KR20110033393A - Synthetic method of 100nm-scale cerium oxide from needle-like cerium carbonate - Google Patents
Synthetic method of 100nm-scale cerium oxide from needle-like cerium carbonate Download PDFInfo
- Publication number
- KR20110033393A KR20110033393A KR1020090090877A KR20090090877A KR20110033393A KR 20110033393 A KR20110033393 A KR 20110033393A KR 1020090090877 A KR1020090090877 A KR 1020090090877A KR 20090090877 A KR20090090877 A KR 20090090877A KR 20110033393 A KR20110033393 A KR 20110033393A
- Authority
- KR
- South Korea
- Prior art keywords
- cerium oxide
- cerium
- carbonate
- needle
- oxide particles
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F17/00—Compounds of rare earth metals
- C01F17/20—Compounds containing only rare earth metals as the metal element
- C01F17/206—Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F17/00—Compounds of rare earth metals
- C01F17/20—Compounds containing only rare earth metals as the metal element
- C01F17/247—Carbonates
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/10—Particle morphology extending in one dimension, e.g. needle-like
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/64—Nanometer sized, i.e. from 1-100 nanometer
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Inorganic Chemistry (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
Abstract
Description
본 발명은 평균입도 80 ~ 100nm의 산화세륨을 제조하는 방법에 관한 것이다.The present invention relates to a method for producing cerium oxide having an average particle size of 80 to 100 nm.
나노크기의 산화세륨 분말 제조를 위한 출발물질로서 탄산세륨이 널리 사용되고 있다. 종래 판상형 탄산세륨[Ce2(CO3)3·XH2O]을 소성 및 분쇄하여 얻은 산물에서 100 nm 급 크기의 산화세륨 분말을 얻기 위하여 분급을 하면 40% 이상이 이 보다 큰 입자의 산화세륨으로 구성되어 있기 때문에 나노 크기의 산화세륨 제조 효율이 떨어진다. 일반적으로 탄산세륨의 형상은 소성 후 산화세륨으로 전환된 후에도 원래의 형상을 그대로 유지하는 특성을 갖고 있기 때문에, 분쇄효과를 극대화하기 위해서는 탄산세륨의 형상을 제어할 수 있는 제조기술이 필요하다. Cerium carbonate is widely used as a starting material for preparing nano-sized cerium oxide powder. From the product obtained by calcining and pulverizing a conventional plate-like cerium carbonate [Ce 2 (CO 3 ) 3 XH 2 O], the classification is performed to obtain a cerium oxide powder having a size of 100 nm. Because it is composed of nano-sized cerium oxide manufacturing efficiency is low. In general, since the shape of cerium carbonate has a characteristic of maintaining the original shape as it is even after being converted to cerium oxide after firing, a manufacturing technique capable of controlling the shape of cerium carbonate is required to maximize the grinding effect.
상기한 바와 같이 종래의 판상형 탄산세륨[Ce2(CO3)3·XH2O]으로부터 100nm 급 크기의 산화세륨 입자를 제조 하였을 때 입자의 평균입경을 100nm 미만으로 제조하기 용이하지 않은 한계점 있다. 따라서 본 발명은 평균입도 80 ~ 100nm의 산화세륨 입자를 효과적으로 제조하는 방법을 제공하는 데 목적이 있다.As described above, when a cerium oxide particle having a size of 100 nm is prepared from a conventional plate-like cerium carbonate [Ce 2 (CO 3 ) 3 .XH 2 O], the average particle size of the particle is less than 100 nm. Accordingly, an object of the present invention is to provide a method for effectively producing cerium oxide particles having an average particle size of 80 to 100 nm.
보다 구체적으로 본 발명은 염화세륨 수용액에 중탄산암모늄을 첨가하여 탄산세륨을 제조할 때 반응 조건을 조절하여 침상형의 탄산세륨[Ce(OH)(CO3)]을 제조하고, 소성 및 분쇄공정을 거쳐 평균입도 80 ~ 100nm의 산화세륨 입자를 제조하되 제조수율을 높이는데 목적이 있다. More specifically, in the present invention, when acryl bicarbonate is added to an aqueous solution of cerium chloride to prepare cerium carbonate, reaction conditions are controlled to prepare acicular cerium carbonate [Ce (OH) (CO 3 )], and the firing and pulverization process is performed. After the preparation of cerium oxide particles having an average particle size of 80 ~ 100nm, the purpose is to increase the production yield.
본 발명은 염화세륨 수용액에 중탄산암모늄을 첨가하여 침상형 탄산세륨을 제조한 후, 소성 및 분쇄 과정을 거쳐 80 ~ 100nm의 산화세륨 입자를 제조하는 방법에 관한 것이다. 본 발명에 의한 제조방법은 종래 판상형의 탄산세륨을 소성하여 제조한 산화세륨 입자보다 평균입경이 80 ~ 100nm 되는 미세한 산화세륨 입자를 제조할 수 있으며, 제조효율이 높은 장점이 있다. The present invention relates to a method for producing cerium oxide particles of 80 to 100nm after the addition of ammonium bicarbonate to an aqueous solution of cerium chloride to produce acicular cerium carbonate, followed by firing and grinding. The production method according to the present invention can produce fine cerium oxide particles having an average particle diameter of 80 to 100 nm than the cerium oxide particles produced by calcining a conventional plate-like cerium carbonate, and has an advantage of high manufacturing efficiency.
본 발명을 하기 도 1을 참조하여 보다 구체적으로 설명하고자한다.The present invention will be described in more detail with reference to FIG. 1.
본 발명은 a) 0.4 ~ 1M 염화세륨수용액에 40 ~ 60℃에서 교반하면서, 중탄산암모늄을 첨가하여 반응 시킨 후 (110) 고액 분리하여 침상형 탄산세륨을 제조하는 단계(120);The present invention a) 0.4 ~ 1M cerium chloride aqueous solution while stirring at 40 ~ 60 ℃, the reaction by adding ammonium bicarbonate (110) solid-liquid separation to prepare a needle-like cerium carbonate (120);
b)상기 침상형 탄산세륨을 600 ~ 700℃에서 소성시켜 침상형 산화세륨을 제조하는 단계(130); 및b) calcining the acicular cerium carbonate at 600 to 700 ° C. to produce acicular cerium oxide (130); And
c)상기 침상형 산화세륨에 폴리아크릴산 및 0.5 ~ 1M 암모니아수를 투입하고 분쇄(140)하여 평균입도 80 ~ 100nm의 산화세륨 입자를 제조하는 단계;c) adding polyacrylic acid and 0.5-1M ammonia water to the acicular cerium oxide and pulverizing 140 to prepare cerium oxide particles having an average particle size of 80 to 100 nm;
를 포함하는 것을 특징으로 하는 산화세륨 입자 제조방법에 관한 것이다.It relates to a cerium oxide particle production method comprising a.
상기 a)단계에서 염화세륨수용액에 40 ~ 60℃에서 교반하면서 서서히 중탄산암모늄을 첨가하여 탄산세륨을 제조하는데 이때 염화세륨수용액을 0.4 ~ 1M의 범위로 조절하고, 서서히 투입하며, 반응 시 40 ~ 60℃에서 교반할 때 침상형 탄산세륨을 제조할 수 있으며, 상기 침상형 탄산세륨을 소성 시킬 때 본 발명이 목적하는 나노크기의 산화세륨 입자를 제조할 수 있다.In the step a), ammonium bicarbonate is gradually added to the aqueous solution of cerium chloride while stirring at 40 to 60 ° C. to prepare cerium carbonate. When stirring at ℃, it is possible to produce a needle-like cerium carbonate, and when firing the needle-like cerium carbonate can be prepared nano-sized cerium oxide particles of the present invention.
보다 구체적으로 상기 a)에서 염화세륨과 중탄산암모늄의 몰비는 1: 1 ~ 3이고, 반응온도를 상기 범위를 유지할 때, 침상형 탄산세륨을 제조할 수 있으며, 상기 범위에서 크게 벗어날 경우 부산물로 인하여 침상형 탄산세륨의 생성효율이 떨어질 수 있다. 또한 상기 a)단계에서 교반시 격렬하게 교반하는 것이 반응성이 좋으며, 침상형 탄산세륨을 효과적으로 제조할 수 있다. 보다 구체적으로는 상기 a)에서 교반속도는 700 ~ 900rpm일때 반응으로 인한 부생성물을 줄일 수 있다. 또한 중탄산암모늄은 수용액 상태로 첨가하는 것이 반응성이 좋다. 상기 중탄산암모늄 수용액을 첨가 시 농도는 0.5 ~ 0.8M의 농도로 첨가하는 것이 좋다. More specifically, the molar ratio of cerium chloride and ammonium bicarbonate in a) is 1: 1 to 3, and when the reaction temperature is maintained in the above range, acicular cerium carbonate may be produced, and if it is largely out of the range, The generation efficiency of acicular cerium carbonate may be reduced. In addition, the vigorous stirring during the stirring in step a) is good in reactivity, the needle-like cerium carbonate can be effectively produced. More specifically, in the above a), the stirring speed may reduce by-products due to the reaction when the stirring speed is 700 to 900 rpm. In addition, it is preferable that ammonium bicarbonate is added in an aqueous solution. When the ammonium bicarbonate aqueous solution is added, the concentration is preferably added at a concentration of 0.5 to 0.8M.
상기 반응 후 제조된 침상형 탄산세륨은 고액 분리하여 건조시킨 다음 c)단 계를 수행하는 것이 바람직하다.The needle-like cerium carbonate prepared after the reaction is preferably solid-liquid separated, followed by step c).
본 발명은 상기 b)단계에서 침상형 탄산세륨은 600 ~ 700℃에서 소성하는 것이 좋으며, 상기 온도범위에서 소성 하였을 때, 분쇄 과정 후 생성된 산화세륨 입자를 나노크기로 제조할 수 있다. 상기 온도 범위로 소성 하였을 때 탄산세륨에서 탄산기체와 수증기를 방출하면서 더욱 작은 입자들로 쪼개진 다공성 구조의 산화세륨을 제조할 수 있는 장점이 있다.In the present invention, the needle-like cerium carbonate may be calcined at 600 to 700 ° C. in step b), and when calcined at the temperature range, cerium oxide particles generated after the grinding process may be manufactured in nano size. When calcined in the above temperature range, there is an advantage in that a cerium oxide having a porous structure split into smaller particles may be produced while carbonate gas and water vapor are released from cerium carbonate.
본 발명은 상기 c)에서 침상형 산화세륨에 폴리아크릴산 및 0.5 ~ 1M 암모니아수를 투입하여 분쇄하는 것이 좋으며, 상기 폴리아크릴산 및 암모니아수를 투입하여 분쇄할 때 분산제의 역할을 하여 보다 미세한 산화세륨 입자를 제조할 수 있으며, 이때 함량의 범위는 침상형 산화세륨 100중량부에 대하여 상기 폴리아크릴산은 0.001 ~ 0.004중량부, 상기 0.5 ~ 1M 암모니아수는 0.01 ~ 0.04중량부를 투입하는 것을 특징으로 한다. 상기 폴리아크릴산 및 암모니아수를 투입한 후 물을 더 투입하여 분쇄할 수 있으며, 상기 물의 범위는 침상형 산화세륨 100중량부에 대하여 750 ~ 850중량부를 투입하는 것이 좋다. In the present invention, it is preferable to grind by adding polyacrylic acid and 0.5 ~ 1M ammonia water to the needle-like cerium oxide in c), and to produce finer cerium oxide particles by acting as a dispersant when the polyacrylic acid and ammonia water is pulverized. In this case, the content ranges from 0.001 to 0.004 parts by weight of the polyacrylic acid and 0.01 to 0.04 parts by weight of the ammonia water, based on 100 parts by weight of acicular cerium oxide. After the polyacrylic acid and the ammonia water is added, water may be further added and pulverized, and the range of water may be 750 to 850 parts by weight based on 100 parts by weight of acicular cerium oxide.
상기 암모니아수를 투입하여 분쇄함으로써 분쇄 후 제조된 산화세륨의 입자를 pH가 7 ~ 9로 유지할 수 있다. 이때 pH가 중성 이상 될 때 산화세륨 입자들의 제타포텐셜(zeta-potential) 값이 -30∼-40을 유지하여 분산성이 좋다. 또한 상기 pH범위를 유지하면, 반도체 웨이퍼의 CMP 슬러리로 효과적으로 사용할 수 있다. 폴리아크릴산은 분쇄산물의 응집을 방지하는 역할을 할 수 있다. By adding and grinding the ammonia water, pH of the cerium oxide particles prepared after grinding may be maintained at 7 to 9. At this time, when the pH is more than neutral, the zeta-potential value of the cerium oxide particles is maintained at -30 to -40 so that the dispersibility is good. In addition, if the pH range is maintained, it can be effectively used as a CMP slurry of a semiconductor wafer. Polyacrylic acid may serve to prevent aggregation of the pulverized product.
또한 본 발명에 의한 산화세륨입자는 반도체 CMP슬러리용인 것을 특징으로 한다.In addition, the cerium oxide particles according to the present invention are characterized in that the semiconductor CMP slurry.
본 발명에서 상기 c)에서 분쇄는 유성밀(planetary mill)로 이루어지되, 분쇄매체는 평균입경 2∼5 mm인 지르코니아 볼을 사용하며, 상기 침상형 산화세륨과 지르코니아 볼의 무게비는 1: 20 ~ 25인 것을 특징으로 하며, 상기 조건으로 분쇄 시 평균입경 80 ~ 100nm인 산화세륨 입자를 좁은 입도분포로 고효율로 얻을 수 있다. 상기 유성밀로 분쇄할 경우 400 ~ 600rpm의 회전수로 4 ~5시간 분쇄하는 것이 효과적이며, 분쇄시간은 분쇄시킬 산화세륨의 양에 따라 달라질 수 있으며, 이에 크게 제한 받지 않는다. In the present invention, the grinding in c) is made of a planetary mill, and the grinding medium uses a zirconia ball having an average particle diameter of 2 to 5 mm, and the weight ratio of the acicular cerium oxide and zirconia ball is 1: 20 to Characterized in that 25, the cerium oxide particles having an average particle diameter of 80 ~ 100nm when pulverized under the above conditions can be obtained with a narrow particle size distribution with high efficiency. When grinding with the planetary mill, it is effective to grind for 4 to 5 hours at a rotational speed of 400 to 600 rpm, and the grinding time may vary depending on the amount of cerium oxide to be crushed.
본 발명에 의한 제조방법은 종래 판상형의 탄산세륨을 소성하여 제조한 산화세륨 입자보다 평균입경이 80 ~ 100nm 되는 미세한 산화세륨 입자를 제조할 수 있으며, 제조효율이 높은 장점이 있다. The production method according to the present invention can produce fine cerium oxide particles having an average particle diameter of 80 to 100 nm than the cerium oxide particles produced by calcining a conventional plate-like cerium carbonate, and has an advantage of high manufacturing efficiency.
이하는 본 발명의 구체적인 설명을 위하여 일예를 들어 설명하는 바, 본 발명이 하기 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to the following examples. However, the present invention is not limited to the following examples.
[실시예1]Example 1
침상형 Needle-shaped 탄산세륨Cerium carbonate 제조 Produce
50℃를 유지하면서, 0.5M 농도의 200㎖ 염화세륨 수용액을 700rpm으로 강력하게 교반시키면서 0.75M의 농도를 가지는 중탄산암모늄 수용액 200㎖를 첨가하여 제조하였다. 상기 제조된 탄산세륨을 전자현미경으로 관찰하여 하기 도 2에 나타내 었다. 그리고 상기 제조된 탄산세륨을 x-선 회절분석을 하여 하기 도 3에 나타내었다. 하기 도 2 및 3을 통해서 제조된 탄산세륨은 Ce(OH)(CO3)의 구조를 갖는 침상형의 탄산세륨임을 알 수 있었다. 상기 제조된 침상형 탄산세륨은 건조시켰다.While maintaining 50 ° C, 200 ml of a 200 ml cerium chloride aqueous solution at 0.5 M concentration was prepared by adding 200 ml of an aqueous ammonium bicarbonate solution having a concentration of 0.75 M with vigorous stirring at 700 rpm. The cerium carbonate prepared above was observed with an electron microscope and shown in FIG. 2. The cerium carbonate prepared above is shown in FIG. 3 by x-ray diffraction analysis. The cerium carbonate prepared through FIGS. 2 and 3 was acicular cerium carbonate having a structure of Ce (OH) (CO 3 ). The needle-like cerium carbonate prepared above was dried.
나노크기의Nanoscale 산화세륨 입자 제조 Cerium Oxide Particles Manufacturing
상기 제조된 탄산세륨을 700℃에서 소성한 후, 유성밀(planetary mill)을 이용하여 분쇄하였다. 분쇄포트는 YSZ(yttria stabilized zirconia) 재질로 부피는 80㎖이었으며, 분쇄에 사용된 볼은 크기가 2mm었다. 분쇄포트에 탄산세륨을 700℃에서 소성한 산화세륨을 5g 장입한 후, 분쇄볼을 120g 장입하였다. 여기에 분산제로서 폴리아크릴산 0.1g, 1M암모니아수 1g그리고 물을 40g 첨가하였다. 이렇게 장입된 분쇄포트를 유성밀에 설치하여 회전수500 rpm으로 5시간 분쇄하였다. 분쇄된 산물은 회수하여 미세입도 분석기를 이용하여 제조된 산화세륨 입자의 입도를 분석하여 하기 표 1 및 도6에 나타내었다. 하기 표1 및 도6에서 볼 수 있듯이 제조된 산화세륨 입자의 평균 입도는 92nm임을 알 수 있었다.The prepared cerium carbonate was calcined at 700 ° C., and then ground using a planetary mill. The grinding port was YSZ (yttria stabilized zirconia) and had a volume of 80 ml. The ball used for grinding was 2 mm in size. 5 g of cerium oxide calcined with cerium carbonate at 700 ° C. was charged into a grinding port, followed by 120 g of a grinding ball. 0.1 g of polyacrylic acid, 1 g of 1 M ammonia water and 40 g of water were added as a dispersant. The loaded grinding port was installed in a planetary mill and ground at a rotational speed of 500 rpm for 5 hours. The pulverized product was recovered and analyzed in the particle size of the cerium oxide particles prepared by using a microparticle size analyzer, as shown in Table 1 and FIG. 6. As can be seen in Table 1 and Figure 6 it can be seen that the average particle size of the prepared cerium oxide particles is 92nm.
상기 실시예 1에서 제조된 산화세륨의 전자현미경 사진을 도 7에 나타내었다.An electron micrograph of the cerium oxide prepared in Example 1 is shown in FIG. 7.
[비교예1][Comparative Example 1]
판상형Plate 탄산세륨Cerium carbonate 제조 Produce
상기 실시예1과 동일하게 실시하되 반응온도를 상온으로 한 것에 차이를 두었고 나머지는 상기 실시예1과 동일하게 실시하였다. 제조된 탄산세륨의 전자현미 경 사진을 하기 도4에 나타내었고 x-선 회절 분석을 하여 그 결과를 하기 도5에 나타내었다. 하기 도 4 및 5를 보아 제조된 탄산세륨은 Ce2(CO3)3·H2O의 구조를 갖는 판상형 탄산세륨임을 알 수 있었다.The same procedure as in Example 1 was performed except that the reaction temperature was brought to room temperature, and the rest was performed in the same manner as in Example 1. An electron micrograph of the prepared cerium carbonate is shown in FIG. 4 and the result of the x-ray diffraction analysis is shown in FIG. 5. 4 and 5, the cerium carbonate prepared was found to be a plate-like cerium carbonate having a structure of Ce 2 (CO 3 ) 3 · H 2 O.
산화세륨 입자 제조Cerium Oxide Particles Manufacturing
상기 실시예1과 동일하게 실시하였고, 탄산세륨은 상기 제조된 판상형 탄산세륨을 사용하였다. 제조된 산화세륨입자의 입도분포를 상기 실시예1과 동일한 방법으로 분석하여 하기 도 8및 표2에 나타내었다. 하기도 8 및 표2를 통해서 제조된 산화세륨 입자의 평균입도가 165nm임을 확인하였다.The same procedure as in Example 1 was carried out, and cerium carbonate was used as the plate-like cerium carbonate prepared above. The particle size distribution of the prepared cerium oxide particles was analyzed in the same manner as in Example 1 and shown in FIG. 8 and Table 2 below. 8 and Table 2 confirmed that the average particle size of the cerium oxide particles prepared was 165 nm.
[비교예2] Comparative Example 2
상기 실시예1과 동일하게 실시하되 암모니아수를 넣지 않은 것에 차이가 있으며, 나머지는 상기 실시예1과 동일하게 실시하였다. 제조된 산화세륨입자의 입도 분포를 상기 실시예1과 동일한 방법으로 분석한 결과 평균입도가 173nm임을 확인하였다. The same procedure as in Example 1 was performed except that no ammonia water was added, and the rest was performed in the same manner as in Example 1. As a result of analyzing the particle size distribution of the prepared cerium oxide particles in the same manner as in Example 1, it was confirmed that the average particle size was 173 nm.
표1Table 1
표2Table 2
도1은 본 발명에 의한 산화세륨 입자 제조단계를 나타낸 도식도이다.Figure 1 is a schematic diagram showing the step of producing cerium oxide particles according to the present invention.
도2는 실시예1의 침상형 탄산세륨의 전자현미경 사진을 나타낸 도식도이다.FIG. 2 is a schematic diagram showing an electron micrograph of the acicular cerium carbonate of Example 1. FIG.
도3은 실시예1의 침상형 탄산세륨의 x-선 회절분석결과를 나타낸 것이다. Figure 3 shows the x-ray diffraction analysis of the acicular cerium carbonate of Example 1.
도4는 비교예1에서 제조된 판상형 탄산세륨의 전자현미경 사진을 나타낸 도식도이다.Figure 4 is a schematic diagram showing an electron micrograph of the plate-like cerium carbonate prepared in Comparative Example 1.
도5는 비교예1에서 제조된 판상형 탄산세륨의 x-선 회절 분석결과를 나타낸 도식도이다.5 is a schematic view showing the results of x-ray diffraction analysis of the plate-like cerium carbonate prepared in Comparative Example 1. FIG.
도6은 실시예1에서 제조된 산화세륨 입자의 입도 분포를 나타낸 그림이다.6 is a view showing a particle size distribution of the cerium oxide particles prepared in Example 1.
도7은 실시예1에서 제조된 산화세륨의 전자현미경 사진을 나타낸 도식도이다.7 is a schematic view showing an electron micrograph of the cerium oxide prepared in Example 1.
도8은 비교예1에서 제조된 산화세륨 입자의 입도 분포를 나타낸 그림이다.8 is a diagram showing a particle size distribution of cerium oxide particles prepared in Comparative Example 1. FIG.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020090090877A KR101101833B1 (en) | 2009-09-25 | 2009-09-25 | Synthetic method of 100nm-scale cerium oxide from needle-like cerium carbonate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020090090877A KR101101833B1 (en) | 2009-09-25 | 2009-09-25 | Synthetic method of 100nm-scale cerium oxide from needle-like cerium carbonate |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20110033393A true KR20110033393A (en) | 2011-03-31 |
KR101101833B1 KR101101833B1 (en) | 2012-01-02 |
Family
ID=43937798
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020090090877A KR101101833B1 (en) | 2009-09-25 | 2009-09-25 | Synthetic method of 100nm-scale cerium oxide from needle-like cerium carbonate |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101101833B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107522221A (en) * | 2017-09-15 | 2017-12-29 | 福州大学 | A kind of method that active porous nano ceric oxide is prepared based on inorganic template |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3855047B2 (en) | 2002-03-01 | 2006-12-06 | 独立行政法人物質・材料研究機構 | Manufacturing method of nano acicular ceria particles |
EP1756244B1 (en) * | 2005-01-26 | 2011-07-27 | LG Chem, Ltd. | Cerium oxide abrasive and slurry containing the same |
-
2009
- 2009-09-25 KR KR1020090090877A patent/KR101101833B1/en active IP Right Grant
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107522221A (en) * | 2017-09-15 | 2017-12-29 | 福州大学 | A kind of method that active porous nano ceric oxide is prepared based on inorganic template |
Also Published As
Publication number | Publication date |
---|---|
KR101101833B1 (en) | 2012-01-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4984204B2 (en) | Indium oxide powder and method for producing the same | |
JP5578784B2 (en) | Alpha-aluminum oxide-based nanocrystal sintered body, method for producing the same, and use thereof | |
EP1934142B1 (en) | Cerium carbonate powder, method for preparing the same, cerium oxide powder made therefrom, method for preparing the same, and cmp slurry comprising the same | |
CN107585768B (en) | Method for preparing superfine tungsten carbide powder by oxidation-reduction method | |
JP2002255515A (en) | Production method for metal oxide fine particle | |
KR20070013213A (en) | FINE alpha;-ALUMINA PARTICLE | |
CN101863663B (en) | Combustion method for preparing submicron grade titanium carbide polycrystal powder | |
KR102700307B1 (en) | Method for producing lithium cobalt triphosphate and method for producing lithium cobalt triphosphate carbon composite | |
CN112266244A (en) | Preparation method of high-sintering-activity zirconium oxide powder | |
CN113620328B (en) | Preparation method of nano alumina seed crystal and preparation method of high-purity alumina nanocrystalline | |
JP2007055888A (en) | FINE alpha-ALUMINA PARTICLE | |
JP2003020224A (en) | Method for manufacturing ceria powder in which individual particles are separated into nanosize | |
Muccillo et al. | Electrical conductivity of CeO 2 prepared from nanosized powders | |
KR101101833B1 (en) | Synthetic method of 100nm-scale cerium oxide from needle-like cerium carbonate | |
TWI829752B (en) | Powder for solid oxide fuel cell air electrode and manufacturing method thereof | |
JP2004269331A (en) | Easily sintering tetragonal zirconia powder and its manufacturing method | |
KR100815050B1 (en) | Method for preparing cerium oxide nano powder | |
JP5086529B2 (en) | Method for producing fine α-alumina | |
CN105439123B (en) | A kind of method for preparing carbon nano-particle | |
JP4442214B2 (en) | Method for producing fine α-alumina | |
JP3906353B2 (en) | YAG fine powder manufacturing method | |
CN113120940A (en) | Spherical cerium carbonate and synthesis method of cerium oxide | |
JP2007161560A (en) | Method for producing particulate alpha-alumina | |
JP6939741B2 (en) | Method for producing rare earth compound particles | |
KR102497275B1 (en) | Method for manufacturing high purity and very fine particle alumina using sodium remover |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
N231 | Notification of change of applicant | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20140925 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20151001 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20161004 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20170918 Year of fee payment: 7 |
|
FPAY | Annual fee payment |
Payment date: 20180927 Year of fee payment: 8 |
|
FPAY | Annual fee payment |
Payment date: 20191001 Year of fee payment: 9 |