 조정한 에칭용액을 사용하여 마그네슘합금 판재를 상온에서 20∼50초간 침지시키는 것을 특징으로 하는 마그네슘합금 판재의 무전해 니켈도금방법.The etching is performed by using an etching solution adjusted to pH 2-3 using a mixed solution of 16-20 wt% acetic acid, 3-5 wt% sodium nitrate, and 75-81 wt% water. An electroless nickel plating method of magnesium alloy sheet material, which is immersed for 50 seconds. 제 1항에 있어서, The method of claim 1, 상기 포스트(Post) 에칭은 옥살산 0.4∼0.6 중량%와 습윤제 0.1∼1.0 중량% 및 물 98.4∼99.5 중량%를 혼합시킨 옥살산 수용액의 포스트 에칭용액에 마그네슘합금 판재를 상온에서 20∼60초간 침지시키는 것을 특징으로 하는 마그네슘합금 판재의 무전해 니켈도금방법.The post etching is to immerse the magnesium alloy sheet in a post etching solution of oxalic acid solution mixed with 0.4 to 0.6% by weight of oxalic acid, 0.1 to 1.0% by weight of wetting agent and 98.4 to 99.5% by weight of water at room temperature for 20 to 60 seconds. Electroless nickel plating method of magnesium alloy sheet material characterized by. 제 1항에 있어서, The method of claim 1, 상기 1차 활성화처리는 불화암모늄 8∼12 중량%와 인산 30∼38 중량% 및 물 50∼62 중량%의 혼합시킨 활성화 처리액에 마그네슘합금 판재를 상온에서 3∼8분간 침지시켜 활성화 처리하는 것을 특징으로 하는 마그네슘합금 판재의 무전해 니켈도금방법.The primary activation treatment is to perform the activation treatment by immersing the magnesium alloy sheet material for 3 to 8 minutes at room temperature in an activation treatment solution containing 8 to 12% by weight of ammonium fluoride, 30 to 38% by weight of phosphoric acid and 50 to 62% by weight of water. Electroless nickel plating method of magnesium alloy sheet material characterized by. 제 1항에 있어서,The method of claim 1, 상기 무전해 니켈도금 공정은 탄산니켈 0.8∼1.2 중량%, 차아인산나트륨 1.6∼2.4 중량%, 구연산 0.4∼0.6 중량%, 불화암모늄 0.8∼1.2 중량%, 불산 0.8∼1.2 중량%, 암모니아 0.2∼0.3 중량% 및 물 93.1∼95.4 중량%로 이루어진 수용액 100 중량부에 대하여 첨가제 0.05∼0.20 중량부를 혼합시킨 무전해 니켈도금액을 pH 6∼7로 설정한 다음 반응유도 촉매금속과 활성화된 마그네슘합금 판재를 75∼85℃에서 약 2∼5 분간 반응 후 반응유도 촉매금속만 배출시키고 마그네슘 합금 판재만 15∼25분간 침지시켜 무전해 니켈도금하는 것을 특징으로 하는 마그네슘합금 판재의 무전해 니켈도금방법.The electroless nickel plating process includes nickel carbonate 0.8-1.2 wt%, sodium hypophosphite 1.6-2.4 wt%, citric acid 0.4-0.6 wt%, ammonium fluoride 0.8-1.2 wt%, hydrofluoric acid 0.8-1.2 wt%, ammonia 0.2-0.3 An electroless nickel plating solution in which 0.05 to 0.20 parts by weight of an additive was mixed with 100 parts by weight of an aqueous solution composed of 93% to 95.4% by weight of water was set to pH 6-7, and then the reaction-induced catalyst metal and activated magnesium alloy sheet were A method of electroless nickel plating of magnesium alloy sheet, characterized in that after the reaction at 75-85 ° C. for about 2 to 5 minutes, only the reaction-induced catalyst metal is discharged, and only magnesium alloy sheet is immersed for 15 to 25 minutes to electroless nickel plating. 제 1항에 있어서,The method of claim 1, 상기 반응유도 촉매금속은 철, 니켈, 니켈 도금된 금속과 같이 무전해 니켈도금액과 반응하는 금속 중에서 1종을 선택하여 사용하는 것을 특징으로 하는 마그네슘합금 판재의 무전해 니켈도금방법.The reaction induction catalyst metal is electroless nickel plating method of the magnesium alloy sheet, characterized in that one selected from the metal reacted with the electroless nickel plating solution, such as iron, nickel, nickel plated metal. 제1항에 있어서,The method of claim 1, 상기 베이킹(Baking) 처리는 무전해 니켈도금 처리한 마그네슘합금 판재를 100∼300℃에서 30∼120분간 가열시키는 것을 특징으로 하는 마그네슘합금 판재의 무전해 니켈도금방법.The baking process is an electroless nickel plating method of a magnesium alloy plate material, characterized in that the electroless nickel plated magnesium alloy plate material is heated at 100 to 300 ℃ for 30 to 120 minutes. 제 1항에 있어서,The method of claim 1, 상기 전기도금은 일반 내식 또는 장식용 도금인 것을 특징으로 하는 마그네슘합금 판재의 무전해 니켈도금방법.The electroplating method of electroless nickel plating of magnesium alloy sheet, characterized in that the general corrosion or decorative plating.
KR1020090096214A 2009-10-09 2009-10-09 Method for nikel coating of magnesiumalloy plate KR101094338B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090096214A KR101094338B1 (en) 2009-10-09 2009-10-09 Method for nikel coating of magnesiumalloy plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090096214A KR101094338B1 (en) 2009-10-09 2009-10-09 Method for nikel coating of magnesiumalloy plate

Publications (2)

Publication Number Publication Date
KR20110038981A true KR20110038981A (en) 2011-04-15
KR101094338B1 KR101094338B1 (en) 2011-12-19

Family

ID=44045854

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090096214A KR101094338B1 (en) 2009-10-09 2009-10-09 Method for nikel coating of magnesiumalloy plate

Country Status (1)

Country Link
KR (1) KR101094338B1 (en)

Also Published As

Publication number Publication date
KR101094338B1 (en) 2011-12-19

Similar Documents

Publication Publication Date Title
JP4857340B2 (en) Pretreatment of magnesium substrate for electroplating
JP5436569B2 (en) Precious metal-containing layer continuum for decorative articles
WO1990003457A1 (en) Method for plating on titanium
KR100361239B1 (en) Zinc die-casting finish method and zinc diecast product produced by the method
KR101854195B1 (en) Process for Diect Zinc electroplating of Aluminum alloys
RU2610811C9 (en) Aluminium zinc plating
KR100953432B1 (en) Metal coating method for plastic material and modeling plastic material thereof
KR100555928B1 (en) Method of pretreatment of material to be electrolessly plated
US6913791B2 (en) Method of surface treating titanium-containing metals followed by plating in the same electrolyte bath and parts made in accordance therewith
KR100968620B1 (en) Process for production of high-strength galvannealed steel sheet
KR101094338B1 (en) Method for nikel coating of magnesiumalloy plate
US6932897B2 (en) Titanium-containing metals with adherent coatings and methods for producing same
KR101137493B1 (en) A electro plating method for aluminum alloy wheels
CN111733432B (en) Zinc dipping solution and preparation method thereof, metal surface treatment method and aluminum part
KR100436597B1 (en) Method for plating with molten aluminum
JP2006131971A (en) Cold rolled steel sheet having excellent phosphate treatability and salt warm water resistance after coating
JPH0759755B2 (en) Method for manufacturing A-l alloy coated plate for automobiles having excellent system rust resistance
TWI448590B (en) Novel cyanide-free electroplating process for zinc and zinc alloy die-cast components
WO2009046328A1 (en) Galvanic deposition of metal layers on magnesium or magnesium alloy surfaces
JPS5919199B2 (en) Method for plating pre-treatment of steel articles subjected to surface hardening treatment
US6737173B2 (en) Pretreating method before plating and composites having a plated coat
JP6892638B1 (en) Plating member and manufacturing method of plating member
KR20180057583A (en) High Corrosion Resistant High Speed Acidic Zinc-Nickel Alloy Plating Composition and Process Technology
RU2709913C1 (en) Method of applying galvanic coatings on complex-profile parts
KR102572581B1 (en) Plating method using laser and uv coating

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee