KR20110035356A - Multi-functional hard coating composition and hard coating structure - Google Patents

Multi-functional hard coating composition and hard coating structure Download PDF

Info

Publication number
KR20110035356A
KR20110035356A KR1020090093029A KR20090093029A KR20110035356A KR 20110035356 A KR20110035356 A KR 20110035356A KR 1020090093029 A KR1020090093029 A KR 1020090093029A KR 20090093029 A KR20090093029 A KR 20090093029A KR 20110035356 A KR20110035356 A KR 20110035356A
Authority
KR
South Korea
Prior art keywords
hard coating
meth
functional
acrylate
fluorine
Prior art date
Application number
KR1020090093029A
Other languages
Korean (ko)
Other versions
KR101117711B1 (en
Inventor
한동철
이도경
Original Assignee
재단법인 구미전자정보기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 구미전자정보기술원 filed Critical 재단법인 구미전자정보기술원
Priority to KR1020090093029A priority Critical patent/KR101117711B1/en
Publication of KR20110035356A publication Critical patent/KR20110035356A/en
Application granted granted Critical
Publication of KR101117711B1 publication Critical patent/KR101117711B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/22Esters containing halogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/106Esters of polycondensation macromers
    • C08F222/1065Esters of polycondensation macromers of alcohol terminated (poly)urethanes, e.g. urethane(meth)acrylates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur or oxygen atoms in addition to the carboxy oxygen
    • C09D133/16Homopolymers or copolymers of esters containing halogen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/67Particle size smaller than 100 nm
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)

Abstract

PURPOSE: A multi-functional hard coating liquid is provided to ensure easy processability, good handling property, scratch resistance, antifouling property, and high surface hardness, and to prevent cracks during in-mold lamination molding. CONSTITUTION: A hard coating liquid comprises a fluorinated polyurethaneacrylate functional copolymer, a UV curable resin, a photoinitiator, and a TiO2 nasosol for increasing abrasion resistance, wherein the fluorinated polyurethaneacrylate functional copolymer is formed by copolymerizing a polyurethane (meth)acrylate oligomer and a fluorinated (meth)acrylic monomer.

Description

다기능성 하드코팅액 및 하드코팅물{Multi-Functional Hard Coating Composition And Hard Coating Structure}Multi-Functional Hard Coating Composition And Hard Coating Structure

본 발명은 다기능성 하드코팅액 및 하드코팅물에 관한 것이다. The present invention relates to a multifunctional hard coating liquid and a hard coating.

저비용으로 성형품에 의장성을 부여하는 방법으로서, 인서트(insert) 성형법, 또는 인몰드(in-mold) 성형법이 있다. 인서트 성형법은, 인쇄 등의 가식을 실시한 폴리에스터 수지, 폴리카보네이트 수지, 아크릴 수지 등의 필름 또는 시트를, 미리 진공 성형 등에 의해 삼차원 형상으로 성형하고, 불필요한 필름 또는 시트 부분을 제거한 후, 사출 성형 금형내에 옮겨, 기재가 되는 수지를 사출 성형함으로써 일체화시킨 성형품을 수득하는 것이다. 한편, 인몰드 성형법은 인쇄 등의 가식을 실시한 폴리에스터 수지, 폴리카보네이트 수지, 아크릴 수지 등의 필름 또는 시트를 사출 성형 금형 내에 설치하고, 진공 성형을 실시한 후, 같은 금형 내에서 기재가 되는 수지를 라미네이션을 함으로써 일체화시킨 성형품을 수득하는 것이다.As a method of imparting designability to a molded article at low cost, there is an insert molding method or an in-mold molding method. The insert molding method is an injection molding die after molding a film or sheet such as a polyester resin, a polycarbonate resin, an acrylic resin or the like which has been decorated, such as printing, into a three-dimensional shape in advance by vacuum molding or the like, and removing an unnecessary film or sheet portion. It transfers in and obtains the molded article integrated by injection molding the resin used as a base material. On the other hand, in-mold molding method is a film or sheet of a polyester resin, a polycarbonate resin, an acrylic resin, or the like, which is decorated with a printing or the like is installed in an injection molding mold, and subjected to vacuum molding, and then the resin to be a substrate in the same mold. By lamination, the molded article integrated is obtained.

인몰드 성형용 하드코팅액 및 하드코팅 필름에 관한 기술이 다소 알려진 바 있으나, 종래의 기술에서는 단순히 내스크래치 특성만 있으며 특히, 지문과 같은 외부의 오염물에 의하여 오염이 되어 나쁜 외관성을 나타내어 제품의 품질을 저하시키는 문제점을 가지고 있다. 또한, 인몰드 성형 중 외곽의 코팅층의 크랙이 나타나는 등 문제점을 가지고 있다.  Although the technology for hard coating liquid and hard coating film for in-mold molding has been known to some extent, in the related art, it has only scratch resistance properties, and in particular, it is contaminated by external contaminants such as fingerprints, and thus exhibits poor appearance, resulting in poor product quality. It has a problem of degrading. In addition, there is a problem such as cracks of the outer coating layer during in-mold molding.

본 발명은 상기의 문제점을 해결하기 위한 것으로서, 가공성이 용이하며, 취급성이 양호하고 또한 내스크래치성, 방오성, 높은 표면 경도를 보이며 특히 인몰드 라미네이션 성형을 실시할 경우에도 균열이 발생하지 않는 다기능성 하드 코팅액 및 이를 사용하여 제조된 기능성 하드코팅물을 제공하는 것을 목적으로 한다.The present invention is to solve the above problems, it is easy to work, good handleability, scratch resistance, antifouling, high surface hardness, especially when in-mold lamination molding does not occur cracks An object of the present invention is to provide a functional hard coating liquid and a functional hard coating prepared using the same.

상기의 목적을 달성하기 위한 수단으로서,As a means for achieving the above object,

본 발명은 폴리우레탄 (메타)아크릴레이트 올리고머와 불소계 (메타)아크릴 단량체를 포함하여 공중합하여 이루어진 불소계 폴리우레탄아크릴레이트 기능성 공중합체, 자외선 경화 수지, 광개시제, 및 내마모성을 증대시키기 위하여 TiO2 나노졸이 포함되어 이루어지는 하드코팅액을 제공한다.The present invention relates to a fluorine-based polyurethane acrylate functional copolymer formed by copolymerizing a polyurethane (meth) acrylate oligomer and a fluorine-based (meth) acryl monomer, an ultraviolet curable resin, a photoinitiator, and a TiO 2 nanosol to increase wear resistance. It provides a hard coating solution is included.

또한, TiO2 나노졸은 하드코팅액 고형분 100 중량 대비 1.0 ~ 3.0 중량% 범위내로 포함되는 것을 특징으로 하는 하드코팅액을 제공한다.In addition, the TiO 2 nanosol provides a hard coating liquid, characterized in that contained within the range of 1.0 to 3.0% by weight relative to the weight of 100 of the hard coating liquid solids.

또한, TiO2 나노졸의 사이즈는 50~100nm 범위내인 것을 특징으로 하는 하드코팅액을 제공한다.In addition, the size of the TiO 2 nanosol provides a hard coating liquid, characterized in that in the range of 50 ~ 100nm.

또한, 상기 폴리우레탄 (메타)아크릴레이트 올리고머와 불소계 (메타)아크릴 단량체의 구성비는 60:40 ~ 50:50 범위내인 것을 특징으로 하는 하드코팅액을 제공한다.In addition, the composition ratio of the polyurethane (meth) acrylate oligomer and the fluorine-based (meth) acryl monomer provides a hard coating liquid, characterized in that in the range of 60:40 ~ 50:50.

또한, 상기 자외선 경화수지는 폴리우레탄 (메타)아크릴레이트인 것을 특징으로 하는 하드코팅액을 제공한다.In addition, the ultraviolet curable resin provides a hard coating liquid, characterized in that the polyurethane (meth) acrylate.

또한, 상기 하드코팅액을 기재에 코팅한 후 광경화시켜 제조된 하드코팅물로서, 하드코팅층의 내크랙성은 1Ø이하인 것을 특징으로 하는 하드코팅물을 제공한다.In addition, the hard coating prepared by coating the hard coating solution on the substrate and then photocured, the crack resistance of the hard coating layer provides a hard coating, characterized in that less than 1Ø.

상기와 같이 구성적 특징을 갖는 본 발명은, 가공성이 용이하며, 취급성이 양호하고 또한 내스크래치성, 방오성, 높은 표면 경도를 보이며 특히 인몰드 라미네이션 성형을 실시할 경우에도 균열이 발생하지 않는 다기능성 하드 코팅액 및 이를 사용하여 제조된 기능성 하드코팅물을 제공한다.The present invention having the above-mentioned structural features is easy to work, has good handleability, shows scratch resistance, antifouling property and high surface hardness, and especially cracking does not occur even when in-mold lamination is performed. It provides a functional hard coating solution and a functional hard coating prepared using the same.

이하에서는 도면 및 실시예를 통하여 본 발명을 보다 상세히 설명하기로 한다. 하기의 설명은 본 발명의 구체적 일례에 대한 것이므로, 비록 단정적, 한정적 표현이 있더라도 특허 청구 범위로부터 정해지는 권리범위를 제한하는 것은 아니다.  Hereinafter, the present invention will be described in more detail with reference to the drawings and embodiments. The following descriptions are for specific examples of the present invention, but are not intended to limit the scope of the rights set forth in the claims, even though they are assertive or limitative.

본 발명의 일실시예에 따른 하드코팅액은, 폴리우레탄 (메타)아크릴레이트 올리고머와 불소계 (메타)아크릴 단량체를 포함하여 공중합하여 이루어진 불소계 폴리우레탄아크릴레이트 기능성 공중합체, 자외선 경화 수지, 광개시제, 및 내마모성을 증대 시키기 위하여 TiO2 나노졸이 포함되어 이루어지는 것을 특징으로 한다.The hard coating solution according to one embodiment of the present invention is a fluorine-based polyurethane acrylate functional copolymer formed by copolymerizing a polyurethane (meth) acrylate oligomer and a fluorine-based (meth) acryl monomer, an ultraviolet curable resin, a photoinitiator, and wear resistance In order to increase the TiO 2 nanosol is characterized in that it is included.

본 발명은 경도가 우수한 폴리우레탄 아크릴레이트 올리고머와 표면에너지가 낮은 불소계 아크릴레이트 단량체를 라디칼 용액중합법을 이용하여 공중합체로 제조함으로써, 하나의 공중합체에 내구성과 방오성 및 부착성을 동시에 갖도록 하는 것이 특징이며, 이를 통해 기존의 다층구조의 다기능성 하드코팅 필름의 구조를 단층구조로 제조하여 경제성 및 각각의 기능성을 향상하는 이점을 가질 수 있게 된다. According to the present invention, a polyurethane acrylate oligomer having excellent hardness and a fluorine acrylate monomer having a low surface energy are prepared as a copolymer by using a radical solution polymerization method, so that one copolymer can have durability, antifouling property and adhesion at the same time. It is a feature, through which the structure of the multi-layered multi-functional hard coating film of the conventional multi-layer structure can be produced in a single-layer structure has the advantage of improving the economics and functionality of each.

또한, 내마모성을 더욱 증대시키면서 다른 물성을 크게 훼손시키지 않는 최적 범위내에서 TiO2 나노졸을 포함시킴으로써 다양한 어플리케이션이 가능하고, 특히 인몰드 성형용 하드코팅 필름의 제조에 특히 유용하게 된다.In addition, various applications are possible by including TiO 2 nanosols within an optimum range that further increases wear resistance and does not significantly impair other physical properties, and is particularly useful for preparing a hard coating film for in-mold molding.

[불소계 폴리우레탄아크릴레이트 기능성 공중합체] [Fluorinated polyurethane acrylate functional copolymer]

본 발명의 일실시예에 따른 불소계 폴리우레탄아크릴레이트 기능성 공중합체는 폴리우레탄 (메타)아크릴레이트 올리고머와 불소계 (메타)아크릴 단량체를 포함하여 공중합하여 이루어지는 것을 특징으로 한다. 또한 필요에 따라 라디칼 중합이 가능한 1종 이상의 단량체를 더 포함하여 공중합 될수도 있으며 제한되지 않는다. The fluorine-based polyurethane acrylate functional copolymer according to the embodiment of the present invention is characterized in that the copolymer is formed by including a polyurethane (meth) acrylate oligomer and a fluorine-based (meth) acryl monomer. In addition, if necessary, the copolymerization may further include one or more monomers capable of radical polymerization, but is not limited thereto.

상기 폴리우레탄 (메타)아크릴레이트 올리고머는 본 기술분야에서 알려진 방법으로 제조되거나 상용화된 것을 이용할 수 있다. 바람직하기로는 폴리우레탄에 (메타)아크릴레이트기를 도입하여 제조하는 것이 바람직하다. 즉, 폴리올과 디이소시아네이트 화합물을 중합시켜 이소시아네이트 말단 폴리우레탄 프리폴리머를 얻은 후에 이소시아네이트 말단 폴리우레탄 프리폴리머를 히드록시기와 (메타)아크릴기를 둘 다 분자내에 갖는 비닐 단량체와 반응시켜 (메타)아크릴레이트로 말단 캡핑(endcapping)하여 폴리우레탄 (메타)아크릴레이트 올리고머를 제조할 수 있다. The polyurethane (meth) acrylate oligomers may be prepared or commercialized by methods known in the art. It is preferable to introduce | transduce and manufacture a (meth) acrylate group in polyurethane. That is, after polymerizing a polyol and a diisocyanate compound to obtain an isocyanate terminated polyurethane prepolymer, the isocyanate terminated polyurethane prepolymer is reacted with a vinyl monomer having both a hydroxy group and a (meth) acryl group in a molecule to endcap the (meth) acrylate. endcapping) to prepare polyurethane (meth) acrylate oligomers.

여기서, 상기 디이소시아네이트로는 제한되지 않으나, 톨루엔 2,4-디이소시아네이트, 디페닐디이소시아네이트, 크실렌디이소시아네이트, 이소포론디이소시아네이트, 헥사메틸렌디이소시아네이트, 테트라메틸크실렌디이소시아네이트, 4,4-디사이클로헥실메탄디이소시아네이트, 2,2,4-트리메틸헥사메틸렌디이소시아네이트, 2,4,4-트리메틸헥사메틸렌디이소시아네이트, 디페닐메탄-4,4'-디이소시아네이트, 리신 디이소시아네이트 중에서 적어도 하나 이상 선택될 수 있다.Here, the diisocyanate is not limited, but toluene 2,4-diisocyanate, diphenyl diisocyanate, xylene diisocyanate, isophorone diisocyanate, hexamethylene diisocyanate, tetramethyl xylene diisocyanate, 4,4-dicyclo At least one selected from hexyl methane diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, diphenylmethane-4,4'-diisocyanate, lysine diisocyanate Can be.

상기 폴리올로는 제한되지 않으나 폴리프로필렌글리콜, 폴리테트라메틸렌글리콜, 폴리카보네이트, 폴리카프로락톤, 폴리에스터, 에틸렌글리콜, 프로필렌글리콜, 부탄디올, 1,6헥산디올, 글리세롤, 트리메티로프로판, 펜타에리트리톨 중에서 적어도 하나 이상 선택될 수 있다.Examples of the polyol include, but are not limited to, polypropylene glycol, polytetramethylene glycol, polycarbonate, polycaprolactone, polyester, ethylene glycol, propylene glycol, butanediol, 1,6 hexanediol, glycerol, trimethiropropane, pentaerythritol At least one may be selected from among.

히드록시기와 (메타)아크릴기를 둘 다 분자내에 갖는 비닐 단량체의 예로는 제한되지 않으나 하이드록시에틸(메타)아크릴레이트, 하이드록시메틸(메타)아크릴레이트, 하이드록시프로필(메타)아크릴레이트, ε-카프로락톤-β-히드록시에틸(메타)아크릴레이트 중에서 하나 이상 선택되어 사용될 수 있다. Examples of vinyl monomers having both a hydroxy group and a (meth) acryl group in a molecule include, but are not limited to, hydroxyethyl (meth) acrylate, hydroxymethyl (meth) acrylate, hydroxypropyl (meth) acrylate, and ε-capro One or more of lactone-β-hydroxyethyl (meth) acrylate may be selected and used.

본 발명의 일실시예에서 바람직하게 사용될 수 있는 폴리우레탄 (메타)아크릴레이트 올리고머의 분자량은 제한되지 않으나 1000~3000 범위내인 것이 바람직하다. 분자량이 1000 미만인 경우 내약품성, 내구성, 부착성등의 문제가 될수 있으며, 분자량이 3000을 초과할 경우 중합공정에서 유동성이 문제될 수 있다.The molecular weight of the polyurethane (meth) acrylate oligomer which can be preferably used in one embodiment of the present invention is not limited but is preferably in the range of 1000 ~ 3000. If the molecular weight is less than 1000 may be a problem such as chemical resistance, durability, adhesion, etc., if the molecular weight exceeds 3000 may be a problem of fluidity in the polymerization process.

상기 불소계 (메트)아크릴 단량체는 제한되지 않으나 3개 이상의 수소가 불소로 치환된 (메트)아크릴산에스테르 모노머를 사용하는 것이 바람직하며, 구체적으로는 트리플루오로에틸(메타)아크릴레이트, 테트라플루오로프로필(메타)아크릴레이트, 테트라플루오로에틸(메타)아크릴레이트, 옥타플루오로펜틸(메타)아크릴레이 트, 테트라플루오로에틸(메타)아크릴레이트, 헥사플루오로부틸(메타)아크릴레이트 등을 들 수 있다.Although the fluorine-based (meth) acryl monomer is not limited, it is preferable to use a (meth) acrylic acid ester monomer in which three or more hydrogens are substituted with fluorine, and specifically, trifluoroethyl (meth) acrylate and tetrafluoropropyl. (Meth) acrylate, tetrafluoroethyl (meth) acrylate, octafluoropentyl (meth) acrylate, tetrafluoroethyl (meth) acrylate, hexafluorobutyl (meth) acrylate, etc. are mentioned. have.

여기서, 상기 폴리우레탄 (메타)아크릴레이트 올리고머와 불소계 (메타)아크릴 단량체의 구성비는 매우 중요한 요소로 작용하는 것으로 연구되었다. 즉, 상기 폴리우레탄 (메타)아크릴레이트 올리고머와 불소계 (메타)아크릴 단량체의 구성비는 60:40~50:50 범위내인 것이 바람직하다. 상기 범위를 벗어나서 폴리우레탄 (메타)아크릴레이트 올리고머의 구성비가 과다한 경우에는 표면에너지가 급격하게 증가하여 방오성이 현저하게 떨어질수도 있으며 또한 불소기가 과다한 경우 코팅표면의 경도가 저하 되어 내구성이 문제가 된다. 상기 범위를 벗어나서 불소계 (메타)아크릴 단랑체의 구성비가 과다한 경우에는 표면에너지의 미비한 저하를 가져와 약간의 방오성 향상을 가져올수 있으나 내구성의 저하를 가져온다.Here, the composition ratio of the polyurethane (meth) acrylate oligomer and the fluorine-based (meth) acryl monomer has been studied to act as a very important factor. That is, it is preferable that the composition ratio of the said polyurethane (meth) acrylate oligomer and a fluorine-type (meth) acryl monomer is in the range of 60: 40-50: 50. If the composition ratio of the polyurethane (meth) acrylate oligomer is out of the above range, the surface energy may increase rapidly and the antifouling property may be remarkably degraded. In addition, when the fluorine group is excessive, the hardness of the coating surface is lowered and durability becomes a problem. If the composition ratio of the fluorine-based (meth) acrylic monolayer out of the above range is excessive, the surface energy may be insignificantly lowered, resulting in a slight improvement in antifouling properties, but also lowered in durability.

본 발명의 일실시예에 따른 불소계 폴리우레탄아크릴레이트 기능성 공중합체의 제조는 다음과 같이 제조될 수 있다. 질소 환류 장치가 설치된 반응기에 반응 전 20분 이상 질소를 흘려주어 질소 분위기를 조성한다. 먼저 표면에너지가 5 ∼ 10 dyne/cm 정도인 불소기를 도입하기 위하여 불소계 아크릴 단량체와 폴리우레탄 아크릴레이트 올리고머를 라디칼 용액 중합법을 이용하여 공중합 하였다. 먼저 폴리우레탄 아크릴레이트 올리고머와 불소계 아크릴레이트 단량체 그리고 유기 용매로 이루어진 용액 1을 구성한다. 상기 유기 용매로는 제한되지 않으나 N-Methyl- pyrrolidone, Dimethyl Formamide, toluene, xylene, Methyl ethyl ketone이 사용될 수 있다. Preparation of the fluorine-based polyurethane acrylate functional copolymer according to an embodiment of the present invention can be prepared as follows. Nitrogen is flowed into a reactor equipped with a nitrogen reflux device for at least 20 minutes before the reaction to form a nitrogen atmosphere. First, in order to introduce a fluorine group having a surface energy of about 5 to 10 dyne / cm, a fluorine-based acrylic monomer and a polyurethane acrylate oligomer were copolymerized using a radical solution polymerization method. First, solution 1 consisting of a polyurethane acrylate oligomer, a fluorine acrylate monomer and an organic solvent is constituted. Although not limited to the organic solvent, N-Methyl-pyrrolidone, Dimethyl Formamide, toluene, xylene, Methyl ethyl ketone may be used.

그리고 용액 2는 용매와 라디칼 개시제로 구성된다. 여기서 라디칼 개시제로는 Azobisisobutyrronitrile(AIBN) 등이 사용될 수 있다. 상기의 용액 1과 용액 2를 질소 분위기의 반응기에서 60-65도에서 12시간 이상 교반하며, 용매의 소실을 막기 위하여 반응기의 구멍을 확실하게 패킹한다. 그리고 반응이 종결된 중합물을 디에틸에테르(diethyl ether)를 이용하여 5-10 회 세척한 다음 감압하에서 용매를 건조하여 불소계 폴리우레탄아크릴레이트 기능성 공중합체를 얻는다.And solution 2 consists of a solvent and a radical initiator. As the radical initiator, Azobisisobutyrronitrile (AIBN) may be used. The solution 1 and the solution 2 are stirred in a nitrogen atmosphere reactor at 60-65 degrees for at least 12 hours, and the holes of the reactor are tightly packed to prevent the solvent from disappearing. And the reaction is terminated polymer is washed 5-10 times with diethyl ether (diethyl ether) and then the solvent is dried under reduced pressure to obtain a fluorine-based polyurethane acrylate functional copolymer.

[방오성 및 내마모성이 우수한 하드코팅액][Hard coating solution with excellent antifouling and abrasion resistance]

본 발명의 일실시예에 따른 방오성 및 내마모성이 우수하여, 특히 인몰드 라미네이션(IML)용으로 우수한 기능성 하드코팅액은 전술한 불소계 폴리우레탄아크릴레이트 기능성 공중합체와 자외선 경화 수지가 포함되어 이루어진 코팅액을 제공한다. 바람직하기로는 상기 불소계 폴리우레탄아크릴레이트 기능성 공중합체는 총 고형분 중량 100% 대비 20~80중량% 포함되는 것이 좋다. 20중량% 미만에서는 접착력과 방오성이 떨어질 수 있으며, 80중량%를 초과할 경우에는 연필경도가 낮아져 내구성이 떨어질 수 있다.Excellent antifouling and abrasion resistance according to an embodiment of the present invention, particularly a functional hard coating solution excellent for in-mold lamination (IML) provides a coating solution comprising the above-described fluorine-based polyurethane acrylate functional copolymer and UV curable resin do. Preferably, the fluorine-based polyurethane acrylate functional copolymer is preferably included 20 to 80% by weight relative to 100% by weight of total solids. If it is less than 20% by weight, adhesion and antifouling properties may fall, and when it exceeds 80% by weight, the hardness of the pencil may be lowered, which may lower durability.

상기 자외선 경화 수지는 제한되지 않으나 아크릴계 수지, 우레탄 아크릴레 이트계 수지, 실리콘 아크릴레이트계 수지 등을 하나 또는 둘 이상 조합하여 이용할 수 있다. 바람직하기로는 폴리우레탄 (메타)아크릴레이트가 좋으며, 더욱 바람직하기로는 불소계 폴리우레탄아크릴레이트 기능성 공중합체 제조에 사용된 동일한 폴리우레탄 (메타)아크릴레이트를 사용하는 것이 블렌딩 공정에서 불소계 폴리우레탄 아크릴레이트 기능성 공중합체의 분산성 및 내구성이 좋아진다. The ultraviolet curable resin is not limited, but may be used in combination of one, two or more acrylic resins, urethane acrylate resins, silicone acrylate resins and the like. Preferably polyurethane (meth) acrylate is preferred, and more preferably fluorine-based polyurethane acrylate functionalities in the blending process using the same polyurethane (meth) acrylate used to prepare the fluorine-based polyurethane acrylate functional copolymer. The dispersibility and durability of the copolymer are improved.

상기 하드코팅액에는 희석제로서 용제와 광개시제가 더 포함될 수 있으며, 필요에 따라 기능성 첨가제가 더 첨가될 수 있다. 광개시제로는 제한되지 않으나 IRGACURE 184, DAROCURE TPO 등이 사용될 수 있다. 상기 용제는 바람직하기로는 상기 불소계 폴리우레탄아크릴레이트 기능성 공중합체와 자외선 수지의 총 중량 대비 1~10배 사용하여 희석하는 것이 좋다. The hard coating solution may further include a solvent and a photoinitiator as a diluent, and a functional additive may be further added as necessary. Although not limited to a photoinitiator, IRGACURE 184, DAROCURE TPO and the like can be used. The solvent is preferably diluted by 1 to 10 times the total weight of the fluorine-based polyurethane acrylate functional copolymer and the ultraviolet resin.

상기 하드코팅액에는 내마모성을 증대하기 위하여 TiO2 나노졸이 더 포함되는 것을 특징으로 하며, 필요에 따라 SiO2 나노졸이 더 첨가 될 수 있다. 바람직하기로는 TiO2 나노졸은 제한되지 않으나 TiO2 나노졸의 사이즈가 50㎚ ~ 1㎛ 이하의 것을 사용될수 있으며 더 바람직하기로는 50-100 ㎚ 나노졸을 사용하는 것이 첨가시에 내마모도가 우수하며 헤이즈 및 투과율에도 영향을 주지 않아 바람직하다. The hard coating solution is characterized in that the TiO 2 nano sol is further included in order to increase the wear resistance, SiO 2 nano sol may be further added as necessary. Preferably, the TiO 2 nanosol is not limited, but the TiO 2 nanosol may have a size of 50 nm to 1 μm or less, and more preferably, 50-100 nm nanosol may have excellent wear resistance upon addition. It is preferable because it does not affect the haze and transmittance.

또한, TiO2 나노졸은 하드코팅액 고형분 100 중량 대비 1.0 ~ 5.0 중량% 범위내, 특히 1.0 ~ 3.0 중량% 범위내로 포함되는 것이 바람직하다. 이에 대한 임계 적 의의는 후술하는 실험예에 의해 뒷받침된다. In addition, the TiO 2 nanosol is preferably included in the range of 1.0 to 5.0% by weight, in particular within the range of 1.0 to 3.0% by weight based on 100 parts by weight of the hard coating liquid solids. Critical significance for this is supported by the experimental example described later.

도 1은 본 발명의 일실시예에 따른 기능성 코팅액 제조공정 순서도로서 이를 참고하여 기능성 코팅액을 제조할 수 있다.1 is a functional coating liquid manufacturing process flow chart according to an embodiment of the present invention can be prepared with reference to this functional coating liquid.

본 발명의 일실시예는 또한 전술한 하드 코팅액을 사용하여 기재에 코팅한 후 광경화시켜 제조된 하드 코팅물을 제공한다. 하드코팅액을 코팅하기전에 기재에 프라이머 등으로 표면처리를 하거나 기능성층을 더 형성한 후 코팅하는 것도 모두 포함된다. 상기 하드코팅물의 종류는 제한되지 않으며, 내스크래치성과 방오성이 요구되는 기재라면 모두 포함된다. 일례로는 상기 기재는 기능성 하드코팅필름, 터치패널용 기능성 보호필름이나 인몰드 라미네이션용 기능성 하드코팅 필름에 사용될 수 있다.One embodiment of the present invention also provides a hard coating prepared by coating the substrate using the above-described hard coating solution and then photocuring. Before coating the hard coating solution, the substrate may be surface treated with a primer or the like, or may be coated after further forming a functional layer. The type of the hard coating is not limited, and any material that includes scratch and antifouling properties is included. For example, the substrate may be used in a functional hard coating film, a functional protective film for a touch panel, or a functional hard coating film for in-mold lamination.

도 3은 본 발명의 일실시예에 따른 하드 코팅물의 일례로서, 인몰드성형용 기능성 하드코팅필름의 개략적 단면구조를 도시한 도이다.Figure 3 is an example of a hard coating according to an embodiment of the present invention, a schematic cross-sectional view showing a functional hard coating film for in-mold molding.

전술한 하드코팅액을 기재에 코팅한 후 광경화시켜 제조된 하드 코팅물의 경우, 하드코팅층의 내크랙성이 1Ø이하로서 매우 우수하여 인몰드 라미네이션용 기능성 하드코팅 필름으로 특히 유용하게 사용될 수 있다. In the case of the hard coating prepared by coating the above-mentioned hard coating solution on the substrate and then photocuring, the crack resistance of the hard coating layer is very excellent as 1 or less, and thus may be particularly useful as a functional hard coating film for in-mold lamination.

<실험예 1> 불소계 폴리우레탄아크릴레이트 기능성 공중합체의 제조Experimental Example 1 Preparation of Fluorine-Based Polyurethaneacrylate Functional Copolymer

1L의 4구 둥근 플라스크 반응기에 반응용액 1을 제조하였다. 먼저 용매에 폴리우레탄 아크릴레이트 올리고머와 헥사플루오르부틸아크릴레이트 (HFBA)의 비율을 <표 1>과 같이 하여 전동식 교반기를 이용하여 충분히 교반하였다.Reaction solution 1 was prepared in a 1 L four-neck round flask reactor. First, the ratio of the polyurethane acrylate oligomer and hexafluorobutyl acrylate (HFBA) to the solvent was sufficiently stirred as in <Table 1> using an electric stirrer.

다음은 반응용액 2를 제조하였다. NMP에 라디칼 개시제로서 2,2-아조비스이소부티로나이트릴을 모노머 기준 1.0-10.0 중량%를 전동식 교반기를 이용하여 충분히 교반하였다. 반응기 온도가 60-80℃가 유지되면 마이크로 펌프를 이용하여 두 반응용액을 투입하고 12~24시간 동안 반응시켰다. 반응 후 diethyl ether를 이용하여 5회 이상 세척을 하고 감압하에서 용매를 건조하였다. 도 2는 본 발명의 일실시예에 따른 불소계 폴리우레탄 아크릴레이트 기능성 공중합체의 F19-NMR 스펙트럼이다.Next, the reaction solution 2 was prepared. 2,2-azobisisobutyronitrile as a radical initiator in NMP was sufficiently stirred at 1.0-10.0% by weight based on monomers using an electric stirrer. When the reactor temperature was maintained at 60-80 ℃ two reaction solutions were added using a micro pump and reacted for 12 to 24 hours. After the reaction, the mixture was washed five times or more with diethyl ether, and the solvent was dried under reduced pressure. 2 is an F19-NMR spectrum of a fluorine-based polyurethane acrylate functional copolymer according to an embodiment of the present invention.

<표 1> 실험예 1의 조성비TABLE 1 Composition ratio of Experimental Example 1

FPUA A1FPUA A1 FPUA A2FPUA A2 FPUA A3FPUA A3 FPUA A4FPUA A4 FPUA A5FPUA A5 FPUA A6FPUA A6 FPUA A7FPUA A7 PUAPUA 100 %100% 80%80% 70 %70% 60%60% 50 %50% 40 %40% 30 %30% 불소계아크릴레이트Fluorine Acrylate 0 %0 % 20 %20% 30%30% 40 %40% 50 %50% 60 %60% 70 %70% solventsolvent NMP NMP NMPNMP NMPNMP NMPNMP NMPNMP NMPNMP NMPNMP 라디칼개시제Radical initiator AIBNAIBN AIBNAIBN AIBNAIBN AIBNAIBN AIBNAIBN AIBNAIBN AIBNAIBN

(PUA: 폴리우레탄 아크릴레이트 올리고머)(PUA: polyurethane acrylate oligomer)

<실험예 2> 불소계 폴리우레탄 아크릴레이트 기능성 공중합체가 포함된 기능성 코팅액의 제조Experimental Example 2 Preparation of Functional Coating Liquid Containing Fluorinated Polyurethane Acrylate Functional Copolymer

상기의 실험예 1에서 제조된 불소계 폴리우레탄 아크릴레이트 기능성 공중합체 중 표면에너지가 낮고 물성이 좋은 FPUA A5(FPUA A7의 경우 표면에너지는 가장 작으나 이를 사용하면 연필경도가 2H 이하로 떨어지는 문제점이 발생함)와 폴리우레탄아크릴레이트 자외선 경화수지 비율을 아래 표 2와 같이 변화시키면서 블렌딩하여 코팅액을 제조하였다  Among the fluorine-based polyurethane acrylate functional copolymers prepared in Experimental Example 1, FPUA A5 having low surface energy and good physical properties (FPUA A7 has the smallest surface energy, but when used, the pencil hardness drops to 2H or less). ) And the polyurethane acrylate UV curing resin was blended while changing the ratio as shown in Table 2 below to prepare a coating solution.

전체 농도의 10.0-40.0중량%를 상기의 자외선 경화시 코팅도막을 형성하는 불소계 폴리우레탄 아크릴레이트와 우레탄계 및 아크릴 자외선 경화수지가 차지하고 메틸에틸케톤의 전체농도의 60.0-90.0 중량%가 되도록 첨가한다. 그리고 자외선 경화형 코팅액을 제조하기 위하여 광시제인 IRGACURE 184를 블렌딩된 코팅소재를 기준 1.0-10.0 중량%를 투입하여 전동식 교반기를 이용하여 충분히 교반하여 광학필름용 기능성 코팅액을 제조하였다.   10.0 to 40.0% by weight of the total concentration is added so that 60.0-90.0% by weight of the total concentration of methyl ethyl ketone is occupied by the fluorine-based polyurethane acrylate and the urethane-based and acrylic UV-curable resins forming the coating film during UV curing. In order to prepare a UV-curable coating solution, 1.0-10.0 wt% of the coating material blended with IRGACURE 184, which is a photoinitiator, was added to the standard, and sufficiently stirred using an electric stirrer to prepare a functional coating solution for an optical film.

<표 2> 실험예 2의 조성비TABLE 2 Composition ratios of Experimental Example 2

GERI-R1GERI-R1 GERI-R2GERI-R2 GERI-R3GERI-R3 GERI-R4GERI-R4 GERI-R5GERI-R5 GERI-R6GERI-R6 기능성 Functional
공중합체Copolymer
FPUA A5
0 %
FPUA A5
0 %
FPUA A5
20 %
FPUA A5
20%
FPUA A5
40%
FPUA A5
40%
FPUA A5
60 %
FPUA A5
60%
FPUA A5
80%
FPUA A5
80%
FPUA A5
100%
FPUA A5
100%
자외선UV-rays
경화수지Hardening resin
PUA 100 %PUA 100% PUA 80 %PUA 80% PUA 60%PUA 60% PUA 40%PUA 40% PUA 20%PUA 20% PUA 0%PUA 0%
용제solvent MEK MEK MEK MEK MEKMEK MEKMEK MEKMEK MEK MEK 광개시제Photoinitiator IRGACURE 184IRGACURE 184 IRGACURE 184IRGACURE 184 IRGACURE 184IRGACURE 184 IRGACURE 184IRGACURE 184 IRGACURE 184IRGACURE 184 IRGACURE 184IRGACURE 184

<실험예 3> 불소계 폴리우레탄 아크릴레이트 기능성 공중합체가 포함된 코팅액을 이용한 기능성 하드코팅 필름의 제조Experimental Example 3 Preparation of Functional Hard Coating Film Using Coating Solution Containing Fluorinated Polyurethane Acrylate Functional Copolymer

먼저 실험예 2에서 제조된 코팅 소재를 바코터를 이용하여 도포한 후 건조 장치에서 85℃, 60초간 충분히 건조 후 자외선을 조사하여 기능성 하드코팅 필름을 제조하였다. 그 후, 연필경도, 밀착력, 표면접촉각, 투과율, 헤이즈, 내크랙성, 반사외관특성 등을 공지의 방법으로 측정하여 표 3에 나타내었다.First, the coating material prepared in Experimental Example 2 was applied using a bar coater, and then dried in a drying apparatus at 85 ° C. for 60 seconds, and then irradiated with ultraviolet rays to prepare a functional hard coating film. Thereafter, pencil hardness, adhesion, surface contact angle, transmittance, haze, crack resistance, reflection appearance characteristics, etc. were measured by a known method and shown in Table 3.

<표 3> 실험예 3에서 제조된 기능성 필름의 물성값Table 3 Properties of Functional Films Prepared in Experimental Example 3

GERI-R1GERI-R1 GERI-R2GERI-R2 GERI-R3GERI-R3 GERI-R4GERI-R4 GERI-R5GERI-R5 GERI-R6GERI-R6 광학적Optical
특성characteristic
투과율(%)Transmittance (%) 91.5291.52 91.5091.50 91.4591.45 91.3091.30 91.2091.20 90.890.8
HAZE(%)HAZE (%) 0.750.75 1.001.00 1.051.05 1.101.10 1.501.50 2.282.28 물리적physical
특성characteristic
및 외관And appearance
밀착력Adhesion BB AA AA AA AA AA
연필경도Pencil hardness 3H3H 3H3H 2H2H 2H2H HH HH steel woolsteel wool Rank 3Rank 3 Rank 3Rank 3 Rank 3Rank 3 Rank 2Rank 2 Rank 2Rank 2 Rank 1Rank 1 내크랙성Crack resistance 2Ø이하2Ø or less 2Ø이하2Ø or less 1Ø이하1Ø or less 1Ø이하1Ø or less 1Ø이하1Ø or less 1Ø이하1Ø or less 반사외관Reflection
(rainbow)(rainbow)
XX
표면 surface
접촉각Contact angle
6060 9595 100100 103103 105105 110110

<실험예 4> 내 마모성 및 방오성을 동시에 구현할수 있는 기능성 코팅액의 제조<Experimental Example 4> Preparation of a functional coating solution that can simultaneously implement wear resistance and antifouling

다음은 실험예 2에서 제조된 불소계 폴리우레탄 아크릴레이트 기능성 공중합체가 포함된 기능성 코팅액의 내마모성을 증대하기 위하여 TiO2 나노졸을 코팅액에 첨가하여 내마모성 및 방오성이 우수한 기능성 코팅액을 제조하였다. 실험예 3의 GERI-R3에 TiO2 나노졸의 함량을 증대 시키면서 표 4의 조건으로 내마모성 및 방오성을 동시에 구현할수 있는 기능성 코팅액을 제조하였다. Next, in order to increase wear resistance of the functional coating solution containing the fluorine-based polyurethane acrylate functional copolymer prepared in Experimental Example 2, TiO 2 nanosol was added to the coating solution to prepare a functional coating solution having excellent wear resistance and antifouling properties. While increasing the content of TiO 2 nanosol in GERI-R3 of Experimental Example 3 was prepared a functional coating solution that can realize abrasion resistance and antifouling at the same time conditions.

<표 4> 실험예 4의 조성비TABLE 4 Composition ratios of Experimental Example 4

GERI-T1GERI-T1 GERI-T2GERI-T2 GERI-T3GERI-T3 GERI-T4GERI-T4 GERI-T5GERI-T5 GERI-T6GERI-T6 기능성 공중합체Functional copolymer FPUA A5
40%
FPUA A5
40%
FPUA A5
40%
FPUA A5
40%
FPUA A5
40%
FPUA A5
40%
FPUA A5
40%
FPUA A5
40%
FPUA A5
40%
FPUA A5
40%
FPUA A5
40%
FPUA A5
40%
바인더bookbinder PUA 60 %PUA 60% PUA 60 %PUA 60% PUA 60 %PUA 60% PUA 60 %PUA 60% PUA 60 %PUA 60% PUA 60 %PUA 60% 용제solvent MEKMEK MEKMEK MEKMEK MEKMEK MEKMEK MEKMEK 광개시제Photoinitiator IRGACURE 184IRGACURE 184 IRGACURE 184IRGACURE 184 IRGACURE 184IRGACURE 184 IRGACURE 184IRGACURE 184 IRGACURE 184IRGACURE 184 IRGACURE 184IRGACURE 184 TiO2
나노졸
Ti O 2
Nano Sol
0 %0 % 1.0 %1.0% 2.0 %2.0% 3.0 %3.0% 4.0 %4.0% 5.0 %5.0%

<실험예 5> 내 마모성 및 방오성을 동시에 구현할 수 있는 코팅액을 이용한 기능성 하드코팅 필름의 제조<Experiment 5> Preparation of a functional hard coating film using a coating solution that can realize abrasion resistance and antifouling at the same time

먼저 실험예 4에서 제조된 코팅 소재를 바코터를 이용하여 도포한 후 건조 장치에서 85℃, 60초간 충분히 건조 후 자외선을 조사하여 기능성 하드코팅 필름을 제조하였다. 그 후, 연필경도, 밀착력, 표면접촉각, 투과율, 헤이즈, 내크랙성, 반사외관특성 등을 공지의 방법으로 측정하여 표 5에 나타내었다. 도 4는 본 발명의 일실시예 GERI-T3와 종래 광학 필름의 네임펜 TEST한 결과도이며, 도 5는 본 발명의 일실시예 GERI-T3와 기존 제품의 마모도 Test 결과도이다.First, the coating material prepared in Experimental Example 4 was applied using a bar coater, and then dried in a drying apparatus at 85 ° C. for 60 seconds, and then irradiated with ultraviolet rays to prepare a functional hard coating film. Thereafter, pencil hardness, adhesion, surface contact angle, transmittance, haze, crack resistance, reflection appearance characteristics, etc. were measured by a known method, and are shown in Table 5. 4 is a result of the name pen TEST of one embodiment GERI-T3 and the conventional optical film of the present invention, Figure 5 is a result of the wear test of one embodiment of the present invention GERI-T3 and the existing product.

<표 5> 실험예 5에서 제조된 기능성 필름의 물성값Table 5 Properties of Functional Films Prepared in Experimental Example 5

GERI-T1GERI-T1 GERI-T2GERI-T2 GERI-T3GERI-T3 GERI-T4GERI-T4 GERI-T5GERI-T5 GERI-T6GERI-T6 광학적Optical
특성characteristic
투과율(%)Transmittance (%) 91.4591.45 91.291.2 9191 89.589.5 89.089.0 88.088.0
HAZE(%)HAZE (%) 1.051.05 1.11.1 1.21.2 1.71.7 2.452.45 2.842.84 물리적physical
특성characteristic
및 외관And appearance
밀착력Adhesion AA AA AA AA BB CC
연필경도Pencil hardness 2H2H 2H2H 3H3H 3H3H 3H3H 3H3H steel woolsteel wool Rank 3Rank 3 Rank 3Rank 3 Rank 4Rank 4 Rank4Rank4 Rank 3Rank 3 Rank 2Rank 2 내크랙성Crack resistance 1Ø이하1Ø or less 1Ø이하1Ø or less 1Ø이하1Ø or less 1Ø이하1Ø or less 2Ø이하2Ø or less 2Ø이하2Ø or less 반사외관Reflection XX XX 표면 surface
접촉각Contact angle
9595 9595 9595 9595 9595 9595

[실험 예 조건][Experimental example condition]

상기 실험예의 구체화된 실험 방법은 하드코팅 조성물을 제조하여 바코터를 이용 100㎛ PET Film상에 도포후 85℃, 60초간 건조 후 자외선을 경화하여 5 ㎛ 두께의 코팅필름을 제조하여 평가하였다.The experimental method embodied in the above experimental example was evaluated by preparing a hard coating composition and applying a bar coater on 100 μm PET film, drying at 85 ° C. for 60 seconds, and curing UV light to prepare a coating film having a thickness of 5 μm.

1. 밀착력 TEST1. Adhesion Test

상온에서 하드코팅필름의 하드코트층 상에 1㎟의 크로스커트를 100개 넣고, 쓰리엠사의 테이프를 이용하여, 고무롤러를 하중 19.6 N 으로 3회 왕복시켜 압착시킨 후, 90°방향으로 박리하고, 하드코트층의 잔존한 개수에 따라 4단계 평가(A: 100, B: 80~99, C: 50~79, D:0~49)하였다. A와 B의 경우를 접착성 양호로 평가하였다.100 100 mm2 crosscuts were put on the hard coat layer of the hard coat film at room temperature, and the rubber roller was reciprocated three times under a load of 19.6 N using 3M's tape and pressed, and then peeled in a 90 ° direction. Four stages of evaluation (A: 100, B: 80-99, C: 50-79, D: 0-49) were performed according to the remaining number of hard coat layers. In the case of A and B, adhesiveness was evaluated as good.

2. 스틸울(steel wool)2. steel wool

강철울 #0000로 코팅층 표면의 하중을 변경하여 각각의 하중에 있어서 일정 하중 하에서 10회 왕복(속도10cm/s) 마찰하고, 내손상성(손상되지 않음)이 있는 최대하중을 측정하였다. Rank 2이상을 실용상 문제없는 레벨이며, 합격으로 판정함. 4 단계로 구별하여 합격 판정을 하였다.(Rank 1: 1kg/㎠, Rank 2: 2kg/㎠, Rank 3: 3kg/㎠, Rank 4: 4kg/㎠)The load on the surface of the coating layer was changed to steel wool # 0000, and each load was reciprocated ten times under a constant load (speed 10 cm / s), and the maximum load with damage resistance (not damaged) was measured. Rank 2 or above is practically no problem and is judged as pass. Passing was judged by four stages. (Rank 1: 1kg / ㎠, Rank 2: 2kg / ㎠, Rank 3: 3kg / ㎠, Rank 4: 4kg / ㎠)

3. 연필경도3. Pencil Hardness

HEIDON(신토카가쿠사 제품)을 사용해서 JIS K-5400을 따라서 측정하였다. 2H이상을 합격으로 하였다.It measured according to JIS K-5400 using HEIDON (made by Shintogagaku Co., Ltd.). 2H or more was made into the pass.

4. 투과도(transmittance) 및 헤이즈4. Transmittance and Haze

모든 시료의 투과도 및 헤이즈는 Haze meter(NDH-300A)를 사용하여 측정하였다.Permeability and haze of all samples were measured using a Haze meter (NDH-300A).

5. 레인보우 수준5. Rainbow Level

상온에서 하드코팅의 배면을 무광 블랙잉크로 처리하여 15도 각도에서 보아 관찰하였다. "○"는 레인보우 없음을 나타내고, "△"는 레인보우 약하게 있음을 나타내며 "X"는 레인보우 심하게 있음을 각각 나타낸다. The back side of the hard coat was treated with a matt black ink at room temperature and viewed from a 15 degree angle. "○" indicates no rainbow, "△" indicates that the rainbow is weak and "X" indicates that the rainbow is severe.

6. 코팅 표면 접촉각6. Coating surface contact angle

상온에서 물의 접촉액을 사용하여 광조사기(illuminator)가 부착된 KRUSS, DSA )를 이용하여 측정하였다. 이때 측정은 5개 상이한 지점에서 행했고, 평균을 기록하였다.It was measured using a KRUSS, DSA attached to an illuminator using a contact liquid of water at room temperature. The measurements were made at five different points and the averages recorded.

7. 내크랙성7. Crack resistance

원통형 맨드렐법에 의해 평가했다. Ø 수치가 작을 수록, 하드코팅층의 크랙 발생이 적고, 내크랙성이 양호한 것을 표시한다. It evaluated by the cylindrical mandrel method. The smaller the value of Ø, the less cracking of the hard coat layer and the better crack resistance.

실험예 2를 통하여 제조된 코팅액을 이용하여 실험예 3의 물성값의 결과에 따르면 불소계 폴리우레탄 아크릴레이트 공중합체와 폴리우레탄 폴리우레탄 아크릴레이트 자외선 경화수지의 비율에 따라서 물성값의 뚜렷한 변화가 조사되었다. 또한, 불소계 폴리우레탄 아크릴레이트 공중합체의 비율이 증가할수록 표면의 접촉각은 증가하여 방오성을 증대할 수 있었다. 그러나 연필경도 및 steel wool의 실험결과에서는 결과값이 좋지 않았다. 이로부터 불소가 포함된 재료를 사용할 경우 불소가 가지는 특성으로 인한 내구성 및 연필경도 등과 같은 문제가 발생 될 수 있음을 발견하여 최적치를 발명하게 되었다.  According to the results of the physical property values of Experimental Example 3 using the coating solution prepared through Experimental Example 2, a distinct change in physical properties was investigated depending on the ratio of the fluorine-based polyurethane acrylate copolymer and the polyurethane polyurethane acrylate UV curable resin. In addition, as the ratio of the fluorine-based polyurethane acrylate copolymer increased, the contact angle of the surface was increased to increase the antifouling properties. However, the results of the pencil hardness and steel wool were not good. From this, it was found that problems such as durability and pencil hardness due to the properties of fluorine may occur when using a material containing fluorine, thereby inventing an optimum value.

또한, 그 중 접촉각이 우수하면서 연필경도 및 steel wool의 결과를 만족하는 조건을 선정하여 TiO2 나노졸의 첨가에 따른 내구성 및 내마모성의 증대를 조사하기 위하여 실험 예 4와 같은 조건의 코팅액을 제조하였다. 그리고 실험예 5의 물성값의 결과인 표 5에 따르면 TiO2 나노졸의 첨가는 코팅표면의 내모마성을 증대시키는 장점이 있으나 TiO2 나노졸이 3 % 이상부터는 코팅표면에 Rainbow 가 약하게 남으로서 반사외관이 나빠지고. Haze가 증가하며 투과율 역시 저하 되며, TiO2 나노졸이 5%를 넘어서면 불량하게 되는 것을 발견하여 1~5%, 보다 바람직하기로는 1~3%라는 TiO2 나노졸 최적의 함량 임계치를 도출하였다.In addition, the coating liquid was prepared under the same conditions as Experimental Example 4 in order to investigate the increase in durability and abrasion resistance according to the addition of TiO 2 nanosol by selecting a condition that satisfies the results of the pencil hardness and steel wool among the excellent contact angle. . In addition, according to Table 5, which is a result of the physical property value of Experimental Example 5, the addition of TiO 2 nanosol has the advantage of increasing the wear resistance of the coating surface, but since the TiO 2 nanosol is more than 3%, the rainbow remains weakly on the coating surface. This is getting worse. Haze increases and transmittance decreases, and when TiO 2 nanosol exceeds 5%, it is found to be inferior, and the optimal content threshold of TiO 2 nanosol, which is 1-5%, more preferably 1-3%, is derived. .

도 1은 본 발명의 일실시예에 따른 기능성 코팅액 제조공정 순서도,1 is a functional coating liquid manufacturing process flow chart according to an embodiment of the present invention,

도 2는 본 발명의 일실시예에 따른 불소계 폴리우레탄 아크릴레이트 기능성 공중합체의 F19-NMR 스펙트럼2 is a F19-NMR spectrum of the fluorine-based polyurethane acrylate functional copolymer according to an embodiment of the present invention

도 3은 본 발명의 일실시예에 따른 IML용 기능성 하드코팅필름의 구조,3 is a structure of the functional hard coating film for IML according to one embodiment of the present invention,

도 4는 본 발명의 일실시예에 따른 기능성 필름과 종래 광학 필름의 네임펜 TEST한 결과Figure 4 is a name pen test results of the functional film and the conventional optical film according to an embodiment of the present invention

도 5는 본 발명의 일실시예에 따른 마모도 Test 결과도이다.5 is a wear test result diagram according to an embodiment of the present invention.

Claims (6)

폴리우레탄 (메타)아크릴레이트 올리고머와 불소계 (메타)아크릴 단량체를 포함하여 공중합하여 이루어진 불소계 폴리우레탄아크릴레이트 기능성 공중합체, 자외선 경화 수지, 광개시제, 및 내마모성을 증대시키기 위하여 TiO2 나노졸이 포함되어 이루어지는 하드코팅액.A fluorine-based polyurethane acrylate functional copolymer formed by copolymerizing a polyurethane (meth) acrylate oligomer and a fluorine-based (meth) acryl monomer, an ultraviolet curable resin, a photoinitiator, and TiO 2 nanosols are included to increase wear resistance. Hard coating liquid. 제1항에 있어서, TiO2 나노졸은 하드코팅액 고형분 100 중량 대비 1.0 ~ 3.0 중량% 범위내로 포함되는 것을 특징으로 하는 하드코팅액.The hard coating liquid according to claim 1, wherein the TiO 2 nanosol is included in the range of 1.0 to 3.0% by weight based on 100 weight of the hard coating liquid solids. 제1항에 있어서, TiO2 나노졸의 사이즈는 50~100nm 범위내인 것을 특징으로 하는 하드코팅액.The hard coating solution of claim 1, wherein the TiO 2 nanosol has a size in a range of 50 nm to 100 nm. 제1항에 있어서, 상기 폴리우레탄 (메타)아크릴레이트 올리고머와 불소계 (메타)아크릴 단량체의 구성비는 60:40 ~ 50:50 범위내인 것을 특징으로 하는 하드코팅액.The hard coating liquid according to claim 1, wherein the composition ratio of the polyurethane (meth) acrylate oligomer and the fluorine-based (meth) acryl monomer is in the range of 60:40 to 50:50. 제1항에 있어서, 상기 자외선 경화수지는 폴리우레탄 (메타)아크릴레이트인 것을 특징으로 하는 하드코팅액.The hard coating liquid according to claim 1, wherein the ultraviolet curable resin is polyurethane (meth) acrylate. 제1항 내지 제5항 중 어느 한 항의 하드코팅액을 기재에 코팅한 후 광경화시켜 제조된 하드코팅물로서, 하드코팅층의 내크랙성은 1Ø이하인 것을 특징으로 하는 하드코팅물.Hard coating prepared by coating the hard coating liquid of any one of claims 1 to 5 on the substrate and then photocuring, wherein the hard coating layer has a crack resistance of less than 1Ø.
KR1020090093029A 2009-09-30 2009-09-30 Multi-Functional Hard Coating Composition And Hard Coating Structure KR101117711B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090093029A KR101117711B1 (en) 2009-09-30 2009-09-30 Multi-Functional Hard Coating Composition And Hard Coating Structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090093029A KR101117711B1 (en) 2009-09-30 2009-09-30 Multi-Functional Hard Coating Composition And Hard Coating Structure

Publications (2)

Publication Number Publication Date
KR20110035356A true KR20110035356A (en) 2011-04-06
KR101117711B1 KR101117711B1 (en) 2012-02-24

Family

ID=44043718

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090093029A KR101117711B1 (en) 2009-09-30 2009-09-30 Multi-Functional Hard Coating Composition And Hard Coating Structure

Country Status (1)

Country Link
KR (1) KR101117711B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104513579A (en) * 2014-12-24 2015-04-15 常州大学 Super-hydrophobic coating and preparation method thereof
CN108822722A (en) * 2018-07-29 2018-11-16 湖南科技大学 A kind of the hydrophobic polyurethane marine anti-pollution coating material and preparation method bionical based on lotus leaf
CN113429875A (en) * 2021-08-09 2021-09-24 江苏宏泰高分子材料有限公司 Steel wool resistant paint without organotin and preparation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090080644A (en) * 2008-01-22 2009-07-27 건양대학교산학협력단 Hard Coating Solutions For Plastic Lens And Preparation Method Thereof
KR20090063182A (en) * 2009-03-20 2009-06-17 재단법인 구미전자정보기술원 Fluorinated polyurethane acrylate copolymer and hard coating composition comprising the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104513579A (en) * 2014-12-24 2015-04-15 常州大学 Super-hydrophobic coating and preparation method thereof
CN108822722A (en) * 2018-07-29 2018-11-16 湖南科技大学 A kind of the hydrophobic polyurethane marine anti-pollution coating material and preparation method bionical based on lotus leaf
CN108822722B (en) * 2018-07-29 2020-03-06 湖南科技大学 Hydrophobic polyurethane marine antifouling coating material based on lotus leaf bionics and preparation method thereof
CN113429875A (en) * 2021-08-09 2021-09-24 江苏宏泰高分子材料有限公司 Steel wool resistant paint without organotin and preparation method thereof
CN113429875B (en) * 2021-08-09 2022-08-02 江苏宏泰高分子材料有限公司 Steel wool resistant paint without organotin and preparation method thereof

Also Published As

Publication number Publication date
KR101117711B1 (en) 2012-02-24

Similar Documents

Publication Publication Date Title
KR20090063182A (en) Fluorinated polyurethane acrylate copolymer and hard coating composition comprising the same
KR101415840B1 (en) Hard coating film
CN108883614B (en) Laminated film for molded decoration
KR101241575B1 (en) Hard-coating composition and hard-coating film
CN104755539B (en) Hard coat film
EP2546057A1 (en) Vehicle member and manufacturing method therefor
TWI486408B (en) Hard coat resin composition of ultra violet ray curable type, a hard coat film using such hard coat resin composition, and a formed article of hard coat
US9512009B2 (en) Organic-inorganic silica particles, method of preparing the same, and hard coating composition containing the same
EP1736515B1 (en) Coating composition and multilayered coating film forming method and coated article using this coating composition
KR20050005785A (en) Hardcoat film, antireflection film and equipment for display
KR101793901B1 (en) Antifouling hard coating composition, Method for forming coating layer using the same and Seet having antifouling hard coating layer
CN107108934B (en) Hard coat laminated film
JP2007031690A (en) Coating composition, method for forming multilayer coating film by using the composition and coated article
EP3041908B1 (en) Uv-curable coating compositions and methods for using the same
WO2021235493A1 (en) Multilayer film, molded body, method for producing multilayer film, and method for producing molded body
KR101964094B1 (en) Matt coating composition, matt coating sheet and the manufacturing method of the same
KR101470467B1 (en) Coating composition
KR101117711B1 (en) Multi-Functional Hard Coating Composition And Hard Coating Structure
KR20170132729A (en) Active energy ray-curable resin composition, coating composition and laminate
EP2298842A1 (en) Coating composition and coating film formation method using same
KR102100028B1 (en) Uv-curable matt paint composition and coating film using the same
CN109073786B (en) Method for manufacturing optical member and optical member
JP5889179B2 (en) Manufacturing method of decorative molded products
EP3394180B1 (en) Ultraviolet absorbing hardcoat
US9546298B2 (en) Reactive fluorine-containing highly branched polymer and curable composition containing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20141229

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20151126

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20161216

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20171206

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee