KR20110033053A - 탄소 포획 냉각 시스템 및 방법 - Google Patents

탄소 포획 냉각 시스템 및 방법 Download PDF

Info

Publication number
KR20110033053A
KR20110033053A KR1020100091552A KR20100091552A KR20110033053A KR 20110033053 A KR20110033053 A KR 20110033053A KR 1020100091552 A KR1020100091552 A KR 1020100091552A KR 20100091552 A KR20100091552 A KR 20100091552A KR 20110033053 A KR20110033053 A KR 20110033053A
Authority
KR
South Korea
Prior art keywords
gas
carbon dioxide
cooling
carbonaceous
carbon
Prior art date
Application number
KR1020100091552A
Other languages
English (en)
Other versions
KR101693865B1 (ko
Inventor
주디쓰 파울린 오펜하임
아닌드라 마줌다르
Original Assignee
제너럴 일렉트릭 캄파니
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제너럴 일렉트릭 캄파니 filed Critical 제너럴 일렉트릭 캄파니
Publication of KR20110033053A publication Critical patent/KR20110033053A/ko
Application granted granted Critical
Publication of KR101693865B1 publication Critical patent/KR101693865B1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0223H2/CO mixtures, i.e. synthesis gas; Water gas or shifted synthesis gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/75Multi-step processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1406Multiple stage absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1462Removing mixtures of hydrogen sulfide and carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/002Removal of contaminants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/002Removal of contaminants
    • C10K1/003Removal of contaminants of acid contaminants, e.g. acid gas removal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/002Removal of contaminants
    • C10K1/003Removal of contaminants of acid contaminants, e.g. acid gas removal
    • C10K1/004Sulfur containing contaminants, e.g. hydrogen sulfide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/002Removal of contaminants
    • C10K1/003Removal of contaminants of acid contaminants, e.g. acid gas removal
    • C10K1/005Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/02Dust removal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/04Purifying combustible gases containing carbon monoxide by cooling to condense non-gaseous materials
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/02Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment
    • C10K3/04Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment reducing the carbon monoxide content, e.g. water-gas shift [WGS]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/08Separating gaseous impurities from gases or gaseous mixtures or from liquefied gases or liquefied gaseous mixtures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/112Metals or metal compounds not provided for in B01D2253/104 or B01D2253/106
    • B01D2253/1124Metal oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/12Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/102Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/304Hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40043Purging
    • B01D2259/4005Nature of purge gas
    • B01D2259/40056Gases other than recycled product or process gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0462Temperature swing adsorption
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1603Integration of gasification processes with another plant or parts within the plant with gas treatment
    • C10J2300/1612CO2-separation and sequestration, i.e. long time storage
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/164Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
    • C10J2300/1643Conversion of synthesis gas to energy
    • C10J2300/1653Conversion of synthesis gas to energy integrated in a gasification combined cycle [IGCC]
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1678Integration of gasification processes with another plant or parts within the plant with air separation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1846Partial oxidation, i.e. injection of air or oxygen only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/32Direct CO2 mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Gas Separation By Absorption (AREA)
  • Industrial Gases (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Treating Waste Gases (AREA)
  • Chimneys And Flues (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

탄소질 가스(161, 188)를 포획하고, 이 포획된 탄소질 가스(161, 188)를 냉각 목적으로 사용하기 위한 시스템 및 방법이 제공된다. 예를 들면, 시스템은 합성가스(174)로부터 탄소질 가스(161, 188)를 모으도록 구성된 탄소 포획 시스템(116)과, 냉각제 회로내에 탄소질 가스(161, 188)를 포함하는 냉각 시스템(163)을 포함할 수 있다.

Description

탄소 포획 냉각 시스템 및 방법{CARBON CAPTURE COOLING SYSTEM AND METHOD}
본 명세서에 기재된 발명은 탄소 포획 시스템(carbon capture system)에 관한 것이다.
가스화 복합 사이클(integrated gasification combined cycle; IGCC) 발전소는 석탄 또는 천연가스 등의 다양한 탄소질 공급원료(feedstock)로부터 비교적 청정하고 효율적으로 에너지를 발생할 수 있다. IGCC 기술은 탄소질 공급원료를 가스화기(gasifier)에서 산소 및 증기와 반응시킴으로써 일산화탄소(CO) 및 수소(H2)의 가스 혼합물, 즉 합성가스(syngas)로 변환할 수 있다. 이들 가스는 IGCC 발전소에서 청정화되고 화학처리되어 연료로서 이용될 수 있다. 예를 들면, 합성가스는 IGCC 발전소의 가스 터빈의 연소기내로 공급되고 점화되어 발전을 위한 가스 터빈에 동력을 공급한다.
전형적으로, 이러한 IGCC 발전소는 합성가스를 형성하는 프로세스를 위한 냉동 시스템(refrigeration system)을 필요로 한다. 불행하게도, 현재의 냉동 시스템은 환경적 및 재정적으로 고가이다.
최초 청구된 발명과 동일한 범위의 특정 실시예가 하기에 요약되어 있다. 이들 실시예는 청구된 발명의 범위를 제한하려는 것이 아니라, 도리어 이들 실시예는 본 발명의 가능한 형태의 간단한 요약을 제공하고자 하는 것이다. 실제로, 본 발명은 하기에 기재된 실시예와 유사하거나 또는 상이할 수 있는 다양한 형태를 포함할 수 있다.
제 1 실시예에 있어서, 시스템은 합성가스로부터 탄소질 가스를 모으도록 구성된 탄소 포획 시스템을 포함한다. 또한, 상기 시스템은 냉각제 회로내에 탄소질 가스를 구비하는 냉각 시스템을 포함한다.
제 2 실시예에 있어서, 시스템은 가스로부터 이산화탄소(CO2)를 제거하도록 구성된 가스 정화기(gas purifier)와, 가스 정화기로부터 CO2를 수용하도록 구성된 탄소 포획 시스템과, CO2의 적어도 일부를 팽창시켜 적어도 하나의 구성요소를 냉각시키도록 구성된 CO2 팽창기를 포함한다.
제 3 실시예에 있어서, 시스템은 용매(solvent)를 구비하고 가스화기로부터 가스를 처리하도록 구성되며 황(sulfur) 및 이산화탄소(CO2)를 제거하도록 구성된 산 가스 처리(acid gas removal; AGR) 시스템과, CO2의 적어도 일부를 팽창시켜 용매를 냉각시키도록 구성된 CO2 팽창기를 포함한다.
본 발명의 상기 특징, 태양 및 장점과 다른 특징, 태양 및 장점은, 도면 전체에 걸쳐서 유사 도면부호가 유사 부분을 나타내는 첨부 도면을 참조하여 하기의 상세한 설명을 보면 보다 잘 이해될 것이다.
도 1은 포획된 탄소질 가스(예를 들면, 이산화탄소)의 팽창에 근거한 독창적인 냉각 시스템을 포함하는 가스화 복합 사이클(IGCC) 발전소의 실시예를 도시하는 블록도,
도 2는 포획된 탄소질 가스의 팽창에 근거한 독창적인 냉각 시스템을 포함하는, 도 1에 도시된 바와 같은 가스화 시스템의 실시예를 도시하는 블록도,
도 3은 포획된 탄소질 가스의 팽창에 근거한 독창적인 냉각 시스템을 포함하는, 도 1에 도시된 바와 같은 가스 청정 및 탄소 포획 시스템의 실시예를 도시하는 블록도,
도 4는 포획된 탄소질 가스의 팽창에 근거한 독창적인 냉각 시스템을 포함하고, 가스 청정 및 탄소 포획 시스템의 구비하는 연소 베이스 시스템(예를 들면, 보일러)의 실시예를 도시하는 블록도,
도 5는 포획된 탄소질 가스의 팽창에 근거한 독창적인 냉각 시스템을 포함하는 탄소 포획 냉각 시스템의 실시예를 도시하는 블록도.
본 발명의 하나 이상의 특정 실시예가 하기에서 설명된다. 이들 실시예의 간결한 설명을 제공하기 위해, 본 명세서에서는 실제로 실행하는 모든 특징이 설명되지 않을 수 있다. 엔지니어링 또는 디자인 프로젝트에서와 같이 실제 실행을 위한 개발에 있어서, 다양한 실행-특정 결정이 시스템 관련 제약 및 사업성 관련 제약에 대한 순응과 같은 개발자의 특정 목적을 달성하기 위해 이루어질 수 있으며, 이러한 특정 목적에 따라 하나의 실행으로부터 다른 것으로 변할 수도 있다는 것은 이해되어야 한다. 또한, 이러한 개발 노력은 복잡하고 시간 소모적일 수 있지만, 그럼에도 불구하고 본 명세서의 이점을 갖는 통상의 기술을 가진 자에게 디자인, 조립 및 제조의 일상적인 업무이다는 것이 이해되어야 한다.
본 발명의 다양한 실시예의 요소를 기재할 때, 용어 "하나(a, an)" 및 "상기(the, said)"는 하나 이상의 요소가 있다는 것을 의미하고자 한다. 용어 "포함하다", "구비하다" 및 "갖다"는 포괄적인 용어로서, 열거된 요소 이외에 추가적인 요소가 있을 수 있다는 것을 의미하고자 한다.
후술하는 바와 같이, 본 명세서에 기재된 실시예는 약 80체적% 내지 100체적%인 이산화탄소(CO2)와 같은 포획된 탄소질 가스의 팽창에 근거한 독창적인 냉각 시스템을 포함한다. 특정 실시예에 있어서, CO2는 적어도 약 80체적%, 85체적%, 90체적%, 95체적% 또는 100체적%일 수도 있다. 하기의 설명에 있어서, CO2에 대한 모든 기재내용은 100% 순도에 제한되지 않고 상기와 같이 임의의 순도라는 것이 이해되어야 한다. 본 명세서에 기재된 실시예는 탄소를 함유하는 고체, 액체 또는 가스 물질로부터 탄소질 가스(예를 들면, CO2)를 분리하도록 구성된 탄소 포획 시스템을 포함할 수 있다. 예를 들면, 탄소 포획 시스템은 가스화 시스템, 연소-베이스 시스템(combustion based system)(예를 들면, 보일러) 등의 다양한 어플리케이션으로부터, 또는 일반적으로 가스화 복합 사이클(IGCC) 발전소의 구성요소로부터 물질을 수용할 수 있다. 탄소질 가스의 포획시에, 본 명세서에 기재된 실시예는 포획된 탄소질 가스를 팽창시켜 하나 이상의 구성요소를 냉각시켜, 예를 들어 IGCC 발전소에서의 효율을 증대시킨다.
독창적인 냉각 시스템은 포획된 탄소질 가스(예를 들면, CO2)를 팽창시켜 포획된 탄소질 가스의 온도를 하강시키고, 냉각을 필요로 하는 구성요소의 하나 이상의 냉각 회로(예를 들면, 라인)를 통해 순화시키도록 구성된 팽창기(예를 들면, 단열 가스 팽창기)를 포함할 수 있다. 알 수 있는 바와 같이, 단열 팽창은 외기와의 열 유동 없이 체적이 증가하는 것이다. 따라서, 단열 팽창기는 일반적으로 열 전달이 이루어지지 않는 단열 경계(adiabatic boundary), 또는 단열 경계와 유사하도록 열 전달을 실질적으로 차단하는 단열 벽을 포함한다. 단열 벽의 내측에서는, 단열 팽창기는 포획된 탄소질 가스의 유동 방향으로 체적을 증가시켜서, 포획된 탄소질 가스의 압력 및 온도를 강하시킨다. 이상적으로는 단열 팽창기는 주위로 어떠한 열도 전달하지 않지만, 절연체가 완전한 단열을 제공하지 못하므로, 단열 팽창기는 주위로 일부 양의 열을 전달할 수 있다는 것이 이해되어야 한다. 즉, 팽창기는 완전하게 단열되지 않을 수 있다. 하기의 설명에 있어서, 팽창기에 대한 모든 기재내용은 단열 팽창기 또는 유사 단열 팽창기(near adiabatic expander)를 포함할 수 있는 단열된 팽창기 또는 단열되지 않는 팽창기를 포함하는 것으로 이해되어야 한다. 유사 단열 팽창기는 외기로부터 적어도 90% 내지 100% 단열될 수 있다. 따라서, 알 수 있는 바와 같이, 팽창기는 가스의 체적 증가(및 그에 따른 압력 강하)를 통해 포획된 탄소질 가스(예를 들면, CO2)의 온도를 하강시키도록 구성된 다양한 실시예를 포함할 수 있다.
후술하는 특정 실시예에 있어서, 팽창된 이산화탄소는 산 가스 제거(AGR) 시스템에 사용된 용매, 황 제거 시스템에 사용된 용매, 질소 제거 시스템에 사용된 용매, 수성 가스 전환 반응기(water gas shift reactor)에 사용된 용매, 증류탑 오버헤드 스트림(distillation column overhead stream), 가스 정화기, 압축기, 터빈 엔진, 또는 이들의 임의의 조합체와 같은 다양한 IGCC 구성요소를 냉각하는데 사용될 수 있다. 특정 실시예에 있어서, 팽창된 이산화탄소는 IGCC 시스템의 구성요소를 냉각하는데 사용되는 제 1 냉각제일 수 있다. 다른 실시예에 있어서, 이산화탄소는 메인 냉각 시스템의 고장의 경우에 냉각을 제공할 수 있는 보조 또는 예비 냉각제로서 이용될 수 있다. 용매-기반 시스템(에 있어서, 냉각을 위해 팽창된 이산화탄소 부산물을 이용함으로써, 시스템 구성요소의 크기를 감소시킬 수 있는데, 이는 냉각된 이산화탄소의 낮은 온도가 소망의 체류 시간(residence time)을 달성하는데 필요한 용매 순환 속도를 감소시키기 때문이다. 또한, 냉각을 위해 포획된 이산화탄소를 이용함으로써, 냉각 사이클에 사용되는 응축기 및 증발기와 같은 전형적인 냉각 구성요소에 대한 필요성을 없앨 수 있다. 따라서, 전형적인 냉각 사이클과 비교하여, 독창적인 냉각 시스템은, 기존의 탄소질 가스 소스를 이용함으로써, 비교적 단순하고, 작은 공간을 소비하고, IGCC의 전체 효율을 증가시킨다.
이제 도면을 참조하면, 도 1은 합성가스를 생성하여 연소시킬 수 있는 가스화 복합 사이클(IGCC) 시스템(100)의 실시예의 다이어그램이다. 하기에서 상세하게 설명되는 바와 같이, 하나 이상의 IGCC 구성요소는 포획된 탄소질 가스의 팽창에 근거한 독창적인 냉각 시스템에 의해 냉각될 수 있다. IGCC 시스템(100)의 요소는 IGCC 시스템을 위한 에너지원으로서 이용될 수 있는 고체 연료와 같은 연료 소스(102)를 포함할 수 있다. 연료 소스(102)는 석탄, 석유 코크스(petroleum coke), 바이오매스(biomass), 목재, 농업 폐기물, 타르, 코크스로 가스(coke oven gas) 및 아스팔트, 또는 다른 탄소 함유품을 포함할 수 있다.
연료 소스(102)의 고체 연료는 공급원료 준비 유닛(104)으로 이송될 수 있다. 공급원료 준비 유닛(104)은 예를 들어 연료 소스(102)를 초핑(chopping), 밀링, 파쇄, 분쇄, 단광(briquetting) 또는 팰릿화(palletizing)함으로써 연료 소스(102)의 크기 또는 형상을 재설정하여 공급원료를 생성할 수 있다. 또한, 물 또는 다른 적합한 액체가 공급원료 준비 유닛(104)내의 원료 소스(102)에 첨가되어 슬러리 공급원료를 생성할 수 있다. 다른 실시예에 있어서, 액체가 원료 소스에 전혀 첨가되지 않고, 그에 따라 드라이 공급 원료를 제조할 수도 있다.
공급원료는 공급원료 준비 유닛(104)으로부터 가스화기(106)로 이송될 수 있다. 가스화기(106)는 공급원료를 합성가스, 예를 들어 일산화탄소 및 수소의 조합물로 변환할 수 있다. 이러한 변환은, 이용되는 가스화기(106)의 타입에 따라서, 상승된 압력, 예를 들어 약 20bar 내지 85bar, 및 상승된 온도, 예를 들어 약 700℃ 내지 1600℃에서 공급원료에 제어된 양의 증기 및 산소를 가함으로써 실행될 수 있다. 가스화 프로세스는 공급원료를 가열하는 열분해 프로세스를 포함할 수 있다. 가스화기(106)의 내부 온도는 공급원료를 생성하는데 이용되는 연료 소스(102)에 따라서 열분해 프로세스 동안에 약 150℃ 내지 700℃의 범위에 있을 수 있다. 열분해 프로세스 동안에 공급원료의 가열에 의해, 고형물[예를 들면, 차콜(char)] 및 잔류 가스(예를 들면, 일산화탄소, 수소 및 질소)가 생성될 수 있다. 열분해 프로세스에서의 공급원료로부터 잔류하는 차콜은 단지 최초 공급원료의 중량의 약 30%까지 무게가 나갈 수 있다.
다음에, 연소 프로세스는 가스화기(106)에서 일어날 수 있다. 연소는 차콜 및 잔류 가스에 산소를 도입하는 것을 포함할 수 있다. 차콜 및 잔류 가스는 산소와 반응하여 이산화탄소 및 일산화탄소를 형성하고, 이후의 가스화 반응을 위한 열을 제공한다. 연소 프로세스 동안의 온도는 약 700℃ 내지 1600℃의 범위에 있을 수 있다. 다음에, 가스화 단계 동안에 증기가 가스화기(106)내로 도입될 수 있다. 차콜은 이산화탄소 및 증기와 반응하여 약 800℃ 내지 1100℃의 범위의 온도에서 일산화탄소 및 수소를 생성한다. 본질적으로, 가스화기는 증기 및 산소를 이용하여 공급원료의 일부를 "연소"시켜서 일산화탄소 및 해제 에너지를 생성하고, 다른 공급원료를 수소 및 추가적인 이산화탄소로 변환하는 제 2 반응을 진행한다.
이러한 방식으로, 합성 가스가 가스화기(106)에 의해 제조된다. 이러한 합성 가스는 약 85%의 일산화탄소 및 수소를 동등 비율로 포함할 수 있을 뿐만 아니라, CH4, HCl, HF, COS, NH3, HCN 및 H2S(공급원료의 황 함유물에 기초함)를 포함할 수도 있다. 이러한 합성 가스는 예를 들어 H2S를 함유하고 있으므로 오염 합성가스로 불려질 수 있다. 가스화기(106)는 습식 애쉬 물질(wet ash material)일 수 있는 슬래그(108)와 같은 폐기물을 발생할 수도 있다. 이러한 슬래그(108)는 가스화기(106)로부터 제거될 수 있고, 도로 포장 재료 또는 다른 건축 재료로서 처분된다. 오염 합성가스를 정화하기 위해, 가스 정화기(110)가 이용될 수 있다. 일 실시예에 있어서, 가스 정화기(110)는 수성 가스 전환 반응기일 수 있다. 가스 정화기(110)는 오염 합성가스를 정화하여 오염 합성가스로부터 HCl, HF, COS, HCN 및 H2S를 제거할 수 있으며, 예를 들어 황 프로세서(112)에서의 산 가스 제거 프로세스에 의해 황 프로세서(112)에서의 황(111)의 분리를 포함할 수 있다. 또한, 가스 정화기(110)는 정수 기술을 이용하여 오염 합성가스로부터 사용가능한 염(113)을 생성할 수 있는 수처리 유닛(114)을 통해 오염 합성가스로부터 염(113)을 분리할 수 있다. 계속해서, 가스 정화기(110)로부터의 가스는 소량의 다른 화학물질, 예를 들어 NH3(암모니아) 및 CH4(메탄)와 함께 청정 합성가스[예를 들며, 황(111)이 합성가스로부터 제거됨]를 포함할 수 있다.
일부 실시예에 있어서, 가스 프로세서는 청정 합성가스로부터 암모니아 및 메탄과 같은 추가적인 잔류 가스 성분뿐만 아니라, 메탄올 또는 임의의 잔류 화학물질을 제거하는데 이용될 수 있다. 그러나, 청정 합성가스가 잔류 가스 성분, 예를 들어 테일 가스(tail gas)를 함유하는 경우에도 연료로서 이용될 수 있으므로, 청정 합성가스로부터의 잔류 가스 성분의 제거는 선택사항이다. 이러한 점에서, 청정 합성가스는 약 3% CO, 약 55% H2 및 약 40% CO2를 포함할 수 있으며, H2S가 실질적으로 제거된다.
일부 실시예에 있어서, 탄소 포획 시스템(116)은 합성가스에 함유된 탄소질 가스(예를 들면, 약 80체적% 내지 100체적%인 이산화탄소)를 제거 및 처리할 수 있다. 탄소 포획 시스템(116)은 압축기, 정화기, 격리 또는 향상된 오일 회수를 위해 CO2를 공급하는 파이프라인, CO2 저장 탱크, 또는 이들의 임의의 조합을 포함할 수도 있다. 다음에, 포획된 이산화탄소는 이산화탄소의 체적을 팽창시켜서 압력을 적절한 팩터로 감소시키는 이산화탄소 팽창기(117)로 이송된다. 예를 들면, 이산화탄소 팽창기(117)는 약 2 내지 4의 팩터, 예를 들어 약 2의 팩터로 체적을 증가시키고 압력을 강하시킬 수 있다. 이산화탄소 팽창기(117)는 포획된 탄소질 가스(예를 들어, 적어도 80체적% 순도의 CO2)의 체적을 증가시키고, 압력을 강하시키고, 온도를 상승시키도록 구성된 임의의 적합한 팽창 메커니즘일 수 있다. 일부 실시예에 있어서, 이산화탄소 팽창기(117)는 단열된 팽창기(예를 들면, 단열 팽창기 또는 유사 단열 팽창기), 단열되지 않는 팽창기, 스로틀 밸브 등일 수 있다. 예를 들면, 이산화탄소 팽창기(117)는 단열된 폐쇄체내에서 탄소질 가스의 체적을 팽창시켜서 탄소질 가스의 온도를 하강시키는 임의의 장치일 수 있다. 이산화탄소가 이산화탄소 팽창기(117)로 들어갈 때 고압(예를 들면, 약 2000psi 내지 3000psi, 또는 약 2500psi)이므로, 체적 팽창은 이산화탄소의 온도를 하강시키고(예를 들면, 약 5℃ 내지 100℃, 또는 약 20℃ 내지 30℃), 그에 따라 이산화탄소를 시스템용의 임의의 적합한 냉각제로서 사용할 수 있게 된다. 따라서, 냉각된 이산화탄소(예를 들면, 약 20℃ 내지 40℃, 또는 약 30℃)는 냉각에 대한 요구를 만족하도록 시스템을 통해 순환되거나, 훨씬 낮은 온도를 위해 다름 단계에서 팽창될 수도 있다. 다음에, 황 함유 성분이 제거된 청정 합성가스 및 상당 부분의 이산화탄소는 연소가능한 연료로서 가스 터빈 엔진(118)의 연소기(120), 예를 들어 연소실로 이송될 수 있다.
IGCC 시스템(100)은 공기 분리 유닛(air separation unit: ASU)을 더 포함할 수 있다. ASU(122)는 예를 들어 증류 기술에 의해 공기를 성분 가스로 분리하도록 작동할 수 있다. ASU(122)는 보조 공기 압축기(123)로부터 공급된 공기로부터 산소를 분리할 수 있으며, ASU(122)는 분리된 산소를 가스화기(106)로 이송할 수 있다. 또한, ASU(122)는 분리된 질소를 희석용 질소(DGAN) 압축기(124)로 이송할 수 있다.
DGAN 압축기(124)는 ASU(122)로부터 수용된 질소를 적어도 연소기(120)에서의 압력과 동일한 압력 레벨까지 압축하여, 합성가스의 적절한 연소를 방해하지 않도록 한다. 따라서, DGAN 압축기(124)가 질소를 적절한 레벨까지 적절하게 압축하면, DGAN 압축기(124)는 압축된 질소를 가스 터빈 엔진(118)의 연소기(120)로 이송할 수 있다. 질소는 예를 들어 배출물질(emission)을 용이하게 제어하도록 희석제로서 이용될 수 있다.
전술한 바와 같이, 압축된 질소는 DGAN 압축기(124)로부터 가스 터빈 엔진(118)의 연소기(120)로 이송될 수 있다. 가스 터빈 엔진(118)은 터빈(130), 구동 샤프트(131) 및 압축기(132)뿐만 아니라, 연소기(120)를 포함할 수 있다. 연소기(120)는 연료 노즐로부터 소정 압력하에서 분사될 수 있는 합성가스와 같은 연료를 수용할 수 있다. 이러한 연료는 DGAN 압축기(124)로부터의 압축된 질소뿐만 아니라 압축된 공기와 혼합되어 연소기(120)내에서 연소될 수 있다. 이러한 연소는 고온의 가압된 배기 가스를 생성할 수 있다.
연소기(120)는 배기 가스를 터빈(130)의 배기 출구를 향해서 지향시킬 수 있다. 연소기(120)로부터의 배기 가스가 터빈(130)을 통과할 때, 배기 가스는 터빈(130)의 터빈 블레이드를 강제하여 가스 터빈 엔진(118)의 축을 따라 구동 샤프트(131)를 회전시킨다. 도시된 바와 같이, 구동 샤프트(131)는 압축기(132)를 포함하는 가스 터빈 엔진(118)의 다양한 구성요소에 연결된다.
구동 샤프트(131)는 터빈(130)을 압축기(132)에 연결하여 로터를 형성할 수 있다. 압축기(132)는 구동 샤프트(131)에 결합된 블레이드를 포함할 수 있다. 따라서, 터빈(130)의 터빈 블레이드가 회전함으로써, 터빈(130)을 압축기(132)에 연결하는 구동 샤프트(131)가 압축기(132)내의 블레이드를 회전시킬 수 있다. 이와 같이 압축기(132)내의 블레이드가 회전함으로써, 압축기(132)가 공기 흡입구를 통해 압축기(132)내로 수용된 공기를 압축한다. 다음에, 압축된 공기는 연소기(120)에 공급되고 연료 및 압축된 질소와 혼합되어 고효율의 연소를 가능하게 한다. 또한, 구동 샤프트(131)는 부하(134)에 연결될 수 있으며, 이러한 부하는 예를 들어 발전소에서 전력을 생산하기 위한 발전기와 같은 고정 부하(stationary load)일 수 있다. 실제로, 부하(134)는 가스 터빈 엔진(118)의 회전 출력에 의해 동력을 받는 임의의 적합한 장치일 수 있다.
또한, IGCC 시스템(100)은 증기 터빈 엔진(136) 및 열회수 증기 발생(heat, recovery steam generation; HRSG) 시스템(138)을 포함할 수 있다. 증기 터빈 엔진(136)은 제 2 부하(140)를 구동할 수 있다. 제 2 부하(140)도 전력을 생산하는 발전기일 수 있다. 그러나, 제 1 및 제 2 부하(134, 140)는 가스 터빈 엔진(118) 및 증기 터빈 엔진(136)에 의해 구동될 수 있는 다른 타입의 부하일 수도 있다. 또한, 가스 터빈 엔진(118) 및 증기 터빈 엔진(136)이 도시된 실시예에서와 같이 별도의 부하(134, 140)를 구동할 수 있지만, 가스 터빈 엔진(118) 및 증기 터빈 엔진(136)은 단일 샤프트를 통해 단일 부하를 구동하도록 직렬로 이용될 수도 있다. 가스 터빈 엔진(118)뿐만 아니라, 증기 터빈 엔진(136)의 특정 구성은 특정 실시예일 수 있고, 섹션의 임의의 조합을 포함할 수 있다.
또한, IGCC 시스템(100)은 HRSG 시스템(138)을 포함할 수도 있다. 가스 터빈 엔진(118)으로부터 가열된 배기 가스는 HRSG 시스템(138)내로 이송되어서 물을 가열하여 증기 터빈 엔진(136)을 구동하는데 이용되는 증기를 생성하는데 사용될 수 있다. 증기 터빈 엔진(136)의 예를 들어 저압 섹션으로부터의 배기는 응축기(142)내로 지향될 수 있다. 응축기(142)는 냉각 타워(128)를 이용하여 가열된 물을 냉각된 물로 변화시킬 수 있다. 냉각 타워(128)는 증기 터빈 엔진(136)으로부터 응축기(142)로 이송된 증기를 응축하는 것을 돕도록 응축기(142)에 냉각수를 제공하는 역할을 한다. 이번에는, 응축기(142)로부터의 응축물이 HRSG 시스템(138)내로 지향될 수 있다. 다시, 가스 터빈 엔진(118)으로부터의 배기가 HRSG 시스템(138)내로 지향되어 응축기(142)로부터 물을 가열하고 증기를 생성할 수 있다.
IGCC 시스템(100)과 같은 복합 사이클 시스템에 있어서, 고온 배기는 가스 터빈 엔진(118)으로부터 유동하여 HRSG 시스템(138)으로 이송될 수 있고, 여기서 고압, 고온 증기를 생성하는데 사용될 수 있다. 다음에, HRSG 시스템(138)에 의해 생성된 증기는 발전을 위해 증기 터빈 엔진(136)을 통과할 수 있다. 또한, 생성된 증기는 증기가 사용될 수 있는 임의의 다른 프로세스, 예를 들어 가스화기(106)에 공급될 수도 있다. 가스 터빈 엔진(118)의 발전 사이클은 종종 "토핑 사이클(topping cycle)"로서 지칭되는 한편, 증기 터빈 엔진(136)의 발전 사이클은 "바터밍 사이클(bottoming cycle)"로서 지칭된다. 도 1에 도시된 바와 같이 이들 2개의 사이클을 결합함으로써, IGCC 시스템(100)은 양 사이클에서 보다 높은 효율을 얻을 수 있다. 특히, 토핑 사이클로부터의 배기열은 포획되어 바터밍 사이클에 이용하는 증기를 생성하는데 이용될 수 있다.
도 2는 포획된 탄소질 가스의 팽창에 근거한 독창적인 냉각 시스템을 포함하는, 도 1에 도시된 바와 같은 가스화 시스템 또는 프로세스(150)의 실시예의 블록도이다. 가스화 프로세스(150)는 공기 분리 유닛(152), 탄소질 원료 준비 유닛(154), 가스화기(106), 입자 제거, 냉각 및 전환 시스템(156), 산 가스 제거(AGR) 시스템(158), 이산화탄소 압축 및 정화 시스템(164) 및 독창적인 냉각 시스템 또는 회로(163)를 포함한다. 추가적으로 후술하는 바와 같이, 냉각 시스템 또는 회로(163)는 이산화탄소 팽창기(117)를 포함하며, 또한 압축/정화 시스템(164)(예를 들면, 압축기) 및/또는 압축된 탄소질 가스(예를 들면, C02)의 공급원으로서 파이프라인(166)을 포함할 수도 있다. 작동 동안에, 팽창기(117)는 탄소질 가스의 체적 팽창 및 압력 강하를 야기하여, 탄소질 가스를 상당히 냉각시켜서 AGR 시스템(158)에서의 냉각제로서 사용한다. 따라서, 냉각 시스템(163)은 하나 이상의 라인, 루프 및/또는 열교환기를 통해 냉각제로서 탄소질 가스를 순환시키고, 그에 따라 가스화 시스템(150)내의 장비를 냉각시킨다.
도시된 바와 같이, 가스화기(106)는 유닛(152, 154)으로부터 공기 및 탄소질 원료를 공급받는다. 예를 들면, 탄소질 원료 준비 유닛(154)은 탄소질 원료(예를 들면, 석탄, 석유, 바이오매스, 바이오연료)를 분쇄하여 액체(예를 들면, 물) 또는 가스와 혼합하고, 준비된 원료를 가스화기(106)로 이송할 수 있다. 일부 실시예에 있어서, 탄소질 원료 준비 유닛(154)은 준비된 원료를 계량하여 가스화기로 가압하는 포시메트릭 펌프(posimetric pump)를 포함할 수 있다. 가스화 프로세스(150)의 ASU(152)는 공기를 성분 가스로 분리하도록 작동할 수 있다. 예를 들면, 극저온 냉각일 수 있거나 압력 스윙 흡착(pressure swing adsorption; PSA)을 이용할 수 있는 증류 기술은 ASU(152)에 의해 이용될 수 있다. ASU(152)는, 전술한 바와 같이, 공급된 공기로부터 산소를 분리할 수 있으며, 분리된 산소를 가스화기(106)로 이송할 수 있다. 또한, ASU(152)는 발전에 있어서의 하류에서 사용 또는 저장을 위해 질소 등의 가스를 분리할 수 있다. 그리고, 가스화기(106)는 탄소질 원료를 오염 합성가스(예를 들면, 황을 함유한 합성가스)로 변환한다.
가스화기(106)는 유닛(152, 154)으로부터의 산소 및 원료를 이용하여 연소 프로세스를 통해 합성가스를 생성한다. 예를 들면, 가스화기(106)는 차콜 및 잔류 가스를 산소와 반응시켜서 이산화탄소 및 일산화탄소를 형성하도록 구성될 수 있다. 연소 프로세스 동안의 온도는 약 700℃ 내지 약 1600℃의 범위에 있을 수 있다. 일부 실시예에 있어서, 가스화기(106)는 증기를 도입할 수 있으며, 그에 따라 차콜, 이산화탄소 및 증기 사이에 반응이 일어나서, 약 800℃ 내지 약 1100℃의 범위의 온도에서 일산화탄소 및 수소가 생성된다. 본질적으로, 가스화기(106)는 증기 및 산소를 이용하여 탄소질 원료 준비 유닛(154)으로부터의 탄소질 원료의 일부를 연소시켜서 이산화탄소 및 에너지를 생성하고, 그에 따라 다른 탄소질 원료를 수소 및 추가적인 일산화탄소로 변환하는 메인 반응을 진행한다. 이러한 방식으로, 합성의 오염 합성가스가 가스화기(106)에 의해 제조된다. 이러한 비정화(raw) 합성가스는 약 85%의 일산화탄소 및 수소를 포함할 수 있을 뿐만 아니라, CH4, HCl, HF, NH3, HCN, COS 및 H2S(탄소질 원료의 황 함유물에 기초함)를 포함할 수도 있다.
다음에, 가스화 프로세스(150)는 오염 합성가스를 입자 제거, 냉각 및 전환 시스템(156)으로 이송한다. 알 수 있는 바와 같이, 가스화기(106)는 슬래그 및 습식 애쉬와 같은 원치않는 폐기물을 발생할 수도 있다. 따라서, 입자 제거, 냉각 및 전환 시스템(156)은 가스화의 바람직하지 않는 부산물을 필터링하여 폐기한다. 특정 실시예에 있어서, 이들 부산물은 도로 포장 재료 또는 다른 건축 재료로서 처분될 수 있다. 또한, 입자 제거, 냉각 및 전환 시스템(156)은 일산화탄소가 물과 반응하는 수성 가스 전환(water gas shift; WGS) 반응을 수행하여 이산화탄소 및 수소를 형성하도록 구성된 수성 가스 전환(WGS) 반응기를 포함할 수 있다. 수성 가스 전환 반응은 적절한 메탄화를 위해 비정화 합성가스내의 수소 대 일산화탄소의 비율을 약 1:1 내지 약 3:1로 조절하도록 실행될 수 있다. 계속해서, 메탄화 반응기는 합성가스내의 CO 및 H2를 CH4 및 H2O, 즉 메탄(예를 들면, SNG) 및 물로 변환하는 메탄화 프로세스를 실행할 수 있다.
입자 제거, 냉각 및 전환 시스템(156)은 오염 합성가스를 AGR 시스템(158)으로 보내어 이산화탄소(161) 및 산 가스(162)를 제거함으로써 청정 합성가스(160)를 생성한다. 예를 들면, AGR 시스템(158)은 오염 합성가스로부터 산 가스(162)(예를 들면, 황화수소[H2S]) 및 이산화탄소(161)(CO2)를 분리하는 반응을 이용할 수 있고, 그에 따라 청정 합성가스(160)(예를 들면, 황 및 이산화탄소가 없는 합성가스)를 생성한다. 특정 실시예에 있어서, AGR 시스템(158)은 열적 스윙 프로세스를 이용하여 바람직한 합성가스로부터 산 가스(162)를 분리할 수 있다. 예를 들면, 열적 스윙 프로세스는 H2S의 흡착을 실행하는 흡착 단계 및 그 후에 공기 또는 산소가 풍부한 공기를 사용하는 열적 재생 단계를 포함할 수 있다. 이러한 열적 스윙 프로세스[즉, 상온 가스 처리(warm gas cleanup)]는 산화아연(ZnO)과 같은 유동화 매체와 합성가스를 혼합하여 흡착 단계에서 황화아연(ZnS)을 생성하는 것을 포함할 수 있다. 재생 단계에서는, 황화아연은 가열상태에서 산소(O2)와 혼합되어 이산화황(SO2)을 생성할 수 있고, 이러한 이산화항은 황의 제거 및 처분을 위해 다른 시스템 구성요소로 이송될 수도 있다.
다음에, AGR 시스템(158)은 청정 합성가스(160)를 가스 터빈, 보일러, 파이프라인, 저장 탱크, IGCC 구성요소, 또는 다른 적합한 어플리케이션으로 보낸다. 또한, AGR 시스템(158)은 산 가스(162)를 황 회수 유닛과 같은 하나 이상의 추가적인 처리 시스템으로 보낸다. 도시된 실시예에 있어서, AGR 시스템(158)은 또한 이산화탄소(161)를 적절한 탄소 포획 시스템(116)으로 보내지는데, 이러한 탄소 포획 시스템(116)은 CO2 압축 및 정화 시스템(164), 파이프라인(166), 저장 탱크, 또는 탄소를 낭비하지 않는 임의의 다른 구성부를 포함할 수 있다. 예를 들면, CO2 압축 및 정화 시스템(164)은 저장 및 다음 사용을 위해 CO2를 탈수하여 압축할 수 있다. 도시된 실시예에 있어서, CO2 압축 및 정화 시스템(164)은 CO2를 파이프라인(166)으로 보내고, 이 파이프라인(166)은 탄소 격리, 예를 들어 향상된 오일 회수(EOR) 또는 염대수층 저장(saline aquifer)을 위해 CO2를 이송한다.
도시된 실시예에 있어서, 가스화 프로세스(150)는 이산화탄소 팽창기(117) 및 압축/정화 시스템(164)(예를 들면, 압축기)을 포함하는 독창적인 냉각 시스템 또는 회로(163)를 포함한다. 예를 들면, 냉각 회로(163)는 압축/정화 시스템(164)으로부터의 압축된 이산화탄소(165)의 직접적인 유동 및/또는 파이프라인(166)으로부터의 압축된 이산화탄소(167)의 유동을 포함할 수 있다. 다른 예로서, 압축된 이산화탄소는 IGCC 시스템(100)내의 다른 소스 또는 프로세스로부터 얻어질 수도 있다. 소스와 무관하게, 이산화탄소는 실질적으로 압축되어 이산화탄소 팽창기(117)에서 팽창될 수 있으며, 이에 의해 냉각 소스를 제공한다.
이산화탄소 팽창기(117)로 유입되는 CO2는 팽창에 의해 고압으로부터 저압으로 된다. 일부 실시예에 있어서, 팽창은 CO2와 외기 사이의 열 전달을 감소시키도록 단열, 유사 단열, 또는 실질적으로 열 차폐된 상태에서 이루어질 수 있다. 압력 강하와 동시에 일어나는 체적 팽창에 의해, CO2의 온도가 하강한다. 특정 실시예에 있어서, CO2 팽창기(117)는 적어도 약 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 200%, 300% 또는 400% 정도로 압력 및/또는 온도를 하강시킬 수 있다. 예를 들면, 압력은 약 2 내지 4의 팩터(예를 들면, 약 2의 팩터) 정도로 하강할 수 있고, 온도는 약 5℃ 내지 100℃(예를 들면, 약 20℃ 내지 30℃) 정도로 하강할 수 있다. 그러나, 체적, 압력 및 온도의 모든 변화는 본 명세서에 기재된 실시예의 범위내에 있고, 이들 예시는 어떠한 방식으로도 제한하려는 것은 아니다. 다음에, 냉각된 이산화탄소는 AGR 시스템(158)의 구성요소를 통해 재순화되어 냉각을 제공할 수 있다. 예를 들면, 팽창된 이산화탄소는 AGR 시스템(158)에 사용된 용매의 온도를 낮추는데 이용될 수 있다. 특정 실시예에 있어서, 팽창된 이산화탄소는 약 5℃ 내지 100℃(예를 들면, 약 20℃ 내지 30℃)의 온도 변화에 의해 용매를 냉각시킬 수 있다. 그러나, 알고 있는 바와 같이, 온도의 변화는 유동 속도 및 다른 어플리케이션 특정 고려사항에 따라 달라질 수 있다.
도 3은 포획된 탄소질 가스의 팽창에 근거한 독창적인 냉각 시스템(163)을 포함하는, 도 1에 도시된 바와 같은 가스 정화 및 탄소 포획 시스템(168)의 실시예의 블록도이다. 도시된 가스 정화 및 탄소 포획 시스템(168)은 AGR 시스템(158) 및 탄소 포획 시스템(116)을 포함한다. AGR 시스템(158)은 황화수소(H2S) 흡착 단계 또는 유닛(170)(예를 들면, 산 가스 제거 유닛)을 포함한다. 탄소 포획 시스템(116)은 CO2 흡착 단계 또는 유닛(172), 용매 저장 탱크(176) 및 CO2 회수 단계 또는 유닛(178)을 포함한다. 또한, 탄소 포획 시스템(116)은 CO2 압축 및 정화 시스템(164), 파이프라인(166) 및 CO2 저장 탱크, 또는 CO2의 다른 사용처를 포함할 수 있다. 하기에서 상세하게 설명되는 바와 같이, 도시된 실시예는 압축된 CO2를 팽창기(117)에서 팽창시켜서 냉각제로서 사용하기 위한 CO2를 냉각시키는 냉각 시스템 또는 회로(163)를 포함한다. 특정 실시예에 있어서, 냉각된 CO2는 H2S 흡착 유닛(170), CO2 흡착 유닛(172), CO2 회수 유닛(178), 또는 이들의 임의의 조합체를 위한 냉각제로서 사용될 수 있다. 또한, 냉각된 CO2는 IGCC 시스템(100)내의 다른 구성요소를 위해 사용될 수도 있다.
도시된 실시예에 있어서, 냉각 시스템(163)은 팽창된 CO2를 사용하여 H2S 흡착 유닛(170) 및 CO2 회수 유닛(178) 모두를 냉각시킨다. 예를 들면, 냉각 시스템(163)은, 팽창되고 그에 따라 냉각된 CO2를, H2S 흡착 유닛(170)에 이어지는 CO2 회수 유닛(178)을 통해 이송할 수 있다. 도시된 실시예에 있어서, 냉동 시스템(180)은 CO2 회수 유닛(178)과 H2S 흡착 유닛(170) 사이에 CO2의 추가적인 냉각을 제공할 수 있다. 그러나, 냉동 시스템(180)은 냉각 시스템(163)에 의해 제공된 냉각 때문에 용량이 실질적으로 줄어들 수 있거나, 완전히 제거될 수도 있다. 도시된 바와 같이, 냉각 시스템(163)은 냉각된 CO2의 순환을 위한 제 1 CO2 냉각제 루프(187) 및 제 2 CO2 냉각제 루프(189)를 포함한다. 제 1 냉각제 루프(187)는 CO2 회수 유닛(178) 및 팽창기(117)뿐만 아니라, CO2 압축 및 정화 시스템(164) 및/또는 파이프라인(166)을 통해 CO2를 순환시킨다. 제 2 냉각제 루프(189)는 CO2 회수 유닛(178), 냉동 시스템(180) 및 H2S 흡착 유닛(170)을 통해 CO2를 순환시킨 후에, CO2 압축 및 정화 시스템(164) 및/또는 파이프라인(166)으로 CO2를 복귀시킨다. 이들 루프(187, 189)가 서로 결합되어서, 제 1 냉각제 루프(187)는 CO2의 제 1 부분CO2 압축 및 정화 시스템(164)으로 보내고 CO2 회수 유닛(178)에서 냉각제로서 CO2를 사용한 후에 CO2의 제 2 부분을 제 2 냉각제 루프(189)로 보낼 수 있다.
H2S 흡착 유닛(170)은 하나 이상의 발열 반응에 의해 오염 합성가스(174)로부터 H2S를 제거하고, 그에 따라 산 가스 유동 스트림(182)을 제공한다. 냉동 시스템(180) 및/또는 냉각 시스템(163)은 H2S 흡착 유닛(170)을 위한 냉각을 제공하여 발열 반응으로 인한 온도를 하강시킨다. 전술한 바와 같이, 산 가스(182)는 원소 황을 모으기 위한 황 회수 유닛으로 이송될 수 있다.
합성가스로부터 H2S가 제거되면, 합성가스는 CO2 흡착 유닛(172)으로 유입된다. 도시된 실시예에 있어서, CO2 흡착 유닛(172)은 용매를 이용하여 합성가스로부터 CO2를 제거한다. CO2 흡착 유닛(172)은 용매 저장 탱크(176)로부터 용매를 수용한다. 예를 들면, 하나 이상의 알칸올아민(alkanolamines)(예를 들면, 모노에탄올아민, 디에탄올아민, 디이소프로필아민 등)을 함유하는 수용액은 합성가스에 함유된 CO2의 흡착에 적합한 양으로 용매 저장 탱크(176)로부터 보내질 수 있다. 다음에, H2S 및 CO2 모두가 제거된 청정 합성가스(184)는 발전 또는 다른 하류의 화학 프로세스를 위해 사용된다.
CO2 흡착 유닛(172)은 CO2가 풍부한 아민계 용매를 CO2 회수 유닛(178)내로 이송하고, CO2 회수 유닛(178)은 탄소 포획 시스템(116)에서 사용하기 위한 CO2를 격리한다. 예를 들면, CO2 회수 유닛(178)은 CO2의 용액을 제거하는 재생기(regenerator)를 포함할 수 있다. 청정화된 용매(186)의 재생된 증기는 다음에 CO2 흡착 유닛(172)에서 재사용하도록 용매 저장 탱크(176)로 재순환된다.
CO2 회수 유닛(178)은 포획된 CO2를 탄소 포획 시스템(116)내로 이송하여 AGR 시스템(158)을 통해 압축, 팽창 및 이후의 재순환을 행하여 냉각 요구를 충족시킨다. 예를 들면, 탄소 포획 시스템(116)은 CO2 압축 및 정화 유닛(164), CO2 파이프라인(166), 저장 탱크, 이산화탄소 팽창기(117), 또는 CO2의 다른 적합한 사용처를 포함할 수 있다. 전술한 바와 같이, 팽창기(117)는 CO2의 체적 팽창 및 압력 강하를 야기하여, CO2의 온도를 하강시킨다. 예를 들면, 팽창기(117)는 이산화탄소를 약 35℃의 온도로 냉각시킬 수 있으며, 이러한 냉각된 이산화탄소는 용매 저장 탱크(176)로부터의 용매를 CO2 흡착 단계(172)에 공급하기 전에 약 45℃ 내지 55℃의 온도로 냉각시키는데 사용될 수 있다. 상기 특징은, 합성가스가 보다 낮은 온도에서 보다 높은 용해성을 가지므로, 흡착 프로세스의 효율을 증대시키는 효과를 가질 수 있다. 특정 실시예에 있어서, 냉각된 이산화탄소는 AGR 시스템(158)에서의 단계들 사이에서 합성가스를 냉각하는데 사용될 수 있다.
도 4는 포획된 탄소질 가스의 팽창에 근거한 독창적인 냉각 시스템(163)을 포함하는, 가스 정화 및 탄소 포획 시스템(191)을 갖는 연소 베이스 시스템(190)의 실시예의 블록도이다. 도시된 실시예에 있어서, 가스 정화 및 탄소 포획 시스템(191)은 입자 제거, 냉각 및 전환 시스템(156), 황 및/또는 질소 제거 시스템(192) 및 탄소 포획 시스템(116)을 포함한다. 전술한 바와 같이, 탄소 포획 시스템(116)은 CO2 압축 및 정화 시스템(164), 파이프라인(166), CO2 저장 탱크, 및 CO2의 다양한 어플리케이션을 포함할 수 있다. 특히, 탄소 포획 시스템(116)은 CO2를 팽창시켜서 연소 베이스 시스템(190)용의 냉각제로서 작용하도록 CO2를 냉각시키는 냉각 시스템(163)에 압축된 CO2를 제공한다. 냉각된 CO2는 연소 베이스 시스템(190)내의 보일러(194) 및 다른 플랜트 장비(195)뿐만 아니라, 가스 정화 및 탄소 포획 시스템(191)의 임의의 구성요소를 위한 냉각제로서 사용될 수 있다.
보일러(194)는 탄소질 원료 준비 유닛(154)으로부터 산소(196) 및 탄소질 연료를 공급받아 고온의 연소 가스를 생성한다. 또한, 보일러(194)는 물(197)을 공급받아, 물을 고온 가스에 의해 가열하여 증기(198)를 생성한다. 보일러(194)는 발전을 위한 증기 터빈과 같은 하나 이상의 구성요소에 증기(198)를 보낸다. 또한, 보일러(194)는, 전술한 바와 같이, 정화를 위해 입자 제거, 냉각 및 전환 시스템(156)에 고온의 연소 가스를 보낸다. 다음에, 입자 제거, 냉각 및 전환 시스템(156)은 연소 가스를 황 및/또는 질소 제거 시스템(192)에 보내어, 황 및/또는 질소 제거 시스템(192)에서 이산화탄소를 함유한 증기(188)로부터 황/질소 풍부 스트림(200)을 분리한다.
도시된 실시예에 있어서, 냉각 시스템(163)은 냉각된 CO2를 황 및/또는 질소 제거 시스템(192) 및 플랜트 장비(195)에 제공한다. 예를 들면, 냉각 시스템(163)은 제 1 냉각제 루프(187) 및 제 2 냉각제 루프(189)를 포함한다. 제 1 냉각제 루프(187)는 황 및/또는 질소 제거 시스템(192) 및 팽창기(117)뿐만 아니라, CO2 압축 및 정화 시스템(164) 및/또는 파이프라인(166)을 통해 CO2를 순환시킨다. 제 2 냉각제 루프(189)는 플랜트 장비(195)를 통해 CO2를 순환시킨다. 도시된 실시예에 있어서, 제 1 냉각제 루프(187)는 냉각된 CO2의 일부를 황 및/또는 질소 제거 시스템(192)을 통과하기 전에 플랜트 장비(195)로 우회시킨다. 그러나, 다른 실시예에서는, 냉각된 CO2는 냉각 요구에 따라서 플랜트 장비(195)를 냉각하는데 사용하기 전에 황 및/또는 질소 제거 시스템(192)을 냉각하는데 사용될 수도 있다. 플랜트 장비(195)는 여러 가지의 IGCC 시스템, 발전 장비, 엔진, 화학 처리 유닛, 열교환기 등을 포함할 수 있다. 예를 들면, 냉각 시스템(163)은 냉각된 CO2를 증류탑의 오버헤드 스트림을 냉각하는데 이용할 수도 있다. 예컨대, 냉각된 CO2는 리플럭스로부터 합성가스 생성물을 분리하는데 사용되는 증류탑과 연관된 오버헤드 스트림의 온도를 하강시키는데 이용될 수 있다. 추가적인 실시예에 있어서, 냉각된 CO2는 IGCC 발전소에 있어서의 임의의 연속 증류 프로세스와 연관된 임의의 오버헤드 스트림을 위한 냉각제로서 사용될 수도 있다. 즉, 냉각된 CO2는 IGCC 발전소에 있어서의 연속 유동 분리 프로세스와 연관된 임의의 스트림을 냉각하는데 사용될 수 있다. 다른 예시로서, 냉각된 CO2는 응축기, 증발기 및 압축기를 구비하는 폐루프를 통해 냉각제를 순환시키는 냉동 사이클을 대체할 수도 있다.
도 5는 포획된 탄소질 가스의 팽창에 근거한 독창적인 냉각 시스템(163)을 포함하는 탄소 포획 냉각 시스템(210)의 실시예의 블록도이다. 도시된 실시예에 있어서, 탄소 포획 냉각 시스템(210)은 화학적 제조 시스템(212) 및 탄소 포획 시스템(116)을 포함한다. 화학적 제조 시스템(212)은 부분 산화 또는 개질(reforming) 유닛(214) 및 입자 제거, 냉각 및 전환 시스템(156)을 포함한다. 탄소 포획 시스템(116)은 CO2 제거 시스템(216)뿐만 아니라, CO2 압축 및 정화 시스템(164), 파이프라인(166), CO2 저장 탱크, 또는 포획된 CO2를 위한 다른 어플리케이션을 포함한다. 특히, 탄소 포획 시스템(116)은 CO2를 팽창시켜서 탄소 포획 냉각 시스템(210)용의 냉각제로서 작용하도록 CO2를 냉각시키는 독창적인 냉각 시스템(163)에 압축된 CO2를 제공한다. 냉각된 CO2는 부분 산화 또는 개질 유닛(214), 입자 제거, 냉각 및 전환 시스템(156), CO2 제거 시스템(216), 플랜트 장비(195), 또는 이들의 임의의 조합체를 포함하는 탄소 포획 냉각 시스템(210)의 임의의 구성요소를 위한 냉각제로서 사용될 수 있다.
부분 산화 또는 개질 단계(214)는 탄소질 원료 준비 유닛(154)으로부터 탄소질 연료를 수용한다. 특정 실시예에 있어서, 탄소질 연료는 메탄올, 천연가스, 프로판, 가솔린, LPG(autogas), 디젤 연료, 에탄올 나프타, 또는 임의의 다른 탄소질 물질을 포함할 수 있다. 또한, 부분 산화 또는 개질 유닛(214)은 산소 및/또는 증기(218)의 스트림을 수용한다. 일 실시예에 있어서, 부분 산화 또는 개질 단계(214)는 부분 산화를 실행하여, 다른 가스들 사이에서 일산화탄소(CO) 및 수소(H2)를 포함하는 합성가스 혼합물을 생성한다. 예를 들면, 합성가스 혼합물은 CO, H2, CH4, CO2, H2O 및 N2를 포함할 수 있다. 일부 실시예에 있어서, 부분 산화 또는 개질 유닛(214)은 탄소질 원료를 고옥탄 제품 및 수소로 변환한다. 다음에, 화학적 제조 시스템(212)은 전술한 바와 같이 정화를 위해 입자 제거, 냉각 및 전환 시스템(156)으로 합성가스를 보낸다.
다음에, 화학적 제조 시스템(212)은 합성가스를 탄소 포획 시스템(116)으로 보낸다. 특히, 입자 제거, 냉각 및 전환 시스템(156)은 합성 가스를 CO2 제거 시스템(216)으로 이송하여, CO2 제거 시스템(216)에서 CO2(188)를 분리하여 청정 합성가스(220)를 생성한다. 예를 들면, CO2 제거 시스템(216)은 용매-기반 시스템, 멤브레인-기반 시스템, 또는 CO2의 제거에 적합한 임의의 다른 타입의 시스템일 수 있다. CO2 제거 시스템(216)은 청정 합성가스(220)를 추가적인 처리 유닛, 가스 터빈, 보일러, 또는 다른 어플리케이션으로 이송한다. CO2 제거 시스템(216)은 분리된 CO2(188)를 탄소 포획 시스템(116)으로 이송한다. 예를 들면, CO2 압축 및 정화 시스템(164)은 CO2를 압축 및 정화한 후에, 제 1 부분을 파이프라인(166)으로 보내고 제 2 부분을 냉각 시스템(163)으로 보낸다.
도시된 실시예에 있어서, 냉각 시스템(163)은 냉각된 CO2를 CO2 제거 시스템(216) 및 플랜트 장비(195)에 제공한다. 예를 들면, 냉각 시스템(163)은 제 1 냉각제 루프(187) 및 제 2 냉각제 루프(189)를 포함한다. 제 1 냉각제 루프(187)는 CO2 제거 유닛(216) 및 팽창기(117)뿐만 아니라, CO2 압축 및 정화 시스템(164) 및/또는 파이프라인(166)을 통해 CO2를 순환시킨다. 제 2 냉각제 루프(189)는 플랜트 장비(195)를 통해 CO2를 순환시킨다. 도시된 실시예에 있어서, 제 1 냉각제 루프(187)는 냉각된 CO2의 일부를 CO2 제거 시스템(216)을 통과하기 전에 플랜트 장비(195)로 우회시킨다. 그러나, 다른 실시예에서는, 냉각된 CO2는 냉각 요구에 따라서 플랜트 장비(195)를 냉각하는데 사용하기 전에 CO2 제거 시스템(216)을 냉각하는데 사용될 수도 있다. 플랜트 장비(195)는 여러 가지의 IGCC 구성요소, 발전 장비, 엔진, 화학 처리 유닛, 열교환기 등을 포함할 수 있다.
본 발명의 기술적 효과는 냉각 시스템과 조합하여 탄소 포획 시스템을 포함할 수 있으며, 포획된 탄소질 가스(예를 들면, 약 80체적% 내지 100체적%의 CO2)가 냉각 시스템에서의 냉각제로서 사용된다는 것이다. 탄소 포획 시스템은 임의의 산업 플랜트, 가스화 복합 사이클(IGCC) 발전소 등의 일부분일 수 있다. 마찬가지로, 냉각 시스템은 다양한 산업 플랜트 장비, IGCC 장비 등을 냉각하는데 이용될 수 있다. 특정 실시예에 있어서, 제어기 또는 프로그래밍된 장치(예를 들면, 컴퓨터 시스템)는 포획된 탄소질 가스에 의해 제공되는 냉각량을 변화시키기 위해 탄소 포획 시스템 및/또는 냉각 시스템을 제어하는 지시를 포함할 수 있다. 예를 들면, 제어기 또는 프로그래밍된 장치는 탄소질 가스의 체적 팽창 속도 및/또는 팩터를 증감하여, 탄소질 가스의 온도 변화를 증감할 수 있다. 또한, 제어기 또는 프로그래밍된 장치는 하나 이상의 냉각 회로를 통한 포획된 탄소질 가스(예를 들면, 체적 팽창에 의해 냉각된 탄소질 가스)의 유량을 제어하여, 포획된 탄소질 가스에 의해 제공되는 냉각량을 제어할 수 있다. 특정 실시예에 있어서, 제어기 또는 프로그래밍된 장치는 1차 냉각 소스 또는 2차 냉각 소스로서 포획된 탄소질 가스를 사용하도록 냉각 시스템을 제어할 수 있다. 예를 들면, 포획된 탄소질 가스는 기존의 냉각 시스템을 보조하는데 사용될 수 있어, 탄소 포획에 기초한 냉각 시스템의 합체로 인해 상당히 소형화될 수 있다.
상기 기재내용은, 최상의 모드를 포함하는 본 발명을 개시하는 예로서, 또한 임의의 장치 또는 시스템을 제조하고 이용하는 것 및 임의의 짜여진 방법을 수행하는 것을 포함하여 본 기술분야에 숙력된 자가 본 발명을 실시할 수 있도록 하는 예를 사용한 것이다. 본 발명의 특허가능한 범위는 특허청구범위에 한정되어 있고, 본 기술분야에 숙련된 자에 의해 이루어지는 다른 예를 포함할 수 있다. 이러한 다른 예는, 특허청구범위의 문자적 표현이 다르지 않은 구조 요소를 구비하는 경우, 또는 특허청구범위의 문자적 표현이 약간 다른 동등 구조 요소를 포함하는 경우, 특허청구범위의 범위내에 있는 것으로 간주된다.
100 : 가스화 복합 사이클 시스템(IGCC 시스템)
110 : 가스 정화기 116 : 탄소 포획 시스템
117 : 가스 팽창기(이산화탄소 팽창기)
156 : 입자 제거, 냉각 및 전환 시스템
158 : 산 가스 제거(AGR) 시스템 161, 188 : 탄소질 가스(이산화탄소)
163 : 냉각 시스템
164 : 가스 압축기(이산화탄소 압축/정화 시스템)
166 : 파이프라인
172 : 탄소질 가스 제거 유닛(이산화탄소 흡착 유닛)
192 : 황 및/또는 질소 제거 시스템

Claims (10)

  1. 시스템에 있어서,
    합성가스로부터 탄소질 가스(161, 188)를 모으도록 구성된 탄소 포획 시스템(116)과,
    냉각제 회로내에 상기 탄소질 가스(161, 188)를 포함하는 냉각 시스템(163)을 포함하는
    시스템.
  2. 제 1 항에 있어서,
    상기 냉각 시스템(163)은 상기 탄소질 가스(161, 188)의 압력 및 온도를 하강시키도록 구성된 가스 팽창기(117)를 포함하는
    시스템.
  3. 제 2 항에 있어서,
    상기 탄소 포획 시스템(116)은 상기 탄소질 가스(161, 188)를 압축하도록 구성된 가스 압축기(164)를 포함하는
    시스템.
  4. 제 2 항에 있어서,
    상기 가스 팽창기(117)는 단열 팽창기(117)를 포함하는
    시스템.
  5. 제 1 항에 있어서,
    상기 합성가스를 청정화하도록 구성된 가스 정화기(110)를 더 포함하는
    시스템.
  6. 제 5 항에 있어서,
    상기 가스 정화기(110)는 산 가스 제거(AGR) 유닛(158), 황 제거 유닛(192), 질소 제거 유닛(192), 입자 제거 유닛(156), 탄소질 가스 제거 유닛(172) 또는 이들의 조합체를 포함하는
    시스템.
  7. 시스템에 있어서,
    가스(174)로부터 이산화탄소(CO2)를 제거하도록 구성된 가스 정화기(110)와,
    상기 가스 정화기(110)로부터 이산화탄소(161, 188)를 수용하도록 구성된 탄소 포획 시스템(116)과,
    구성요소를 냉각시키기 위해 이산화탄소(161, 188)의 적어도 일부를 팽창시키도록 구성된 이산화탄소 팽창기(117)를 포함하는
    시스템.
  8. 제 7 항에 있어서,
    상기 가스 정화기(110)는 수성 가스 전환 반응기, 산 가스 제거(AGR) 시스템(158), 황 제거 시스템(192), 질소 제거 시스템(192) 또는 이들의 조합체를 포함하는
    시스템.
  9. 제 7 항에 있어서,
    상기 탄소 포획 시스템(116)은 이산화탄소 압축기(164), 이산화탄소 파이프라인(166), 이산화탄소 저장 탱크 또는 이들의 조합체를 포함하는
    시스템.
  10. 제 7 항에 있어서,
    상기 구성요소는 가스 정화기(110)를 포함하는
    시스템.
KR1020100091552A 2009-09-24 2010-09-17 탄소 포획 냉각 시스템 및 방법 KR101693865B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/566,613 US8741225B2 (en) 2009-09-24 2009-09-24 Carbon capture cooling system and method
US12/566,613 2009-09-24

Publications (2)

Publication Number Publication Date
KR20110033053A true KR20110033053A (ko) 2011-03-30
KR101693865B1 KR101693865B1 (ko) 2017-01-06

Family

ID=43755363

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100091552A KR101693865B1 (ko) 2009-09-24 2010-09-17 탄소 포획 냉각 시스템 및 방법

Country Status (7)

Country Link
US (1) US8741225B2 (ko)
JP (1) JP5695377B2 (ko)
KR (1) KR101693865B1 (ko)
CN (1) CN102032048A (ko)
CA (1) CA2714326A1 (ko)
PL (1) PL215288B1 (ko)
RU (1) RU2546900C2 (ko)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO20111770A1 (no) * 2011-12-21 2011-12-21 Modi Vivendi As System og metode for offshore industrielle aktiviteter med CO2 reinjisering
US8911538B2 (en) 2011-12-22 2014-12-16 Alstom Technology Ltd Method and system for treating an effluent stream generated by a carbon capture system
US8945292B2 (en) 2012-03-23 2015-02-03 General Electric Company System for recovering acid gases from a gas stream
US8828122B2 (en) * 2012-07-09 2014-09-09 General Electric Company System and method for gas treatment
US9138708B2 (en) * 2012-11-15 2015-09-22 General Electric Company System and method for removing residual gas from a gasification system
CN104629816B (zh) * 2015-01-30 2016-09-28 济南冶金化工设备有限公司 自制冷型焦炉荒煤气初步冷却装置
GB2593939B (en) * 2020-04-09 2022-04-27 Velocys Tech Limited Manufacture of a synthetic fuel
CN114788983B (zh) * 2021-01-26 2023-09-08 大连佳纯气体净化技术开发有限公司 一种低温甲醇洗净化方法及装置
CN113371711A (zh) * 2021-05-28 2021-09-10 北京民利储能技术有限公司 一种碳回收循环运作系统及其实施方法
US11834618B1 (en) * 2023-06-21 2023-12-05 King Faisal University Flexible biomass gasification based multi-objective energy system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3614872A (en) * 1967-12-22 1971-10-26 Texaco Inc Synthesis gas separation process
US3801708A (en) * 1967-09-01 1974-04-02 Chevron Res Hydrogen manufacture using centrifugal compressors
US5220782A (en) * 1991-10-23 1993-06-22 Bechtel Group, Inc. Efficient low temperature solvent removal of acid gases
US6301927B1 (en) * 1998-01-08 2001-10-16 Satish Reddy Autorefrigeration separation of carbon dioxide

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2514921A (en) 1944-11-16 1950-07-11 Linde Air Prod Co Process and apparatus for separating gas mixtures
GB692804A (en) 1949-09-15 1953-06-17 Lind S Eismaschinen A G Ges Process of purifying gases, especially synthesis- and fuel-gases
US3349571A (en) * 1966-01-14 1967-10-31 Chemical Construction Corp Removal of carbon dioxide from synthesis gas using spearated products to cool external refrigeration cycle
US3417572A (en) * 1967-05-01 1968-12-24 Chevron Res Separation of hydrogen sulfide from carbon dioxide by distillation
US3824766A (en) * 1973-05-10 1974-07-23 Allied Chem Gas purification
IT1190356B (it) 1985-05-24 1988-02-16 Snam Progetti Procedimento oriogenico di rimozione selettiva di gas acidi da miscele di gas mediante solventi
IE63440B1 (en) 1989-02-23 1995-04-19 Enserch Int Investment Improvements in operating flexibility in integrated gasification combined cycle power stations
SU1757709A1 (ru) * 1990-04-12 1992-08-30 Всесоюзный Государственный Научно-Исследовательский И Проектно-Конструкторский Институт Газоочиститель
CZ293894A3 (en) 1992-05-29 1995-03-15 Nat Power Plc Gas compressor
GB9604082D0 (en) 1996-02-27 1996-05-01 Boc Group Plc Gas recovery
EP1608445B1 (en) * 2003-04-03 2013-07-03 Fluor Corporation Configurations and methods of carbon capture
US7300642B1 (en) * 2003-12-03 2007-11-27 Rentech, Inc. Process for the production of ammonia and Fischer-Tropsch liquids
US20070072949A1 (en) * 2005-09-28 2007-03-29 General Electric Company Methods and apparatus for hydrogen gas production
JP4721349B2 (ja) * 2006-03-10 2011-07-13 国立大学法人 筑波大学 バイオガス中のメタン濃度の安定化システム及びバイオガス中のメタン濃度の安定化方法
JP5709153B2 (ja) * 2007-02-22 2015-04-30 フルオー・テクノロジーズ・コーポレイシヨン ガス化ストリームから二酸化炭素および水素を製造する構成および方法
WO2008139536A1 (ja) * 2007-04-27 2008-11-20 Hitachi, Ltd. 天然ガス液化プラント及びその運転方法
US20100193742A1 (en) 2007-08-01 2010-08-05 Zerogen Pty Ltd. Power generation process and system
AR068841A1 (es) * 2007-10-12 2009-12-09 Union Engeneering As Remocion de dioxido de carbono de un gas de alimentacion
US7708801B2 (en) * 2007-11-09 2010-05-04 General Electric Company System and methods for treating transient process gas
JP4884527B2 (ja) * 2008-01-23 2012-02-29 株式会社日立製作所 天然ガス液化プラント及び天然ガス液化プラント用動力供給設備

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3801708A (en) * 1967-09-01 1974-04-02 Chevron Res Hydrogen manufacture using centrifugal compressors
US3614872A (en) * 1967-12-22 1971-10-26 Texaco Inc Synthesis gas separation process
US5220782A (en) * 1991-10-23 1993-06-22 Bechtel Group, Inc. Efficient low temperature solvent removal of acid gases
US6301927B1 (en) * 1998-01-08 2001-10-16 Satish Reddy Autorefrigeration separation of carbon dioxide

Also Published As

Publication number Publication date
KR101693865B1 (ko) 2017-01-06
JP2011068891A (ja) 2011-04-07
US20110067302A1 (en) 2011-03-24
PL392506A1 (pl) 2011-03-28
RU2546900C2 (ru) 2015-04-10
US8741225B2 (en) 2014-06-03
RU2010139614A (ru) 2012-03-27
CA2714326A1 (en) 2011-03-24
JP5695377B2 (ja) 2015-04-01
PL215288B1 (pl) 2013-11-29
CN102032048A (zh) 2011-04-27

Similar Documents

Publication Publication Date Title
KR101693865B1 (ko) 탄소 포획 냉각 시스템 및 방법
EP2562373B1 (en) Heat recovery from a gasification system
CN108979770B (zh) 以超临界二氧化碳为工质的整体煤气化联合循环发电系统及方法
US8354082B2 (en) System for heat integration with methanation system
EP2158390A2 (en) Power generation system incorporating multiple rankine cycles
JP2019537631A (ja) 部分酸化を使用した電力生産のためのシステムおよび方法
AU2011203196B2 (en) System for acid gas removal
AU2010257443B2 (en) System for providing air flow to a sulfur recovery unit
EP2251626A2 (en) Efficiently compressing nitrogen in a combined cycle power plant
AU2010241232A1 (en) System and method for improving performance of an IGCC power plant
WO2014047685A1 (en) Power production from ucg product gas with carbon capture
US11913360B2 (en) Method for operating a power plant in order to generate electrical energy by combustion of a carbonaceous combustible, and corresponding system for operating a power plant
GB2485789A (en) Method and System for Energy Efficient Conversion of a Carbon Containing Fuel to CO2 and H20
US8186177B2 (en) Systems for reducing cooling water and power consumption in gasification systems and methods of assembling such systems
US20110162380A1 (en) Method to increase net plant output of a derated igcc plant
Acharya et al. Investigation of Air Extraction and Carbon Capture in an Integrated Gasification Combined Cycle (IGCC) System
Li et al. A Parametric Investigation of Integrated Gasification Combined Cycles With Carbon Capture
Rao Integrated Gasification Combined Cycle (IGCC): Coal and biomass-based
Pipaliya et al. Bottomless Refinery Concept: Operation and Control of IGCC
JP2012111947A (ja) 合成ガスからのガス状副生成物の除去システム

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20191127

Year of fee payment: 4