KR20110032395A - 고활성 연료전지용 캐소드 PtFe/C 촉매의 제조방법 - Google Patents

고활성 연료전지용 캐소드 PtFe/C 촉매의 제조방법 Download PDF

Info

Publication number
KR20110032395A
KR20110032395A KR1020090089862A KR20090089862A KR20110032395A KR 20110032395 A KR20110032395 A KR 20110032395A KR 1020090089862 A KR1020090089862 A KR 1020090089862A KR 20090089862 A KR20090089862 A KR 20090089862A KR 20110032395 A KR20110032395 A KR 20110032395A
Authority
KR
South Korea
Prior art keywords
catalyst
platinum
ptfe
iron
fuel cell
Prior art date
Application number
KR1020090089862A
Other languages
English (en)
Inventor
류호진
강석민
유성열
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to KR1020090089862A priority Critical patent/KR20110032395A/ko
Publication of KR20110032395A publication Critical patent/KR20110032395A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 고활성 연료전지용 캐소드 PtFe/C 촉매의 제조방법에 관한 것으로서, 용매 중에서 환원제 존재 하에 탄소지지체와 금속 전구체를 혼합하고 환원반응시켜 금속 입자가 탄소지지체에 담지된 촉매를 제조함에 있어서, 상기 금속 전구체로서 백금 금속 전구체와 철 금속 전구체를 함께 사용하여 백금 입자와 철 입자의 중량비가 70:30 내지 55:45 범위가 되도록 백금-철 합금 입자를 탄소지지체에 촉매 총중량 기준 15 내지 25 중량%의 양으로 담지시키는 것을 특징으로 하며, 이러한 본 발명의 제법에 의하면, 최소화된 백금 담지량을 가지면서도 우수한 산소환원반응 활성을 나타낼 수 있는, 연료전지, 특히 고분자 전해질 연료전지용 캐소드 PtFe/C 촉매를 효율적으로 제조할 수 있다.

Description

고활성 연료전지용 캐소드 PtFe/C 촉매의 제조방법 {METHOD FOR PREPARING CATHODE PtFe/C CATALYSTS FOR FUEL CELLS HAVING AN IMPROVED ACTIVITY}
본 발명은 우수한 산소환원반응 활성을 갖는, 연료전지, 특히 고분자 전해질 연료전지용 캐소드 PtFe/C 촉매(탄소지지체에 백금-철 합금이 담지된 촉매)의 제조방법에 관한 것이다.
연료전지는 보통 전지(1차, 2차)와 같이 반응물 및 생성물이 전지의 내부에 있는 것이 아니라 기체 혹은 액체연료를 외부에서 공급하여 이들의 전기화학반응을 통해 화학에너지를 전기에너지로 변환시키는 장치이다. 이러한 연료전지는 고효율이면서 친환경적이고 다양한 연료의 사용이 가능하며, 연료전지의 종류에 따라서 다양한 산업 분야에 맞게 제작할 수 있다는 장점을 갖는다. 이러한 장점 때문에 이동용 휴대기기 등의 이동형 전원, 자동차의 수송용 전원, 가정용 및 발전소 사업용으로 이용가능한 분산형 전원에 이르기까지 다양한 산업에 응용이 가능하다.
연료전지는 전해질, 작동온도 및 연료의 종류에 따라 MCFC(용융탄산염 연료전지), SOFC(고체산화물형 연료전지), AFC(알칼리 연료전지), PAFC(인산형 연료전지), PEFC(고분자 전해질 연료전지) 및 DMFC(직접 메탄올 연료전지) 등으로 구분될 수 있다. 이들 여러 가지 연료전지 중, 산업 파급효과가 큰 이동형 및 수송용 전원으로서 고전류밀도 특성 및 저온에서 운전이 가능하다는 장점을 갖고 있는 PEFC가 가장 선호된다.
일반적으로, 연료전지의 성능은 애노드(anode)와 캐소드(cathode)의 촉매의 성능에 의해 크게 좌우되는데, 이러한 전극의 촉매재료로서 귀금속인 백금이 가장 많이 사용된다. 애노드 및 캐소드에서의 귀금속 촉매로서는 비표면적이 크고 전기전도성이 우수한 탄소지지체에 백금 금속 입자를 담지시킨 Pt/C 촉매가 가장 대표적으로 사용되고 있다. 그러나 Pt/C 촉매는 촉매재료로서 사용되는 백금이 매우 고가의 귀금속 물질이고, 캐소드 반응인 산소환원반응으로 인해서 백금 표면에 산소가 흡착되어 백금 산화물이 생성됨으로써 20 내지 30%의 에너지 손실(과전압)을 발생시킨다는 문제점을 갖는다.
따라서, 이러한 문제점을 해결하고 고분자 연료전지를 실용화시키기 위해서는, 탄소지지체에 담지되는 백금의 담지량을 저감하면서도 촉매활성은 감소시키지 않아야 하고 백금 산화물 생성에 따른 에너지 손실(과전압)을 최대한 줄여야 한다. 이의 구체적인 해결방안으로서, 백금 합금 또는 비백금 촉매를 개발하는 방법, 및 백금의 단결정구조를 제어하여 촉매의 활성을 극대화시키는 방법 등이 제안되고 있다.
이들 중 특히 백금 합금에 대한 연구가 활발히 진행되어, 이러한 백금 합금(백금 이외의 금속의 예: Co, Fe, Cr, V 등) 촉매가 순수 백금 촉매에 비해 일반적으로 높은 활성을 나타내는 것으로 밝혀졌는데, 이러한 백금 합금 촉매의 높은 활성은 Pt-Pt 원자간 거리, 지지체 표면 위에 담지된 Pt 상태, Pt 5d 밴드 공공 등의 여러 인자에 의한 것으로 알려져 있다.
이와 같이, 고분자 전해질 연료전지의 상용화를 위하여, 이제까지 알려진 백금계 촉매에 비해서 더욱 우수한 활성을 갖는 캐소드 촉매의 개발이 지속적으로 필요한 실정이다.
따라서, 본 발명의 목적은 최소화된 백금 담지량을 가지면서도 우수한 산소환원반응 활성을 나타낼 수 있는, 연료전지, 특히 고분자 전해질 연료전지용 캐소드 백금 합금 촉매를 제조하는 방법을 제공하는 것이다.
상기 목적을 달성하기 위해 본 발명은 용매 중에서 환원제 존재 하에 탄소지지체와 금속 전구체를 혼합하고 환원반응시켜 금속 입자가 탄소지지체에 담지된 촉매를 제조함에 있어서,
상기 금속 전구체로서 백금 금속 전구체와 철 금속 전구체를 함께 사용하여 백금 입자와 철 입자의 중량비가 70:30 내지 55:45 범위가 되도록 백금-철 합금 입자를 탄소지지체에 촉매 총중량 기준 15 내지 25 중량%의 양으로 담지시키는 것을 특징으로 하는, 연료전지용 캐소드 PtFe/C 촉매의 제조방법을 제공한다.
본 발명에 따른 제법에 의하면, 철 합금을 통하여 탄소지지체에 담지되는 백금의 양을 저감하여 최소화된 백금 담지량을 가지면서도 우수한 산소환원반응 활성을 나타낼 수 있는, 연료전지, 특히 고분자 전해질 연료전지용 캐소드 PtFe/C 촉매를 제조할 수 있다.
본 발명에 따른 연료전지용 캐소드 PtFe/C 촉매의 제법은, 화학환원법을 이용하여 백금 입자를 탄소지지체에 담지시킬 때 백금의 양을 일정량 줄이고 이를 철로 대체하여, 백금 입자와 철 입자의 중량비가 70:30 내지 55:45 범위가 되도록 백금-철 합금 입자를 탄소지지체에 촉매 총중량 기준 15 내지 25 중량%의 양으로 담지시키는 것을 기술구성상 특징으로 한다.
본 발명에서는, 용매 중에서 환원제 존재 하에 탄소지지체와 백금 금속 전구체를 혼합할 때 일정량의 백금의 양을 줄이고 줄어든 몰비 만큼 철로 대체되도록 백금 금속 전구체와 철 금속 전구체를 함께 사용하고 이어 환원반응을 수행함으로써, 백금 입자와 철 입자의 중량비가 70:30 내지 55:45 범위, 바람직하게는 약 60:40인 백금-철 합금 입자를 탄소지지체에 촉매 총중량 기준 15 내지 25 중량%, 바람직하게는 19 내지 21 중량%의 양으로 담지시켜 백금-철 합금 입자가 담지된 탄소지지체를 제조한다.
상기 탄소지지체와 백금 및 철 금속 전구체와의 환원반응은, 탄소지지체를 용매(예: 물) 중에 바람직하게는 초음파를 이용하여 분산시킨 후, 여기에 백금 금속 전구체와 철 금속 전구체를 함께 첨가하여 예를 들어 30분 동안 교반하고, 여기에 환원제를 첨가하고 예를 들어 1시간 동안 환원반응을 수행할 수 있다. 환원제 첨가에 앞서, 용액에 NaOH와 같은 염기 성분을 첨가하여 용액의 pH를 10-12(알칼리 분위기)로 조절하는 것이 바람직하다. 환원반응 완료 후, 생성물을 증류수로 세척하고 80℃에서 건조하여 촉매 총중량 기준 15 내지 25 중량%, 바람직하게는 19 내 지 21 중량%의 백금-철 합금 입자가 탄소지지체에 담지된 촉매를 얻을 수 있다.
상기 탄소지지체로는 통상적인 것을 사용할 수 있으며, 이의 구체적인 예로는 탄소나노분말(제품명: 불칸(Vulcan) XC 72®(캐보트(Cabot Co.)사제)), 탄소 나노튜브(nanotube), 탄소 나노막대(nanohorn) 및 이들의 혼합물을 들 수 있다. 바람직하게는, 탄소지지체에 관능기를 부여하여 효과적으로 백금 촉매를 담지시키기 위해 탄소지지체를 전처리할 수 있다. 탄소지지체의 전처리는 탄소지지체를 질산용액 중에서 일정 시간 이상 교반시킨 후 세척 및 건조하여 수행할 수 있다. 예를 들어, 탄소지지체를 60% 질산용액 중에서 70℃에서 5시간 동안 교반시킨 후, 증류수를 사용하여 세척하고 80℃ 오븐에서 건조하여 탄소지지체의 전처리를 수행할 수 있다. 이때 질산용액의 농도, 처리 온도, 교반 시간 등은 임의로 선택할 수 있다.
상기 백금 금속 전구체로는 통상적인 것을 사용할 수 있으며, 이의 구체적인 예로는 K2PtCl4, K2PtCl6, H2PtCl6, H2PtCl6, Pt(NH3)4Cl2 및 이들의 혼합물을 들 수 있다.
상기 철 금속 전구체로는 통상적인 것을 사용할 수 있으며, 이의 구체적인 예로는 FeCl2, FeCl3 및 이들의 혼합물을 들 수 있다.
상기 환원제로는 통상적인 것을 사용할 수 있는데, 이의 구체적인 예로는 NaBH4, HCHO, 에틸렌글리콜 및 이들의 혼합물을 들 수 있으며, 금속 전구체에서 백금 및 철을 합친 총 금속 0.1 중량부를 기준으로 15 내지 20 중량부의 양으로 사용할 수 있다.
바람직하게는, 이와 같이 얻어진 백금-철 합금 입자가 탄소지지체에 담지된 PtFe/C 촉매를 300 내지 500℃, 바람직하게는 300 내지 400℃에서 열처리하여, 백금-철 합금 입자의 크기를 2 내지 6nm로, 합금 입자의 결정화도를 X-선 회절 패턴에서 0.8 내지 1.2°의 반치폭(FWHM, full width at half maximum) 값을 갖도록 제어할 수 있다.
상기 열처리 온도 및 시간은 바람직한 백금-철 합금 입자의 크기 및 결정화도를 달성하는 수준에서 적절히 선택될 수 있다.
본 발명의 방법의 하나의 실시양태로서 20 중량%의 백금-철 합금이 탄소지지체에 담지된 캐소드 촉매의 제조공정을 모식도로서 도 1에 나타내었다.
이러한 본 발명의 방법에 의해 제조된 PtFe/C 촉매는 순수하게 백금만이 동량으로 담지된 기존 Pt/C 촉매와 견주어 동동하거나 그 이상의 우수한 산소환원반응 활성을 나타내어 연료전지, 특히 고분자 전해질 연료전지의 캐소드 촉매로서 유용하게 경제적으로 사용될 수 있다.
이하 본 발명을 하기 실시예에 의하여 더욱 상세하게 설명하고자 한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐 본 발명의 범위가 이들만으로 한정되는 것은 아니다.
[실시예]
<캐소드 PtFe/C 또는 Pt/C 촉매의 제조>
실시예 1
탄소지지체로서의 불칸(Vulcan) XC 72®(캐보트(Cabot Co.)사제)를 60% 질산용액에 첨가하고 70℃에서 5시간 동안 교반한 후, 증류수를 사용하여 세척하고 80℃ 오븐에서 건조하여 탄소지지체의 전처리를 수행하였다.
전처리된 불칸 XC-72®를 초음파를 이용하여 수중에 분산시킨 후, 여기에 백금 금속 전구체로서의 H2PtCl4를 첨가할 때 백금의 양을 40 중량% 줄이고 백금이 줄어든 양 만큼 철 금속 전구체로서의 FeCl2를 첨가하여 30분간 교반하고, NaOH를 첨가하여 용액의 pH를 10-12의 알칼리 분위기로 조절하였다. 이어, 여기에 환원제로서의 HCHO를 50ml 첨가하고 1시간 동안 환원반응을 수행하였다. 환원반응 완료 후, 생성물을 증류수로 세척하고 80℃에서 건조하여 촉매 총중량 기준 20 중량%의 백금-철 합금 입자가 탄소지지체에 담지된 20 중량% PtFe(60:40)/C 촉매를 얻었다.
실시예 2 내지 4
실시예 1에서 얻어진 PtFe(60:40)/C 촉매를 질소 분위기에서 300, 400 및 500℃에서 각각 1시간 동안 추가로 열처리하여 열처리된 PtFe(60:40)/C 촉매를 제조하였다.
비교예 1
백금 금속 전구체(H2PtCl)만을 사용하여 순수하게 백금만을 탄소지지체에 담지시킨 것을 제외하고는, 상기 실시예 1과 동일한 방법을 수행하여 20 중량% Pt/C 촉매를 제조하였다.
비교예 2
백금 금속 전구체(H2PtCl)의 양을 10 중량% 줄이고 백금이 줄어든 양 만큼 철 금속 전구체(FeCl2)를 첨가한 것을 제외하고는, 상기 실시예 1과 동일한 방법을 수행하여 20 중량% PtFe(90:10)/C 촉매를 제조하였다.
비교예 3
백금 금속 전구체(H2PtCl)의 양을 20 중량% 줄이고 백금이 줄어든 양 만큼 철 금속 전구체(FeCl2)를 첨가한 것을 제외하고는, 상기 실시예 1과 동일한 방법을 수행하여 20 중량% PtFe(80:20)/C 촉매를 제조하였다.
비교예 4
백금 금속 전구체(H2PtCl)의 양을 50 중량% 줄이고 백금이 줄어든 양 만큼 철 금속 전구체(FeCl2)를 첨가한 것을 제외하고는, 상기 실시예 1과 동일한 방법을 수행하여 20 중량% PtFe(50:50)/C 촉매를 제조하였다.
비교예 5 내지 7
비교예 1에서 얻어진 Pt/C 촉매를 질소 분위기에서 300, 400 및 500℃에서 각각 1시간 동안 추가로 열처리하여 열처리된 Pt/C 촉매를 제조하였다.
시험예 1 : 캐소드 촉매의 물성 및 활성 측정
상기 실시예 1 내지 4 및 비교예 1 내지 7에서 제조한 PtFe/C 또는 Pt/C 촉매의 활성을 평가하고자 전기화학측정을 실시하였다. 구체적으로, 듀폰사의 나피온 용액(Nafion Solution, Type: SE-5012)과 증류수를 9:1의 중량비로 혼합하여 혼합용액을 만들었다. 이어, 혼합용액 5ml에, 상기 실시예 및 비교예 각각에서 제조한 촉매 0.025g을 첨가한 후 30분 동안 분산시켰다. 그리고, 마이크로피펫을 이용하여 25mg의 촉매를 글래시 카본(glassy carbon)에 코팅한 후, 80℃에서 1시간 동안 열처리하여 작업 전극(working electrode)을 제작하였다. 상기 작업 전극, 참조 전극(reference electrode)으로서 Ag/AgCl 전극(실험 후, SHE로 환산), 그리고 대응 전극(counter electrode)으로서 백금선을 이용한 전기화학측정장치(WonATtek Co., HPCS1)를 사용하여 1M의 황산수용액에서 전기화학측정을 실시하였다.
캐소드 반응인 산소환원반응 활성을 조사하기 위하여, 질소 및 산소분위기에서 순환 전압전류법(cyclic voltammetry)에 의한 전기화학측정을 수행하여 질소 및 산소분위기에서 측정된 전류값의 차이로부터 0.85V(SHE 기준)에서의 전류값(i ORR ) 및 -0.025mA에서의 전위값(E ORR )을 측정하였다. 그리고, 산소분위기에서 0.9, 0.8, 0.7 및 0.6V 각각의 전위에서 5분 동안 정전위 측정을 실시하여 전류값(i ORR )을 측정하였다.
나아가, 상기 실시예 및 비교예 각각에서 제조한 촉매에 대해 투과전자현미경(TEM: Transmission electron microscope, JEOL) 분석 및 X선 회절(XRD: X-ray diffraction, RIGAKU) 분석을 수행하여 촉매 중 백금 입자의 크기와 결정화도를 조사하였다.
실시예 1 및 비교예 1 내지 4에서 제조한 촉매에 대해서 전기화학측정을 수행한 결과, 질소 및 산소분위기에서 측정된 전류값의 차이로부터 얻은 전류값(i ORR ) 및 전위값(E ORR )을 도 2에 나타내었다. 도 2에서, 비교예 2 내지 4에서 제조한 PtFe(90:10)/C, PtFe(80:20)/C 및 PtFe(50:50)/C 촉매의 경우 비교예 1 (전위값: 0.85V, 전류값: -0.024mA)에 비해 촉매활성이 낮지만, 실시예 1 (전위값: 0.94V, 전류값: -0.084mA)에서 제조한 PtFe(60:40)/C 촉매의 경우는 비교예 1에 비해 촉매활성이 급격히 증가함을 알 수 있다. 이러한 결과는 촉매활성이 백금-철 합금의 혼합 비율에 대해서 의존성을 나타냄을 보여준다.
실시예 2 내지 4에서 제조한 열처리된 PtFe(60:40)/C 촉매 및 비교예 5 내지 7에서 제조한 열처리된 Pt/C 촉매에 대해서 전기화학측정을 수행한 결과, 질소 및 산소분위기에서 측정된 전류값의 차이로부터 얻은 전류값(i ORR ) 및 전위값(E ORR )을 실시예 1 및 비교예 1의 결과와 함께 도 3에 나타내었다. 도 3으로부터, 열처리된 PtFe(60:40)/C 촉매가 열처리된 Pt/C 촉매에 비해 고활성을 나타냄을 알 수 있으며, Pt/C 촉매의 경우 열처리온도에 따라 전위값과 전류값이 변하여 온도 의존성을 보이지만, PtFe(60:40)/C 촉매의 경우 열처리온도에 따른 전위값과 전류값에 큰 차이가 없음을 알 수 있다.
실시예 1 및 비교예 1 내지 4에서 제조한 촉매에 대해서 산소분위기에서 0.9, 0.8, 0.7 및 0.6V 각각의 전위에서 측정된 전류값(i ORR )을 도 4에 나타내었다. 이때 0.7V 이하의 전위에서 산소환원반응전류의 편차가 큰 것은 낮은 전위 영역에서의 활성은 촉매반응과 전해질에 포함되어 있는 반응물질의 이동의 영향을 동시에 받기 때문이다. 도 4로부터, 실시예 1 및 비교예 1의 0.85V에서의 활성이 각각 -0.084 및 -0.024mA를 나타내는 등 실시예 1이 비교예 1에 비하여 4배 높은 활성을 나타냄을 알 수 있다.
실시예 2 내지 4에서 제조한 열처리된 PtFe(60:40)/C 촉매에 대해서 산소분위기에서 0.9, 0.8, 0.7 및 0.6V 각각의 전위에서 측정된 전류값(i ORR )을 실시예 1 및 비교예 1의 결과와 함께 도 5에 나타내었다. 도 5에서, 실시예 2 및 3에서 제조한 열처리된 PtFe(60:40)/C 촉매가 비교예 1의 Pt/C 촉매에 비하여 고활성을 나타냄을 알 수 있다.
상기 실시예 1 및 비교예 2 내지 4에서 제조한 PtFe/C 촉매에 대한 투과전자 현미경(TEM) 사진을 도 6에 나타내었다 ((a): 비교예 2의 PtFe(90:10)/C 촉매, (b): 비교예 3의 PtFe(80:20)/C 촉매, (c): 실시예 1의 PtFe(60:40)/C 촉매, (d): 비교예 4의 PtFe(50:50)/C 촉매). 도 6의 투과전자현미경 결과로부터 실시예 1(도 6의 (c))의 경우 월등히 많은 양의 백금-철 합금이 담지되었음을 알 수 있는데, 이는 특정 비율로 철이 포함됨에 따라 촉매 활성에 영향을 주는 Pt-Pt 원자간 거리, 지지체 표면 위에 담지된 Pt 상태, Pt 5d 밴드 공공 등이 유리하게 변화함에 기인한 것으로 판단된다.
이러한 촉매 활성 및 물성 측정결과로부터, 일정량의 백금의 양을 저감하고도 특정 비율의 철 합금을 통하여 캐소드 촉매 활성을 경제적으로 증대시킬 수 있음을 확인할 수 있다.
도 1은 본 발명의 방법의 하나의 실시양태에 따른 20 중량%의 백금-철 합금 입자가 탄소지지체에 담지된 캐소드 촉매의 제조공정을 나타낸 것이고,
도 2는 질소 및 산소분위기에서 실시예 1 및 비교예 1 내지 4에서 제조한 촉매에 대해 측정된 전류값의 차이로부터 얻은 전류값(i ORR ) 및 전위값(E ORR )을 나타낸 것이고,
도 3는 질소 및 산소분위기에서 실시예 2 내지 4에서 제조한 열처리된 PtFe(60:40)/C 촉매 및 비교예 5 내지 7에서 제조한 열처리된 Pt/C 촉매에 대해 측정된 전류값의 차이로부터 얻은 전류값(i ORR ) 및 전위값(E ORR )을 실시예 1 및 비교예 1의 결과와 함께 나타낸 것이고,
도 4는 실시예 1 및 비교예 1 내지 4에서 제조한 촉매에 대해 산소분위기에서 0.9, 0.8, 0.7 및 0.6V 각각의 전위에서 측정된 전류값(i ORR )을 나타낸 것이고,
도 5는 실시예 2 내지 4에서 제조한 열처리된 PtFe(60:40)/C 촉매에 대해 산소분위기에서 0.9, 0.8, 0.7 및 0.6V 각각의 전위에서 측정된 전류값(i ORR )을 실시예 1 및 비교예 1의 결과와 함께 나타낸 것이고,
도 6은 실시예 1 및 비교예 2 내지 4에서 제조한 PtFe/C 촉매의 투과전자현미경(TEM) 사진을 나타낸 것이다 ((a): 비교예 2의 PtFe(90:10)/C 촉매, (b): 비교예 3의 PtFe(80:20)/C 촉매, (c): 실시예 1의 PtFe(60:40)/C 촉매, (d): 비교예 4의 PtFe(50:50)/C 촉매).

Claims (11)

  1. 용매 중에서 환원제 존재 하에 탄소지지체와 금속 전구체를 혼합하고 환원반응시켜 금속 입자가 탄소지지체에 담지된 촉매를 제조함에 있어서,
    상기 금속 전구체로서 백금 금속 전구체와 철 금속 전구체를 함께 사용하여 백금 입자와 철 입자의 중량비가 70:30 내지 55:45 범위가 되도록 백금-철 합금 입자를 탄소지지체에 촉매 총중량 기준 15 내지 25 중량%의 양으로 담지시키는 것을 특징으로 하는, 연료전지용 캐소드 PtFe/C 촉매의 제조방법.
  2. 제 1 항에 있어서,
    상기 백금-철 합금 입자를 탄소지지체에 담지시킨 후에, 300 내지 500℃에서 열처리하여 백금-철 합금 입자가 2 내지 6nm의 크기를 가지면서 X-선 회절 패턴에서 0.8 내지 1.2°의 반치폭(FWHM, full width at half maximum) 값을 갖도록 하는 공정을 추가로 수행하는 것을 특징으로 하는, 연료전지용 캐소드 PtFe/C 촉매의 제조방법.
  3. 제 1 항에 있어서,
    상기 탄소지지체가 탄소 나노분말, 탄소 나노튜브(nanotube), 탄소 나노막대(nanoforn) 및 이들의 혼합물로 이루어진 군으로부터 선택되는 것을 특징으로 하는, 연료전지용 캐소드 PtFe/C 촉매의 제조방법.
  4. 제 1 항에 있어서,
    상기 탄소지지체가 질산용액 중에서 교반되어 전처리된 것임을 특징으로 하는, 연료전지용 캐소드 PtFe/C 촉매의 제조방법.
  5. 제 1 항에 있어서,
    상기 백금 금속 전구체가 K2PtCl4, K2PtCl6, H2PtCl4, H2PtCl6, Pt(NH3)4Cl2 및 이들의 혼합물로 이루어진 군으로부터 선택되는 것을 특징으로 하는, 연료전지용 캐소드 PtFe/C 촉매의 제조방법.
  6. 제 1 항에 있어서,
    상기 철 금속 전구체가 FeCl2, FeCl3 및 이들의 혼합물로 이루어진 군으로부터 선택되는 것을 특징으로 하는, 연료전지용 캐소드 PtFe/C 촉매의 제조방법.
  7. 제 1 항에 있어서,
    상기 환원제가 NaBH4, HCHO, 에틸렌 글리콜 및 이들의 혼합물로 이루어진 군으로부터 선택되는 것을 특징으로 하는, 연료전지용 캐소드 PtFe/C 촉매의 제조방법.
  8. 제 1 항에 있어서,
    상기 환원제가 상기 백금 및 철 금속 전구체에서 백금 및 철을 합친 총 금속 0.1 중량부를 기준으로 15 내지 20 중량부의 양으로 사용되는 것을 특징으로 하는, 연료전지용 캐소드 PtFe/C 촉매의 제조방법.
  9. 제 1 항에 있어서,
    상기 환원반응시 염기 성분을 첨가하여 용액의 pH를 10-12로 조절하는 것을 특징으로 하는, 연료전지용 캐소드 PtFe/C 촉매의 제조방법.
  10. 제 1 항 내지 제 9 항 중 어느 한 항의 방법에 의해 제조된 연료전지용 캐소드 PtFe/C 촉매.
  11. 제 10 항에 있어서,
    상기 연료전지가 고분자 전해질 연료전지인 것을 특징으로 하는 연료전지용 캐소드 PtFe/C 촉매.
KR1020090089862A 2009-09-23 2009-09-23 고활성 연료전지용 캐소드 PtFe/C 촉매의 제조방법 KR20110032395A (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090089862A KR20110032395A (ko) 2009-09-23 2009-09-23 고활성 연료전지용 캐소드 PtFe/C 촉매의 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090089862A KR20110032395A (ko) 2009-09-23 2009-09-23 고활성 연료전지용 캐소드 PtFe/C 촉매의 제조방법

Publications (1)

Publication Number Publication Date
KR20110032395A true KR20110032395A (ko) 2011-03-30

Family

ID=43937144

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090089862A KR20110032395A (ko) 2009-09-23 2009-09-23 고활성 연료전지용 캐소드 PtFe/C 촉매의 제조방법

Country Status (1)

Country Link
KR (1) KR20110032395A (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210114235A (ko) * 2020-03-10 2021-09-23 한국과학기술연구원 가역적 촉매 활성을 갖는 이리듐 합금 촉매 및 이의 제조 방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210114235A (ko) * 2020-03-10 2021-09-23 한국과학기술연구원 가역적 촉매 활성을 갖는 이리듐 합금 촉매 및 이의 제조 방법

Similar Documents

Publication Publication Date Title
Ramos-Sánchez et al. PdNi electrocatalyst for oxygen reduction in acid media
Geng et al. Ni–Pt/C as anode electrocatalyst for a direct borohydride fuel cell
Yang et al. PGM-Free Fe/N/C and ultralow loading Pt/C hybrid cathode catalysts with enhanced stability and activity in PEM fuel cells
CN113097508A (zh) 一种贵金属负载型电催化剂及其制备方法和应用
Beltrán-Gastélum et al. Evaluation of PtAu/MWCNT (multiwalled carbon nanotubes) electrocatalyst performance as cathode of a proton exchange membrane fuel cell
Cruz-Martínez et al. Mexican contributions for the improvement of electrocatalytic properties for the oxygen reduction reaction in PEM fuel cells
Zhou et al. Non-precious nickel-based catalysts for hydrogen oxidation reaction in alkaline electrolyte
KR101327894B1 (ko) 연료전지용 백금-코발트계 전극촉매의 제조방법
Hosseini et al. Novel bimetallic Pd–X (X= Ni, Co) nanoparticles assembled on N-doped reduced graphene oxide as an anode catalyst for highly efficient direct sodium borohydride–hydrogen peroxide fuel cells
TWI474547B (zh) 電催化觸媒及包含其之燃料電池
Wang et al. Amorphous high-valence Mo-doped NiFeP nanospheres as efficient electrocatalysts for overall water-splitting under large-current density
KR20140070246A (ko) 연료전지용 전극 촉매, 그 제조방법, 이를 포함한 연료전지용 전극 및 연료전지
Li et al. Carbon supported Ir nanoparticles modified and dealloyed with M (M= V, Co, Ni and Ti) as anode catalysts for polymer electrolyte fuel cells
Martins et al. PtNi supported on binary metal oxides: Potential bifunctional electrocatalysts for low-temperature fuel cells?
Guo et al. Novel hollow PtRu nanospheres supported on multi-walled carbon nanotube for methanol electrooxidation
KR20110024497A (ko) 고활성 연료전지용 캐소드 Pt/C촉매의 제조방법
Glass et al. Optimization of platinum loading on partially fluorinated carbon catalysts for enhanced proton exchange membrane fuel cell performance
AU2014207564B2 (en) Non-PGM catalysts for ORR based on charge transfer organic complexes
Uribe-Godínez et al. Novel osmium-based electrocatalysts for oxygen reduction and hydrogen oxidation in acid conditions
US11631865B2 (en) Transition metal support for catalyst electrode and method of manufacturing same
CN110600752B (zh) 一种H2气相热还原制备碳载Pt合金催化剂的方法
Kim et al. Carbon supported bimetallic Pd–Co catalysts for alkaline sulfide oxidation in direct alkaline sulfide fuel cell
Li et al. Carbon-supported Ir–V nanoparticle as novel platinum-free anodic catalysts in proton exchange membrane fuel cell
CN115472846A (zh) 碳载铑基有序金属间化合物及制备与作为催化剂的应用
KR20110032395A (ko) 고활성 연료전지용 캐소드 PtFe/C 촉매의 제조방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application