JP6892638B1 - Plating member and manufacturing method of plating member - Google Patents

Plating member and manufacturing method of plating member Download PDF

Info

Publication number
JP6892638B1
JP6892638B1 JP2020020236A JP2020020236A JP6892638B1 JP 6892638 B1 JP6892638 B1 JP 6892638B1 JP 2020020236 A JP2020020236 A JP 2020020236A JP 2020020236 A JP2020020236 A JP 2020020236A JP 6892638 B1 JP6892638 B1 JP 6892638B1
Authority
JP
Japan
Prior art keywords
zinc
plating
plated
layer
nickel alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020020236A
Other languages
Japanese (ja)
Other versions
JP2021123783A (en
Inventor
直人 瀧見
直人 瀧見
直晃 瀧見
直晃 瀧見
Original Assignee
新和メッキ工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新和メッキ工業株式会社 filed Critical 新和メッキ工業株式会社
Priority to JP2020020236A priority Critical patent/JP6892638B1/en
Application granted granted Critical
Publication of JP6892638B1 publication Critical patent/JP6892638B1/en
Publication of JP2021123783A publication Critical patent/JP2021123783A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】被めっき部材の表面に微小な空孔や凹凸がある場合でも、被めっき部材に対する亜鉛ニッケル合金めっきの密着性を高めることができ、これにより、めっき部材の耐食性を高め、めっき不良を低減することができる、めっき部材およびめっき部材の製造方法を提供する。【解決手段】少なくとも表面が亜鉛で構成された被めっき部材10を有し、被めっき部材10の上に亜鉛めっき層20が形成され、亜鉛めっき層20の上に亜鉛ニッケル合金めっき層30が形成される、めっき部材。【選択図】図1PROBLEM TO BE SOLVED: To improve the adhesion of zinc-nickel alloy plating to a member to be plated even when the surface of the member to be plated has minute pores or irregularities, thereby improving the corrosion resistance of the member to be plated and preventing plating defects. Provided are a plating member and a method for manufacturing the plating member, which can be reduced. SOLUTION: A galvanized member 10 having at least a surface made of zinc is formed, a galvanized layer 20 is formed on the member 10 to be plated, and a galvanized nickel alloy plated layer 30 is formed on the galvanized layer 20. The plated member to be done. [Selection diagram] Fig. 1

Description

本発明は、亜鉛ニッケル合金めっき処理を施しためっき部材およびめっき部材の製造方法に関する。 The present invention relates to a plated member subjected to zinc-nickel alloy plating treatment and a method for manufacturing the plated member.

従来、めっき部材に高い耐食性を付与するために、亜鉛ニッケル合金めっき処理を施す技術が知られている(たとえば特許文献1)。 Conventionally, a technique of performing a zinc-nickel alloy plating treatment in order to impart high corrosion resistance to a plated member has been known (for example, Patent Document 1).

特開2018−003040号公報JP-A-2018-003040

しかしながら、被めっき部材の表面に微小の空孔や凹凸が存在する場合、空孔や凹凸の周辺において亜鉛ニッケル合金めっきの密着性が低下してしまい、時間の経過とともに、いわゆる「こぶ」や「膨れ」などと称されるめっき不良が生じる原因となっていた。 However, if there are minute vacancies or irregularities on the surface of the member to be plated, the adhesion of the zinc-nickel alloy plating will decrease around the vacancies or irregularities, and with the passage of time, so-called "humps" or "humps" It was a cause of plating defects called "swelling".

本発明は、被めっき部材の表面に存在する微小の空孔や凹凸を原因とした耐食性の低下を抑制することで、めっき不良を低減することができる、めっき部材およびめっき部材の製造方法を提供することを目的とする。 The present invention provides a plating member and a method for manufacturing a plating member, which can reduce plating defects by suppressing a decrease in corrosion resistance due to minute pores and irregularities existing on the surface of the member to be plated. The purpose is to do.

本発明に係るめっき部材は、少なくとも表面が亜鉛ダイカストで構成された被めっき部材を有し、前記被めっき部材の上に亜鉛めっき層が形成され、前記亜鉛めっき層の上に亜鉛ニッケル合金めっき層が形成される。
上記めっき部材において、前記亜鉛めっき層は、電気めっき法により亜鉛メッキ処理を行うことで形成された層であるように構成することができる。
上記めっき部材において、前記被めっき部材は表面に5μm以上の深さまたは高さの空孔または凹凸を有するように構成することができる。
本発明に係るめっき部材の製造方法は、少なくとも表面が亜鉛ダイカストで構成された被めっき部材を亜鉛めっき処理することで、前記被めっき部材の上に亜鉛めっき層に形成する亜鉛めっき工程と、前記亜鉛めっき層が形成された被めっき部材を亜鉛ニッケル合金めっき処理することで、前記亜鉛めっき層の上に亜鉛ニッケル合金めっき層を形成する亜鉛ニッケル合金めっき工程とを有する。
上記めっき部材の製造方法において、前記被めっき部材は表面に5μm以上の深さまたは高さの空孔または凹凸を有するように構成することができる。
上記めっき部材の製造方法において、前記亜鉛めっき工程において、亜鉛めっき液における亜鉛の濃度を8g/L未満として前記亜鉛めっき処理を行うように構成することができる。

The plating member according to the present invention has at least a member to be plated whose surface is made of die-cast zinc, a zinc plating layer is formed on the member to be plated, and a zinc-nickel alloy plating layer is formed on the zinc plating layer. Is formed.
In the plating member, the zinc plating layer can be configured to be a layer formed by performing a zinc plating treatment by an electroplating method.
In the plating member, the member to be plated can be configured to have holes or irregularities having a depth or height of 5 μm or more on the surface.
The method for manufacturing a plating member according to the present invention includes a zinc plating step of forming a zinc plating layer on the member to be plated by subjecting the member to be plated having at least a surface made of zinc die cast to a zinc plating treatment. It has a zinc-nickel alloy plating step of forming a zinc-nickel alloy plating layer on the zinc plating layer by subjecting a member to be plated on which a zinc plating layer is formed to a zinc-nickel alloy plating treatment.
In the method for manufacturing a plated member, the member to be plated can be configured to have holes or irregularities having a depth or height of 5 μm or more on the surface.
In the method for manufacturing a plating member, the zinc plating treatment can be performed so that the concentration of zinc in the zinc plating solution is less than 8 g / L in the galvanizing step.

本発明によれば、被めっき部材の表面に微小な空孔や凹凸がある場合でも、亜鉛ニッケル合金めっきの密着性を高めることができ、これにより、めっき部材の耐食性を高め、めっき不良を低減することができる、めっき部材およびめっき部材の製造方法を提供することができる。 According to the present invention, even if the surface of the member to be plated has minute pores or irregularities, the adhesion of the zinc-nickel alloy plating can be improved, thereby improving the corrosion resistance of the plated member and reducing plating defects. It is possible to provide a plating member and a method for manufacturing the plating member.

本実施形態に係るめっき部材の概要を示す断面図である。It is sectional drawing which shows the outline of the plating member which concerns on this embodiment. 本実施形態に係るめっき部材の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the plating member which concerns on this embodiment. 亜鉛ダイカスト上に銅めっきおよび亜鉛ニッケルめっきを順に積層させた比較例1の断面写真である。It is a cross-sectional photograph of Comparative Example 1 in which copper plating and zinc nickel plating were laminated in order on zinc die casting. 亜鉛ダイカスト上に亜鉛ニッケルめっきを直接積層した比較例2の断面写真である。It is a cross-sectional photograph of Comparative Example 2 in which zinc nickel plating was directly laminated on zinc die casting. 亜鉛ダイカスト上に亜鉛めっき、亜鉛ニッケルめっきを順に積層させた実施例の断面写真である。It is a cross-sectional photograph of an Example in which zinc plating and zinc nickel plating were laminated in order on a zinc die cast. 本実施形態に係るめっき部材の耐食性を塩水噴霧試験で試験した結果を示す写真である。It is a photograph which shows the result of having tested the corrosion resistance of the plating member which concerns on this embodiment by a salt spray test.

以下に、図に基づいて、本発明に係るめっき部材を説明する。なお、本発明に係るめっき部材は、特に限定されず、たとえば、電子機器用、自動車用、ガス器具用の部材などに用いることができる。 Hereinafter, the plating member according to the present invention will be described with reference to the drawings. The plating member according to the present invention is not particularly limited, and can be used, for example, as a member for electronic devices, automobiles, gas appliances, and the like.

図1は、本実施形態に係るめっき部材1の概要を示す断面図である。図1に示すように、本実施形態に係るめっき部材1は、被めっき部材10を基材とし、被めっき部材10の上に亜鉛めっき層20と、亜鉛ニッケル合金めっき層30とを順に積層して構成される。 FIG. 1 is a cross-sectional view showing an outline of the plating member 1 according to the present embodiment. As shown in FIG. 1, the plating member 1 according to the present embodiment uses the member 10 to be plated as a base material, and the zinc plating layer 20 and the zinc nickel alloy plating layer 30 are laminated in this order on the member 10 to be plated. It is composed of.

被めっき部材10は、少なくとも表面が亜鉛により構成された部材であれば、特に限定されないが、本実施形態では、被めっき部材10として、ダイカスト法により鋳造された亜鉛ダイカストを用いる。被めっき部材10の表面、特にダイカストで鋳造された被めっき部材10の表面には、微細な空孔や凹凸(たとえば5〜100μm程度の空孔や突起)が存在し、従来のめっき方法では、このような空孔や凹凸の周辺において、めっきが剥れやすくなり、「こぶ」や「膨れ」などと称されるめっき不良の原因となっていた。しかしながら、本実施形態に係るめっき部材1では、後述するめっき方法により、このような被めっき部材10を用いても、めっき不良を低減することができるため、表面に微細な空孔や凹凸が存在しやすいダイカスト部材において特に有用である。また、本実施形態では、被めっき部材10として、亜鉛ダイカストを用いることで、以下の点において有用である。すなわち、亜鉛は鋼鉄ほど固い物質ではないため、鋼鉄部材と比べて、加工が容易であり大量生産も可能である。また、亜鉛ダイカストは、鋼鉄部材と比べて、複雑な形状への加工も容易であり、バリ取りや研磨などの後処理も比較的少なく済み、その分、低コストで製造することができる。 The member 10 to be plated is not particularly limited as long as it is a member whose surface is made of zinc at least, but in the present embodiment, zinc die casting cast by a die casting method is used as the member 10 to be plated. The surface of the member 10 to be plated, particularly the surface of the member 10 to be plated cast by die casting, has fine pores and irregularities (for example, pores and protrusions of about 5 to 100 μm). The plating is easily peeled off around such holes and irregularities, which causes plating defects called "humps" and "swelling". However, in the plating member 1 according to the present embodiment, even if such a member 10 to be plated can be used by the plating method described later, plating defects can be reduced, so that fine pores and irregularities are present on the surface. It is especially useful for die-casting members that are easy to use. Further, in the present embodiment, using zinc die casting as the member to be plated 10 is useful in the following points. That is, since zinc is not as hard as steel, it is easier to process and can be mass-produced than steel members. Further, zinc die casting is easier to process into a complicated shape than a steel member, requires relatively little post-treatment such as deburring and polishing, and can be manufactured at a low cost.

本実施形態に係るめっき部材1では、図1に示すように、被めっき部材10である亜鉛ダイカストの上に、亜鉛めっき層20が形成されている。亜鉛めっき層20の厚さは、特に限定されないが、1〜10μmとすることが好ましく、3〜6μmとすることがより好ましい。亜鉛めっき層20は、通常厚いほど耐食性は高くなるが、本実施形態に係るめっき部材1では、被めっき部材1の表面と亜鉛めっき層20とが主に亜鉛で構成されるため、被めっき部材1の表面と亜鉛めっき層20との密着性が高く、被めっき部材1の表面と亜鉛めっき層20との間の腐食電位は低くなる。そのため、亜鉛めっき層20の膜厚を、通常よりも薄くしても十分な耐食性を得ることができる。また、本実施形態に係るめっき部材1では、後述するように、亜鉛の濃度が低い(たとえば5g/Lの)亜鉛めっき溶液を用いてめっき加工を行うことで、亜鉛めっき層20の厚さを薄くした場合でも、非めっき部分が生じやすい表面の空孔や凹凸周辺においても亜鉛めっき層20を適切に形成することができ、非めっき部分の発生を防止することができる。 In the plating member 1 according to the present embodiment, as shown in FIG. 1, the zinc plating layer 20 is formed on the zinc die casting which is the member to be plated 10. The thickness of the galvanized layer 20 is not particularly limited, but is preferably 1 to 10 μm, and more preferably 3 to 6 μm. Normally, the thicker the galvanized layer 20, the higher the corrosion resistance. However, in the plating member 1 according to the present embodiment, since the surface of the member 1 to be plated and the galvanized layer 20 are mainly composed of zinc, the member to be plated The adhesion between the surface of 1 and the galvanized layer 20 is high, and the corrosion potential between the surface of the member 1 to be plated and the galvanized layer 20 is low. Therefore, sufficient corrosion resistance can be obtained even if the thickness of the galvanized layer 20 is made thinner than usual. Further, in the plating member 1 according to the present embodiment, as will be described later, the thickness of the galvanized layer 20 is increased by performing the plating process using a galvanized solution having a low zinc concentration (for example, 5 g / L). Even when the thickness is thinned, the galvanized layer 20 can be appropriately formed even in the vicinity of pores and irregularities on the surface where non-plated portions are likely to occur, and the occurrence of non-plated portions can be prevented.

また、本実施形態に係るめっき部材1では、より高い耐食性を得るために、図1に示すように、亜鉛めっき層20の上にさらに同じく亜鉛を含む亜鉛ニッケル合金めっき層30が形成される。亜鉛ニッケル合金めっき層30の組成は、少なくともNiおよびZnを含めばよいが、Sn、Cr、Coなどの他の元素をさらに含んでいてもよい。亜鉛ニッケル合金めっき層30の厚さは、特に限定されないが、本実施形態では5〜20μmとすることが好ましく、8〜15μmとすることがより好ましい。また、亜鉛ニッケル合金めっき層30のZn/Ni比率も、特に限定されないが、質量比で2〜10とすることができ、好ましくは4〜8、さらに好ましくは5〜7とすることができる。また、亜鉛ニッケル合金めっき層30は、いわゆる「ハイニッケル」めっき層とすることができる。 Further, in the plating member 1 according to the present embodiment, in order to obtain higher corrosion resistance, as shown in FIG. 1, a zinc-nickel alloy plating layer 30 containing zinc is further formed on the zinc plating layer 20. The composition of the zinc-nickel alloy plating layer 30 may include at least Ni and Zn, but may further contain other elements such as Sn, Cr, and Co. The thickness of the zinc-nickel alloy plating layer 30 is not particularly limited, but in the present embodiment, it is preferably 5 to 20 μm, and more preferably 8 to 15 μm. The Zn / Ni ratio of the zinc-nickel alloy plating layer 30 is also not particularly limited, but can be 2 to 10 in terms of mass ratio, preferably 4 to 8, and more preferably 5 to 7. Also, the zinc-nickel alloy plating layer 30 can be a so-called "high nickel" plating layer.

さらに、本実施形態に係るめっき部材1では、図1に示すように、亜鉛ニッケル合金めっき層30の上に3価クロメート層40が形成される。3価クロメート層40は、水酸化クロムを主成分とする混酸に、亜鉛ニッケル合金めっき層30を積層した被めっき部材10を浸漬することで、亜鉛ニッケル合金めっき層30の上に形成された、3価クロム化成皮膜である。3価クロメート層40の付着量は、特に限定されないが、耐食性を高めるために、金属クロム換算で片面あたり5〜200mg/mとすることができる。なお、3価クロメート処理した後に、めっき部材1を熱風乾燥などの乾燥工程を経て3価クロメート層40を形成させる。 Further, in the plating member 1 according to the present embodiment, as shown in FIG. 1, a trivalent chromate layer 40 is formed on the zinc-nickel alloy plating layer 30. The trivalent chromate layer 40 was formed on the zinc-based alloy plating layer 30 by immersing the member 10 to be plated in which the zinc-based alloy plating layer 30 was laminated in a mixed acid containing chromium hydroxide as a main component. It is a trivalent chromium chemical conversion film. The amount of the trivalent chromate layer 40 adhered is not particularly limited, but can be set to 5 to 200 mg / m 2 per side in terms of metallic chromium in order to enhance corrosion resistance. After the trivalent chromate treatment, the plating member 1 is subjected to a drying step such as hot air drying to form a trivalent chromate layer 40.

次に、図2を参照して、本実施形態に係るめっき部材1の製造方法について説明する。図2は、本実施形態に係るめっき部材1の製造方法を示すフローチャートである。なお、以下に説明するめっき部材1の製造方法では、めっき部材1の基材となる被めっき部材10として、ダイカスト法により既に製造された被めっき部材10を用いるものとして説明する。 Next, a method of manufacturing the plating member 1 according to the present embodiment will be described with reference to FIG. FIG. 2 is a flowchart showing a manufacturing method of the plating member 1 according to the present embodiment. In the method of manufacturing the plating member 1 described below, it is assumed that the member 10 to be plated which has already been manufactured by the die casting method is used as the member 10 to be plated which is the base material of the plating member 1.

ステップS101では、被めっき部材10の表面に付着した不純物を落とすために、被めっき部材10の洗浄が行われる。たとえば、洗浄処理として、水による洗浄処理を行うことができる。また、前処理として、苛性ソーダなどのアルカリを用いて被めっき部材10の表面を脱脂するアルカリ処理や、硫酸などの酸を用いて被めっき部材10の表面を活性化する酸処理などを行ってもよい。 In step S101, the member 10 to be plated is cleaned in order to remove impurities adhering to the surface of the member 10 to be plated. For example, as a cleaning treatment, a cleaning treatment with water can be performed. Further, as a pretreatment, an alkali treatment for degreasing the surface of the member 10 to be plated with an alkali such as caustic soda, an acid treatment for activating the surface of the member 10 to be plated with an acid such as sulfuric acid, or the like may be performed. Good.

ステップS102では、亜鉛めっき処理が行われる。たとえば、ステップS101で前処理した被めっき部材10に、電気めっき法により、亜鉛めっき処理を行うことで、被めっき部材10の上に亜鉛めっき層20を形成することができる。また、通常の亜鉛めっき処理では、亜鉛めっき液として、亜鉛金属の濃度を10g/L、苛性ソーダの濃度を120/Lなどとしているところ、本実施形態では、複雑な部品形状の全面に対して、また、表面の微小な空孔や凹凸にも亜鉛めっき層20を形成するため(すなわち、均一電着性を向上するため)、亜鉛金属の濃度を8g/L未満、より好ましくは4g/L以上かつ6g/L未満とし、導電性の苛性ソーダの濃度を100g/Lとした亜鉛めっき液を用いて亜鉛めっき処理を行う。これにより、亜鉛めっき工程におけるめっき析出速度を遅くし、被めっき部材10において電流密度のバラツキが生じる場合でも、均一電着性を向上することができる。当該方法により、本実施形態では、被めっき部材10の表面に微小な空孔や凹凸がある場合においても、亜鉛めっき層20が適切に形成される程度(亜鉛めっき層20の非被覆部が存在しない程度)まで、均一電着性を高めることができる。そして、亜鉛めっき層20を形成した被めっき部材10を水洗した後、ステップS103に進む。 In step S102, a zinc plating process is performed. For example, the galvanized layer 20 can be formed on the member 10 to be plated by subjecting the member 10 to be plated in step S101 to a zinc plating treatment by an electroplating method. Further, in the normal zinc plating treatment, the zinc metal concentration is set to 10 g / L, the caustic soda concentration is set to 120 / L, etc. as the zinc plating solution. Further, in order to form the zinc plating layer 20 even on minute pores and irregularities on the surface (that is, to improve uniform electrodeposition), the zinc metal concentration is less than 8 g / L, more preferably 4 g / L or more. And the zinc plating treatment is performed using a zinc plating solution having a concentration of less than 6 g / L and a concentration of conductive caustic soda of 100 g / L. As a result, the plating deposition rate in the galvanizing step can be slowed down, and the uniform electrodeposition property can be improved even when the current density varies in the member 10 to be plated. According to this method, in the present embodiment, even when the surface of the member 10 to be plated has minute pores or irregularities, the zinc plating layer 20 is appropriately formed (there is an uncoated portion of the zinc plating layer 20). Uniform electrodeposition can be improved to the extent that it does not occur. Then, after washing the member 10 to be plated on which the zinc plating layer 20 is formed with water, the process proceeds to step S103.

ステップS103では、亜鉛ニッケル合金めっき処理が行われる。亜鉛ニッケル合金めっき処理方法は、酸性浴法でもよく、アルカリ浴法でもよい。ステップS102で形成した亜鉛めっき層20を形成した被めっき部材10に、亜鉛ニッケル合金めっき処理を行うことで、亜鉛めっき層20の上に亜鉛ニッケル合金めっき層30を形成することができる。そして、亜鉛ニッケル合金めっき層30を形成した被めっき部材10を水洗した後、ステップS104に進む。 In step S103, a zinc-nickel alloy plating process is performed. The zinc-nickel alloy plating treatment method may be an acidic bath method or an alkaline bath method. By performing a zinc-nickel alloy plating treatment on the member 10 to be plated on which the zinc plating layer 20 formed in step S102 is formed, the zinc nickel alloy plating layer 30 can be formed on the zinc plating layer 20. Then, after washing the member 10 to be plated on which the zinc-nickel alloy plating layer 30 is formed with water, the process proceeds to step S104.

ステップS104では、3価クロメート処理が行われる。たとえば、亜鉛ニッケル合金めっき層30を形成した被めっき部材10を、3価クロム化成処理溶液に、たとえば10〜80℃の液温で5〜600秒間浸漬し、3価クロム化成皮膜を0.1〜0.3μm程度の厚みで亜鉛ニッケル合金めっき層30の上に形成する。なお、3価クロム化成皮膜の光沢を増すために、3価クロム化成処理前に被めっき部材10を稀硝酸溶液に浸漬させてもよい。さらに、このようにして形成された3価クロム化成皮膜を仕上げ処理する場合は、3価クロム化成皮膜を有する被めっき部材10を、水洗した後または水洗することなしに、その3価クロム化成皮膜を水溶液の形態にある仕上げ剤に接触させ(好ましくは仕上げ剤水溶液に浸漬し)、仕上げ剤を付着させ、水洗なしに脱水乾燥して、3価クロム化成皮膜上に仕上剤の層を形成させる。仕上げ処理の接触温度(好ましくは浸漬温度)は通常10〜80℃であり、接触時間(好ましくは浸漬時間)は3〜30秒、乾燥温度は50℃〜200℃、乾燥時間は5分〜60分である。また、仕上層の厚みは、任意とすることができるが、0.05〜0.3μm程度であるのが好ましい。 In step S104, trivalent chromate treatment is performed. For example, the member 10 to be plated on which the zinc-based alloy plating layer 30 is formed is immersed in a trivalent chromium chemical conversion treatment solution at a liquid temperature of, for example, 10 to 80 ° C. for 5 to 600 seconds to obtain a trivalent chromium chemical conversion film of 0.1. It is formed on the zinc-based alloy plating layer 30 with a thickness of about 0.3 μm. In addition, in order to increase the gloss of the trivalent chromium chemical conversion film, the member 10 to be plated may be immersed in a dilute nitric acid solution before the trivalent chromium chemical conversion treatment. Further, when the trivalent chromium chemical conversion film formed in this manner is to be finished, the trivalent chromium chemical conversion film of the member 10 to be plated having the trivalent chromium chemical conversion film is washed with water or without washing with water. Is brought into contact with the finishing agent in the form of an aqueous solution (preferably immersed in the finishing agent aqueous solution), the finishing agent is attached, and dehydration drying is performed without washing with water to form a layer of the finishing agent on the trivalent chromium chemical conversion film. .. The contact temperature (preferably immersion temperature) of the finishing treatment is usually 10 to 80 ° C., the contact time (preferably immersion time) is 3 to 30 seconds, the drying temperature is 50 ° C. to 200 ° C., and the drying time is 5 minutes to 60 ° C. Minutes. The thickness of the finishing layer can be arbitrary, but is preferably about 0.05 to 0.3 μm.

次に、本実施形態に係るめっき部材1の実施例について説明する。本実施例では、まず、本実施形態に係るめっき部材1の断面構造を観察するとともに、耐食性と、密着性について試験を行った。さらに、本実施形態に係るめっき部材1の均一電着性を検討するために、ハルセル試験を行った。以下に、各試験について説明する。 Next, an example of the plating member 1 according to the present embodiment will be described. In this embodiment, first, the cross-sectional structure of the plating member 1 according to the present embodiment was observed, and the corrosion resistance and the adhesion were tested. Further, in order to examine the uniform electrodeposition property of the plating member 1 according to the present embodiment, a Hull cell test was conducted. Each test will be described below.

(めっき部材1の断面の観察)
まず、実施例1として、上述しためっき部材1の製造方法に基づいて、亜鉛ダイカスト部材に亜鉛めっき層を形成し、その上に亜鉛ニッケル合金層を形成しためっき部材を製作した。また、比較例として、亜鉛ダイカスト部材に銅めっき層を形成し、その上に亜鉛ニッケル合金層を形成しためっき部材(比較例1)と、亜鉛ダイカスト部材に直接、亜鉛ニッケル合金めっき層を形成しためっき部材(比較例2)とを製作した。
(Observation of the cross section of the plating member 1)
First, as Example 1, a plating member in which a zinc plating layer was formed on a zinc die casting member and a zinc nickel alloy layer was formed on the zinc die casting member was manufactured based on the above-mentioned manufacturing method of the plating member 1. Further, as a comparative example, a plating member (Comparative Example 1) in which a copper plating layer was formed on a zinc die-cast member and a zinc-nickel alloy layer was formed on the copper plating layer, and a zinc-nickel alloy plating layer was directly formed on the zinc die-cast member. A plated member (Comparative Example 2) was manufactured.

そして、集束イオンビーム−走査イオン顕微鏡(FIB−SIM)を用いて、実施例1および比較例1,2のめっき部材の断面を観察した。図3は、亜鉛ダイカスト部材に銅めっき層を形成し、その上に亜鉛ニッケル合金層を形成した比較例1のめっき部材断面のSIM像であり、図4は、亜鉛ダイカスト部材に直接、亜鉛ニッケル合金めっき層を形成した比較例2のめっき部材断面のSIM像である。また、図5は、亜鉛めっき層を形成し、その上に亜鉛ニッケル合金層を形成した実施例1のめっき部材断面のSIM像である。なお、実施例1および比較例1,2ではめっき部材の切断による損傷を保護するために、めっき部材1の表面に炭素から構成される保護層を形成している。また、図3〜5において、(A)は4000倍に拡大した像であり、(B)は10000倍に拡大した像である。図5に示すように、実施例1では、亜鉛ダイカストと亜鉛ニッケル合金めっき層との間に亜鉛めっき層を形成することで、亜鉛ダイカストと亜鉛めっき層、および、亜鉛めっき層と亜鉛ニッケル合金層とがそれぞれ密着して形成されていることが分かる。同様に、図3に示す比較例1でも、亜鉛ダイカストと亜鉛ニッケル合金めっき層との間に銅めっき層を形成することで、亜鉛ダイカストと銅めっき層、および、銅めっき層と亜鉛ニッケル合金層とがそれぞれ密着して形成されていることが分かる。これに対して、図4に示すように、比較例2は、亜鉛ダイカストの上に亜鉛ニッケル合金めっき層を形成したにもかかわらず中間層が形成された。この中間層はスマットなどによるものと考えられる。亜鉛ダイカストの上に亜鉛ニッケル合金めっき層を直接積層する場合、このような中間層(スマット)が、めっきの密着性が低下する要因となると考えられる。 Then, using a focused ion beam-scanning ion microscope (FIB-SIM), the cross sections of the plating members of Example 1 and Comparative Examples 1 and 2 were observed. FIG. 3 is a SIM image of a cross section of a plating member of Comparative Example 1 in which a copper plating layer is formed on a zinc die cast member and a zinc nickel alloy layer is formed on the copper plating layer. FIG. 4 is a zinc nickel directly on the zinc die cast member. 6 is a SIM image of a cross section of a plating member of Comparative Example 2 in which an alloy plating layer is formed. Further, FIG. 5 is a SIM image of a cross section of the plating member of Example 1 in which a zinc plating layer is formed and a zinc nickel alloy layer is formed on the zinc plating layer. In Example 1 and Comparative Examples 1 and 2, a protective layer made of carbon is formed on the surface of the plating member 1 in order to protect the plating member from damage caused by cutting. Further, in FIGS. 3 to 5, (A) is an image magnified 4000 times, and (B) is an image magnified 10000 times. As shown in FIG. 5, in Example 1, by forming a zinc plating layer between the zinc die cast and the zinc nickel alloy plating layer, the zinc die cast and the zinc plating layer, and the zinc plating layer and the zinc nickel alloy layer are formed. It can be seen that and are formed in close contact with each other. Similarly, in Comparative Example 1 shown in FIG. 3, by forming a copper plating layer between the zinc die casting and the zinc nickel alloy plating layer, the zinc die casting and the copper plating layer and the copper plating layer and the zinc nickel alloy layer are formed. It can be seen that and are formed in close contact with each other. On the other hand, as shown in FIG. 4, in Comparative Example 2, an intermediate layer was formed even though the zinc-nickel alloy plating layer was formed on the zinc die casting. It is considered that this intermediate layer is due to a smut or the like. When the zinc-nickel alloy plating layer is directly laminated on the zinc die casting, such an intermediate layer (smut) is considered to be a factor of lowering the adhesion of the plating.

(耐食性試験)
次に、本実施形態に係るめっき部材1の耐食性を、塩水噴霧試験法(JIS Z 2371)により試験した。また、本試験では、上述した、実施例1および比較例1,2のめっき部材に加えて、亜鉛ダイカスト部材に銅めっき層およびニッケル層を順に形成した後、さらに3価クロメート処理を行っためっき部材(比較例3)を用いて試験を行った。具体的には、実施例1および比較例1〜3のめっき部材を、濃度50g/LおよびpH7の塩水を連続噴霧した雰囲気中に240時間さらし、白錆の発生を目視により確認した。図6に塩水噴霧試験の試験結果を示す。
(Corrosion resistance test)
Next, the corrosion resistance of the plating member 1 according to the present embodiment was tested by a salt spray test method (JIS Z 2371). Further, in this test, in addition to the plating members of Examples 1 and Comparative Examples 1 and 2 described above, a copper plating layer and a nickel layer were sequentially formed on the zinc die-cast member, and then trivalent chromate treatment was further performed. The test was carried out using the member (Comparative Example 3). Specifically, the plated members of Examples 1 and Comparative Examples 1 to 3 were exposed to an atmosphere in which salt water having a concentration of 50 g / L and pH 7 was continuously sprayed for 240 hours, and the occurrence of white rust was visually confirmed. FIG. 6 shows the test results of the salt spray test.

図6に示すように、実施例1のめっき部材では、240時間経過後においても白錆の発生は見られなかった。これに対して、比較例1では、200時間経過後から白錆の発生が確認された。また、比較例2では72時間後から白錆の発生が確認され、比較例3では200時間から白錆の発生が確認された。このことから、亜鉛ダイカスト部材に亜鉛めっき層および亜鉛ニッケル合金層を形成した実施例1のめっき部材では、比較例1〜3のめっき部材では白錆が発生する条件下においても、白錆の発生を防止することができ、比較例1〜3のめっき部材に比べて耐食性が優れていることが分かった。 As shown in FIG. 6, in the plated member of Example 1, no white rust was observed even after 240 hours had passed. On the other hand, in Comparative Example 1, the occurrence of white rust was confirmed after 200 hours had passed. Further, in Comparative Example 2, the occurrence of white rust was confirmed after 72 hours, and in Comparative Example 3, the occurrence of white rust was confirmed from 200 hours. From this, in the plating member of Example 1 in which the galvanized layer and the zinc-nickel alloy layer were formed on the zinc die-cast member, white rust was generated even under the condition that white rust was generated in the plated members of Comparative Examples 1 to 3. It was found that the corrosion resistance was superior to that of the plated members of Comparative Examples 1 to 3.

(密着性試験)
また、本実施形態に係るめっき部材1のめっきの密着耐を、クロスカット法(JIS K 5600−5−6)により試験した。本試験では、耐食性試験と同様に、実施例1および比較例1〜3のめっき部材を用いて試験を行った。また、本試験では、(1)めっき処理後であって、塩水噴霧試験を行っていない実施例1および比較例1〜3のめっき部材と、(2)めっき処理後に240時間の塩水噴霧試験を行った後の実施例1および比較例1〜3のめっき部材とに対して、それぞれクロスカットを実施した。
(Adhesion test)
Further, the adhesion resistance of the plating of the plating member 1 according to the present embodiment was tested by a cross-cut method (JIS K 5600-5-6). In this test, as in the corrosion resistance test, the test was performed using the plated members of Examples 1 and Comparative Examples 1 to 3. Further, in this test, (1) the plating members of Examples 1 and Comparative Examples 1 to 3 which have not been subjected to the salt spray test after the plating treatment, and (2) the salt spray test for 240 hours after the plating treatment are performed. Cross-cutting was performed on the plated members of Examples 1 and Comparative Examples 1 to 3 after each of the above.

下記表1にクロスカット法による試験結果を示す。なお、下記表1において、めっきが剥がれなかった場合を「なし」として記載し、めっきが剥がれた場合を「あり」として記載した。

Figure 0006892638
Table 1 below shows the test results by the cross-cut method. In Table 1 below, the case where the plating did not peel off was described as "none", and the case where the plating peeled off was described as "yes".
Figure 0006892638

表1に示すように、めっき処理後であり、塩水噴霧試験を行っていない状態では、実施例1および比較例1〜3のめっき部材の全てについて、めっきの剥がれは確認できなかった。これに対して、上述した塩水噴霧試験を行った後のめっき部材のうち、亜鉛ダイカスト部材に直接、亜鉛ニッケル合金めっき層を形成した比較例2のめっき部材においては、めっきの剥がれが生じた。このことから、亜鉛ダイカスト部材に亜鉛めっき層および亜鉛ニッケル合金層を順次形成した実施例1のめっき部材では、少なくとも、亜鉛ダイカスト部材に直接、亜鉛ニッケル合金めっき層を形成した比較例2のめっき部材と比べて、めっきの密着性が良好であることが分かった。 As shown in Table 1, in the state after the plating treatment and not performing the salt spray test, no peeling of the plating could be confirmed for all the plating members of Example 1 and Comparative Examples 1 to 3. On the other hand, among the plating members after the above-mentioned salt spray test, the plating member of Comparative Example 2 in which the zinc-nickel alloy plating layer was formed directly on the zinc die-cast member had peeling of the plating. From this, in the plating member of Example 1 in which the zinc plating layer and the zinc nickel alloy layer were sequentially formed on the zinc die casting member, at least the plating member of Comparative Example 2 in which the zinc nickel alloy plating layer was formed directly on the zinc die casting member. It was found that the adhesion of the plating was better than that of the plating.

(均一電着性試験)
さらに、本実施形態に係るめっき部材1の均一電着性を検討するために、ハルセル試験を行った。本試験では、電流密度を5A/dm、4A/dm、3A/dm、2A/dm、1A/dm、0.5A/dm、0.2A/dm、0.1A/dm、0.05A/dmとした9つのレーンにおいて、亜鉛めっきと亜鉛ニッケル合金めっきとを5分ずつ行った。試験結果を下記表2に示す。

Figure 0006892638
(Uniform electrodeposition test)
Further, in order to examine the uniform electrodeposition property of the plating member 1 according to the present embodiment, a Hull cell test was conducted. In this test, the current density was 5A / dm 2 , 4A / dm 2 , 3A / dm 2 , 2A / dm 2 , 1A / dm 2 , 0.5A / dm 2 , 0.2A / dm 2 , 0.1A / dm 2, the nine lanes and 0.05 a / dm 2, was carried out and the zinc plated and zinc-nickel alloy plated five minutes. The test results are shown in Table 2 below.
Figure 0006892638

表2に示すように、亜鉛ニッケル合金層に対して、亜鉛めっき層の膜厚は、電流密度への依存度が少なく、電流密度が低い場合でも膜厚を比較的厚くすることができる。たとえば、表2に示す例では、電流密度が5A/dmと0.05A/dmの場合の膜厚の比((0.05A/dmでの膜厚)/(5A/dmでの膜厚))を見てみると、亜鉛ニッケル合金めっき層では0.15/6.57=0.02となるのに対して、亜鉛めっき層では0.68/0.87=0.78となる。亜鉛めっき層は、このように電流密度による影響が小さく、電流密度が低い場合(または電流密度のバラツキが大きい場合)でも一定の厚みの膜厚を形成することができるため、亜鉛ダイカストの表面に空孔や凹凸が存在し、空孔や凹みの内部の電流密度が低い場合でも空孔や凹みの中までめっきを適切に施すことができ、非めっき部分を形成してしまうという問題を有効に防止することができる。 As shown in Table 2, the film thickness of the zinc-plated layer is less dependent on the current density than the zinc-nickel alloy layer, and the film thickness can be made relatively thick even when the current density is low. For example, in the example shown in Table 2, the ratio of the film thickness when the current densities are 5 A / dm 2 and 0.05 A / dm 2 ((the film thickness at 0.05 A / dm 2 ) / (5 A / dm 2) The film thickness)) is 0.15 / 6.57 = 0.02 in the galvanized alloy plating layer, whereas 0.68 / 0.87 = 0.78 in the galvanized layer. It becomes. Since the galvanized layer is less affected by the current density and can form a film having a constant thickness even when the current density is low (or when the current density varies widely), it can be formed on the surface of the zinc die casting. Even if there are vacancies and irregularities and the current density inside the vacancies and dents is low, plating can be applied appropriately to the inside of the vacancies and dents, effectively solving the problem of forming non-plated parts. Can be prevented.

以上のように、本実施形態に係るめっき部材1は、少なくとも表面が亜鉛で構成された被めっき部材10を有し、被めっき部材10の上に亜鉛めっき層20が形成され、さらに、亜鉛めっき層20の上に亜鉛ニッケル合金めっき層30が形成されている。このように被めっき部材10の少なくとも表面を亜鉛で構成し、同じ亜鉛を含む亜鉛めっき層20をその上に積層することで、被めっき部材10と亜鉛めっき層20との密着性を高くすることができるとともに、腐食電位差を小さくすることができる。また同様に、亜鉛めっき層20の上に同じ亜鉛を含む亜鉛ニッケル合金めっき層30を積層することで、亜鉛めっき層20と亜鉛ニッケル合金めっき層30との密着性を高くすることができるとともに、腐食電位差を小さくすることができる。特に、被めっき部材10の上に亜鉛ニッケル合金めっき層30を直接積層する場合と比べて、被めっき部材10と亜鉛ニッケル合金めっき層30との間に亜鉛めっき層20を形成することで、亜鉛ニッケル合金めっきと比べて均一電着性の高い亜鉛めっきが被めっき部材10の表面に形成された微小な空孔や凹凸をカバーし、亜鉛ニッケル合金めっき層30の被めっき部材10への密着性をより向上することができ、その結果、「こぶ」や「膨れ」などと称されるめっき不良を低減することができ、耐食性を向上することができる。たとえば、従来のように、被めっき部材に、シアン化銅ストライクとニッケルクロムめっきとを施した部材と比べて、本実施形態に係るめっき部材1では、めっき不良が約1/5まで低減することができる。また、本実施形態に係るめっき部材1では、亜鉛ニッケル合金めっき層30を有することで、塩化物イオンに対して強く、塩害地でも高い耐食性を発揮できる。 As described above, the plating member 1 according to the present embodiment has at least a member 10 to be plated whose surface is made of zinc, a zinc plating layer 20 is formed on the member 10 to be plated, and further, zinc plating is performed. A galvanized zinc alloy plating layer 30 is formed on the layer 20. In this way, at least the surface of the member 10 to be plated is made of zinc, and the galvanized layer 20 containing the same zinc is laminated on the zinc-plated layer 20 to improve the adhesion between the member 10 to be plated and the galvanized layer 20. And the corrosion potential difference can be reduced. Similarly, by laminating the zinc-based alloy plating layer 30 containing the same zinc on the zinc-plated layer 20, the adhesion between the zinc-plated layer 20 and the zinc-nickel alloy plating layer 30 can be improved, and the adhesion can be improved. The corrosion potential difference can be reduced. In particular, as compared with the case where the zinc-nickel alloy plating layer 30 is directly laminated on the member 10 to be plated, zinc is formed by forming the zinc plating layer 20 between the member 10 to be plated and the zinc-nickel alloy plating layer 30. Zinc plating, which has higher uniform electrodeposition than nickel alloy plating, covers minute pores and irregularities formed on the surface of the member 10 to be plated, and the adhesion of the zinc nickel alloy plating layer 30 to the member 10 to be plated. As a result, plating defects called "humps" and "swelling" can be reduced, and corrosion resistance can be improved. For example, in the plating member 1 according to the present embodiment, the plating defect is reduced to about 1/5 as compared with the conventional member in which the copper cyanide strike and nickel chrome plating are applied to the member to be plated. Can be done. Further, since the plating member 1 according to the present embodiment has the zinc-nickel alloy plating layer 30, it is strong against chloride ions and can exhibit high corrosion resistance even in salt-damaged areas.

また、被めっき部材10は、ダイカスト法により鋳造された金属部材とすることができる。ダイカスト法により鋳造された金属部材は、通常、複雑な構造・形状を有するため、被めっき部材10の上に亜鉛ニッケル合金めっき処理を直接行った場合に、電流密度にバラツキが生じ、電流密度が比較的低くなりめっき処理が施されていない非めっき部が生じ、耐食性が低下する場合がある。これに対して、本実施形態では、亜鉛ニッケル合金めっきに対して均一電着性が高い亜鉛めっきを下地に行うことで、複雑な構造・形状を有するダイカスト部材に対しても比較的均一にめっき処理を施すことができ、耐食性を高めることができる。このように、本実施形態に係るめっき方法では、特に、亜鉛ダイカストを被めっき部材10とする場合に特に有用である。 Further, the member 10 to be plated can be a metal member cast by the die casting method. Since a metal member cast by the die casting method usually has a complicated structure and shape, when the zinc-based alloy plating process is directly performed on the member 10 to be plated, the current density varies and the current density becomes high. The corrosion resistance may be lowered due to a relatively low non-plated portion that has not been plated. On the other hand, in the present embodiment, by performing zinc plating having high uniform electrodeposition property with respect to zinc-nickel alloy plating as a base, even a die-cast member having a complicated structure and shape is plated relatively uniformly. It can be treated and corrosion resistance can be enhanced. As described above, the plating method according to the present embodiment is particularly useful when the zinc die casting is used as the member 10 to be plated.

さらに、従来は、防錆のために、被めっき部材としてステンレス素材を用いることが考えられるが、本実施形態に係るめっき部材1では、ステンレスよりも安価な金属亜鉛を用いることで、コストを低減しながらも、耐食性の高いめっき部材1を提供することができる。また、従来では、被めっき部材に対するめっきの密着性を高めるため、シアン化銅を用いためっきを施した後に、ニッケルめっきやクロムめっきを施すことが行われているが、シアンは環境負荷が高いという問題もある。これに対して、本実施形態に係るめっき部材1では、シアンを用いないでも、高い密着性を実現することができ、環境にとっても優れためっき部材1を提供することができる。 Further, conventionally, it is conceivable to use a stainless steel material as a member to be plated for rust prevention, but in the plating member 1 according to the present embodiment, the cost is reduced by using metallic zinc which is cheaper than stainless steel. However, it is possible to provide a plating member 1 having high corrosion resistance. Further, conventionally, in order to improve the adhesion of plating to the member to be plated, nickel plating or chrome plating is performed after plating using copper cyanide, but cyan has a high environmental load. There is also the problem. On the other hand, in the plating member 1 according to the present embodiment, high adhesion can be realized without using cyan, and the plating member 1 which is also excellent for the environment can be provided.

以上、本発明の好ましい実施形態例について説明したが、本発明の技術的範囲は上記実施形態の記載に限定されるものではない。上記実施形態例には様々な変更・改良を加えることが可能であり、そのような変更または改良を加えた形態のものも本発明の技術的範囲に含まれる。 Although the preferred embodiment of the present invention has been described above, the technical scope of the present invention is not limited to the description of the above embodiment. Various changes / improvements can be made to the above-described embodiment, and those in which such changes / improvements have been made are also included in the technical scope of the present invention.

1…めっき部材
10…被めっき部材
20…亜鉛めっき層
30…亜鉛ニッケル合金めっき層
40…3価クロメート層
1 ... Plating member 10 ... Member to be plated 20 ... Zinc plating layer 30 ... Zinc-nickel alloy plating layer 40 ... Trivalent chromate layer

Claims (6)

少なくとも表面が亜鉛ダイカストで構成された被めっき部材を有し、
前記被めっき部材の上に亜鉛めっき層が形成され、
前記亜鉛めっき層の上に亜鉛ニッケル合金めっき層が形成される、めっき部材。
It has at least a member to be plated whose surface is made of zinc die-cast.
A zinc plating layer is formed on the member to be plated, and a zinc plating layer is formed.
A plating member in which a zinc-nickel alloy plating layer is formed on the zinc plating layer.
前記亜鉛めっき層は、電気めっき法により亜鉛メッキ処理を行うことで形成された層である、請求項1に記載のめっき部材。 The plating member according to claim 1, wherein the zinc plating layer is a layer formed by performing a zinc plating treatment by an electroplating method. 前記被めっき部材は表面に5μm以上の深さまたは高さの空孔または凹凸を有する、請求項1または2に記載のめっき部材。 The plating member according to claim 1 or 2, wherein the member to be plated has holes or irregularities having a depth or height of 5 μm or more on the surface. 少なくとも表面が亜鉛ダイカストで構成された被めっき部材を亜鉛めっき処理することで、前記被めっき部材の上に、亜鉛めっき層に形成する亜鉛めっき工程と、
前記亜鉛めっき層が形成された被めっき部材を亜鉛ニッケル合金めっき処理することで、前記亜鉛めっき層の上に亜鉛ニッケル合金めっき層を形成する亜鉛ニッケル合金めっき工程とを有する、めっき部材の製造方法。
A zinc plating step of forming a zinc plating layer on the member to be plated by subjecting a member to be plated having at least a surface made of zinc die casting to a zinc plating process.
A method for manufacturing a plating member, which comprises a zinc-nickel alloy plating step of forming a zinc-nickel alloy plating layer on the zinc plating layer by subjecting the member to be plated on which the zinc plating layer is formed to a zinc-nickel alloy plating treatment. ..
前記被めっき部材は表面に5μm以上の深さまたは高さの空孔または凹凸を有する、請求項4に記載のめっき部材の製造方法。 The method for manufacturing a plated member according to claim 4, wherein the member to be plated has holes or irregularities having a depth or height of 5 μm or more on the surface. 前記亜鉛めっき工程において、亜鉛めっき液における亜鉛の濃度を8g/L未満として前記亜鉛めっき処理を行う、請求項4または5に記載のめっき部材の製造方法。 The method for producing a plating member according to claim 4 or 5, wherein in the galvanizing step, the zinc plating treatment is performed with the concentration of zinc in the zinc plating solution set to less than 8 g / L.
JP2020020236A 2020-02-10 2020-02-10 Plating member and manufacturing method of plating member Active JP6892638B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020020236A JP6892638B1 (en) 2020-02-10 2020-02-10 Plating member and manufacturing method of plating member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020020236A JP6892638B1 (en) 2020-02-10 2020-02-10 Plating member and manufacturing method of plating member

Publications (2)

Publication Number Publication Date
JP6892638B1 true JP6892638B1 (en) 2021-06-23
JP2021123783A JP2021123783A (en) 2021-08-30

Family

ID=76464588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020020236A Active JP6892638B1 (en) 2020-02-10 2020-02-10 Plating member and manufacturing method of plating member

Country Status (1)

Country Link
JP (1) JP6892638B1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04191355A (en) * 1990-11-23 1992-07-09 Nippon Aen Kogyo Kk Aluminum-zinc alloy plating method
JP3460086B2 (en) * 2000-08-01 2003-10-27 東洋精箔株式会社 Cast member and method of galvanizing cast member
US7704366B2 (en) * 2005-08-17 2010-04-27 Trevor Pearson Pretreatment of magnesium substrates for electroplating

Also Published As

Publication number Publication date
JP2021123783A (en) 2021-08-30

Similar Documents

Publication Publication Date Title
JP4857340B2 (en) Pretreatment of magnesium substrate for electroplating
Wu et al. Progress of electroplating and electroless plating on magnesium alloy
JP6110049B2 (en) Chrome-plated parts and manufacturing method thereof
JP2725477B2 (en) Zinc-based electroplating method for aluminum strip
JP3715743B2 (en) Manufacturing method of Mg alloy member
JP6788506B2 (en) Passivation of microdiscontinuous chromium precipitated from trivalent electrolyte
US1615585A (en) Process of producing corrosion-resisting coatings on iron and steel and product
JP2671612B2 (en) Zinc-based direct electroplating method for aluminum strip
RU2610811C9 (en) Aluminium zinc plating
JP6892638B1 (en) Plating member and manufacturing method of plating member
JP3284227B2 (en) Bearing slip element and method of manufacturing the same
KR101137493B1 (en) A electro plating method for aluminum alloy wheels
CN111733432B (en) Zinc dipping solution and preparation method thereof, metal surface treatment method and aluminum part
KR100402730B1 (en) Method process for forming copper and nickel-plated of electrolytic plating in magnesium compound
JP2012504704A (en) A novel cyanide-free electroplating method for zinc and zinc alloy die cast parts
JP2005200709A (en) Method for forming copper-nickel plating layer on aluminum and magnesium alloy
JPH0598463A (en) Composite surface treating method and cast iron member subjected to composite surface treatment
JPS64467B2 (en)
JP2003096591A (en) Plating method for heat and corrosion resistant material, and heat and corrosion resistant plated product
JP2726144B2 (en) Manufacturing method of high corrosion resistance Pb-Sn alloy plated Cr-containing steel sheet with excellent coverage and adhesion
CN114481242A (en) Process for electroplating acidic zinc-nickel alloy on casting
JP2587721B2 (en) Manufacturing method of zinc-plated aluminum plate
KR20050014186A (en) Plating Process of Nickel on Magnesium Alloy
JPH0390592A (en) Production of surface-treated steel sheet for di can
KR20210055511A (en) Ferrous Sulfate Pre-plating Solution for Fabrication of Defect-Free Hot-Dip Aluminized Stainless Steel Sheets

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210511

R150 Certificate of patent or registration of utility model

Ref document number: 6892638

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250