KR20110026331A - Apparatus and method for control ammonia occlusion amount of selective catalytic reduction system - Google Patents

Apparatus and method for control ammonia occlusion amount of selective catalytic reduction system Download PDF

Info

Publication number
KR20110026331A
KR20110026331A KR1020090084179A KR20090084179A KR20110026331A KR 20110026331 A KR20110026331 A KR 20110026331A KR 1020090084179 A KR1020090084179 A KR 1020090084179A KR 20090084179 A KR20090084179 A KR 20090084179A KR 20110026331 A KR20110026331 A KR 20110026331A
Authority
KR
South Korea
Prior art keywords
amount
ammonia
scr catalyst
nox
block
Prior art date
Application number
KR1020090084179A
Other languages
Korean (ko)
Other versions
KR101145621B1 (en
Inventor
조지호
Original Assignee
현대자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR1020090084179A priority Critical patent/KR101145621B1/en
Priority to US12/622,199 priority patent/US20110060465A1/en
Priority to JP2009275464A priority patent/JP2011058485A/en
Priority to DE102009044778A priority patent/DE102009044778A1/en
Publication of KR20110026331A publication Critical patent/KR20110026331A/en
Priority to US13/419,890 priority patent/US20120173022A1/en
Application granted granted Critical
Publication of KR101145621B1 publication Critical patent/KR101145621B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/58Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/026Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting NOx
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/06Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a temperature sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/14Exhaust systems with means for detecting or measuring exhaust gas components or characteristics having more than one sensor of one kind
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0406Methods of control or diagnosing using a model with a division of the catalyst or filter in several cells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • F01N2900/1402Exhaust gas composition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1602Temperature of exhaust gas apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1622Catalyst reducing agent absorption capacity or consumption amount
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Toxicology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PURPOSE: An apparatus and a method for controlling the ammonia occlusion amount of a selective catalytic reduction system are provided to enable the spraying of urea solution to be accurately controlled to generate ammonia since ammonia consumption is accurately predicted on the SCR(selective catalytic reduction) system. CONSTITUTION: An apparatus for controlling the ammonia occlusion amount of a selective catalytic reduction system comprises a SCR catalyst, first and second temperature sensors, an NOx sensor and a controller. The occluded ammonia reacts with NOx by the SCR catalyst to purify the NOx. The first and second temperature sensors detect the temperatures of the front and rear ends of the SCR catalyst. The NOx sensor detects the amount of NOx, which flows into the SCR catalyst. The controller calculates total ammonia required for the SCR catalyst and controls occlusion.

Description

SCR촉매의 암모니아 흡장량 제어장치 및 방법{APPARATUS AND METHOD FOR CONTROL AMMONIA OCCLUSION AMOUNT OF SELECTIVE CATALYTIC REDUCTION SYSTEM} Apparatus and method for controlling the amount of ammonia occlusion of SCR catalyst {APPARATUS AND METHOD FOR CONTROL AMMONIA OCCLUSION AMOUNT OF SELECTIVE CATALYTIC REDUCTION SYSTEM}

본 발명은 디젤 차량에 장착되는 SCR(Selective Catalytic Reduction)촉매에 관한 것으로, 보다 상세하게는 SCR촉매의 축 방향 온도차이를 고려하여 암모니아의 흡장량을 제어하는 SCR촉매의 암모니아 흡장량 제어장치 및 방법에 관한 것이다.The present invention relates to an SCR (Selective Catalytic Reduction) catalyst mounted on a diesel vehicle, and more particularly, to ammonia storage amount control apparatus and method for controlling the amount of ammonia in consideration of the axial temperature difference of the SCR catalyst. It is about.

디젤 엔진이 적용되는 차량은 북미디젤 Tier2/BIN5 규제나 유로 6의 배기가스 규제에 따라 배기가스에 포함된 NOx, CO, THC, 입자상 물질(Particulate Matters)등의 유해물질을 제거시키기 위한 다양한 형태의 후처리 장치가 장착된다.Diesel-powered vehicles can be used in various forms to remove hazardous substances such as NOx, CO, THC, and Particulate Matters contained in the exhaust according to the North American diesel Tier 2 / BIN 5 regulation or the Euro 6 emission regulation. The aftertreatment device is mounted.

후처리 장치로는 엔진과 근접하게 배치되어 NMHC(Non-Methane HydroCarbons) 변환기능을 실행하는 DOC(Diesel Oxidation Catalyst), 입자상 물질(Particulate Matters :PM)을 포집하는 DPF(Diesel Particulate Filter), 환원작용을 통해 NOx를 정화하는 SCR촉매가 포함된다.As a post-treatment device, the DOC (Diesel Oxidation Catalyst), which collects non-methane hydrocarbons (NMHC), and the Particulate Particulate Filter (DPF), which collect particulate matter (PM), which reduce NMHC, SCR catalyst is included to purify NOx.

상기 SCR촉매는 NOx를 정화하기 위한 환원제로 암모니아(NH3)를 사용하며, NOx에 대한 선택도가 매우 우수할 뿐만 아니라 산소가 존재하는 경우에도 NOx와 암 모니아 사이의 반응이 촉진되는 장점이 있다.The SCR catalyst uses ammonia (NH 3 ) as a reducing agent for purifying NOx, and has an advantage that the reaction between NOx and ammonia is promoted even in the presence of oxygen as well as excellent selectivity to NOx. have.

SCR촉매는 NOx정화 성능을 일정수준으로 이상으로 유지하기 위해 SCR촉매의 전단부에 배치되는 도징모듈(Dosing Module)로 요소(Urea)를 분사하고, 분사된 요소의 증발 및 분해에 따라 생성되는 암모니아를 취득하여 SCR촉매의 내부에 암모니아 흡장하며, 암모니아 흡장량은 SCR촉매 온도에 반비례한다.SCR catalyst sprays urea into a dosing module placed at the front end of the SCR catalyst to maintain NOx purification performance at a certain level or higher, and ammonia generated by evaporation and decomposition of the injected urea And ammonia is occluded inside the SCR catalyst, and the ammonia occlusion amount is inversely proportional to the SCR catalyst temperature.

종래의 차량에서는 SCR촉매 내부의 온도에 차이가 없다고 가정하고, SCR촉매의 전/후단 온도를 검출한 다음 평균하여 SCR촉매의 온도로 추출하며, 설정된 맵에 온도 값을 적용하여 SCR촉매의 부피에 따른 암모니아 흡장 가능량을 예측하여 목표 암모니아 흡장량을 결정하였다.In the conventional vehicle, it is assumed that there is no difference in the temperature inside the SCR catalyst, the front and rear temperatures of the SCR catalyst are detected, averaged, and extracted as the temperature of the SCR catalyst, and the temperature value is applied to the set map to the volume of the SCR catalyst. The target amount of ammonia occlusion was determined by predicting the possible amount of ammonia occlusion.

그리고, SCR촉매의 목표 암모니아 흡장량과 현재의 암모니아 흡장량의 차이에 따라 필요 암모니아 양을 결정하였다.The required amount of ammonia was determined according to the difference between the target ammonia occlusion amount and the current ammonia occlusion amount of the SCR catalyst.

SCR촉매에서 암모니아 흡착량은 SCR촉매의 온도가 낮으면 흡착이 느리게 진행되고 흡착 가능량은 크기 때문에 전후단 흡착량의 차이가 크게 되며, 온도가 높으면 흡착이 빠르게 진행되고 흡착 가능량은 작기 때문에 전후단 흡착량의 차이는 작은 형태로 진행된다.The adsorption amount of ammonia in the SCR catalyst is slower when the temperature of the SCR catalyst is low and the adsorption amount is large because the adsorption amount is large. The difference in quantity proceeds in small form.

이와 같이 SCR촉매에 온도차이가 존재하면 축 방향으로 암모니아 흡장 가능량에 차이가 존재하므로 일정수준의 안전율을 고려하여 일정한 양으로 분사된 암모니아는 SCR촉매의 축방향으로 고루 분포되지 못하여 NOx 정화율을 저하시킨다.As such, if there is a temperature difference in the SCR catalyst, there is a difference in the amount of possible ammonia occlusion in the axial direction. Let's do it.

예를 들어, SCR촉매의 전단에서는 NOx의 정화가 안정되게 이루어지나 후단에서는 NOx의 정화 손실이 발생하여 NOx 슬립이 발생되는 문제점이 있다.For example, the purification of the NOx is stable at the front end of the SCR catalyst, but there is a problem that the NOx slip occurs due to the purification loss of the NOx at the rear end.

본 발명은 상기한 문제점을 해결하기 위하여 발명한 것으로, 그 목적은 SCR촉매의 축 방향 온도차이를 고려한 암모니아 흡장량 제어를 실행하여 SCR촉매내의 균일한 암모니아 분포를 제공함으로써 NOx 정화율을 향상시키고, 보다 정확한 요소의 분사량으로 암모니아 슬립이 발생되지 않도록 하여 에미션 안정화를 제공하는 것이다.The present invention has been made to solve the above problems, and its object is to improve the NOx purification rate by providing a uniform ammonia distribution in the SCR catalyst by performing ammonia storage amount control considering the axial temperature difference of the SCR catalyst, A more accurate injection of the element does not cause ammonia slip to provide emission stabilization.

상기한 목적을 실현하기 위한 본 발명의 특징에 따른 SCR촉매의 암모니아 흡장량 제어장치는,Ammonia storage amount control apparatus of the SCR catalyst according to the characteristics of the present invention for achieving the above object,

흡장된 암모니아와 NOx를 반응시켜 NOx를 정화하는 SCR촉매;SCR catalyst for purifying NOx by reacting the ammonia occluded with NOx;

SCR촉매 전후단의 온도를 검출하는 제1,2온도센서;First and second temperature sensors for detecting temperatures before and after the SCR catalyst;

SCR촉매에 유입되는 NOx양을 검출하는 NOx센서;NOx sensor for detecting the amount of NOx flowing into the SCR catalyst;

상기 SCR촉매의 전/후단 온도에 따라 SCR촉매의 내부를 온도차이가 유지되는 N개의 블록으로 구분하고, 각 블록에 축방향 반응모델 모듈을 적용하여 블록별 필요 암모니아 양을 계산하며, 블록별로 계산된 필요 암모니아 양의 합산으로 SCR촉매 전체의 필요 암모니아 양을 계산하여 흡장량을 제어하는 제어부를 포함한다.According to the front and rear temperature of the SCR catalyst, the inside of the SCR catalyst is divided into N blocks that maintain the temperature difference, and the required amount of ammonia for each block is calculated by applying an axial response model module to each block, and calculated for each block. And a control unit for controlling the amount of occlusion by calculating the required amount of ammonia of the entire SCR catalyst by summing up the required amount of ammonia.

또한, 본 발명의 특징에 따른 SCR촉매의 암모니아 흡장량 제어방법은,In addition, the ammonia storage amount control method of the SCR catalyst according to the characteristics of the present invention,

SCR촉매 전/후단의 센서로부터 제반 정보를 수집하는 과정;Collecting general information from sensors before and after the SCR catalyst;

SCR촉매 전/후단 온도에 따라 SCR촉매의 내부를 온도차가 유지되는 N개의 블 록으로 구분하는 과정;Dividing the inside of the SCR catalyst into N blocks having a temperature difference according to the temperature before and after the SCR catalyst;

상기 구분된 각 블록에 축방향 반응모델 모듈을 적용하여 블록별 필요 암모니아 양을 계산하는 과정;Calculating a required amount of ammonia for each block by applying an axial response model module to each of the divided blocks;

블록별로 계산되는 필요 암모니아 양을 합산하여 SCR촉매 전체의 필요 암모니아 양을 계산하여 흡장량을 제어하는 과정을 포함한다.Calculating the required amount of ammonia for the entire SCR catalyst by summing the required amount of ammonia calculated for each block and controlling the amount of occlusion.

전술한 구성에 의하여 본 발명은 SCR촉매 내에 균일한 암모니아의 분포를 제공하여 NOx 정화율을 극대화하고 암모니아 슬립을 배제시켜 에미션을 안정화한다.By the above-described configuration, the present invention provides a uniform distribution of ammonia in the SCR catalyst to maximize the NOx purification rate and exclude ammonia slip to stabilize the emission.

또한, 배기 조건의 빠른 변화에 대하여 NOx 정화의 응답성이 향성되고, SCR촉매상에서 암모니아 소비량의 예측을 높여 암모니아 생성을 위한 정확한 우레아 수용액의 분사 제어가 제공되며, 암모니아의 과다 혹은 과소 생성이 예방되어 에미션을 안정되게 유지한다.In addition, the response of NOx purification is improved in response to rapid changes in exhaust conditions, and the prediction of ammonia consumption on the SCR catalyst is enhanced to provide precise injection control of aqueous urea solution to generate ammonia, and to prevent excessive or underproduction of ammonia. Keep your emissions stable.

아래에서는 첨부된 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention.

본 발명은 여러가지 상이한 형태로 구현될 수 있으므로, 여기에서 설명하는 실시예에 한정되지 않으며, 도면에서 본 발명을 명확하게 설명하기 위하여 설명과 관계없는 부분은 생략하였다.Since the present invention can be implemented in various different forms, the present invention is not limited to the exemplary embodiments described herein, and parts not related to the description are omitted in the drawings in order to clearly describe the present invention.

도 1은 본 발명의 실시예에 따른 SCR촉매의 암모니아 흡장량 제어장치를 개 략적으로 도시한 도면이다.1 is a view schematically showing an apparatus for controlling ammonia storage amount of an SCR catalyst according to an embodiment of the present invention.

본 발명은 동력원인 엔진(2), 엔진(2)에서 연소된 배기가스를 배출시키는 배기 파이프(6), SCR촉매(10), 제1NOx센서(12), 제2NOx센서(14), 제1온도센서(16), 제2온도센서(18), 도징모듈(20), 믹서(22), 요소탱크(30), 펌프(32), 요소공급라인(34), 압력센서(36) 및 제어부(40)를 포함한다.The present invention is an engine (2) as a power source, an exhaust pipe (6) for discharging exhaust gas burned by the engine (2), an SCR catalyst (10), a first NOx sensor (12), a second NOx sensor (14), a first Temperature sensor 16, second temperature sensor 18, dosing module 20, mixer 22, urea tank 30, pump 32, urea supply line 34, pressure sensor 36 and control unit And 40.

상기 SCR촉매(10)는 V2O5/TiO2 또는 Pt/Al2O3 또는 제올라이트(Zeolite)로 이루어지며, 동력원인 엔진(2)과 연결되는 배기 파이프(6)의 소정 위치에 배치되어 도징모듈(20)에서 분사되는 요소로부터 취득되어 흡장된 암모니아와 NOx를 환원반응시켜 NOx를 정화한다.The SCR catalyst 10 is made of V 2 O 5 / TiO 2 or Pt / Al 2 O 3 or zeolite, and is disposed at a predetermined position of the exhaust pipe 6 connected to the engine 2 as a power source. The NOx is purified by reducing the ammonia and NOx absorbed from the urea injected from the dosing module 20 and NOx.

제1NOx센서(12)는 도징모듈(20)의 전단에 배치되어 SCR촉매(10)에 유입되는 배기가스에 포함된 NOx양을 검출하여 그 정보를 제어부(40)에 제공한다.The first NOx sensor 12 is disposed in front of the dosing module 20 to detect the amount of NOx contained in the exhaust gas flowing into the SCR catalyst 10 and provide the information to the controller 40.

제2NOx센서(14)는 SCR촉매(10)의 후단(출구측)에 배치되어 SCR촉매(10)를 통해 정화된 배기가스에 포함된 NOx양을 검출하여 그 정보를 제어부(40)에 제공한다.The second NOx sensor 14 is disposed at the rear end (outlet side) of the SCR catalyst 10 to detect the amount of NOx contained in the exhaust gas purified through the SCR catalyst 10 and provide the information to the controller 40. .

제1온도센서(16)는 SCR촉매(10)의 전단에 배치되어 SCR촉매(10)의 전단온도를 검출하여 그 정보를 제어부(40)에 제공한다.The first temperature sensor 16 is disposed in front of the SCR catalyst 10 to detect the front temperature of the SCR catalyst 10 and provide the information to the controller 40.

제2온도센서(18)는 SCR촉매(10)의 후단에 배치되어 SCR촉매(10)의 후단온도를 검출하여 그 정보를 제어부(40)에 제공한다.The second temperature sensor 18 is disposed at the rear end of the SCR catalyst 10 to detect the rear temperature of the SCR catalyst 10 and provide the information to the controller 40.

도징모듈(20)는 제어부(40)의 제어에 따라 인젝터가 작동되어 SCR촉매(10)에서 흡장에 필요한 암모니아를 생성시키기 위한 요소량을 분사한다.The dosing module 20 operates the injector under the control of the control unit 40 to inject the urea amount for generating ammonia for occlusion in the SCR catalyst 10.

믹서(22)는 도징모듈(20)과 SCR촉매(10)의 사이에 배치되어 도징모듈(20)을 통해 분사되는 액상요소 입자를 충돌시켜 입자를 쪼개는 역할을 하며 이를 통해 배기가스와 분사된 요소입자가 골고루 섞여 SCR촉매(10) 입구단에서의 균일성을 좋게 하여 배기가스내의 NOx와 요소로부터 취득된 암모니아를 최적으로 혼합시킨다.Mixer 22 is disposed between the dosing module 20 and the SCR catalyst 10 to collide the liquid element particles injected through the dosing module 20 to split the particles, thereby the exhaust gas and the injected elements The particles are evenly mixed to improve uniformity at the inlet end of the SCR catalyst 10 so as to optimally mix NOx in the exhaust gas and ammonia obtained from urea.

요소탱크(30)는 요소액이 수용되고, 내부에 장착되는 펌프(32)의 구동으로 요소공급라인(34)에 설정된 균등한 압력을 형성시켜 도징모듈(20)이 작동되는 경우 SCR촉매(10)의 전단에 액상요소의 고압분사가 제공되도록 한다.The urea tank 30 receives the urea solution and forms an even pressure set in the urea supply line 34 by driving the pump 32 mounted therein, so that the SCR catalyst 10 when the dosing module 20 is operated. High pressure injection of the liquid element is provided at the front end of the

압력센서(36)는 요소공급라인(34)에 형성되는 압력을 검출하여 그에 대한 정보를 제어부(40)에 제공하여 엔진(2)이 시동 온을 유지하고 있는 상태에서 항상 설정된 압력이 유지될 수 있도록 한다.The pressure sensor 36 detects the pressure formed in the urea supply line 34 and provides information about the pressure to the control unit 40 so that the set pressure can be maintained at all times while the engine 2 is kept starting. Make sure

제어부(40)는 제1,2온도센서(16,18)를 통해 검출되는 SCR촉매(10)의 전/후단온도에 축방향 온도모델을 적용하여 SCR촉매(10)의 내부를 서로 다른 온도를 갖는 N개(예를 들어 5 ~ 10개)의 블록으로 구분하고, 축방향 반응모델 모듈을 통해 블록별로 필요 암모니아 양을 계산한다.The controller 40 applies an axial temperature model to the front / rear end temperatures of the SCR catalyst 10 detected by the first and second temperature sensors 16 and 18 to adjust different temperatures inside the SCR catalyst 10. It is divided into N blocks (for example, 5 to 10), and the required amount of ammonia is calculated for each block through the axial response model module.

상기 블록별 필요 암모니아 양의 계산은 각 블록별 온도(T.SCR)를 부피당 암모니아 흡장 가능량 맵에 적용하고, 여기에 구분된 블록별 실질적인 부피를 적용하여 온도 차이에 따른 각 블록별 암모니아 흡장 가능량을 계산한다.The calculation of the amount of ammonia required for each block applies the temperature of each block (T.SCR) to the ammonia storage capacity map per volume, and applies the actual volume for each block divided therein to calculate the ammonia storage capacity for each block according to the temperature difference. Calculate

또한, SCR촉매(10)에 입력되는 암모니아 양(NH3.In)과 NOx양(NOx.In) 및 NOx정화율로부터 실제 암모니아 흡장량을 계산하고, 상기 암모니아 흡장 가능량과 실제 암모니아 흡장량의 차이로부터 필요 암모니아 양을 계산한다.Also, the actual ammonia storage amount is calculated from the amount of ammonia (NH3.In), NOx amount (NOx.In), and NOx purification rate input to the SCR catalyst 10, and the difference between the ammonia storage capacity and the actual ammonia storage amount is calculated. Calculate the amount of ammonia needed.

그리고, 각 블록별로 계산되는 필요 암모니아 양을 합산하여 SCR촉매(10) 전체에서 흡장에 필요한 필요 암모니아 양을 계산한다.Then, the required amount of ammonia calculated for each block is added to calculate the required amount of ammonia for occlusion in the entire SCR catalyst 10.

상기와 같이 SCR촉매(10)에서 흡장에 필요한 필요 암모니아 양이 계산되면 도징모듈(20)을 통해 요소 분사량을 제어한다.When the amount of ammonia required for occlusion in the SCR catalyst 10 is calculated as described above, the amount of urea injection is controlled through the dosing module 20.

전술한 바와 같은 기능이 포함되는 본 발명에서 SCR촉매의 암모니아 흡장량을 제어하는 동작은 다음과 같다.In the present invention including the function described above, the operation of controlling the amount of ammonia occlusion of the SCR catalyst is as follows.

본 발명이 적용되는 디젤 차량의 엔진이 시동 온 되면 제어부(40)는 SCR촉매(10)의 전후단에 설치되는 다양한 센서를 통해 암모니아 흡장량 제어에 필요한 제반 정보를 수집한다(S110).When the engine of the diesel vehicle to which the present invention is applied is started, the controller 40 collects general information necessary for controlling the amount of ammonia occlusion through various sensors installed at front and rear ends of the SCR catalyst 10 (S110).

예를 들어, 제1온도센서(16)로부터 SCR촉매(10)의 전단 온도(T.In)를 검출하고, 제2온도센서(18)로부터 SCR촉매(10)의 후단 온도(T.Out)를 검출하며, 도징모듈(20)에서 분사되는 요소 수용액으로 생성되는 암모니아 분사량(NH3 분사량)을 추출하고, 제1NOx센서(12)로부터 SCR촉매(10)에 유입되는 NOx양(NOx.In)을 검출한다.For example, the front temperature T. In of the SCR catalyst 10 is detected from the first temperature sensor 16, and the rear temperature T. Out of the SCR catalyst 10 is detected from the second temperature sensor 18. Detects and extracts the ammonia injection amount (NH3 injection amount) generated by the urea aqueous solution injected from the dosing module 20, and the amount of NOx (NOx.In) flowing into the SCR catalyst 10 from the first NOx sensor 12 Detect.

이후, 상기 제1,2온도센서(16,18)로부터 검출되는 SCR촉매(10) 전/후단의 온도에 설정된 축방향 온도모델을 적용하여(S120) SCR촉매(10)의 내부에서 온도차이를 갖는 N개의 블록(T.1 ~ T.5)으로 구분한다(S130).Subsequently, by applying the axial temperature model set to the temperature of the front and rear of the SCR catalyst 10 detected from the first and second temperature sensors 16 and 18 (S120), the temperature difference in the SCR catalyst 10 is reduced. It is divided into N blocks (T.1 to T.5) having (S130).

상기와 같이 SCR촉매(10)가 온도모델을 통해 N개의 블록으로 구분되면 각각의 블록에 축방향 반응모델 모듈을 적용하여(S140) 블록별로 필요 암모니아 양을 계산한다(S150).As described above, when the SCR catalyst 10 is divided into N blocks through the temperature model, the axial reaction model module is applied to each block (S140), and the required amount of ammonia is calculated for each block (S150).

상기 블록별 필요 암모니아 양의 계산은 도 3에 도시된 바와 같이, 각 블록 별 온도(T.SCR)를 부피당 암모니아 흡장 가능량 맵에 적용하여 부피당 암모니아 흡장 가능량을 추출하고(S151), 여기에 구분된 블록별 실질적인 부피를 적용하여 온도 차이에 따른 각 블록별 암모니아 흡장 가능량을 계산한다(S152).As shown in FIG. 3, the calculation of the amount of ammonia required for each block is performed by applying the temperature (T.SCR) for each block to the ammonia storage capacity map per volume to extract the ammonia storage capacity per volume (S151), By applying the actual volume for each block to calculate the amount of ammonia occlusion for each block according to the temperature difference (S152).

또한, SCR촉매(10)에 입력되는 암모니아 양(NH3.In)과 NOx양(NOx.In) 및 NOx정화율로부터 실제 암모니아 흡장량을 계산하고(S153), 상기 S152에서 계산된 암모니아 흡장 가능량과 상기 S153에서 계산된 실제 암모니아 흡장량의 차이로부터 필요 암모니아 양을 계산한다.In addition, the actual ammonia storage amount is calculated from the amount of ammonia (NH3.In), NOx amount (NOx.In) and NOx purification rate input to the SCR catalyst 10 (S153), The required amount of ammonia is calculated from the difference in the actual amount of ammonia occlusion calculated in S153.

상기와 같이, SCR촉매(10)를 온도의 차이에 따라 다수 개로 분리한 각 블록별로 필요 암모니아 양이 계산되면 각 블록에서 계산된 필요 암모니아 양을 합산하여 SCR촉매(10) 전체에서 요구되는 필요 암모니아 양을 계산한다(S160).As described above, when the required ammonia amount is calculated for each block in which a plurality of SCR catalysts 10 are separated according to the difference in temperature, the required ammonia required in the entire SCR catalyst 10 is added by adding up the required amount of ammonia in each block. Calculate the amount (S160).

상기와 같이 SCR촉매(10) 전체에서 요구되는 필요 암모니아 양이 계산되면 도징모듈(20)을 통해 요소 분사량을 제어함으로써, 도 4에 도시된 바와 같이 SCR촉매(10)의 축방향으로 암모니아 흡장량이 균일한 분포로 유지되어 NOx의 정화율을 높여 에미션을 안정화시킨다.When the required amount of ammonia required in the entire SCR catalyst 10 is calculated as described above, the amount of ammonia stored in the axial direction of the SCR catalyst 10 is controlled by controlling the amount of urea injection through the dosing module 20, as shown in FIG. It is maintained in a uniform distribution to stabilize the emission by increasing the purification rate of NOx.

이상에서 본 발명의 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것이 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 포함된다.Although the embodiments of the present invention have been described in detail above, the scope of the present invention is not limited thereto, and various modifications and improvements of those skilled in the art using the basic concepts of the present invention defined in the following claims are also provided. It is included in the scope of rights.

도 1은 본 발명의 실시예에 따른 SCR 촉매의 암모니아 흡장량 제어장치를 개략적으로 도시한 도면이다.1 is a view schematically showing an ammonia storage amount control apparatus of the SCR catalyst according to an embodiment of the present invention.

도 2는 본 발명의 실시예에 따른 SCR 촉매의 암모니아 흡장량 제어절차를 도시한 흐름도이다.2 is a flowchart illustrating a procedure for controlling ammonia storage amount of the SCR catalyst according to the embodiment of the present invention.

도 3은 도 2에서 축방향 반응모델 모듈의 세부 절차를 도시한 흐름도이다.3 is a flowchart illustrating a detailed procedure of the axial response model module in FIG.

도 4는 본 발명의 실시예에 따른 SCR촉매의 암모니아 흡장량 제어결과에 도시한 그래프이다.4 is a graph showing the ammonia storage amount control results of the SCR catalyst according to an embodiment of the present invention.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

2 : 엔진 6 : 배기 파이프2: engine 6: exhaust pipe

10 : SCR촉매 12 : 제1NOx센서10: SCR catalyst 12: 1st NOx sensor

14 : 제2NOx센서 16 : 제1온도센서14 second NOx sensor 16 first temperature sensor

18 : 제2온도센서 20 : 도징모듈18: second temperature sensor 20: dosing module

22 : 믹서 30 : 요소탱크22: mixer 30: urea tank

40 : 제어부 40: control unit

Claims (7)

흡장된 암모니아와 NOx를 반응시켜 NOx를 정화하는 SCR촉매;SCR catalyst for purifying NOx by reacting the ammonia occluded with NOx; SCR촉매 전후단의 온도를 검출하는 제1,2온도센서;First and second temperature sensors for detecting temperatures before and after the SCR catalyst; SCR촉매에 유입되는 NOx양을 검출하는 NOx센서;NOx sensor for detecting the amount of NOx flowing into the SCR catalyst; 상기 SCR촉매의 전/후단 온도에 따라 SCR촉매의 내부를 서로 다른 온도를 갖는 N개의 블록으로 구분하고, 구분된 각 블록에 축방향 반응모델 모듈을 적용하여 블록별 필요 암모니아 양을 계산하며, 블록별로 계산되는 필요 암모니아 양을 합산하여 SCR촉매 전체의 필요 암모니아 양을 계산하여 흡장량을 제어하는 제어부;The inside of the SCR catalyst is divided into N blocks having different temperatures according to the front and rear temperatures of the SCR catalyst, and the required amount of ammonia for each block is calculated by applying an axial reaction model module to each divided block, A control unit for controlling the amount of occlusion by calculating the required amount of ammonia for the entire SCR catalyst by summing the amount of ammonia calculated for each star; 를 포함하는 SCR촉매의 암모니아 흡장량 제어장치.Ammonia storage amount control device of the SCR catalyst comprising a. 제1항에 있어서,The method of claim 1, 상기 제어부는 블록별 온도를 설정된 맵에 적용하여 블록별 실제 부피에 따른 암모니아 흡장 가능량을 계산하고, SCR촉매에 입력되는 암모니아 양과 NOx양 및 NOx정화율로부터 실제 암모니아 흡장량을 계산하며, 상기 블록별 암모니아 흡장 가능량과 실제 암모니아 흡장량의 차이로부터 블록별 필요 암모니아 양을 계산하는 것을 특징으로 하는 SCR촉매의 암모니아 흡장량 제어장치.The control unit calculates the ammonia occlusion amount according to the actual volume of each block by applying the temperature of each block to the set map, calculates the actual ammonia occlusion amount from the ammonia amount, NOx amount and NOx purification rate input to the SCR catalyst, An apparatus for controlling ammonia occlusion amount of an SCR catalyst, comprising calculating the amount of ammonia required per block from the difference between the ammonia occlusion amount and the actual ammonia occlusion amount. 제1항에 있어서,The method of claim 1, 상기 제어부는 제1,2온도센서로부터 검출되는 SCR촉매의 전/후단 온도에 설 정된 축방향 온도모델을 적용하여 서로 다른 온도를 갖는 N개의 블록으로 구분하는 것을 특징으로 하는 SCR촉매의 암모니아 흡장량 제어장치. The controller divides the ammonia storage amount of the SCR catalyst into N blocks having different temperatures by applying an axial temperature model set to the front / rear temperature of the SCR catalyst detected by the first and second temperature sensors. Control unit. SCR촉매 전/후단의 센서로부터 제반 정보를 수집하는 과정;Collecting general information from sensors before and after the SCR catalyst; SCR촉매 전/후단 온도에 따라 SCR촉매의 내부를 온도차가 유지되는 N개의 블록으로 구분하는 과정;Dividing the inside of the SCR catalyst into N blocks maintaining a temperature difference according to the temperature before and after the SCR catalyst; 상기 구분된 각 블록에 축방향 반응모델 모듈을 적용하여 블록별 필요 암모니아 양을 계산하는 과정;Calculating a required amount of ammonia for each block by applying an axial response model module to each of the divided blocks; 블록별로 계산되는 필요 암모니아 양을 합산하여 SCR촉매 전체의 필요 암모니아 양을 계산하여 흡장량을 제어하는 과정;Controlling the occlusion amount by calculating the required amount of ammonia of the entire SCR catalyst by summing the required amount of ammonia calculated for each block; 을 포함하는 SCR촉매의 암모니아 흡장량 제어방법.Ammonia storage amount control method of the SCR catalyst comprising a. 제4항에 있어서,The method of claim 4, wherein 상기 SCR촉매의 블록 구분은,Block division of the SCR catalyst is, SCR촉매 전/후단 온도에 설정된 축방향 온도모델을 적용하여 온도차가 유지되는 N개의 블록으로 구분하는 것을 특징으로 하는 SCR촉매의 암모니아 흡장량 제어방법.A method for controlling the amount of ammonia occlusion of an SCR catalyst, characterized by dividing into N blocks in which a temperature difference is maintained by applying an axial temperature model set to the front / rear temperature of the SCR catalyst. 제4항에 있어서,The method of claim 4, wherein 상기 블록별 필요 암모니아 양의 계산은,The calculation of the amount of ammonia required per block, 블록별 온도를 설정된 맵에 적용하여 블록별 실제 부피에 따른 암모니아 흡장 가능량을 계산하는 과정;Calculating the amount of ammonia occlusion according to the actual volume of each block by applying the temperature of each block to the set map; SCR촉매에 입력되는 암모니아 양과 NOx양 및 NOx정화율로부터 실제 암모니아 흡장량을 계산하는 과정;Calculating the actual amount of ammonia occlusion from the amount of ammonia, NOx amount and NOx purification rate input to the SCR catalyst; 상기 블록별 암모니아 흡장 가능량과 실제 암모니아 흡장량의 차이로부터 블록별 필요 암모니아 양을 계산하는 과정;Calculating a necessary amount of ammonia for each block from the difference between the amount of ammonia storage possible for each block and the actual amount of ammonia storage for each block; 을 포함하는 것을 특징으로 하는 SCR촉매의 암모니아 흡장량 제어방법.Ammonia storage amount control method of the SCR catalyst comprising a. 제4항에 있어서,The method of claim 4, wherein 상기 CR촉매 전/후단의 센서로부터 수집되는 정보는,The information collected from the sensors before and after the CR catalyst, 요소로부터 생성되어 SCR촉매에 입력되는 암모니아 양, 배기가스에 포함되어 입력되는 NOx양, SCR촉매 전/후단의 온도를 포함하는 것을 특징으로 하는 SCR촉매의 암모니아 흡장량 제어방법.A method for controlling the amount of ammonia occlusion of an SCR catalyst, comprising the amount of ammonia generated from urea and input into the SCR catalyst, the amount of NOx contained in the exhaust gas, and the temperature before and after the SCR catalyst.
KR1020090084179A 2009-09-07 2009-09-07 Apparatus and method for control ammonia occlusion amount of selective catalytic reduction system KR101145621B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020090084179A KR101145621B1 (en) 2009-09-07 2009-09-07 Apparatus and method for control ammonia occlusion amount of selective catalytic reduction system
US12/622,199 US20110060465A1 (en) 2009-09-07 2009-11-19 Control apparatus of ammonia loading amount for SCR system and control method for the same
JP2009275464A JP2011058485A (en) 2009-09-07 2009-12-03 Apparatus and method for controlling ammonia occlusion amount of scr catalyst
DE102009044778A DE102009044778A1 (en) 2009-09-07 2009-12-04 Ammonia charge amount control apparatus for an SCR system and control method for the same
US13/419,890 US20120173022A1 (en) 2009-09-07 2012-03-14 Control apparatus of ammonia loading amount for scr system and control method for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090084179A KR101145621B1 (en) 2009-09-07 2009-09-07 Apparatus and method for control ammonia occlusion amount of selective catalytic reduction system

Publications (2)

Publication Number Publication Date
KR20110026331A true KR20110026331A (en) 2011-03-15
KR101145621B1 KR101145621B1 (en) 2012-05-16

Family

ID=43536244

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090084179A KR101145621B1 (en) 2009-09-07 2009-09-07 Apparatus and method for control ammonia occlusion amount of selective catalytic reduction system

Country Status (4)

Country Link
US (2) US20110060465A1 (en)
JP (1) JP2011058485A (en)
KR (1) KR101145621B1 (en)
DE (1) DE102009044778A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9494070B2 (en) 2014-09-17 2016-11-15 Hyundai Motor Company Method of controlling ammonia amount absorbed in selective catalytic reduction catalyst and exhaust system using the same
KR20200022777A (en) 2018-08-23 2020-03-04 현대자동차주식회사 Method for controlling urea injection quantity of vehicle

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011118095A1 (en) * 2010-03-25 2011-09-29 Udトラックス株式会社 Engine exhaust purification device and engine exaust purification method
DE102011085108A1 (en) * 2011-10-24 2013-04-25 Ford Global Technologies, Llc Method for controlling an injection device for feeding an ammonia-releasing reducing agent into an exhaust gas purification system of an internal combustion engine
CN102493860B (en) * 2011-12-08 2014-03-05 中国人民解放军军事交通学院 Closed loop control method for SCR (Selective Catalyst Reduction) system of all-working-condition diesel engine
CN102678239A (en) * 2012-06-04 2012-09-19 浙江大学 Independent SCR (semiconductor control rectifier) system control method and control device based on NOx (nitrogen oxide) sensor
US9181835B2 (en) 2013-08-13 2015-11-10 Caterpillar Inc. Supervisory model predictive selective catalytic reduction control method
AT14131U1 (en) * 2013-12-02 2015-05-15 Avl List Gmbh Turbo compound internal combustion engine
EP3110530A1 (en) * 2014-02-28 2017-01-04 Haldor Topsøe A/S Method for the cleaning of exhaust gas from a compression ignition engine
CN105487377B (en) * 2016-01-05 2019-05-14 国家电投集团远达环保装备制造有限公司 A kind of fuzzy controller of denitration urea pyrolysis technique
FR3076854A1 (en) * 2018-01-12 2019-07-19 Psa Automobiles Sa METHOD FOR CONTROLLING A CATALYTIC SELECTIVE REDUCTION SYSTEM
KR102506874B1 (en) * 2018-07-31 2023-03-08 현대자동차주식회사 Urea injeciton control method in an exhaust aftertreatment system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3285877B2 (en) * 1995-09-29 2002-05-27 シーメンス アクチエンゲゼルシヤフト Method and apparatus for converting harmful substances in exhaust gas at a catalyst
KR100587807B1 (en) * 2004-02-10 2006-06-12 현대자동차주식회사 Control method of SCR
JP5258319B2 (en) * 2008-02-15 2013-08-07 ボッシュ株式会社 Failure diagnosis device for oxidation catalyst, failure diagnosis method for oxidation catalyst, and exhaust purification device for internal combustion engine
US7858060B2 (en) * 2008-07-30 2010-12-28 Gm Global Technology Operations, Inc Current storage estimation for selective catalytic reduction catalysts

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9494070B2 (en) 2014-09-17 2016-11-15 Hyundai Motor Company Method of controlling ammonia amount absorbed in selective catalytic reduction catalyst and exhaust system using the same
KR20200022777A (en) 2018-08-23 2020-03-04 현대자동차주식회사 Method for controlling urea injection quantity of vehicle

Also Published As

Publication number Publication date
KR101145621B1 (en) 2012-05-16
DE102009044778A1 (en) 2011-03-10
JP2011058485A (en) 2011-03-24
US20120173022A1 (en) 2012-07-05
US20110060465A1 (en) 2011-03-10

Similar Documents

Publication Publication Date Title
KR101145621B1 (en) Apparatus and method for control ammonia occlusion amount of selective catalytic reduction system
KR101048125B1 (en) Urea injection quantity control device and method of vehicle
KR101416409B1 (en) System for control urea injection quantity of vehicle and method thereof
JP6257941B2 (en) Method for reducing nitrogen oxides in diesel engine exhaust gas
EP1959108B1 (en) Method for controlling exhaust gas purification system
KR101316856B1 (en) System for control urea injection quantity of vehicle and method thereof
KR101416410B1 (en) Urea injection control system for vehicle and method thereof
KR100993364B1 (en) System for control urea injection quantity of vehicle and method thereof
JP2009281294A (en) Exhaust emission control device for internal combustion engine
KR100999622B1 (en) System for control urea injection of vehicle and method thereof
US10344654B2 (en) Selective catalytic reduction steady state ammonia slip detection with positive perturbation
WO2014159038A1 (en) Exhaust aftertreatment control system and method for maximizing fuel efficiency while reducing emissions
US10071344B2 (en) Reductant dosing control using prediction of exhaust species in selective catalytic reduction
EP2960453A1 (en) Exhaust purification device for internal combustion engine
KR20100064914A (en) System for calculation efficiency conversion of selective catalytic reduction in diesel vehicle and method thereof
EP2937534B1 (en) System for purifying exhaust of internal combustion engine
KR100992816B1 (en) System for correction a stored ammonia quantity of emission reduce line on diesel vehicle and method thereof
KR101180941B1 (en) System for control urea injection quantity of vehicle and method thereof
US20190063285A1 (en) Emissions control system of a combustion engine exhaust system
EP3342998B1 (en) Exhaust gas purification apparatus for an internal combustion engine
EP3135875B1 (en) Exhaust purifying system
US10288017B1 (en) Model based control to manage eDOC temperature
JP5869464B2 (en) Exhaust gas purification system for internal combustion engine
KR20140137498A (en) Reductant injection volume control device of a vehicle and method of controlling the same
KR20210043070A (en) Apparatus for controlling engine emission aftertreatment system

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150430

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee