JPS64467B2 - - Google Patents

Info

Publication number
JPS64467B2
JPS64467B2 JP60113147A JP11314785A JPS64467B2 JP S64467 B2 JPS64467 B2 JP S64467B2 JP 60113147 A JP60113147 A JP 60113147A JP 11314785 A JP11314785 A JP 11314785A JP S64467 B2 JPS64467 B2 JP S64467B2
Authority
JP
Japan
Prior art keywords
layer
alloy
plating
aluminized
alloy layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60113147A
Other languages
Japanese (ja)
Other versions
JPS61272389A (en
Inventor
Yukinobu Higuchi
Kenichi Fukawa
Koji Umeno
Minoru Fujinaga
Takayuki Oomori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP60113147A priority Critical patent/JPS61272389A/en
Publication of JPS61272389A publication Critical patent/JPS61272389A/en
Publication of JPS64467B2 publication Critical patent/JPS64467B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Coating With Molten Metal (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、ピンホールが少なく、耐食性、耐熱
性及び加工性にすぐれた溶融Al−Si系メツキ鋼
板に関するものである。 従来の技術 アルミメツキ鋼板は、耐熱性、耐酸化性、耐食
性などがすぐれていることから、排気系素材、マ
フラー素材などの自動車部品、家庭用器具耐熱部
品、工業炉材など多くの分野で使用されている。 アルミメツキ鋼板の素材(原版)としては、特
開昭56−102523号公報や、特開昭56−108831号公
報などで示されているようなCr、Tiなどの合金
元素を少量(0.5%以下)添加した低炭素冷延鋼
板が主として使われている。さらに上記のような
材料よりも高い耐熱性や耐食性が要求され、特開
昭49−106441号公報に示されたような18Cr系ス
テンレス鋼や、特公昭52−33579号公報に示され
たようなCrを5〜15%含有した鋼のごとき各種
の原板が開発され使用されている。 発明が解決しようとする問題点 このような各種のアルミメツキ鋼板の耐食性、
耐熱性、加工性などの性能に影響を及ぼす要因
は、メツキ原板の性能特性、鋼素材とアルミメツ
キ層の中間層に形成される合金層及びアルミメツ
キ層の特性が挙げられる。而してこれらのうち、
メツキ原板及びアルミメツキ層が腐食環境にすぐ
れた耐食性、耐熱性、加工性等を有していても、
その中間層に生成される合金層の生成状態によつ
ては、アルミメツキ鋼板自体の性能特性に大きく
影響する。 すなわち、この合金層の生成が不完全で、ピン
ホールの生成量が多い場合は、この上層のアルミ
メツキ層の均一濡れ性を妨げるため、メツキ層の
ピンホール或いは不メツキ等のメツキ層表面迄達
する欠陥を多く生成し、耐食性と耐熱性を劣化す
る。 また、NH4 +イオンを含むアルミメツキ層がメ
ツキ原板に対して犠牲防食作用を示す腐食環境に
おいては、合金層のピンホールが多い場合は、ア
ルミメツキ層のアノード溶解が著しくなり、耐食
寿命劣化を生じる欠点がある。またアルミメツキ
鋼板の取扱い時或いは成形加工時に、合金層に達
する疵、亀裂が付けられた場合、耐食性、劣化の
原因となり、また合金層(通常は、Al−Si−Fe
系合金層)自体の耐食性が劣る場合にもアルミメ
ツキ鋼板の耐食性、耐熱性などを著しく劣化す
る。 アルミメツキ鋼板の耐熱性は、使用される高温
度において、アルミメツキ層と地鉄との拡散反応
によつて、メツキ原板表面に生成した、例えば
AlとFeを主体とするAl−Fe、Al−Fe−Siなどの
合金化被覆層によつて付与される。 しかしながら、このような作用で得られるアル
ミメツキ鋼板の耐熱性は、前記したように、アル
ミメツキ層と被メツキ原板の中間層として生成さ
れる合金層のピンホール、不メツキ及びこれらに
起因するアルミメツキ層のピンホール、不メツキ
が存在する場合には、当然良好な耐熱性合金化被
膜が得られない。また、加熱使用時において、合
金層が地鉄とアルミメツキ層の拡散反応を妨げる
場合においても、アルミメツキ鋼板の良好な耐熱
性が得られない。 近年、アルミメツキ鋼板の性能向上の要求に対
処して、メツキ原板に、例えばTi、Cr、Si、Al
等が添加されるが、これらの元素は鋼板表面で富
化されかつ比較的酸化され易いためアルミメツキ
浴の濡れ性が劣り、合金層の均一生成、それに併
なうアルミメツキ鋼板の性能特性の向上等の問題
の解決を一層困難にしている。 問題点を解消するための手段 本発明者等は、上記したメツキ原板とアルミメ
ツキ層の中間層として生成される合金層に起因す
るアルミメツキ鋼板の欠点、問題点を解消するこ
とを目的に種々検討した結果、種々の鋼成分のメ
ツキ原板の鋼表面に、ピンホールが極めて少ない
メツキ層が均一緻密に生成され、耐食性もすぐれ
たAl−Si−Fe−Ni−Cr系合金層、あるいは、Ni
−Fe系拡散層を介してAl−Si−Fe−Ni−Cr系合
金層を設け、その上にAl、Al−Si系合金の如き
アルミメツキ層を施したアルミメツキ鋼板が、そ
の耐食性、耐熱性、或いは加工性等の性能特性に
すぐれている事を見出した。 すなわち本発明は、 (1) 鋼表面に厚さが1〜7μでかつ、Ni含有量0.2
〜30%、Cr含有量0.2〜10%のAl−Si−Fe−Ni
−Cr系合金層と、厚さ3〜40μのAl−Si系合金
被覆層を有する耐食性に優れた溶融Al−Si系
メツキ鋼板、及び (2) 鋼表面に厚さ2μ以下でかつ、平均Ni濃度50
%未満のNi−Fe系拡散層と、厚さ1〜7μで、
Ni含有量0.2〜30%、Cr含有量0.2〜10%のAl−
Si−Fe−Ni−Cr系合金層と、厚さ3〜40μの
Al−Si系合金被覆層を有した耐食性に優れた
溶融Al−Si系メツキ鋼板、 を提供するものである。 作 用 以下、本発明の詳細について説明する。 第1及び2図に、ほぼ同一厚さのNi量及びCr
量を変化させた、Al−Si−Fe−Ni−Cr合金層を
有するAl−8.5%Si合金からなるメツキ層を有す
るアルミメツキ鋼板の合金層のピンホール生成量
及び腐食減量を示す。 第1図の結果から、Niが0.2%以上においてピ
ンホール、不メツキの生成が著しく減少すること
が判る。 また、第2図で示すように、Niを0.2%以上、
Crを0.2%以上含有する合金層を有するアルミメ
ツキ鋼板では耐食性向上効果が著しい。 なお、第2図の耐食性は、硫酸アンモン1g/
、硝酸アンモン1.5g/、塩化アンモン0.5
g/の試験法を用い80℃で30日間密封の試験を
行つて得られた値である。 また、第1表には合金層中のNi及びCr量を変
化させたAl−Si−Fe−Ni−Cr合金層を有するAl
−8.5%Si合金からなるメツキ層を有するアルミ
メツキ鋼板のエツジ部の孔食防止効果を示した。
試験方法としては塩酸0.1%、硝酸0.1%、蟻酸1
%、酢酸1%の腐食液をアンモニア水でPH8に調
整して用い、70mm×150mmの試片を該腐食液に80
℃で14日間、試片の半分を浸漬し、気液界面の腐
食巾で下記の如く評価した。 ◎……エツジからの腐食巾 0〜 5mm 〇…… 〃 6〜10mm △…… 〃 11〜15mm ×…… 〃 15mm以上 一方、この合金層中に含有されるNi含有量が
30%、Cr含有量が10%をこえるとピンホール、
不メツキ等の減少効果及び耐食性向上効果が飽和
すると共に、合金層が硬質化するため加工時にク
ラツクの発生が多くなる。 その結果、成形加工等による疵付きによつて鋼
素地に達する欠陥が発生した場合、メツキ原板に
比し合金層の電位が貴になりすぎるため、メツキ
原板の穿孔腐食を生じ易くなるので好ましくな
い。従つて、Al−Si−Fe−Ni−Cr系合金層に含
有されるNi含有量は0.2%以上〜30%以下、好ま
しくは5〜20%、Cr含有量は0.2%以上〜10%以
下、好ましくは1.5〜7.5%の範囲である。 またこの合金層の厚さは、上記のピンホール減
少効果、耐食性向上効果を得るためには、1μ以
上、好ましくは3μ以上が必要である。 即ち、上記組成で合金層が構成されていても、
その厚さが1μ未満ではメツキ原板に対する均一
被覆効果が得られない。一方、厚さが7μをこえ
るとピンホールの減少効果、耐食性向上効果が飽
和すると共に、メツキ層よりも硬質の合金層が厚
く生成されると加工時にしばしば合金層にクラツ
クを生し、メツキの被覆層の剥離、或いは耐食性
劣化の原因となる。従つて、その厚さは7μ以下、
好ましくは5μ以下に限定される。 さらに、このNiとCrを含有する合金層は、高
温に加熱される場合、アルミメツキ層との拡散反
応を促進する。その結果、高温用途において容易
にメツキ層表面にまでAlとFeを主体とする耐熱、
耐酸化性にすぐれた合金層被膜が生成し、高温時
の耐酸化性を改善する。即ち、加熱時にメツキ被
覆層と合金層、地鉄との熱膨張の差に起因するメ
ツキ層のクラツクが防止されるため、クラツク部
分から地鉄が酸化され耐熱性が劣化される問題が
なく、均一組成のAl−Fe系合金を主体とする被
覆層が形成される利点がある。 さらに、本発明は、このAl−Si−Fe−Ni−Cr
系合金層の下地処理層として、Ni濃度50%以下、
厚さ2μ以下のNi−Fe拡散層を設けてもよい。メ
ツキ原板表面にNi−Fe拡散層を設ける事により、
メツキ原板の耐食性を向上し、Al−Si−Fe−Ni
−Cr系合金層のピンホールを減少する。 すなわち、メツキ原板のNi−Fe系合金拡散層
は、アルミメツキ鋼板に原板の表面に達する欠陥
部が生成された場合メツキ原板の耐食寿命を延長
せしめる。 しかしながら、この拡散合金層のNi濃度が50
%をこえる場合には、この拡散合金層自体の耐食
性は向上するが、この拡散層に欠陥が生じた場合
に、この表面層が電位的に貴になるため、地鉄が
穿孔腐食を発生する危険性がある。従つて、この
拡散合金層のNi濃度は50%以下、好ましくは30
%以下とする。 また、メツキ原板にNi−Fe合金拡散層が存在
すると、Siを含有するアルミメツキ浴に浸漬、メ
ツキ被覆処理が施される場合において、メツキ原
板に比しその融点が低いため、溶融アルミメツキ
浴との濡れ反応性が向上し、溶融アルミメツキ浴
との合金層生成反応が促進される。 その結果ピンホール、或いは不メツキの少な
い、均一なAl−Si−Fe−Ni−Cr系合金層が生成
され、アルミメツキ鋼板の耐食性向上に有効であ
る。 しかしながら、この合金拡散層の厚さが2μを
こえる場合には、Ni−Fe合金は比較的硬質なた
め、加工時にクラツク発生の原因となり、耐食性
劣化につながるのでその厚さは2μ以下、好まし
くは1.5μ以下である。 また、このNi−Fe合金拡散層がメツキ原板表
面に存在する事により、アルミメツキ鋼板が高温
加熱雰囲気において使用される場合において、こ
のNi−Fe合金拡散層が駆動力(Driving Force)
となつて、AlとFeを主体とする耐熱、耐酸化性
にすぐれた合金層がアルミメツキ層表面迄生成さ
れ易くする効果が得られるので、本発明の処理を
施されたアルミメツキ鋼板は耐熱性に対しても優
れた効果が得られる。 而して、本発明のAl−Si−Fe−Ni−Cr系合金
層とSiを含有するAl合金メツキ被覆層、或いは
Ni−Fe合金拡散層とAl−Si−Fe−Ni−Cr系合金
層、Siを含有するAl合金メツキ被覆層を得る方
法は、特に規定するものではなく、例えば以下の
ような方法が挙げられる。 すなわち、通常の鋼板製造工程と表面清浄処理
工程を経て製造されたメツキ原板(As Cold材)
表面に、Ni、Fe、Crイオンを共存含有せしめた
電気メツキ浴(例えば、硫酸ニツケル−塩化ニツ
ケル−硫酸鉄、硫酸クロム−ホウ酸系合金メツキ
浴等)を用いて陰極電解処理により、電気Ni−
Cr−Fe合金層が設けられる。 次いで、水素ガスを含有する雰囲気で焼鈍、還
元工程を経て、Siを含有するAlベースの溶融ア
ルミメツキ浴に浸漬、メツキ量制御処理が施さ
れ、Al−Si−Fe−Ni−Cr系合金層とSiを含有す
るアルミメツキ層が生成される。 また、別の一例としては、メツキ原板として
Crを含有する鋼板を用い、表面に(硫酸ニツケ
ル−塩化ニツケル−硫酸鉄−ホウ酸系)により
Ni−Fe電気合金メツキ層を付与する。次いで、
水素ガスを含有する雰囲気で焼鈍、還元工程を経
て、メツキ原板表面に拡散するNi−Cr−Fe拡散
合金層を生成させてから、Siを含有するアルミベ
ースの溶融アルミメツキ浴に浸漬、メツキ量制御
処理が施され、Al−Si−Fe−Ni−Cr系合金層と
Siを含有するアルミメツキ層が生成される。 次に、これらのAl−Si−Fe−Ni−Cr系合金層
の下層に、Ni−Fe系合金拡散被覆層を設けて、
この拡散合金層、Al−Si−Fe−Ni−Cr系合金
層、Siを含有するアルミ合金メツキ被覆層からな
る三層被膜構成のアルミメツキ鋼板を得る方法
は、前記の如きメツキ原板(As Cold材)表面
に、Fe−Ni合金層を電気メツキ法、或いはNi++
イオン、Fe++イオンを含有する水溶液を塗布し
て、非酸化性又は還元性雰囲気で焼鈍する事によ
つて施される。 この後、該表面に例えばFe−Ni−Cr合金メツ
キ層を設け、その後Siを含有するAlベースのア
ルミメツキ浴中に浸漬、メツキ量制御を行なう事
によつて、メツキ原板表面にNi−Fe合金拡散層、
Al−Si−Fe−Ni−Cr系合金層、Siを含有するア
ルミメツキ被覆層が生成される。 而して、本発明のアルミメツキ鋼板を得るため
には、溶融アルミメツキに先立つ予備前処理とし
て、前記の如くFe−Ni或いはFe−Ni−Cr系電気
合金メツキ、Fe、Ni、Crイオン共存含有水溶液
塗布法を用い、予じめNi含有率を決めた処理方
法を実施するのが、本発明で規定するNi量を含
有するAl−Si−Fe−Ni−Cr系合金層、Ni−Fe合
金拡散層を得るのに有利である。 すなわち、Niメツキ法、Ni++イオン含有水溶液
塗布等により、アルミメツキ前の加熱工程におい
てメツキ原板との拡散によりFe−Ni合金拡散層
の生成、また溶融アルミメツキ工程においてAl
−Si系メツキ浴との反応によりAl−Si−Fe−Ni
−Cr系合金層が得られる。 しかし、Ni金属を単独に用いた場合には、本
発明の被膜構成を確保するために、加熱温度、加
熱時間の厳格な管理、或いはメツキ浴とのメツキ
温度、メツキ浸漬時間等の厳格な管理、調整が必
要とされるため、予じめNi濃度、或いはNi、Cr
濃度が設定された合金メツキ前処理が採用される
方が有利である。 さらに、また本発明において使用されるNi源
からの不純物、例えばCo金属等が本発明の被膜
組成中に混入、含有されてくる量は、本発明の目
的に左程悪影響を及よぼすものでない。 また、同様にNi−Fe合金拡散被覆層中または
Al−Si−Fe−Ni−Cr系合金層中に、使用される
メツキ原板を構成する成分元素、例えばTi、Si
等が含有されてきても、本発明の目的が阻害され
るものでない。 次に、本発明において、アルミメツキ層の組成
をSiを含有するアルミベースのアルミ合金メツキ
浴から得られるアルミメツキ層に限定したのは、
Siを含有しないアルミメツキ浴では本発明の被膜
構成の主眼となる合金層の厚さを1〜7μの範囲、
特に上限を7μ以下に限定する事が困難であり、
従つて加工性の良好なアルミメツキ鋼板を得るの
が工業的に現状では難しいので、Siを含有するア
ルミベースメツキ浴に限定した。 本発明においては、Siが3%以上〜15%以下、
特に5%以上〜11%以下含有されるAl−Si系合
金浴、或いはこれらにMg、Mn等が含有された
Al−Si−Mg、Al−Si−Mn系合金メツキ等を用
いるとよい。 尚、このアルミメツキ層にFe−Ni合金拡散層
或いはFe−Ni−Cr系の前処理層から一部のNi或
いはCr金属がAl−Si系合金メツキ層中に、溶融
アルミメツキ作業時に、溶解、混入された場合に
おいても、そのアルミメツキ鋼板の性能を特に妨
げるものでない。 而して、本発明において使用されるメツキ原板
としては、特に規定するものではなく、通常の溶
融アルミメツキ鋼板の製造に使用される一般のア
ルミキルド普通鋼板、及び各種の特殊元素が添加
された鋼板等が使用される。 特に、加工性を向上せしめるために、Ti、
Nb、Zr、V、B等が添加された鋼板、強度向上
元素のSi、P、或いは耐食性向上元素のCr、Ni、
Al等が添加された鋼板のように、アルミメツキ
浴との濡れ反応性を阻害する元素を富化した鋼
板、ピンホール、不メツキ等の少ないAl−Si−
Fe系合金層が生成されにくい鋼板には、本発明
の被覆層効果が著しい。 而して、本発明において、メツキ原板に対して
耐食性のすぐれたFe−Ni拡散層やピンホール、
不メツキの少ないAl−Si−Fe−Ni−Cr系合金層
が生成されても、該処理層の表面に形成されるア
ルミメツキ被覆層が充分に形成されなくては、腐
食環境における長期耐食性能、高温加熱雰囲気に
おける高温耐酸化性、或いは加工時における加工
性能等が確保され難い。従つて、本発明において
は、Siを含有するアルミ合金メツキ被覆層の厚さ
を3〜40μに規定する。 すなわちその厚さが3μ未満では、アルミメツ
キ被覆層によるメツキ原板及びAl−Si−Fe−Ni
−Cr系合金層の均一被覆性が充分でなく、本発
明のの目的とする耐食性及び耐熱性向上効果が得
られず、またその厚さが40μをこえる場合には、
耐食性、耐熱性向上効果が飽和し、経済的でなく
なるとともに、加工に際してアルミメツキ層の剥
離、アルミメツキ鋼板の割れ発生等加工性劣化の
原因となるので好ましくない。従つて、本発明の
目的とする性能向上効果を得るために、その被覆
層の厚さは、3〜40μ、好ましくは5〜25μとす
る。 実施例 以下、本発明の実施例を挙げて説明する。 第2表に示す鋼成分の冷間圧延材(As Cold
材)を用い、脱脂、酸洗後に電気メツキ法による
Fe−Ni−Cr系合金層、Fe−Ni系合金層、或いは
Fe−Ni系合金拡散層とこれらの合金電気メツキ
層との複層による予備前処理層を所定組成、所定
厚さ設け、その後アルミベースのSi含有合金メツ
キ浴を用いて、溶融アルミメツキ鋼板を得た。 このアルミメツキ鋼板の性能評価結果を第3表
に示すが、本発明の製品は、比較材と比べて、耐
食性、耐熱性等に極めてすぐれた性能を示した。 尚、性能評価については、板厚1.6mmの評価材
を用いて、以下に示す性能評価試験及び評価基準
によつて評価した。 (1) 合金層のピンホール評価 アルミメツキ鋼板のアルミメツキ層を20%
NaOH中に80℃で5分間浸漬して、剥離後に、
合金層表面の観察を行なつて、そのピンホール
生成状況を評価した。 尚、評価基準は以下の方法によつた。 ◎……ピンホールの生成個数 10個/dm2未満 〇……ピンホールの生成個数 10個/dm2〜30
個/dm2未満 △……ピンホールの生成個数 30個/dm2
100個/dm2未満 ×……ピンホールの生成個数 100個/dm2
上 (2) 耐食性能評価 塩水噴霧試験による耐食性 塩水噴霧試験1000時間後の赤錆発生状況を
調査、以下の評価基準で評価した。 ◎……赤錆発生率 3%未満 〇…… 〃 3%以上〜10%未満 △…… 〃 10%以上〜30%未満 ×…… 〃 30%以上 溶液浸漬試験による耐食性評価 1g/(NH42SO4−1.5g/(NH4
NO3−0.5g/NH4Cl系水溶液を用いて、
試験片の半分が液中に浸漬され、半分が溶液
の蒸発気体に接触する密封容器中で80℃で45
日間腐食試験を実施し、以下の評価基準によ
つて評価を行なつた。 ◎……腐食減量 15g/m2以下 〇…… 〃 16〜30g/m2 △…… 〃 31〜50g/m2 ×…… 〃 51g/m2以上 (3) 耐熱性能の評価 650℃での加熱試験 650℃で1000時間、大気中で連続加熱試験 775℃での加熱試験 775℃で48時間、大気中で加熱後に空冷を
1サイクルとして、5サイクルの加熱試験を
各々実施し、以下評価基準で評価を行なつ
た。 ◎……表面スケールの発生なく良好 〇……点状スケールの発生ごくわずか △……点状スケールの発生大 ×……赤錆の発生が極めて大 (4) 加工性の評価 カツプ絞り試験 (1) 絞り加工条件 ブランクサイズ 150φ ポンチ径 75φ しわ押え力 1Ton 潤滑油 工作油#620 (2) 評価 ◎ 良好 〇 メツキ層に微細な亀裂 △ メツキ層点状剥離 1〜 2点 × メツキ層剥離大 鋼管の加工性試験 (1) 試験方法 鋼管寸法、外径42.7mmφ、肉厚1.6mm 90゜扁平試験 加工程度 密着観察 (2) 評価 ◎ 良好 〇 メツキ層に微細な亀裂発生 △ メツキ層の亀裂大 × 一部メツキ層剥離あり
INDUSTRIAL APPLICATION FIELD The present invention relates to a molten Al--Si plated steel sheet with few pinholes and excellent corrosion resistance, heat resistance, and workability. Conventional technology Aluminized steel sheets have excellent heat resistance, oxidation resistance, and corrosion resistance, so they are used in many fields such as automobile parts such as exhaust system materials and muffler materials, heat-resistant parts for household appliances, and industrial furnace materials. ing. The material (original version) of the aluminized steel sheet contains a small amount (0.5% or less) of alloying elements such as Cr and Ti as shown in JP-A-56-102523 and JP-A-56-108831. Added low carbon cold rolled steel sheets are mainly used. Furthermore, higher heat resistance and corrosion resistance than the above-mentioned materials are required, such as 18Cr stainless steel as shown in JP-A-49-106441 and JP-B No. 52-33579. Various base plates such as steel containing 5 to 15% Cr have been developed and used. Problems to be solved by the invention Corrosion resistance of these various aluminized steel sheets,
Factors that affect performance such as heat resistance and workability include the performance characteristics of the plated base plate and the characteristics of the alloy layer and aluminized layer formed as an intermediate layer between the steel material and the aluminized layer. Of these,
Even if the plated base plate and aluminum plated layer have excellent corrosion resistance, heat resistance, workability, etc. in corrosive environments,
The state of formation of the alloy layer formed in the intermediate layer greatly affects the performance characteristics of the aluminized steel sheet itself. In other words, if the formation of this alloy layer is incomplete and a large amount of pinholes are generated, this will impede the uniform wettability of the upper aluminized layer, and pinholes or unplated holes in the plating layer will reach the surface of the plating layer. Generates many defects and deteriorates corrosion resistance and heat resistance. In addition, in a corrosive environment where the aluminium-plated layer containing NH 4 + ions has a sacrificial anti-corrosion effect on the plating original plate, if there are many pinholes in the alloy layer, the anodic dissolution of the aluminium-plated layer will be significant, resulting in a deterioration of the corrosion resistance life. There are drawbacks. In addition, if flaws or cracks that reach the alloy layer occur during handling or forming of aluminized steel sheets, corrosion resistance may deteriorate, and the alloy layer (usually Al-Si-Fe
If the corrosion resistance of the alloy layer itself is poor, the corrosion resistance, heat resistance, etc. of the aluminized steel sheet will be significantly deteriorated. The heat resistance of aluminized steel sheets is determined by the heat resistance generated on the surface of the aluminized steel sheet due to the diffusion reaction between the aluminized layer and the base steel at the high temperatures used, for example.
It is provided by an alloyed coating layer such as Al-Fe or Al-Fe-Si, which is mainly composed of Al and Fe. However, as mentioned above, the heat resistance of the aluminized steel sheet obtained by such an action is limited by pinholes and defects in the alloy layer formed as an intermediate layer between the aluminized layer and the original plate to be plated, as well as defects in the aluminized layer caused by these. If pinholes or unplated areas are present, a good heat-resistant alloyed coating cannot be obtained. Further, even if the alloy layer prevents the diffusion reaction between the base iron and the aluminized layer during heating, the aluminized steel sheet will not have good heat resistance. In recent years, in response to the demand for improved performance of aluminized steel sheets, for example, Ti, Cr, Si, Al
However, these elements are enriched on the steel sheet surface and are relatively easily oxidized, resulting in poor wettability of the aluminized bath, resulting in uniform formation of an alloy layer and concomitant improvement in the performance characteristics of the aluminized steel sheet. This makes solving the problem even more difficult. Means for Solving the Problems The present inventors have conducted various studies with the aim of solving the drawbacks and problems of aluminized steel sheets caused by the alloy layer produced as an intermediate layer between the plated original plate and the aluminized layer described above. As a result, a uniform and dense plating layer with extremely few pinholes is formed on the steel surface of the plated original sheets of various steel compositions, and an Al-Si-Fe-Ni-Cr alloy layer with excellent corrosion resistance or Ni
- An aluminized steel sheet in which an Al-Si-Fe-Ni-Cr alloy layer is provided through an Fe-based diffusion layer, and an aluminized layer such as Al or Al-Si alloy is applied on top of the layer has excellent corrosion resistance, heat resistance, In addition, it has been found that it has excellent performance characteristics such as workability. That is, the present invention has the following features: (1) The steel surface has a thickness of 1 to 7μ and a Ni content of 0.2
~30%, Al−Si−Fe−Ni with Cr content 0.2–10%
- A molten Al-Si plated steel sheet with excellent corrosion resistance, which has a Cr alloy layer and an Al-Si alloy coating layer with a thickness of 3 to 40μ, and (2) a steel surface with a thickness of 2μ or less and an average Ni concentration 50
% Ni-Fe diffused layer and a thickness of 1 to 7μ,
Al− with Ni content 0.2~30% and Cr content 0.2~10%
Si-Fe-Ni-Cr alloy layer with a thickness of 3 to 40μ
A fused Al-Si plated steel sheet having an Al-Si alloy coating layer and having excellent corrosion resistance is provided. Function The details of the present invention will be explained below. Figures 1 and 2 show the amount of Ni and Cr with almost the same thickness.
2 shows the amount of pinholes formed and corrosion loss of an alloy layer of an aluminized steel sheet having a plating layer made of an Al-8.5%Si alloy having an Al-Si-Fe-Ni-Cr alloy layer with varying amounts. From the results shown in Figure 1, it can be seen that when Ni is 0.2% or more, the formation of pinholes and defects is significantly reduced. In addition, as shown in Figure 2, Ni of 0.2% or more,
Aluminized steel sheets with alloy layers containing 0.2% or more of Cr have a remarkable effect of improving corrosion resistance. The corrosion resistance shown in Figure 2 is based on ammonium sulfate 1g/
, ammonium nitrate 1.5g/, ammonium chloride 0.5
This is the value obtained by conducting a sealing test at 80°C for 30 days using the g/g test method. Table 1 also shows Al-Si-Fe-Ni-Cr alloy layers with varying amounts of Ni and Cr in the alloy layer.
The effectiveness of preventing pitting corrosion on the edges of an aluminized steel plate with a plating layer made of -8.5% Si alloy was demonstrated.
The test method is hydrochloric acid 0.1%, nitric acid 0.1%, formic acid 1
%, acetic acid 1% corrosive solution was adjusted to pH 8 with aqueous ammonia, and a 70 mm x 150 mm specimen was placed in the corrosive solution at 80%.
Half of the specimen was immersed at ℃ for 14 days, and the corrosion width at the gas-liquid interface was evaluated as follows. ◎...Corrosion width from the edge 0~5mm 〇...〃6~10mm △...〃11~15mm ×...〃15mm or more On the other hand, the Ni content in this alloy layer is
30%, pinholes when the Cr content exceeds 10%,
The effect of reducing unplatedness and improving corrosion resistance is saturated, and the alloy layer becomes hard, which increases the occurrence of cracks during processing. As a result, if a defect occurs that reaches the steel base due to flaws caused by forming, etc., the potential of the alloy layer becomes too noble compared to the plating base plate, which is undesirable because the potential of the alloy layer becomes too noble, making the plating base plate more susceptible to perforation corrosion. . Therefore, the Ni content contained in the Al-Si-Fe-Ni-Cr alloy layer is 0.2% to 30%, preferably 5 to 20%, and the Cr content is 0.2% to 10%. Preferably it is in the range of 1.5 to 7.5%. Further, the thickness of this alloy layer needs to be 1μ or more, preferably 3μ or more in order to obtain the above-mentioned pinhole reduction effect and corrosion resistance improvement effect. That is, even if the alloy layer is composed of the above composition,
If the thickness is less than 1 μm, a uniform coating effect on the plating original plate cannot be obtained. On the other hand, if the thickness exceeds 7μ, the effect of reducing pinholes and improving corrosion resistance will be saturated, and if an alloy layer that is harder than the plating layer is formed thicker, cracks will often occur in the alloy layer during machining, and the plating will deteriorate. This may cause peeling of the coating layer or deterioration of corrosion resistance. Therefore, its thickness is less than 7μ,
Preferably it is limited to 5μ or less. Furthermore, this alloy layer containing Ni and Cr promotes a diffusion reaction with the aluminized layer when heated to high temperatures. As a result, in high-temperature applications, heat-resistant materials mainly made of Al and Fe can be easily applied to the surface of the plating layer.
An alloy layer coating with excellent oxidation resistance is formed, improving oxidation resistance at high temperatures. That is, since cracks in the plating layer due to the difference in thermal expansion between the plating coating layer, the alloy layer, and the base steel are prevented during heating, there is no problem of the base steel being oxidized from the cracked part and deteriorating heat resistance. There is an advantage that a coating layer mainly composed of an Al-Fe alloy having a uniform composition is formed. Furthermore, the present invention provides this Al-Si-Fe-Ni-Cr
As a base treatment layer for the alloy layer, Ni concentration is 50% or less,
A Ni-Fe diffusion layer with a thickness of 2 μm or less may be provided. By providing a Ni-Fe diffusion layer on the surface of the plating original plate,
The corrosion resistance of the plating original plate has been improved, and Al-Si-Fe-Ni
-Reducing pinholes in the Cr-based alloy layer. That is, the Ni-Fe alloy diffusion layer of the plated original plate extends the corrosion-resistant life of the plated original plate when a defect portion reaching the surface of the original plate is generated in the aluminized steel sheet. However, the Ni concentration of this diffusion alloy layer is 50
%, the corrosion resistance of this diffusion alloy layer itself improves, but if a defect occurs in this diffusion layer, this surface layer becomes noble in potential, causing pitting corrosion in the base steel. There is a risk. Therefore, the Ni concentration in this diffusion alloy layer is 50% or less, preferably 30% or less.
% or less. In addition, if a Ni-Fe alloy diffusion layer exists in the plating original plate, when it is immersed in an aluminium plating bath containing Si and subjected to plating coating treatment, its melting point is lower than that of the plating original plate, so it will not be compatible with the molten aluminization bath. The wetting reactivity is improved and the reaction to form an alloy layer with the molten aluminizing bath is promoted. As a result, a uniform Al-Si-Fe-Ni-Cr alloy layer with few pinholes or defects is produced, which is effective in improving the corrosion resistance of aluminized steel sheets. However, if the thickness of this alloy diffusion layer exceeds 2μ, since the Ni-Fe alloy is relatively hard, it may cause cracks during processing and lead to deterioration of corrosion resistance. Therefore, the thickness should be 2μ or less, preferably It is 1.5μ or less. In addition, since this Ni-Fe alloy diffusion layer exists on the surface of the plating original plate, when the aluminized steel sheet is used in a high-temperature heating atmosphere, this Ni-Fe alloy diffusion layer provides a driving force.
As a result, an alloy layer mainly composed of Al and Fe with excellent heat resistance and oxidation resistance is easily generated up to the surface of the aluminized layer, so the aluminized steel sheet treated with the present invention has excellent heat resistance. Excellent effects can also be obtained. Therefore, the Al-Si-Fe-Ni-Cr alloy layer of the present invention and the Al alloy plating layer containing Si, or
The method for obtaining the Ni-Fe alloy diffusion layer, the Al-Si-Fe-Ni-Cr alloy layer, and the Si-containing Al alloy plating layer is not particularly specified, and examples include the following methods. . In other words, the original plate (As Cold material) manufactured through the normal steel sheet manufacturing process and surface cleaning treatment process.
Electroplating baths (e.g., nickel sulfate-nickel chloride-iron sulfate, chromium sulfate-boric acid alloy plating baths, etc.) that coexist with Ni, Fe, and Cr ions are used on the surface to electrolytically process Ni. −
A Cr-Fe alloy layer is provided. Next, it undergoes an annealing and reduction process in an atmosphere containing hydrogen gas, and then is immersed in an Al-based molten aluminizing bath containing Si to perform plating amount control treatment to form an Al-Si-Fe-Ni-Cr alloy layer. An aluminized layer containing Si is produced. In addition, as another example, as a matsuki original plate
Using a steel plate containing Cr, the surface is coated with (nickel sulfate - nickel chloride - iron sulfate - boric acid system).
Apply a Ni-Fe electrical alloy plating layer. Then,
After going through an annealing and reduction process in an atmosphere containing hydrogen gas to generate a Ni-Cr-Fe diffusion alloy layer that diffuses on the surface of the plated original plate, it is immersed in an aluminum-based molten aluminizing bath containing Si to control the amount of plating. The treatment is applied to form an Al-Si-Fe-Ni-Cr alloy layer.
An aluminized layer containing Si is produced. Next, a Ni-Fe alloy diffusion coating layer is provided below these Al-Si-Fe-Ni-Cr alloy layers,
The method for obtaining an aluminized steel sheet with a three-layer coating structure consisting of the diffusion alloy layer, the Al-Si-Fe-Ni-Cr alloy layer, and the Si-containing aluminum alloy plating layer is as follows: ) Electroplating a Fe-Ni alloy layer on the surface or Ni ++
It is applied by applying an aqueous solution containing Fe ++ ions and annealing in a non-oxidizing or reducing atmosphere. After that, for example, a Fe-Ni-Cr alloy plating layer is provided on the surface, and then immersed in an Al-based aluminium plating bath containing Si to control the amount of plating. diffusion layer,
An Al-Si-Fe-Ni-Cr alloy layer and an aluminized coating layer containing Si are produced. In order to obtain the aluminized steel sheet of the present invention, as a preliminary pretreatment prior to hot-dip aluminizing, as described above, Fe-Ni or Fe-Ni-Cr based electric alloy plating, an aqueous solution containing Fe, Ni, and Cr ions coexist. The treatment method using a coating method and predetermining the Ni content is the Al-Si-Fe-Ni-Cr alloy layer containing the Ni amount specified in the present invention, the Ni-Fe alloy diffusion. It is advantageous to obtain layers. In other words, by using the Ni plating method, coating an aqueous solution containing Ni ++ ions, etc., a Fe-Ni alloy diffusion layer is generated by diffusion with the plating original plate in the heating process before aluminizing, and an Al diffusion layer is formed in the molten aluminizing process.
-Al-Si-Fe-Ni is formed by reaction with Si-based plating bath.
-A Cr-based alloy layer is obtained. However, when using Ni metal alone, in order to ensure the film structure of the present invention, strict control of heating temperature and heating time, or strict control of plating temperature and plating immersion time with plating bath, etc. , since adjustment is required, the Ni concentration or Ni, Cr
It is advantageous to employ an alloy plating pre-treatment with a set concentration. Furthermore, the amount of impurities from the Ni source used in the present invention, such as Co metal, mixed into the coating composition of the present invention does not have a significant adverse effect on the purpose of the present invention. . Similarly, in the Ni-Fe alloy diffusion coating layer or
In the Al-Si-Fe-Ni-Cr alloy layer, the constituent elements constituting the plating original plate used, such as Ti and Si.
Even if such substances are contained, the object of the present invention is not hindered. Next, in the present invention, the composition of the aluminized layer is limited to an aluminized layer obtained from an aluminum-based aluminum alloy plating bath containing Si.
In an aluminizing bath that does not contain Si, the thickness of the alloy layer, which is the main focus of the coating structure of the present invention, is in the range of 1 to 7 μm.
In particular, it is difficult to limit the upper limit to 7 μ or less,
Therefore, it is currently industrially difficult to obtain aluminized steel sheets with good workability, so we limited ourselves to aluminum-based plating baths containing Si. In the present invention, Si is 3% or more and 15% or less,
In particular, Al-Si alloy baths containing 5% or more to 11% or less, or those containing Mg, Mn, etc.
It is preferable to use Al-Si-Mg, Al-Si-Mn alloy plating, etc. Note that some Ni or Cr metal from the Fe-Ni alloy diffusion layer or the Fe-Ni-Cr pretreatment layer may be dissolved or mixed into the Al-Si alloy plating layer during molten aluminization. Even in such cases, it does not particularly impede the performance of the aluminized steel sheet. Therefore, the plated original plate used in the present invention is not particularly specified, and may include general aluminum-killed ordinary steel plates used in the production of ordinary hot-dip aluminized steel plates, steel plates to which various special elements have been added, etc. is used. In particular, in order to improve processability, Ti,
Steel sheets to which Nb, Zr, V, B, etc. have been added, strength-improving elements such as Si and P, or corrosion resistance-improving elements such as Cr and Ni,
Steel plates enriched with elements that inhibit wetting reactivity with the aluminizing bath, such as steel plates with added Al, Al-Si-
The coating layer effect of the present invention is remarkable for steel sheets in which Fe-based alloy layers are difficult to form. Therefore, in the present invention, a Fe-Ni diffusion layer with excellent corrosion resistance, pinholes,
Even if an Al-Si-Fe-Ni-Cr alloy layer with less unplatedness is produced, if the aluminized coating layer formed on the surface of the treated layer is not sufficiently formed, long-term corrosion resistance in a corrosive environment will deteriorate. It is difficult to ensure high-temperature oxidation resistance in a high-temperature heating atmosphere or processing performance during processing. Therefore, in the present invention, the thickness of the Si-containing aluminum alloy plating coating layer is defined to be 3 to 40 microns. In other words, if the thickness is less than 3μ, the plated original plate and Al-Si-Fe-Ni are coated with aluminum plating layer.
- If the uniform coverage of the Cr-based alloy layer is not sufficient and the desired effect of improving corrosion resistance and heat resistance of the present invention cannot be obtained, and the thickness exceeds 40μ,
This is not preferable because the effect of improving corrosion resistance and heat resistance becomes saturated and becomes uneconomical, and it also causes deterioration in workability such as peeling of the aluminized layer and cracking of the aluminized steel sheet during processing. Therefore, in order to obtain the performance improvement effect aimed at by the present invention, the thickness of the coating layer is 3 to 40 microns, preferably 5 to 25 microns. Examples The present invention will be described below with reference to examples. As Cold Rolled Materials with Steel Compositions Shown in Table 2
After degreasing and pickling, electroplating is performed using
Fe-Ni-Cr alloy layer, Fe-Ni alloy layer, or
A preliminary pretreatment layer consisting of a Fe-Ni alloy diffusion layer and an electroplated layer of these alloys is provided with a predetermined composition and a predetermined thickness, and then an aluminum-based Si-containing alloy plating bath is used to obtain a molten aluminized steel sheet. Ta. The performance evaluation results of this aluminized steel sheet are shown in Table 3, and the product of the present invention showed extremely superior performance in terms of corrosion resistance, heat resistance, etc. compared to comparative materials. In addition, regarding performance evaluation, evaluation was performed according to the performance evaluation test and evaluation criteria shown below using an evaluation material with a plate thickness of 1.6 mm. (1) Pinhole evaluation of alloy layer The aluminized layer of the aluminized steel plate is 20%
After immersing in NaOH at 80℃ for 5 minutes and peeling,
The surface of the alloy layer was observed to evaluate the state of pinhole formation. The evaluation criteria were based on the following method. ◎……Number of pinholes generated 10 pieces/dm 2 less than 〇……Number of pinholes generated 10 pieces/dm 2 ~ 30
pcs/dm 2 or less △……Number of pinholes generated 30 pcs/dm 2 ~
Less than 100 pieces/dm 2 ×...Number of pinholes generated 100 pieces/dm 2 or more (2) Corrosion resistance performance evaluation Corrosion resistance by salt spray test The state of red rust occurrence after 1000 hours of salt spray test was investigated and evaluated using the following evaluation criteria. did. ◎... Red rust occurrence rate less than 3%〇... 〃 3% or more to less than 10%△... 〃 10% or more to less than 30% ×... 〃 30% or more Corrosion resistance evaluation by solution immersion test 1g/(NH 4 ) 2SO4-1.5g / ( NH4 )
Using NO 3 -0.5g/NH 4 Cl aqueous solution,
45 min at 80 °C in a sealed container where half of the specimen is immersed in the solution and half is in contact with the evaporating gas of the solution.
A daily corrosion test was conducted, and evaluation was made based on the following evaluation criteria. ◎...Corrosion loss 15g/ m2 or less〇...〃16~30g/ m2 △...〃31~50g/ m2 ×...〃51g/m2 or more ( 3 ) Evaluation of heat resistance performance At 650℃ Heating test Continuous heating test at 650℃ for 1000 hours in the air Heating test at 775℃ Heating test at 775℃ for 48 hours in the air followed by air cooling as one cycle, 5 cycles of heating tests were conducted, and the evaluation criteria were as follows. We conducted an evaluation. ◎...Good condition with no surface scale 〇...Very little dotted scale △...Large dotted scale x...Extremely large amount of red rust (4) Evaluation of workability Cup drawing test (1) Drawing processing conditions Blank size 150φ Punch diameter 75φ Wrinkle holding force 1Ton Lubricating oil Machine oil #620 (2) Evaluation ◎ Good 〇 Fine cracks in the plating layer △ Spot peeling of the plating layer 1 to 2 points × Large peeling of the plating layer Machining of steel pipe (1) Test method Steel pipe dimensions, outer diameter 42.7mmφ, wall thickness 1.6mm 90° flat test Processing degree Close observation (2) Evaluation ◎ Good 〇 Fine cracks occurred in the plating layer △ Large cracks in the plating layer × Partial There is peeling of the plating layer

【表】【table】

【表】【table】

【表】【table】

【表】 発明の効果 本発明による製品は比較材と比べて、ピンホー
ルが少なく、耐食性、耐熱性、加工性等に極めて
すぐれた性能を示した。
[Table] Effects of the Invention The products of the present invention had fewer pinholes and exhibited extremely superior performance in corrosion resistance, heat resistance, workability, etc., compared to comparative materials.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は溶融アルミメツキ鋼板合金層中のNi
含有量とピンホール発生量の関係を示す線図、第
2図は合金層中のNi量と耐食性の関係を示す線
図である。
Figure 1 shows Ni in the alloy layer of a molten aluminized steel sheet.
A diagram showing the relationship between the content and the amount of pinholes generated, and FIG. 2 is a diagram showing the relationship between the amount of Ni in the alloy layer and corrosion resistance.

【特許請求の範囲】[Claims]

1 基材の上に酸化物膜を形成したのちこの酸化
物膜を所望のパターンでエツチングする方法であ
つて、前記基材の上に金属を蒸着することによつ
て前記酸化物膜のエツチングパターンを描き、そ
の上から前記酸化物膜を形成したのち前記金属を
溶かし去ることにより、その上の酸化物膜の部分
をいつしよに剥離することを特徴とする酸化物膜
のエツチング方法。 2 金属がアルミニウム、亜鉛、マグネシウム、
スズおよび銅のいずれかである特許請求の範囲第
1項記載の酸化物膜のエツチング方法。 3 金属の蒸着にあたりマスクを用いることによ
り、パターンが微細な凹凸模様を得る特許請求の
範囲第1項または第2項記載の酸化物膜のエツチ
ング方法。 4 金属蒸着膜の厚みを薄くすることにより、パ
ターンが微細な凹凸模様を得る特許請求の範囲第
1項または第2項記載の酸化物膜のエツチング方
法。
1 A method of forming an oxide film on a base material and then etching this oxide film in a desired pattern, the etching pattern of the oxide film being formed by vapor depositing a metal on the base material. 1. A method for etching an oxide film, characterized in that the oxide film is formed on the oxide film, and then the metal is melted away, thereby peeling off the oxide film on the oxide film. 2 The metal is aluminum, zinc, magnesium,
A method for etching an oxide film according to claim 1, which is either tin or copper. 3. The method of etching an oxide film according to claim 1 or 2, wherein a pattern is obtained by using a mask during metal vapor deposition to obtain a fine uneven pattern. 4. The method of etching an oxide film according to claim 1 or 2, wherein a fine uneven pattern is obtained by reducing the thickness of the metal vapor deposited film.

JP60113147A 1985-05-28 1985-05-28 Steel sheet coated with al-si by hot dipping and having high corrosion resistance Granted JPS61272389A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60113147A JPS61272389A (en) 1985-05-28 1985-05-28 Steel sheet coated with al-si by hot dipping and having high corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60113147A JPS61272389A (en) 1985-05-28 1985-05-28 Steel sheet coated with al-si by hot dipping and having high corrosion resistance

Publications (2)

Publication Number Publication Date
JPS61272389A JPS61272389A (en) 1986-12-02
JPS64467B2 true JPS64467B2 (en) 1989-01-06

Family

ID=14604756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60113147A Granted JPS61272389A (en) 1985-05-28 1985-05-28 Steel sheet coated with al-si by hot dipping and having high corrosion resistance

Country Status (1)

Country Link
JP (1) JPS61272389A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3047402B2 (en) * 1988-08-13 2000-05-29 臼井国際産業株式会社 Thin-walled steel sheet and its manufacturing method
CA2175439C (en) * 1996-04-30 2001-09-04 Sabino Steven Anthony Petrone Surface alloyed high temperature alloys
US6503347B1 (en) 1996-04-30 2003-01-07 Surface Engineered Products Corporation Surface alloyed high temperature alloys
JP7042933B2 (en) * 2018-07-09 2022-03-28 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング A spark plug housing having a galvanic or chemical nickel-containing protective layer and a silicon-containing sealing layer, and a spark plug having this housing, and a method for manufacturing the housing.

Also Published As

Publication number Publication date
JPS61272389A (en) 1986-12-02

Similar Documents

Publication Publication Date Title
JP2608569B2 (en) Laminated vapor-deposited steel sheet
US3937858A (en) Method of and bath for the plating of aluminum or an aluminum alloy on a metallic substrate
EP0036778B1 (en) Steel member plated with pb-sn alloy and a method of making same
JPH0518903B2 (en)
JP3879266B2 (en) Alloyed hot-dip galvanized steel sheet excellent in formability and manufacturing method thereof
JPS64467B2 (en)
JPH0328359A (en) Production of hot-dip aluminized chromium-containing steel sheet
JPS64466B2 (en)
JP3135818B2 (en) Manufacturing method of zinc-tin alloy plated steel sheet
JPS616293A (en) Production of sn-plated steel sheet having high corrosion resistance
JP2004002932A (en) Aluminum plated steel sheet having excellent resistance weldability and worked parts obtained by using the same
KR100286661B1 (en) Pretreatment method of aluminized stainless steel sheet
JP2004002931A (en) Aluminum plated steel sheet having excellent resistance weldability and worked parts obtained by using the same
JPH0362788B2 (en)
JP2756547B2 (en) Hot-dip Zn-based plating of hard-to-plate steel sheet
JP4537894B2 (en) Hot Sn-Zn plated steel sheet with good corrosion resistance and weldability
JPS5837165A (en) Al alloy hot dipped steel plate having excellent plating appearance and high corrosion resistance and high- temperature durability and production thereof
JP4469055B2 (en) Hot-dip Zn-Mg-Al alloy plating method
JP2517733B2 (en) Al (1) alloy vapor-deposited plating material having excellent corrosion resistance, workability and heat resistance, and method for producing the same
JPH0356654A (en) Production of chromium-containing steel sheet hot dip coated with aluminum
JP2724045B2 (en) Method for producing chromium-containing steel sheet plated with hot-dip zinc or zinc alloy
JPS642195B2 (en)
JPH04193966A (en) Method for composite surface treatment of cast iron material
JPH07278843A (en) Cold rolled steel sheet having excellent degreasability
JPH0765214B2 (en) Ni, Co, and Ni-Co alloy plated Cr-containing steel sheet having excellent plating adhesion and corrosion resistance

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term